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characterizes the optimal single-item auction in quite broad settings, Economists and Computer
Scientists alike soon realized that optimal mechanisms in the multi-dimensional setting, even in
restricted two-item instances, can be horribly intractable [Briest et al., 2015, Daskalakis et al., 2017,
Hart and Nisan, 2013, Hart and Reny, 2015, Pavlov, 2011, Psomas et al., 2019, 2022, Rochet and
Chone, 1998, Thanassoulis, 2004, Weinberg and Zhou, 2022]. In response, [Chawla et al., 2007]
initiates a vast series of works establishing that simple mechanisms, while rarely optimal, achieve
constant-factor approximations in quite rich settings [Babaio� et al., 2020, Cai and Zhao, 2017,
Chawla et al., 2007, 2010, 2015, Chawla and Miller, 2016, Eden et al., 2021, Hart and Nisan, 2017, Li
and Yao, 2013, Rubinstein and Weinberg, 2015, Yao, 2015]. These works help explain the prevalence
of simple auctions in practice.

Still, constant-factor approximations do not tell the whole story – sticking with something simple
that guarantees something is a reasonable starting point, but why not shoot for more? The Resource
Augmentation paradigm o�ers a di�erent perspective: running a complex auction is costly – is
it perhaps more cost-e�ective instead to recruit extra bidders (the “resources”) to participate in a
simple auction? That is, prior-dependent (versus prior-independent) mechanisms are costly because
you must learn the prior. Bayesian IC, BIC (versus Dominant Strategy IC, DSIC) mechanisms are
costly because you must, at minimum, teach bidders the concept of Bayes-Nash equilibria (or set up
auto-bidding infrastructure and convince them to trust it, etc.). Randomized mechanisms are costly
because you must further ensure the risk-neutrality of your bidders. Computationally intractable
mechanisms are costly simply because computation is expensive.What if recruiting extra bidders for
a prior-independent, DSIC, deterministic, computationally tractable mechanism could outperform
the complex optimum (without additional bidders) – might that be more cost-e�ective?
The mathematical question at hand, then, is to nail down how many additional bidders are

necessary for a simple auction to outperform the (intractable) optimum? The seminal work of Bulow
and Klemperer [Bulow and Klemperer, 1996] is the �rst to ask such a question and establish that the
(prior-independent, DSIC, deterministic, computationally e�cient) second-price auction with one
additional bidder outperforms Myerson’s (prior-dependent, DSIC, deterministic, computationally-
e�cient) revenue-optimal auction in single-item settings with regular1 bidders.2 [Roughgarden
et al., 2012] are the �rst to ask this question in multi-dimensional settings, and [Eden et al.,
2017] term the minimum number of bidders needed the competition complexity. Speci�cally, for a
class C of distributions over valuation functions for a single bidder, the competition complexity
CompC (=) := inf2∈Ng0 {2 | VCG=+2 (�) g Rev= (�) ∀ � ∈ C}.3
In the canonical domain of = additive bidders over < independent items, (the same domain

studied in [Babaio� et al., 2020, Beyhaghi and Weinberg, 2019, Cai et al., 2016, Eden et al., 2017,
Feldman et al., 2018, Hart and Nisan, 2017, Li and Yao, 2013, Yao, 2015]), [Eden et al., 2017] �rst
establish a competition complexity bound of at most = + 2(< − 1). That is, if A'

< denotes the class
of all valuation distributions which are additive across items, and each item valuation is drawn
independently from a regular distribution, then CompA'

<
(=) f = + 2(< − 1). In other words, the

VCG mechanism with = + 2(<− 1) additional bidders outperforms the optimum (without additional
bidders) for any distribution � ∈ A'

< .

1A single-variate distribution � is regular if the function i� (G ) := G − 1−� (G )
5 (G ) is monotone non-decreasing.

2In this setting, Myerson’s optimal auction is exceptionally simple: it is just a second-price auction with reserve. So [Bulow
and Klemperer, 1996] essentially argues that one additional bidder removes the need for prior dependence and does not
provide commentary on BIC vs. DSIC, randomized vs. deterministic, or computational tractability.
3C is a class of distributions such as “additive over< independent items.” � is a distribution such as “the value for item 9 is
drawn independently from* ( [0, 9 ] ) .” Rev= (� ) denotes the optimal revenue of any BIC auction for = bidders drawn iid
from � , and VCG= (� ) denotes the expected revenue of the welfare-maximizing VCG mechanism [Clarke, 1971, Groves,
1973, Vickrey, 1961] for = bidders drawn iid from � . See Section 2 for further clarity.
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In the “little = regime” (= = $ (<)), their bound was later improved to CompA'
<
(=) = Θ(= ln(2 +

</=)), which is tight (up to constant factors) [Beyhaghi and Weinberg, 2019, Feldman et al., 2018].
In the “big = regime” (= = ¬(<)), [Beyhaghi and Weinberg, 2019] establish that CompA'

<
(=) ∈

[¬(ln=), 9√=<], leaving open an exponential gap. Our main result closes the �nal gap in the “Big
=” regime: the competition complexity is indeed Θ(√=<). That is, when< g 2:
Main Result: CompA'

<
(=) = ¬(√=<): The competition complexity of = additive bidders over

< independent items is ¬(√=<) in the “Big =” regime. Combined with [Beyhaghi and Wein-
berg, 2019], this settles CompA'

<
(=) = Θ(√=<) in this regime (the “little =” regime is previously

settled [Beyhaghi and Weinberg, 2019, Feldman et al., 2018]).
While our main result ultimately follows by designing a single BIC auction with high revenue,

we highlight areas of technical interest brie�y below. Similarly, while much of the journey towards
our main result is not “necessary” for its �nal proof, several aspects of the journey are likely of
independent interest, and we highlight these subsequently.

1.1 Main Result: Technical Highlights

Our main result ultimately follows by designing a BIC auction for = bidders whose values for
< items are drawn from the Equal Revenue curve truncated at ) = Θ(√=<) (ERf) ).4 A priori,
it is unclear what might be technically engaging about designing a BIC auction for a particular
distribution. We brie�y overview three technical highlights:

• When = k< (the regime we study), selling each of< items separately to = bidders whose
value for each item is drawn from ERf) already achieves expected revenue extremely close
to the expected welfare. To see this, observe that the expected welfare is clearly at most<) ,
and selling items separately using a second-price auction with reserve ) achieves revenue

g <) · (1 − 4−=/) ) = <) (1 − 4−¬ (
√
=/<) ). This means there is little room for a more

sophisticated auction to outperform selling separately without additional bidders, let alone
with additional bidders.5

• The auction we design is not DSIC – we explicitly design an interim allocation rule together
with interim payments and prove that the mechanism is implementable and BIC. To the
best of our knowledge, there are not many prior instances of useful explicit designs of BIC-
but-not-DSIC mechanisms – the only notable example is that of [Yao, 2017] for two bidders
whose values for each of two items are drawn independently from the uniform distribution
on {1, 2}. We design such an auction for any< g 2 and = g <.
• The method we use to design our auction is likely of use to future designs of BIC-but-not-
DSIC auctions. We start by picking an allocation rule we would like to implement and
prices we would like to charge that result in a clean analysis. Unfortunately, the prices
we’d like to charge are not BIC, but the interim allocation rule (of our desired allocation
rule) is well-structured, so the prices can be massaged to get fairly close to BIC. Further
unfortunately, there does not appear to be an exactly-BIC implementation of this allocation
rule at all, so we further slightly massage the allocation rule. This last step, in particular, is
reminiscent of a specialized (for our mechanism and distribution) instantiation of an Y-BIC to
BIC reduction [Bei and Huang, 2011, Cai et al., 2021, Daskalakis and Weinberg, 2012, Dughmi
et al., 2017, Hartline et al., 2011, Rubinstein and Weinberg, 2015].

4ERf) has CDF � (G ) = 1 − 1/G for G ∈ [1,) ) , � () ) = 1, and � (G ) = 0 for G < 1.
5But, it does also mean that we may not need to outperform selling separately by much in order to also outperform selling
separately with additional bidders, because the additional bidders cannot possibly help much either.
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1.2 Results of Independent Interest along the Journey

The journey towards our main result yields two additional results – while these are ultimately
“unnecessary” steps along the journey, they help provide context for our results and approach.
Independent Result I: Let ERC< denote the subclass of A'

< containing only distributions of the
form ER<f) for some truncation ) . Then CompA'

<
(=) = CompERC< (=) for all =. That is, for all =,

the worst-case competition complexity of any distribution in A'
< is witnessed by iid truncated

Equal Revenue curves.
One direction of this equality is trivial, as ERC< ¢ A'

< . The non-trivial direction does not at
all follow from identifying an a priori worst-case distribution (indeed, the worst-case distribution
for CompA'

<
(=) is ERfΘ(√<=) , which has no apparent a priori justi�cation). It is natural to guess

that an untruncated equal revenue curve may be the worst-case distribution, as it stochastically
dominates all other distributions with the same single-bidder revenue. However, this intuition
breaks rather quickly: (a) just because every marginal of � stochastically dominates those of � ′

does not imply that the optimal revenue for � exceeds that of � ′ due to the phenomenon of revenue
non-monotonicity [Hart and Reny, 2015, Rubinstein and Weinberg, 2015, Yao, 2018], (b) even if
moving from � ′ to � were guaranteed to make the revenue benchmark larger, it also improves the
revenue of selling separately, so both sides of the desired inequality increase. Instead, we show that
a modi�cation of [Beyhaghi and Weinberg, 2019]’s approach upper bounds CompA'

<
(=) if and only

if it upper bounds CompERC< (=). See Section 5 for further details.
In addition, Independent Result I provides further context for our main result. A practically-

minded reader might wonder why it matters that ¬(√<=) bidders are necessary for VCG to
outperform the optimum in an instance where selling separately is already extremely close to
optimal.6 Independent Result I highlights that analyzing this instance is in some sense a necessary
step to analyze instances where the gap might be larger.
Independent Result II: For some absolute constant 2 , VCG=+2< ln(=) (ER<) g Rev= (ER<). That
is, $ (< ln(=)) additional bidders su�ce for selling separately = bidders with values for< items
drawn from iid untruncated Equal Revenue curves to exceed the optimal revenue. This implies
that the untruncated Equal Revenue curve is not the worst-case instance for any = g < (and it
witnesses a lower bound that is exponentially suboptimal in =). This result follows by establishing
that the optimal revenue for = bidders with values for each of< items drawn iid from the Equal
Revenue curve is =< +$ (<2 ln(=)).
Previous disclaimers that an untruncated revenue curve is not obviously the worst-case distri-

bution notwithstanding, it is still a tempting conjecture that the equal revenue curve may indeed
be the worst-case (or at least, asymptotically close) – if one had hoped to improve [Beyhaghi
and Weinberg, 2019]’s bounds, iid untruncated equal revenue curves is a natural �rst step. So it
is interesting that the untruncated Equal Revenue curve witnesses an exponentially-suboptimal
bound compared to a properly-truncated Equal Revenue curve. This provides further motivation
for Independent Result I, as it highlights that there is indeed no a priori worst-case distribution.
See Section 6 for further details.

Beyond the result itself, our analysis should be of independent interest. In particular, a �rst step
towards our upper bound on the revenue is a �ow in the [Cai et al., 2016] framework. To the best
of our knowledge, prior works that approximate the optimal revenue all use a “region-separated”
�ow (see Section 6.4 for a formal de�nition) [Beyhaghi and Weinberg, 2019, Cai et al., 2016, 2022,

6See Section 1.3 for a very brief note on results such as [Cai and Saxena, 2021, Feldman et al., 2018] that explicitly consider
resource augmentation to target a (1 − Y )-approximation rather than truly exceeding the optimum.
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Cai and Zhao, 2017, Eden et al., 2017, 2021].7 We prove that such a �ow cannot possibly witness
an upper bound better than =< + ¬(<√=<) on Rev= (ER<) by designing an auction that satis�es
all “within-region” BIC constraints (but not the cross-region constraints). To cope with this, our
analysis still begins from a region-separated �ow (in fact, the same canonical �ow used in [Eden
et al., 2017]), but adds a novel second step to (necessarily) leverage cross-region constraints.
Finally, in Section 6.3 we also establish that bundling items together (to = bidders with <

items from the Equal Revenue curve) with a second-price auction achieves expected revenue
=< + ¬(< ln(=)). Our analysis follows primarily from a coupling argument as opposed to raw
calculations, and also slightly improves the analysis of [Beyhaghi and Weinberg, 2019] from
=< + ¬(ln(=)).

1.3 Related Work

We have already overviewed the most directly related work. [Bulow and Klemperer, 1996] �rst con-
sider resource augmentation for Bayesian mechanism design, and establish that a single additional
bidder su�ces for the second-price auction with no reserve to outperform the revenue-optimal
auction with any number of i.i.d. regular bidders and a single item. [Roughgarden et al., 2012] �rst
consider resource augmentation for multi-dimensional mechanism design, and compare the VCG
mechanism with additional bidders to the optimal deterministic DSIC auction for unit-demand bid-
ders over independent items. [Eden et al., 2017] are the �rst to target outperformance of the optimal
BIC randomized auction, and study the now-canonical setting of additive bidders over independent
items. Their bounds have since been tightened by [Beyhaghi and Weinberg, 2019, Feldman et al.,
2018], and our main result tightens the last remaining gap. Moreover, if A'

<,I denotes the class of
valuation functions that are additive over< independent regular items subject to downwards-closed
constraints I, [Eden et al., 2017] also establish that CompA'

<,I
(=) f CompA'

<
(=) +<−1. Therefore,

the study of additive buyers has implications for signi�cantly more general settings as well. Other
works, such as [Brustle et al., 2022, Fu et al., 2019, Liu and Psomas, 2018] consider the competition
complexity of Bayesian mechanism design in other settings (such as dynamic auctions, non-iid
single-dimensional bidders, or posted-price mechanisms). [Cai and Saxena, 2021, Feldman et al.,
2018] further consider how many additional bidders are needed to recover a (1 − Y)-fraction of
the optimal revenue, rather than truly exceeding the optimal revenue. Both results require strictly
fewer bidders than would otherwise be necessary.
The concept of resource augmentation is well-represented within TCS broadly [Barman et al.,

2012, Sleator and Tarjan, 1985], Economics broadly [Akbarpour et al., 2022, 2018], and also their
intersection [Chawla et al., 2013, Roughgarden and Tardos, 2002].

We have also previously noted a vast literature justifying simple auctions in multi-dimensional
settings, despite their suboptimality [Babaio� et al., 2020, Cai and Zhao, 2017, Chawla et al.,
2007, 2010, 2015, Chawla and Miller, 2016, Eden et al., 2021, Hart and Nisan, 2017, Li and Yao,
2013, Rubinstein and Weinberg, 2015, Yao, 2015].8 Our independent results use similar technical
tools (such as the benchmark induced by [Cai et al., 2016]’s “canonical �ow”), but deviates from
these in seeking a (1 − > (1))-approximation to the optimal revenue, rather than a constant-factor
approximation.

At a technical level, our results are similar-to-yet-distinct-from several themes in the literature
on multi-dimensional mechanism design. As previously noted, we design an explicit BIC auction

7There are certainly works, such as [Daskalakis et al., 2017, Haghpanah and Hartline, 2015] that use more complex �ows to
derive optimal mechanisms in single-bidder settings.
8Note that [Hartline and Roughgarden, 2009] initiate a conceptually-similar line of work justifying exceptionally simple
auctions in single-dimensional settings via constant-factor approximation guarantees.
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that is not DSIC, which is also done in [Yao, 2017]. A di�erence is that [Yao, 2017] considers two
bidders and two items and proves that the BIC auction strictly outperforms the optimal DSIC
auction, whereas we consider arbitrarily-many bidders and items but do not explicitly compare to
a DSIC auction. We have also mentioned that one step of our auction design bears similarity to
Y-BIC to BIC reductions, which are developed in [Cai et al., 2021, Daskalakis and Weinberg, 2012,
Rubinstein and Weinberg, 2015] based on techniques introduced in [Bei and Huang, 2011, Dughmi
et al., 2017, Hartline et al., 2011]. Their results apply generally and are technically quite involved,
whereas we directly massage a speci�c nearly-BIC auction for a speci�c distribution. There is also
a line of works deriving optimal mechanisms for speci�c distributions [Daskalakis et al., 2017,
Giannakopoulos and Koutsoupias, 2014, 2015, Haghpanah and Hartline, 2015]. These works consider
single bidder settings, and most use some form of duality to establish optimality. Other works derive
optimal mechanisms for simple classes of single-bidder distributions to establish computational
hardness [Chen et al., 2022, Daskalakis et al., 2014]. In comparison, our work considers multi-bidder
settings, and in some sense lies between these works and constant-factor approximations in terms
of complexity: our upper bounds are slightly more involved than those su�cient for constant-factor
approximations, but not as involved as those necessary for precise optimality. At the same time,
we do not nail precisely the revenue-optimal auctions, but do derive bounds strictly better than
what can be achieved by the simple duals su�cient for constant-factors.

2 Preliminaries

In this section, we provide the minimal preliminaries necessary to state and prove our main result.
Section 4 provides additional preliminaries speci�c to our independent results.
The setting we study consists of = bidders with additive valuations over< items. Formally, the

values of the bidders are drawn from an = ×< dimensional joint distribution D where E8 9 denotes
bidder 8’s value for item 9 . Bidder 8’s value for a subset ( of items is

∑
9∈( E8 9 .

A mechanism is given by ex-post allocation and payment rules that specify the probabilities
with which each bidder gets each item and how much each bidder pays for each item, respectively.
We will also consider interim allocation rules of auctions, which su�ce to understand whether
mechanisms are Bayesian IC (see De�nition 2.2 below).

De�nition 2.1. The ex-post probabilities with which each bidder receives each item are given by
a function G : supp (D) → �

=×< where G8 9 (E1, . . . , E=) denotes the probability with which bidder 8
receives item 9 given the bid pro�le E , and the ex-post payments @ : supp (D) → �

=×< has @8 (E)
denote the payment that bidder 8 makes given the bid pro�le E . Given an ex-post allocation rule G
and price rule @, the interim probability with which bidder 8 receives item 9 when she bids E8 and
the interim price paid are de�ned as c8 9 (E8 ) := E

E∼D

[
G8 9 (E)

�� E8 ] , ?8 (E8 ) := E
E∼D
[@8 (E) | E8 ] . That is,

the interim probability is the expected probability with which bidder 8 receives item 9 when she
bids E8 and the remaining bidders bid truthfully, and the interim price is the expected price when
bidding E8 and the remaining bidders bid truthfully.

De�nition 2.2. Let c denote an interim allocation rule and let ? denote an interim payment rule.
Themechanism (c, ?) is Bayesian Incentive Compatible (BIC) if for all 8, E8 , E ′8 ,

∑
9 c8 9 (E8 )E8 9−?8 (E8 ) g∑

9 c8 9 (E ′8 )E8 9 − ?8 (E ′8 ). That is, each bidder’s best response to her peers if they report their true
values is also to report her true values.

In addition, we use the following terminology:

• ER: the single-variate distribution with CDF � (G) = 1 − 1
G
, for G g 1.

• ER< : the multi-variate distribution that draws< values i.i.d. from ER.
• ER=×< : the multi-variate distribution drawing = bidders’ values for< items i.i.d. from ER.
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• ERf) : the equal revenue distribution truncated at ) ; i.e. the single-variate distribution with
CDF � (G) = 1 − 1

G
for G ∈ [1,) ) and � () ) = 1.

• Rev
" (D): the expected revenue of an auction" when played by bidders drawn from the

joint distribution D over values of = bidders for< items.
• Rev(D): the supremum over all BIC auctions" of Rev" (D).
• SRev(D): the expected revenue of selling separately (using Myerson’s optimal auction [My-
erson, 1981]) to bidders drawn from the joint distribution D over values of = bidders for<
items.
• VCG(D): the expected revenue of the welfare-maximizing Vickrey-Clarke-Groves (VCG)
auction when played by bidders drawn from the joint distributionD over values of = bidders
for< items.
• AllD considered in this paper are i.i.d. across bidders, and of the form�= for some distribution
over a single bidder’s valuation function for< items. To simplify notation throughout, in
these cases we notate Rev= (�) := Rev(D), SRev= (�) := SRev(D),VCG= (�) := VCG(D).

Below is a formal (re-)statement of the competition complexity. Our work considers additive
bidders, where the VCG auction sells items separately using a second-price auction (so the distinction
between VCG and selling separately is simply whether or not there is a reserve, when item values
are regular, or whether items are sold using a second-price auction vs. Myerson’s optimal auction
in the general case).

De�nition 2.3 (Competition Complexity). Let C be a class of distributions over valuation functions
for a single bidder. The Competition Complexity of C is the function CompC (·) : N+ → Ng0 where
CompC (=) := inf2∈Ng0 {2 | VCG=+2 (�) g Rev= (�) ∀ � ∈ C}. The Selling Separately Competition
Complexity is instead SSCompC (=) := inf2∈Ng0 {2 | SRev=+2 (�) g Rev= (�) ∀ � ∈ C}.

3 Main Result: CompA'
<
(=) = ¬(√=<)

For the class of truncated equal revenue distributions ERf) with ) = _
√
=< for some abso-

lute constant _ > 1 (and ) < =), we now provide an explicit construction of a BIC auction "

with Rev
" (ER=×<f) ) > SRev=+2√=< (ER<f) ) for some absolute constant 2 . This witnesses that

CompA'
<
(=) = ¬(√=<), and SSCompA<

(=) = ¬(√=<). For ease of readability, several calculation-
based proofs are deferred to Appendix A.1.

3.1 Step One: Intuition & a Not-at-all BIC Auction

First, we explicitly compute SRev=′ (ER<).

Lemma 3.1. SRev=′ (ER<f) ) =< ·) ·
(
1 − (1 − 1/) )=′

)
. One mechanism achieving this sells each

item separately with a second-price auction at reserve ) .9

Note that selling separately is already nearly optimal when) j =. In particular, Rev= (ER<f) ) f
<) , and SRev= (ER<f) ) ≈<) when ) j =. Moreover, for each item 9 , selling separately achieves
the maximum value whenever it is ) , and so the only possible room for improvement over selling
separately is in the exponentially-unlikely cases that all bidders have value < ) for item 9 (where
selling separately gets 0 revenue from item 9 , yet there is strictly positive value).
So, in order to possibly have an auction whose revenue exceeds SRev= (ER<f) ) (let alone

SRev=+2√=< (ER<f) )), we must somehow get nonzero revenue from item 9 in cases when E8 9 < )

for all 8 . One naive way to accomplish this is simply to remove the reserve, and sell each item
with a second-price auction instead. Of course, this is still selling separately and thus o�ers no

9In fact, a second-price auction with any reserve f ) achieves this.
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improvement over SRev= (ER<f) ). But, it highlights the tradeo� that any BIC mechanism must face:
allocating item 9 to a bidder 8 with E8 9 < ) provides incentive for bidder 8 to misreport that E8 9 < )

when in fact E8 9 = ) , and therefore risks revenue < ) in cases where selling separately achieves ) .
So, the �rst idea in designing our BIC auction is to �nd opportunities to allocate item 9 to a bidder

8 with E8 9 < ) without risking too much in cases where E8 9 = ) instead. Below is an allocation rule
that accomplishes this �rst step, but is not yet BIC. In particular, we only ever consider allocating
an item 9 to a bidder 8 with E8 9 < ) if E8 9 ′ = ) for at least one other item 9 ′.

De�nition 3.2 (The Naive Auction). The Naive Auction allocates each item 9 separately as follows.

(1) If there exists a bidder 8 with E8 9 = ) , then allocate item 9 uniformly at random to such a
bidder and charge a price of ) .

(2) If E8 9 < ) for all 8 , but there exists a bidder 8 with both E8 9 ′ = ) for some 9 ′ ≠ 9 and E8 9 g <=/) ,
then allocate item 9 uniformly at random to such a bidder and charge a price of<=/) .

(3) Otherwise, do not allocate or elicit payments for item 9 .

The Naive Auction is certainly not BIC: a bidder whose values are ) for every item achieves
utility of 0 for reporting the truth, but > 0 for instead lowering one value to<=/) . Still, it clearly
achieves revenue greater than SRev= (ER<f) ). We �rst establish that the revenue of the Naive
Auction further exceeds SRev=+2√=< (ER<f) ) – the remainder of this section is then devoted to
massaging the Naive Auction into a BIC auction without losing much of this additional revenue.

Lemma 3.3. SRev=+G (ER<f) ) f SRev= (ER<f) ) +<G (1 − 1/) )= .

Proof. Couple draws from ER<×(=+G )f) and ER<×=f) so that the �rst= bidders’ values are identical.
For each item 9 , selling separately to = + G bidders outperforms selling separately to = bidders (by
exactly ) ) i� E8 9 < ) for all 8 ∈ [=] and E8 9 = ) for some 8 > =. Therefore, the additional revenue is
exactly:< ·) · (1 − 1/) )= · (1 − (1 − 1/) )G ) f <) (1 − 1/) )= · G/) =<G (1 − 1/) )= . □

Lemma 3.4. The Naive Auction satis�es Rev#�= (ER<f) ) g SRev= (ER<f) ) +¬(<
√
<=(1− 1/) )=).10

Proof. For each item 9 , the Naive Auction achieves revenue ) whenever selling separately
achieves revenue ) (whenever some bidder 8 has E8 9 = ) ). The Naive Auction achieves additional
revenue in cases where no bidder has value ) .

For a �xed item 9 , the probability that all = bidders have value < ) is (1− 1/) )= . Conditioned on
this, we want to �nd the probability that some bidder both has value at least<=/) for item 9 , and
also ) for some other item. These are independent events across both bidders and items.

For a �xed bidder 8 , the probability that E8 9 g <=/) conditioned on E8 9 < ) is exactly ) /<=−1/)
1−1/) =

_/√<=−1/(_√<=)
1−1/(_√<=) = ¬(1/√<=) = ¬(1/) ) (as _ > 1 is an absolute constant). The probability that a

�xed bidder 8 has value ) for some item ≠ 9 is simply 1 − (1 − 1/) )<−1 = ¬(</) ).11 Therefore,
the probability that a �xed bidder 8 has E8 9 > <=/) and E8 9 ′ = ) for some 9 ′ ≠ 9 , conditioned on
E8 9 < ) is ¬(</) 2).

Finally, the probability that at least one bidder 8 has both E8 9 g <=/) and E8 9 ′ = ) for some
9 ′ ≠ 9 is ¬(=</) 2) = ¬(1).12 This means that the additional revenue per item gained by the Naive
Auction over selling separately is ¬((1 − 1/) )= · (<=/) )) = ¬((1 − 1/) )= · √<=), and multiplying
by< items establishes the result. □

Corollary 3.5. There exists an absolute constant 2′ such that Rev#�= (ER<f) ) g SRev=+2′√<= (ER<f) ).
10Recall that the Naive Auction is not BIC – this analysis is just to supply intuition for our later (more involved) computations.
11This follows as 1 − (1 − 1/G )~ = ¬ (~/G ) when ~ < G , and that< < ) .
12This again follows from the fact that 1 − (1 − 1/G )~ = ¬ (~/G ) when ~ < G , and that = < ) 2/<.
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Corollary 3.5 establishes that our (not at all BIC) Naive Auction would witness the desired lower
bound on SSCompA<

, if only it were BIC. One obvious problem with the Naive Auction is that it
extracts full welfare from buyers with value ) for all items, and yet awards items with non-zero
probability to buyers with lower values. Our next step is to adjust the payments to address this
speci�c issue (this will still not result in a BIC auction, but it is the �rst of two steps).

3.2 Step Two: A Closer-to-BIC Auction

Our next step is to address the obvious issue with the Naive Auction by keeping the same allocation
rule with less problematic payments. This will still not yet result in a BIC auction, but will get close
to the correct format.

De�nition 3.6 (The Less-Naive Auction). The Less-Naive Auction allocates each item separately
as follows.

(1) Use the same allocation rule as the Naive Auction. Let 00 denote the interim allocation
probability of winning item 9 conditioned on reporting E8 9 = ) , and 10 denote the interim
allocation probability of winning item 9 conditioned on reporting E8 9 ∈ [<=/),) ) and E8 9 ′ = )

for some 9 ′ ≠ 9 .
(2) If the bidder 8 receiving item 9 has E8 9 < ) , charge<=/) (as in the Naive Auction).
(3) If the bidder 8 receiving item 9 has E8 9 = ) , and also has E8 9 ′ < ) for all 9 ′ < 9 , charge ) (as in

the Naive Auction).
(4) If the bidder 8 receiving item 9 has E8 9 = ) , and also has E8 9 ′ = ) for some 9 ′ < 9 ,13 then

charge a price of ) − 10
00

(
) − <=

)

)
. Think of 10

00

(
) − <=

)

)
as a subsidy.

(5) Otherwise, do not allocate or elicit payments for item 9 .
(6) This results in the following possible interim allocations/probabilities for each bidder:
• Receive any single item with interim probability 00, paying interim price 00) .
• Receive any non-empty set � of items with interim probability 00 and any (possibly empty)
set ! of items with interim probability 10, paying interim price 10 · |! | · <=) + 00 · |� | ·) −
10

(
) − <=

)

) · ( |� | − 1).
• Receive nothing and pay nothing.

Let us �rst observe that 00 is small, but not terribly small (Θ() /=) = Θ(
√
</=) – roughly the

inverse of the expected number of bidders with value ) for a single item). 10, on the other hand,

is exponentially small – at most (1 − 1/) )=−1 = 4−¬ (=/) ) = 4−¬ (
√
=/<) . This initially seems like

good news – even if we return a subsidy on every item, the subsidies are exponentially small, and
therefore the revenue of the Less-Naive Auction falls short of the Naive Auction by at most an
exponentially small amount.
However, recall that the Naive Auction’s gains over selling separately are also exponentially

small, so this exceptionally simple argument doesn’t quite su�ce, and these subsidies roughly
cancel the gains over selling separately if we pay them out every time.14 However, there is one
key case where we don’t need to pay a subsidy: if bidder 8 values exactly one item at ) . Indeed,
Lemma 3.7 formalizes this intuition and shows that the Less-Naive Auction’s gain in revenue comes
precisely from selling items ≠ 9 for cheap to bidders who value a single item 9 at ) .

13Note that we use 9 ′ < 9 to ensure that exactly one such item valued at) is not subsidized – the lowest-indexed such item.
14Essentially, paying the subsidies every time amounts to selling each item 9 using a randomized-but-still-single-dimensional
auction, which again cannot outperform selling separately.
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Lemma 3.7. The Less-Naive Auction satis�es:15

Rev
!#�
= (ER<f) ) = SRev= (ER<f) ) + 10<=2

(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1)
.

Proof. The revenue extracted by the Less-Naive Auction from selling item 9 to bidder 8 is

00) · 1
(
E8 9 = ),max

9 ′< 9
E8 9 ′ < )

)
+ 00

(
) − 10

00

(
) − <=

)

))
· 1

(
E8 9 = ),max

9 ′< 9
E8 9 ′ = )

)

+ 10<=

)
· 1

(
E8 9 ∈ [<=) ,) ),max

9 ′≠9
E8 9 ′ = )

)

Meanwhile, SRev extracts 00) · 1(E8 9 = ) ). Thus, the Less-Naive Auction obtains

10<=

)
· 1

(
E8 9 ∈ [<=) ,) ),max

9 ′≠9
E8 9 ′ = )

)
− 10

(
) − <=

)

)
· 1

(
E8 9 = ),max

9 ′< 9
E8 9 ′ = )

)

more revenue from selling item 9 to bidder 8 than SRev= does. Across all items, the Less-Naive
Auction obtains in expectation

10<=

)

∑
9∈[<]

P

[
E8 9 ∈ [<=) ,) ),max

9 ′≠9
E8 9 ′ = )

]
− 10

(
) − <=

)

) ∑
9∈[<]

P

[
E8 9 = ),max

9 ′< 9
E8 9 ′ = )

]

=
10<=

)

∑
9∈<

(
)

<=
− 1

)

) (
1 −

(
1 − 1

)

)<−1)
− 10

(
) − <=

)

) ∑
9∈[<]

1

)

(
1 −

(
1 − 1

)

) 9−1)

=
10<

2=

)

(
)

<=
− 1

)

) (
1 −

(
1 − 1

)

)<−1)
− 10

(
) − <=

)

) (
<

)
− 1 +

(
1 − 1

)

)<)
︸                     ︷︷                     ︸
expected number of subsidies

(geometric sum)

= 10<=

(
)

<=
− 1

)

) (
1 −

(
1 − 1

)

)<
− <

)

(
1 − 1

)

)<−1)

more revenue from bidder 8 than SRev= does. Summing over all bidders yields the lemma. □

We highlight that since< f =, the expected number of subsidies per bidder is strictly less than 1.
In fact, when< j =, we expect to pay almost no subsidies. Thus, we expect our extra revenue to
come from selling items for which no bidders have value ) to bidders who value exactly one other
item at ) .

Finally, let us revisit incentives of the Less-Naive Auction. The Less-Naive Auction is almost BIC.
Indeed, any bidder who values at least one item at ) is incentivized to report truthfully (we will
prove this formally in the subsequent Section 3.3). Moreover, any bidder who values all items far
from ) will also prefer to take no items and pay nothing. However, a bidder with E8 9 extremely
close to ) for item 9 and E8 9 ′ > <=/) for another (and E8 9 ′′ < ) for all 9 ′′) may prefer to misreport
that E8 9 = ) (taking a small negative utility on item 9 ) in order to receive item 9 ′ with non-zero
probability. Therefore, the Less-Naive Auction is not BIC.
However, because 10 is exponentially small, the maximum possible gain of such a misreport is

also exponentially-small. Therefore, only types with E8 9 inverse exponentially-close to ) will even
consider this misreport, and there is hope that a slight modi�cation to the Less-Naive Auction
might work. Indeed, we now show an auction whose interim menu takes the same format as the

15Again recall that the Less-Naive Auction is not BIC – this analysis is just to supply intuition for our later (even more
involved) computations.
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Less-Naive Auction, but with parameters 0 ≈ 00 and 1 ≈ 10 that is BIC and again has essentially
the same expected revenue.

3.3 Step Three: A BIC Auction

Now, we introduce a �nal set of modi�cations to make the Less-Naive Auction fully BIC. Recall that
the Less-Naive Auction is not BIC because a bidder with no values equal to ) but su�ciently high
E8 9 ≈ ) , E8 9 ′ > <=/) may choose to misreport and take a small loss on item 9 in order to receive
item 9 ′ (indeed, Corollary 3.10 formalizes this intuition). It follows that the interim allocation
probabilities 00, 10 are not actually feasible, because there are more bidders that want to purchase
items than we can keep our promises to.
To �x this, we maintain the same menu format, but lower the interim probabilities (and prices

accordingly) to 0, 1. This �xes the incentive issues of the Less-Naive Auction bymakingmisreporting
less attractive, but since 0 ≈ 00 and 1 ≈ 10 we still attain approximately the same revenue. Observe
that even a small change in 00 and 10 works, because of two simultaneous e�ects at play: (1)
lowering the allocation probabilities inherently increases the number of bidders to which it is
feasible to allocate an item; (2) lowering 10 in particular reduces the set of types that may prefer to
misreport. Balancing these two e�ects so that the feasibility constraint is tight (we would like to
allocate the item as much as possible, so that we can extract as much revenue as possible) results in
a system with a �xed point (0, 1) that is not too far from the original (00, 10).
De�nition 3.8 (The Not-So-Naive Auction). The Not-So-Naive Auction allocates the items accord-
ing to the following menu of interim allocations/probabilities for each bidder:

• Receive any single item with interim probability 0, paying interim price 0) .
• Receive any non-empty set � of items with interim probability 0 and any (possibly empty)
set ! of items with interim probability 1, paying interim price 1 · |! | · <=

)
+ 0 · |� | · ) −

1
(
) − <=

)

) · ( |� | − 1).
• Receive nothing and pay nothing.

Again, we highlight that if we had 0 = 00, 1 = 10, this menu just describes the Less-Naive Auction.
In Lemma 3.9 and Corollary 3.10, we characterize the incentive properties of any such menu of the
above form parametrized by 0 g 1; following this, we proceed to set 0 and 1 speci�cally so that the
Not-So-Naive Auction is feasible.

Lemma 3.9. Suppose ) g √<= and 0 g 1. Let E ∈ [1,) ]< and let 9∗ ∈ argmax9 E 9 . De�ne

� :=
{
9 : E 9 = )

}
∪ { 9∗} and ! :=

{
9 : E 9 g <=/)

}
\ � . For all � ′ ∈ 2[<] \ {∅} and !′ ¦ [<] \ � ′,

a bidder with type E prefers the menu option (�, !) over the menu option (� ′, !′).
Lemma 3.9 says that a bidder with type E prefers (�, !) over any other option that allocates an

item with some positive probability. In particular, it does not say whether a bidder with type E
would prefer (�, !) over not getting any items at all.

Proof. The utility of a bidder with type E for the menu option (� ′, !′) is
0

∑
9∈� ′

E 9 + 1
∑
9∈!′

E 9 −
(
|� ′ | 0) + |!′ | 1<=

)
− (|� ′ | − 1)1

(
) − <=

)

))

=

∑
9∈� ′

(
0E 9 −

(
(0 − 1)) + 1<=

)

))
+

∑
9∈!′

1
(
E 9 −

<=

)

)
− 1

(
) − <=

)

)
.

We show that (�, !) maximizes this utility over all � ′ ∈ 2[<] \ {∅} and !′ ¦ [<] \ � ′.
Consider the di�erence in utility of getting item 9 with probability 0 and getting the same item

with probability 1: 0E 9 −
((0 − 1)) + 1<=

)

) − 1 (
E 9 − <=

)

)
= (0 − 1) (E 9 −) ). It is clear that if 0 g 1,
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then there are only two cases in which a bidder who values item 9 at E 9 (and who is forced to get
at least one item) would prefer to get item 9 with probability 0: either (1) E 9 = ) , or (2) she does
not value any item at ) , but 9 = 9∗ (if she must pay ) for some item, her utility is least negative
when 9 is the item she values the most rather than some other item). Thus, the only items that a
bidder with type E prefers to get with probability 0 rather than 1 are the items in � . Getting any
item outside of � with probability 0 strictly decreases utility.
Of the items not in � , a bidder with type E would only choose to get those with values at least

<=/) with some positive probability, since all options cost at least<=/) , so the bidder would be
overpaying for any item valued less than<=/) (which strictly decreases utility). Note that the
items with values at least<=/) that are not in � are precisely those in !.
As discussed before, the only items that a bidder with type E prefers to get with probability 0

rather than 1 are the items in � , so such a bidder prefers to get the items in ! with probability 1
instead of 0. Thus, the bidder’s most preferred menu item is exactly (�, !). □

Corollary 3.10. Suppose ) g √<= and 0 g 1. Let E ∈ [1,) ]< and let 9∗ ∈ argmax9 E 9 . De�ne

� :=
{
9 : E 9 = )

}
∪ { 9∗} and ! :=

{
9 : E 9 g <=/)

}
\ � .

• A bidder who values some item at ) prefers the menu option (�, !) over any other option in the
menu (including not receiving any items).
• A bidder who does not value any item at) prefers the menu option ({ 9∗}, !) over any other option
in the menu (including not receiving any items) if and only if 0E 9∗ + 1

∑
9∈! E 9 g 0) + |! | 1<=

)
.

Now, we de�ne 0 and 1 such that the resulting menu is feasible. We do so implicitly. Recall that
setting 0 = 00 and 1 = 10 is infeasible because there are bidders who do not value any items at )
yet value a subset of the items enough to be willing to pay ) for an item in order to be eligible to
get additional items at lower prices. The probability that there exists a bidder who values each item
less than ) yet is willing to purchase the menu option ({ 9∗}, !) is
@ℓ B P

E

[
E 9∗ = max9 E 9 < ),min9∈{ 9∗ }∪! E 9 g <=

)
,max9∉{ 9∗ }∪! E 9 < <=

)
, 0E 9∗ + 1

∑
9∈! E 9 g 0) + |! | 1<=

)

]
.

Note that for a given ℓ g 1, the above probability is the same for any choice of 9∗ ∈ [<] and
! ¦ [<] \ { 9∗} such that |! | = ℓ , so we may denote it by @ℓ .
Since there are more bidders who want to purchase items than just those with ) values, the

interim allocation probabilities 0 and 1 must be smaller than 00 and 10 to accommodate these
bidders. More speci�cally, if we term bidders who are willing to receive item 9 with probability
0 as “high” and those who are only willing to receive item 9 with probability 1 as “low,” and we
want to allocate each item uniformly at random to the high bidders before allocating uniformly at
random to the low bidders, then 0 and 1 must satisfy the following implicit de�nitions.

0 = E
E−8

[
1

1+∑:≠8 1(8 high)

]
=

∑=−1
:=0

(=−1: )
:+1 P [high]: P [not high]=−:−1 =

1−(1−P[high] )=
=P[high] ,

1 = E
E−8

[
1(� high)

1+∑:≠8 1(8 low)

]
=
PE−8 [� high] (1−(1−P[low | not high] )= )

=P[low | not high] ,

(by bidder independence, P
[
low

��� high] = P [low | not high])
where

P [high] = P
E

[
E 9 = )

]
+ ∑
!¦[<]\{ 9 }

@ |! | = 1
)
+
<−1∑
ℓ=1

(<−1
ℓ

)
@ℓ ,

P [low] = P
E

[
max
9 ′≠9

E9 ′=),
<=
) fE9<)

]
+ ∑
9∗≠9

∑
!¦[<]\{ 9∗ }:

9∈!

@ |! | =
(
1 − (

1 − 1
)

)<−1) (
)
<=
− 1
)

) + (< − 1)<−1∑
ℓ=1

(<−2
ℓ−1

)
@ℓ .
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The expression for P [high] follows from the fact that by Corollary 3.10, a bidder is high for an
item if and only if (1) she has value ) for it or (2) it is her favorite item and she has su�ciently
high values for the other items. Similarly, a bidder is low for an item if and only if her value for
it is in [<=/),) ) and either (1) she has value ) for some other item or (2) she has su�ciently
high values for the other items. We point out that our de�nitions of 0 and 1 are indeed implicit
since @1, . . . , @<−1 depend on 0 and 1. We now show that 0 g 1, so that Lemma 3.9 holds with our
de�nitions of 0 and 1.

Lemma 3.11. If ) g √<=, then 1
0
f =

)
4−

=
)

(
1 − 4− =

)

)−1
.

Corollary 3.12. If ) g √<=, then 0 g 1.

Proof. A direct consequence of Lemma 3.11 and the fact that G4−G f 1 − 4−G for G g 0. □

3.4 Step Four: Comparing the Revenue of the Not-So-Naive Auction to the Revenue of
the Less-Naive Auction

The ultimate goal is to compare the revenue of the Not-So-Naive Auction against the revenue of
selling separately. We proceed via an intermediate comparison between the Not-So-Naive Auction
and the Less-Naive Auction (which we have already compared to SRev= (ER<f) ) in Section 3.2).

Lemma 3.13. If bidders report their values truthfully in the Less-Naive Auction, then Rev#(#= (ER<f) )
exceeds Rev!#�= (ER<f) ) by at least

(1 − 10)<=2
(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1) + 1<2 (<−1)=2
)

<−1∑
ℓ=1

(<−2
ℓ−1

)
@ℓ .

Corollary 3.14. Rev#(#= (ER<f) ) exceeds SRev= (ER<f) ) by at least

1<=2
( (

)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1) + < (<−1)
)

∑<−1
ℓ=1

(<−2
ℓ−1

)
@ℓ

)
.

Proof. A direct consequence of Lemmas 3.7 and 3.13. □

3.5 Step Five: Bounding CompER<f) (=)
Notice thatCompER<f) (=) is at least the smallest 2 such that SRev=+2 (ER<f) ) exceedsRev#(#= (ER<f) ).
Combining Lemma 3.3 and Corollary 3.14 along with the fact that all @ℓ g 0, this occurs only if16

2 g (
1 − 1

)

)−=
1=2

(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1)
.

By the union bound, we expect the RHS to behave like 1<=/() (1− 1
)
)=). If we set) ∼ √<=, then

to show that the competition complexity is 2 = ¬(√<=), it su�ces to show that 1 = ¬
( (
1 − 1

)

)= )
.

Intuitively, if the probability of the types of bidders for which we had to modify the Less-Naive
Auction to the Not-So-Naive Auction is su�ciently small, then 1 ≈ 10 = ¬((1 − 1

)
)=) since the

probability of valuing item 9 in [<=/),) ) and some other item at ) is at most $ (1/=) if ) ∼ √<=.
We show that all of this is indeed the case in Lemma 3.15 and prove that the competition complexity
is ¬(√<=) in Theorem 3.16.

Lemma 3.15. If ) = _
√
<= for some constant _ > 1, then 1 = ¬

( (
1 − 1

)

)= )
.

Theorem 3.16. If ) = _
√
<= for some constant _ > 1, then CompER<f) (=) = ¬(√<=).

16We ignore the expected revenue gained from selling items to “low”-type bidders with no ) values since this term is
irrelevant to the remainder of our analysis.
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This concludes the proof of our main result. We have explicitly de�ned a BIC auction (the
Less-Naive Auction) for (ER<f) )= whose revenue exceeds SRevER<f) (= + 2

√
=<) for some absolute

constant 2 > 0, and all< g 2, and all =.

4 Further Preliminaries: Dual Flow Benchmarks

In the following sections, we provide revenue upper bounds using the [Cai et al., 2016] framework.
We brie�y state the minimal preliminaries necessary to get started, and will fully �esh out ter-
minology as needed during proofs. As needed, we will clarify what is a ‘useful dual �ow’ so that
the statement of Theorem 4.1 is fully self-contained. Theorem 4.2 is already self-contained. Their
framework establishes the following revenue benchmark in terms of the induced virtual values of
bidder 8 for item 9 , ¨_8 9 (®E8 ) as a function of a ‘useful dual �ow’ _:

Theorem 4.1 ([Cai et al., 2016], Theorem 6). Let _ be any useful dual �ow, and " = (c, ?) be a
BIC mechanism. The revenue of" is less than or equal to the virtual welfare of c with respect to the

virtual value function ¨
_ ; that is: Rev"= (�) f

∑=
8=1

∑<
9=1 E®E←�= [c8 9 (®E8 ) · ¨_8 9 (®E8 )] .

Taking the supremum over all feasible" then provides an upper bound on Rev= (�). In particular,
when _ is the canonical �ow that divides the type space into regions ' 9 based on the favorite item
9 , then uses a Myersonian-like �ow within each region (refer to [Cai et al., 2016] for a precise
de�nition), the following relaxation of the benchmark is useful:

Theorem 4.2 ([Cai et al., 2016], Corollary 28). Let ' 9 := {®E | argmaxℓ∈[<]{Eℓ } = 9} (with ties broken
lexicographically). Then Rev= (�) f

∑<
9=1 E®E←�= [max8∈[=]{ī 9 (E8 9 ) · 1

(®E8 ∈ ' 9 ) + E8 9 · 1 (®E8 ∉ ' 9
)}] .

5 A Reduction from A'
< to ERC< via Stochastic Dominance

We now consider the competition complexity of an arbitrary distribution � ∈ A'
< . The key idea is

that the Theorem 4.2 benchmark can be written entirely in terms of (ironed) virtual values, which
then allows a direct comparison to the virtual value obtained by SRev. If SRev (with 2 additional
bidders) always obtains a virtual value of a higher quantile than the optimal mechanism (without
additional bidders), then it also achieves higher revenue. To tighten the previous analysis from
[Beyhaghi and Weinberg, 2019, Cai et al., 2016], we �rst use the style of Theorem 4.2 but applied to
a speci�c allocation, then take the supremum over all feasible and BIC mechanisms.

Fix a deterministic allocation rule G , and let G 9 (®E) denote the winner of item 9 under G on input ®E
(if no one wins the item, let G 9 (®E) = §). Sample ®E ← �= , and choose a bidder 8 for item 9 according
to G . De�ne the following quantities:

• ��, G
9 (®E) B

∑
8 G8 9 (®E) ·¨_8 9 (®E8 ) =

∑
8 G8 9 (®E) · (ī 9 (E8 9 ) ·1

(®E8 ∈ ' 9 ) +E8 9 ·1 (®E8 ∉ ' 9
)), the virtual

value (using the canonical �ow) of the recipient of item 9 on valuation pro�le ®E ,
• &G9 (®E), a random variable sampled as follows:
– If ®E8 ∈ ' 9 , output &G9 = @ 9 (®E8 ) = � 9 (E8 9 ).
– Else, output &G9 ← * [@ 9 (®E8 ), 1].
• (=+2 B max®@←* [0,1]=+2 @8 , the maximum of = + 2 independently drawn quantiles.

Following the rest of the argument from [Beyhaghi and Weinberg, 2019, Cai et al., 2016] gives
the following re�ned benchmark (note that this essentially interchanges the expectation and the
maximum from Theorem 4.2, so it indeed furnishes a tighter bound):

Rev= (�) f sup
feasible BIC G

<∑
9=1

E®E←�=

[
��, G

9 (®E)
]
.
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Using this improved benchmark and the language of quantile space, we now compare Rev= (�)
to SRev=+2 (�). Along the way, we appeal to the speci�c form of the virtual values of distributions
in ERC< , which establishes the non-trivial direction of the equality between CompA'

<
(=) and

CompERC< (=). Full proofs of all results are provided in the Appendix.

Proposition 5.1. For all allocation rulesG and all items 9 ,E®E←�=,
A
[ī 9 (� −19 (&G9 (®E)))] g E®E←�= [��, G

9 (®E)] .

Proposition 5.2. If (=+2 ≿ &G9 (®E), then SRev=+2 (�) g E®E←�= [∑9 ��,
G
9 (®E)].

Observation 5.3. For all @ ∈ [0, 1), the distribution satisfying (up to scaling by a constant) ī (G) =
1 (� (G) g @) is ERf 1

1−@
.

Proposition 5.4. (=+2 ≿ &G9 (®E) if and only if SRev=+2 (ERf) ) g E®E←(ERf) )= [
∑
9 ��,

G
9 (®E)] for all

truncations ) ∈ [1,∞).

Corollary 5.5. If SRev=+2 (ERf) ) g E®E←(ERf) )= [
∑
9 ��,

G
9 (®E)] for all ) ∈ [1,∞), then the com-

petition complexity for any distribution � ∈ A'
< is $ (2).

This reduction implies that to establish a bound onCompA'
<
(=), it su�ces to just studyCompERC< (=).

Although this claim is not directly used for our earlier main result, we still present it as a technique
of general interest, potentially useful for future work, and illuminating as to the context and further
implications of our main result focusing on ERf) .

6 Upper Bound on Rev= (ER<) = =< +$ (<2 ln=) when = > <

In this section, we show that we cannot obtain more than =<+$ (<2 ln=) in revenue from = bidders
with additive valuations for< items drawn iid from ER. This upper bound is interesting for two
reasons. First, it shows that the untruncated Equal Revenue curve does not witness the worst-case
competition complexity when = g <. However, in Section 6.4, we show that if bidders cannot lie
about their favorite item, then the untruncated Equal Revenue curve does witness the worst-case
competition complexity when = g <. Thus, a “region-separated” �ow provably cannot give a tight
upper bound on the revenue obtainable for this setting. In Sections 6.1 and 6.2, we demonstrate
how to circumvent this impossibility by taking advantage of certain cross-region constraints. We
show that our upper bound is nearly tight in Section 6.3.

6.1 Tight Bound for< = 2: Rev= (ER2) = 2= + Θ(ln=)
To establish a tight bound on Rev= (ER2), we start from Theorem 4.1. Rather than relaxing all
the way to Theorem 4.2, we obtain an upper bound on the optimal revenue by �rst providing a
further characterization of feasible and BIC mechanisms" over which we take the supremum of
the virtual welfare.
As established in [Cai et al., 2016], the expected virtual welfare from bidders who are awarded

their favorite item is 2=; we seek to understand the expected virtual welfare from bidders who
win their non-favorite item. We begin with some motivating observations (proofs of which are
provided in the Appendix):

Observation 6.1. Fix E1 > E2. It is feasible to have each type (E1, E2) with E2 g ln2 = receive their
non-favorite item (item 2) with probability min

{
1
2
, E1
10=

}
.

Observation 6.2. If every type with E# g ln2 = receives their non-favorite item with probability at

least min
{
1
2
, E�
10=

}
, the benchmark gets at least 2= + ¬(ln2 =).
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Observation 6.3. It is not feasible to allocate both items with probability min
{
1
2
, E1
10=

}
to all types.

Combining Observations 6.1 and 6.3 suggests that we are only in trouble if it is somehow possible
to give items only to players with big E# without also giving items to players with small E# . But,
this is di�cult if items are mostly awarded based on having large E� (because E# is generally much
smaller than E� when E� is large). That is, to get expected virtual welfare 2= + ¬(ln2 =), we need
to have things like “(=/100,√=) gets item 2 with probability 1/100, but (=/10, 2) gets item 1 with
probability 0.” So, we seek to show that this is not possible by appealing to BIC and IR constraints
in Lemma 6.4 in addition to feasibility in Corollary 6.5; see the Appendix for full details.

Lemma 6.4. Let (E1, E2) get item 2 with probability @ B c2 (E1, E2). Let also E ′2 f E2. Then (3E1, E ′2)
gets item 1 with probability c1 (3E1, E ′2) g @/4.

Corollary 6.5. Let ~ g 2. Then EE1 [c2 (E1, E2) | E2 = ~] =
∫ ∞
~

c2 (E1, ~) · ~E21 3E1 f
24~

=
. That is, the

probability of getting item 2 conditioned on having E2 = ~ is at most
24~

=
= $ ( ~

=
).

Lemma 6.6. The expected contribution to the virtual welfare from the non-favorite item is $ (ln=).
Proof. First, note that a bidder only contributes to the virtual welfare if they are awarded the

item (which occurs with probability @2 = max{$ ( ~
=
), 1}, in which case they contribute their virtual

value (which is at most E2). Then, we can apply the law of total expectation to compute:

EE1,E2 [E2@2] = EE2
[
EE1 [E2@2 | E2]

]
= $

(
EE2

[
E2 ·max

{
E2
=
, 1

}] )
= $

(∫ =
G=1

G2

=
P(E2 = G)3G +

∫ ∞
G==

G · P(E2 = G)3G
)

= $
(∫ =
G=1

G2

=
· 2
G3
3G +

∫ ∞
G==

2
G2
3G

)
= $

(
2 ln=
=
+ 2
=

)
= $

(
ln=
=

)
.

Summing over all = bidders gives a total of $ (ln=). □

Combining this with the lower bound of Rev= (ER2) = 2= + ¬(ln=) due to [Beyhaghi and
Weinberg, 2019] establishes that this bound is tight.

Theorem 6.7. Rev= (ER2) = 2= + Θ(ln=).

6.2 Generalizing to< > 2: Rev= (ER<) = =< +$ (<2 ln=)
We generalize the analysis from Section 6.1 to general<, thereby improving the upper bound on
the competition complexity of = bidders with additive values drawn i.i.d. from ER< to $ (< ln=).
We introduce the following additional notation when considering a particular bidder:

• � 9 denotes the event that item 9 is the favorite item.
• �− 9 denotes the event that item 9 is a non-favorite item.

Our approach exactly mirrors that of the< = 2 analysis but requires much more involved calcula-
tions; as such, we defer all proofs to the Appendix.

Lemma 6.8. Let (c, ?) be a BIC mechanism for = bidders with< additive valuations drawn i.i.d.
from ER. The expected contribution of each non-favorite item to the virtual welfare is at most

E
[
E 9c 9 (E)

���− 9 ] f $
(
< ln=
=

)
.

Summing over all< − 1 non-favorite items and all = bidders gives an upper bound on the virtual
welfare of $ (<2 ln=), in addition to =< from the favorite item ([Cai et al., 2016]), and thus:
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Theorem 6.9. Rev= (ER<) = =< +$ (<2 ln=), and therefore, for some absolute constant 2 ,

VCG=+2< ln(=) (ER<) g Rev= (ER<).

6.3 Selling to ER< via the Grand Bundle: Rev= (ER<) g =< + ¬(< ln=)
In this section, we show that the upper bound on Rev= (ER<) proved in Section 6.2 is nearly
tight. More speci�cally, we show that selling the grand bundle via a second-price auction obtains
=< + Θ(< ln(<=)) in revenue. Note that we improve upon the previous best lower bound of
=< + ¬(ln=) from [Beyhaghi and Weinberg, 2018].

Theorem 6.10. RevSPA-GB (ER<) = =< + Θ(< ln(<=)) .
Since the revenue of a second-price auction is given by the second highest value for the item

being sold, we give upper and lower bounds on the second highest value for the grand bundle.
Unfortunately, sums of random variables are di�cult to work with, so we seek a good proxy for
the second highest bundle value that is more straightforward to analyze. We claim that the bundle
value of the bidder with the second highest value for her favorite item is a good proxy.

To see why, �rst note that we expect each bidder’s value for the grand bundle to be dominated
by her value for her favorite item: conditioned on the value for the favorite item, we expect the
value for each non-favorite item to be exponentially smaller than her value for her favorite item.

Lemma 6.11. EG∼ER [G | G f E] = ln E
1−1/E .

Thus, we expect the bidder with the highest value for any item to also have the highest value for
the grand bundle, the bidder with the second highest value for her favorite item to have the second
highest value for the grand bundle, and so on. In particular, we expect the bidder with the second
highest value for her favorite item to set the price for the grand bundle.
Let E (8 ),( 9 ) denote the 9-th highest value possessed by the bidder with the 8-th highest value

for her favorite item. Expressed in this notation, our intuition is that
∑
9 E (2),( 9 ) traces the second

highest value for the grand bundle. Our proof of Theorem 6.10 shows that this is precisely the case.
We will also see that the expectation of E (2),(1) is approximately =<.

Lemma 6.12. =< −$ (<) f E[E (2),(1) ] f =<.

By Lemmas 6.11 and 6.12, we expect the second highest value for the grand bundle to be around
E

[∑
9 E (2),( 9 )

]
= E

[
E (2),(1) +< ln(E (2),(1) )

]
= =< + Θ(< ln(<=)) .

6.4 “Region-separated” Flows

Finally, we discuss the class of “region-separated” �ows, which do not cross any axes between
di�erent favorite-item regions ' 9 . These correspond to auctions that respect all BIC constraints
between bidders with the same favorite item, but not necessarily between bidders with di�erent
favorite items; we term such auctions Knows-Favorite BIC (KF-BIC). We design a KF-BIC auction
that achieves revenue =< + ¬(<√=<) from = bidders with values drawn i.i.d. from ER< .

In addition to potentially being of independent interest, this result further highlights our upper
bound on Rev= (ER<) from Section 3 as interesting because it provably cannot follow from an
“region-separated” �ow, and establishes that the cross-diagonal BIC constraints are necessary to
achieve the optimal bound.

De�nition 6.13 (KF-BIC). We say that an auction is Knows-Favorite Bayesian Incentive Compatible
if for all types ®E with distinct values for every item, ®E does not wish to misreport any other ®F with
the same favorite item. That is, if ( 9 denotes the subset of valuations in the support of � such that
E 9 > E 9 ′ for all 9 ′ ≠ 9 , and also E 9 ′ ≠ E 9 ′′ for all 9 ′, 9 ′′, a mechanism with interim allocation rule
®c (·), ? (·) is KF-BIC if: ∀9, ∀®E, ®F ∈ ( 9 , ®E · ®c (®E) − ? (®E) g ®E · ®c ( ®F) − ? ( ®F).
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Importantly, note that a KF-BIC auction is not necessarily BIC. This is both because there are no
constraints that involve types with the same value for multiple items, and also because the KF-BIC
constraints only guarantee that bidders do not wish to misreport while keeping their favorite item
the same (they may wish to misreport their favorite item).

6.4.1 The Knows-Favorite Auction (KFA).

De�nition 6.14 (Knows-Favorite Auction). The Knows-Favorite Auction (KFA) proceeds as follows:
Let ( denote the set of bidders with distinct values for all< items, and ( 9 denote the subset of (

consisting of bidders with favorite item 9 . Each item 9 is auctioned as follows:

• If any bidder 8 ∈ ( 9 has E8 9 g � = 4=< , the item is awarded to a uniformly random such
bidder, and they are charged � .
• If no bidder in ( 9 has value at least � , then the item is o�ered to bidders in ( \ ( 9 at price
! =
√
=< (that is, as long as any bidder in ( \ ( 9 is willing to pay !, a uniformly random such

bidder is given the item and charged !).

Observation 6.15. KFA is KF-BIC: for all 9 , no bidder in ( 9 wishes to misreport any other type in ( 9 .

Lemma 6.16. Rev �� (ER=<) = =< + ¬(<√=<). That is, the expected revenue (assuming bidders
tell the truth) of KFA is =< + ¬(<√=<).

7 Conclusion

We settle the competition complexity of = bidders with additive valuations over< independent
items at Θ(√=<) in the “Big =” regime. As the “Little =” regime is previously settled by [Beyhaghi
and Weinberg, 2019, Feldman et al., 2018], this settles the competition complexity for additive
bidders over independent items (up to constant factors). On the technical front, we design an explicit
BIC-but-not-DSIC mechanism outperforming selling separately (even with additional bidders) in a
regime where selling separately is already a (1 − > (1))-approximation.

We also provide results of independent interest accumulated from our journey: the competition
complexity of additive bidders is exactly equal to the competition complexity when restricted to iid
truncated equal revenue curves, and despite this the untruncated Equal Revenue curve witnesses
an exponentially-suboptimal lower bound.

As our work now settles the key remaining open problem for competition complexity of exceeding
the optimal BIC mechanism by VCG, there are two important directions for future work:

• What about the competition complexity of exceeding the optimal DSIC auction? Our BIC
auctions cannot be made DSIC, and it initially seems as though BIC auctions may strictly
outperform DSIC auctions for the instances that yield our main result. We suspect that our
Independent Result I will be useful for upper bounds on this front (if indeed improved upper
bounds are possible).
• What about the competition complexity of other simple auctions? There is limited work in
this direction so far, which so far still loses some (small) fraction of revenue rather truly
exceeding the optimum [Cai and Saxena, 2021, Feldman et al., 2018].
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A Deferred proofs

Here, we provide complete proofs from Section 3, our main result. The remaining deferred proofs
can be found in the full appendix at https://arxiv.org/abs/2403.03937.

A.1 Proofs from Section 3

Lemma 3.1. SRev=′ (ER<f) ) =< ·) ·
(
1 − (1 − 1/) )=′

)
. One mechanism achieving this sells each

item separately with a second-price auction at reserve ) .17

Proof. Observe that ER<) is a regular distribution, with

ī 9 (E8 9 ) = E8 9 −
1 − (1 − 1/E8 9 )

1/E28 9
= 0 ∀E8 9 < ),

ī 9 () ) = ) − 0 = ),

so the optimal auction for each item allocates the item to a bidder with value ) for price ) . □

Corollary A.1. Suppose ) g √<= and 0 g 1. Let E ∈ [1,) ]< and suppose there exists some item
with value ) . De�ne � :=

{
9 : E 9 = )

}
and ! :=

{
9 : E 9 g <=/)

}
\ � . A bidder with type E prefers

the menu option (�, !) over any other option in the menu (including not receiving any items).

Proof. By Lemma 3.9, a bidder with such a type prefers (�, !) over any other option that
allocates an item with some positive probability. It remains to show that the utility of such a bidder

17In fact, a second-price auction with any reserve f ) achieves this.
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for (�, !) is non-negative:
0
∑
9∈�

E 9 + 1
∑
9∈!

E 9 −
(
|� | 0) + |! | 1<=

)
− (|� | − 1)1

(
) − <=

)

))

= 1
∑
9∈!

(
E 9 −

<=

)

)
+ (|� | − 1)1

(
) − <=

)

)
(E 9 = ) for all 9 ∈ � )

g (|� | − 1)1
(
) − <=

)

)
(E 9 g <=/) for all 9 ∈ !)

g 0. () 2 g <=)

□

Corollary A.2. Suppose ) g √<= and 0 g 1. Let E ∈ [1,) ]< . Let 9∗ ∈ argmax9 E 9 and suppose

E 9∗ < ) . De�ne ! :=
{
9 : E 9 g <=/)

}
\ { 9∗}. A bidder with type E prefers the menu option ({ 9∗}, !)

over any other option in the menu (including not receiving any items) if and only if 0E 9∗ +1
∑
9∈! E 9 g

0) + |! | 1<=
)
.

Proof. By Lemma 3.9, a bidder with such a type prefers ({ 9∗}, !) over any other option that
allocates an item with some positive probability. To conclude, note that the utility for ({ 9∗}, !) is
non-negative if and only if the inequality in the lemma statement holds. □

Lemma 3.11. If ) g √<=, then 1
0
f =

)
4−

=
)

(
1 − 4− =

)

)−1
.

Proof. We have

1

0
=
PE−8

[
� high

]
(1 − (1 − P [low | not high])=)

=P [low | not high] · =P [high]
1 − (1 − P [high])=

f
PE−8

[
� high

]
· =P [low | not high]

=P [low | not high] · =P [high]
1 − (1 − P [high])= (union bound)

=
=PE−8

[
� high

]
P [high]

1 − (1 − P [high])=

=

=

(
1 − 1

)
−
<−1∑
ℓ=1

(<−1
ℓ

)
@ℓ

)=−1 (
1
)
+
<−1∑
ℓ=1

(<−1
ℓ

)
@ℓ

)

1 −
(
1 − 1

)
−
<−1∑
ℓ=1

(<−1
ℓ

)
@ℓ

)=

f
=

(
1 − 1

)

)=
)

(
1 − (

1 − 1
)

)= ) (replace summation with 0)

f
=
)
4−

=
)

1 − 4− =
)

.

The second inequality follows from the fact that
(
1 − 1

)
− G )=−1 (

1
)
+ G ) /(1 − (

1 − 1
)
− G )= ) is de-

creasing in G for G ∈ [0, 1 − 1/) ] (note that 1 − 1
)
− ∑<−1

ℓ=1

(<−1
ℓ

)
@ℓ f 1 because the left-hand

expression is a probability, so indeed
∑<−1
ℓ=1

(<−1
ℓ

)
@ℓ f 1 − 1

)
):

m

mG

(
1 − 1

)
− G )=−1 (

1
)
+ G )

1 − (
1 − 1

)
− G )= =

(
1 − 1

)
− G )=−2 ( (

1 − (
1 − 1

)
− G )= ) − = (

1
)
+ G ) )(

1 − (
1 − 1

)
− G )= )2 f 0.

(union bound; G ∈ [0, 1 − 1/) ])
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□

Lemma 3.13. If bidders report their values truthfully in the Less-Naive Auction, then Rev#(#= (ER<f) )
exceeds Rev!#�= (ER<f) ) by at least

(1 − 10)<=2
(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1) + 1<2 (<−1)=2
)

<−1∑
ℓ=1

(<−2
ℓ−1

)
@ℓ .

Proof. By Corollaries A.1 and A.2, the revenue per bidder of the Not-So-Naive Auction is

∑
9∗∈[<]

∑
!¦[<]\{ 9∗ }

(
0) + |! | 1<=

)

) (
1
)

(
)
<=
− 1
)

) |! | (
1 − )

<=

)<−1−|! | + @ |! | )

+ ∑
�¦[<]:
|� | g2

∑
!¦[<]\�

( |� | 0) + |! | 1<=
)
− (|� | − 1)1 (

) − <=
)

) )
1

) |� |
(
)
<=
− 1
)

) |! | (
1 − )

<=

)<−|� |− |! |

=

<∑
:=1

<−:∑
ℓ=0

(<
:

) (<−:
ℓ

) (
:0) + ℓ1<=

)
− (: − 1)1 (

) − <=
)

) )
1
):

(
)
<=
− 1
)

) ℓ (
1 − )

<=

)<−:−ℓ
+<

<−1∑
ℓ=1

(<−1
ℓ

) (
0) + ℓ1<=

)

)
@ℓ

= 0< + 1<=
(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1) +<<−1∑
ℓ=1

(<−1
ℓ

) (
0) + ℓ1<=

)

)
@ℓ .

Recall that the revenue extracted by the Less-Naive Auction from selling item 9 to bidder 8 is

00) · 1
(
E8 9 = ),max

9 ′< 9
E8 9 ′ < )

)
+ 00

(
) − 10

00

(
) − <=

)

))
· 1

(
E8 9 = ),max

9 ′< 9
E8 9 ′ = )

)

+ 10<=

)
· 1

(
E8 9 ∈ [<=) ,) ),max

9 ′≠9
E8 9 ′ = )

)
.

Taking the expectation over the randomness of bidder 8’s type and summing over all items yields
that the revenue extracted by the Less-Naive Auction per bidder is

00< + 10<=

(
)

<=
− 1

)

) (
1 −

(
1 − 1

)

)<
− <

)

(
1 − 1

)

)<−1)
.

Now, recall that 00 is the interim probability of winning an item when bidding ) under the
allocation rule that allocates items uniformly at random to bidders with value ) , so

00 = E
E−8

[
1

1 +∑
:≠8 1(E: 9 = ) )

]
=

=−1∑
:=0

(=−1
:

)
: + 1

1

):

(
1 − 1

)

)<−:−1
=
)

=

(
1 −

(
1 − 1

)

)=)
.
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Note how 00 compares to 0.

0

(
1 +)

<−1∑
ℓ=1

(
< − 1

ℓ

)
@ℓ

)
=

(
1 −

(
1 − 1

)
−∑<−1

ℓ=1

(<−1
ℓ

)
@ℓ

)=)
=

(
1
)
+∑<−1

ℓ=1

(<−1
ℓ

)
@ℓ

)
(
1 +)

<−1∑
ℓ=1

(
< − 1

ℓ

)
@ℓ

)

(de�nition of 0)

=
)

=

(
1 −

(
1 − 1

)
−
<−1∑
ℓ=1

(
< − 1

ℓ

)
@ℓ

)=)

g )

=

(
1 −

(
1 − 1

)

)=)
= 00 (de�nition of 00)

Thus, the revenue per bidder of the Not-So-Naive Auction exceeds that of the Less-Naive Auction
by

(0 − 00)< + (1 − 10)<=
(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1) +<<−1∑
ℓ=1

(<−1
ℓ

) (
0) + ℓ1<=

)

)
@ℓ

=

(
0

(
1 +)

<−1∑
ℓ=1

(<−1
ℓ

)
@ℓ

)
− 00

)
< + (1 − 10)<=

(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1)

+ 1<2 (<−1)=
)

<−1∑
ℓ=1

(<−2
ℓ−1

)
@ℓ

g (1 − 10)<=
(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1) + 1<2 (<−1)=
)

<−1∑
ℓ=1

(<−2
ℓ−1

)
@ℓ .

Summing over all bidders yields the lemma. □

Lemma A.3. If ) g √<=, then for all ℓ ∈ [< − 1],

@ℓ f
(
)

<=
− 1

)

) ℓ (
1 − )

<=

)<−ℓ−1
ℓ1

)0
.

Proof. Observe that

@ℓ = P
E

[
E1 = max

9
E 9 < ), min

9∈[ℓ+1]
E 9 g <=

)
, max
9∉[ℓ+1]

E 9 <
<=
)
, 0E1 + 1

ℓ+1∑
9=2

E 9 g 0) + ℓ1<=
)

]

=
( )
<= − 1

) )ℓ+1 (1− )
<= )<−ℓ−1

ℓ+1 P

[
0E1 + 1

ℓ+1∑
9=2

E 9 g 0) + ℓ1<=
)

���� E1 = max
9

E 9 < ), min
9∈[ℓ+1]

E 9 g <=
)

> max
9∉[ℓ+1]

E 9

]

f (
)
<= − 1

) )ℓ+1 (1− )
<= )<−ℓ−1

ℓ+1 P

[
E1 g 0)+ℓ1<=

)

0+ℓ1

���� E1 = max
9

E 9 < ), min
9∈[ℓ+1]

E 9 g <=
)

> max
9∉[ℓ+1]

E 9

]

=
( )
<= − 1

) )ℓ+1 (1− )
<= )<−ℓ−1

ℓ+1
©­«
1 −

(
1 −

1

) − ℓ1
0+ℓ1 () −<=

) ) −
1
)

)
<= − 1

)

) ℓ+1ª®¬
f (

)
<=
− 1
)

) ℓ (
1 − )

<=

)<−ℓ−1 (
1

)− ℓ1
0+ℓ1 ()−<=

) ) −
1
)

)
(union bound)

f (
)
<=
− 1
)

) ℓ (
1 − )

<=

)<−ℓ−1 ℓ1
)0

.

□
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Lemma A.4. If ) = _
√
<= for some constant _ > 1, then the probability of a “high” bidder with all

values below ) can be upper bounded as

<−1∑
ℓ=1

(
< − 1

ℓ

)
@ℓ f

(
1 − 1

_2

)
1 (< − 1)
0<=

(
1 − 1

)

)<−2
.

Proof.

<−1∑
ℓ=1

(
< − 1

ℓ

)
@ℓ f

1 (< − 1)
)0

<−1∑
ℓ=1

(
< − 2
ℓ − 1

) (
)

<=
− 1

)

) ℓ (
1 − )

<=

)<−ℓ−1
(Lemma A.3)

=
1 (< − 1)

)0

(
)

<=
− 1

)

) <−2∑
ℓ=0

(
< − 2

ℓ

) (
)

<=
− 1

)

) ℓ (
1 − )

<=

)<−ℓ−2

=
1 (< − 1)

)0

(
)

<=
− 1

)

) (
1 − 1

)

)<−2

=

(
1 − 1

_2

)
1 (< − 1)
0<=

(
1 − 1

)

)<−2
.

□

Lemma A.5. If ) = _
√
<= for some constant _ > 1, then the probability of a “low” bidder with all

values below ) can be upper bounded as

(< − 1)
<−1∑
ℓ=1

(
< − 2
ℓ − 1

)
@ℓ f

(
1 − 1

_2

)
1 (< − 1)
0<=

(
1 − 1

)

)<−3 (
1 − 1

_
√
<=
+

(
_ − 1

_

)
< − 2√
<=

)
.

Proof.

(< − 1)
<−1∑
ℓ=1

(
< − 2
ℓ − 1

)
@ℓ f

1 (< − 1)
)0

<−1∑
ℓ=1

ℓ

(
< − 2
ℓ − 1

) (
)

<=
− 1

)

) ℓ (
1 − )

<=

)<−ℓ−1

=
1 (< − 1)

)0

(
)

<=
− 1

)

) (
1 − 1

)

)<−2

+ 1 (< − 1) (< − 2)
)0

<−1∑
ℓ=2

(
< − 3
ℓ − 2

) (
)

<=
− 1

)

) ℓ (
1 − )

<=

)<−ℓ−1

=
1 (< − 1)

)0

(
)

<=
− 1

)

) (
1 − 1

)

)<−3 (
1 − 1

)
+ (< − 2)

(
)

<=
− 1

)

))

=

(
1 − 1

_2

)
1 (< − 1)
0<=

(
1 − 1

)

)<−3 (
1 − 1

_
√
<=
+

(
_ − 1

_

)
< − 2√
<=

)
.

□

Lemma 3.15. If ) = _
√
<= for some constant _ > 1, then 1 = ¬

( (
1 − 1

)

)= )
.

Proof. Note that

1 :=
PE−8

[
� high

]
(1 − (1 − P [low | not high])=)

=P [low | not high] =
PE

[
� high

]
(1 − (1 − P [low | not high])=)

=P [low]
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We bound each part of 1:

P
E

[
� high

]
=

(
1 − 1

)
−
<−1∑
ℓ=1

(
< − 1

ℓ

)
@ℓ

)=

g
(
1 − 1

)
− $ (1)

=

)=
(Lemmas 3.11 and A.4)

= ¬

((
1 − 1

)

)=)
, () = _

√
<=,< f =)

P [low] =
(
1 −

(
1 − 1

)

)<−1) (
)

<=
− 1

)

)
+ (< − 1)

<−1∑
ℓ=1

(
< − 2
ℓ − 1

)
@ℓ

f < − 1
)

(
)

<=
− 1

)

)
+ $ (1)

=
(union bound; Lemmas 3.11 and A.5)

=

(
1 − 1

_2

)
< − 1
<=

+ $ (1)
=

() = _
√
<=)

= $

(
1

=

)
,

P [low | not high] =

(
1 − (

1 − 1
)

)<−1) (
)
<=
− 1
)

) + (< − 1)∑<−2
ℓ=0

(<−2
ℓ

)
@ℓ+1

1 − 1
)
−∑<−1

ℓ=1

(<−1
ℓ

)
@ℓ

g

(
1 − (

1 − 1
)

)<−1) (
)
<=
− 1
)

)
1 − 1

)

g

(
<−1
)
− (

<−1
2 )
) 2

) (
)
<=
− 1
)

)
1 − 1

)

(inclusion-exclusion)

=

(
1 − 1

_2

)
<−1√
<=

(
1√
<=
− 1

2_=

)
1 − 1

_
√
<=

() = _
√
<=)

= ¬

(
1

=

)
.

Thus,

1 =
PE

[
� high

]
(1 − (1 − P [low | not high])=)

=P [low]

=
¬

( (
1 − 1

)

)= ) (
1 − (

1 − ¬
(
1
=

) )= )
=$

(
1
=

)
= ¬

((
1 − 1

)

)=)
.

□

Theorem 3.16. If ) = _
√
<= for some constant _ > 1, then CompER<f) (=) = ¬(√<=).
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Proof. Recall that by Corollary 3.14 and Lemma 3.3, SRev=+2 exceeds the revenue of the Not-
So-Naive Auction only if

2 g
1=2

(
)
<=
− 1
)

) (
1 − (

1 − 1
)

)< − <
)

(
1 − 1

)

)<−1)
(
1 − 1

)

)= .

Note that if< ∈ [=/4, =], then

2 g
1=2

(
)
<=
− 1
)

) (
1 − 4−<

) − <
)
4−

<−1
)

)
(
1 − 1

)

)=
g

1 =
3/2√
<

(
_ − 1

_

) (
1 − 4− 1

_

√
<
= − 1

_

√
<
=
4−

1
2_

√
<
=

)
(
1 − 1

)

)= () = _
√
<=)

g
1=

(
_ − 1

_

) (
1 − 4− 1

2_ − 1
2_
4−

1
4_

)
(
1 − 1

)

)= (1 − 4−G − G4−G/2 is increasing in G ,< ∈ [=/4, =])

=
¬

( (
1 − 1

)

)= )
=(

1 − 1
)

)= (Lemma 3.15)

= ¬(√<=). (< ∈ [=/4, =])
If< f =/4, then

2 g
1=2

(
)
<=
− 1
)

) < (<−1)
2) 2

(
1 − <−2

)

)
(
1 − 1

)

)= (inclusion-exclusion)

g
1
(<−1)√<=

2_<

(
1 − 1

_2

) (
1 − 1

_

√
<
=

)
(
1 − 1

)

)= () = _
√
<=)

=

1
(<−1)√<=

2_<

(
1 − 1

_2

) (
1 − 1

2_

)
(
1 − 1

)

)= (< f =/4)

=
¬

( (
1 − 1

)

)= ) √
<=(

1 − 1
)

)= (Lemma 3.15)

= ¬(√<=).
□
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