

EC ’24, July 8–11, 2024, New Haven, CT, USA

1 Introduction

Blockchain protocols have attracted signi�cant interest since Bitcoin’s initial development in
2008 [Nakamoto, 2008], and several parallel research agendas and developments arose in that time.
This paper lies at the intersection of two of these agendas: (a) strategic manipulability of consen-
sus protocols, and (b) the return of Byzantine Fault Tolerant (BFT)-style consensus protocols via
Proof-of-Stake (PoS). We brie�y elaborate on both stories below, before discussing our contributions.

Manipulating Consensus Protocols. Initially following Nakamoto’s whitepaper, Bitcoin and
related blockchain protocols were studied through a classical security lens: some fraction of
participants were honest, others were malicious, and the goal of study was to determine the extent
to which a malicious actor can compromise security with a particular fraction of the computational
power in the network. For example, Nakamoto’s whitepaper already derives that with 51% of the
computational power, a malicious actor could completely undermine Bitcoin’s consensus protocol.
However, the seminal work of Eyal and Sirer [2014], now referred to as “Sel�sh Mining”, identi�ed
a fundamentally di�erent cause for concern: an attacker with 34% of the computational power
could manipulate the protocol in a way that does not violate consensus, but earns that attacker a
> 34% fraction of the mining rewards.1 This agenda has exploded over the past decade, and there is
now a vast body of work considering strategic manipulation of consensus protocols (e.g. Bahrani
and Weinberg, 2023, Brown-Cohen et al., 2019, Carlsten et al., 2016, Eyal and Sirer, 2014, Ferreira
et al., 2022, Ferreira and Weinberg, 2021, Fiat et al., 2019, Goren and Spiegelman, 2019, Kiayias et al.,
2016, Sapirshtein et al., 2016, Tsabary and Eyal, 2018, Yaish et al., 2023, 2022, Zur et al., 2020).
These works study several di�erent classes of protocols, and several avenues for manipulation:

some study Proof-of-Work protocols while others study Proof-of-Stake, some study block with-
holding deviations while others manipulate timestamps, some focus on pro�tability denoted in
the underlying cryptocurrency while others consider the impact of manipulation on that cryp-
tocurrency’s value. There are many important angles to this agenda, many of which are cited by
practitioners as key motivating factors in design choices.2 The primary goal of this agenda is to
understand under what conditions is it in every participant’s interest to follow the prescribed consensus

protocol? That is, these works generally do not focus on understanding complex equilibria with
multiple strategic players (and instead immediately consider it a failure of the protocol when it is
not being followed), and instead seek to understand whether the strategy pro�le where all agents
follow the protocol constitutes a Nash Equilibrium. That is, we seek to understand whether being
honest is the best response when everyone else in the network is honest.

BFT-based Proof-of-Stake Protocols. As Bitcoin’s popularity surged, the energy demands re-
quired to secure it comparably soared, and estimates place its global energy consumption at
comparable levels to countries the size of Australia. This motivated discussions over alternate
technologies that could still be permissionless and Sybil-resistant, and Proof-of-Stake emerged as
a viable alternative. While Proof-of-Work protocols select participants to produce blocks propor-
tional to their computational power, Proof-of-Stake protocols do so proportional to the fraction of
underlying cryptocurrency they own. Initial Proof-of-Stake protocols predominantly followed the
longest-chain consensus paradigm of Bitcoin [Daian et al., 2016, Kiayias et al., 2017], but modern
proposals now look more like classical consensus algorithms from distributed computing [Chen
and Micali, 2019, Gilad et al., 2017]. Speci�cally, BFT-based protocols run a consensus algorithm,

1Earlier work of [Babaio� et al., 2012] introduces the strategic manipulation aspects of the Bitcoin protocol, although the

style of manipulation in [Eyal and Sirer, 2014] became more mainstream for subsequent work.
2For example, EIP-1559.

677

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

one block at a time, in order to reach consensus on a single block. Once consensus is reached, the
block is �nalized and consideration of the next block begins.

While Bitcoin still uses a longest-chain Proof-of-Work consensus protocol, and some large Proof-
of-Stake cryptocurrencies such as Cardano still use longest-chain protocols [Kiayias et al., 2017],
BFT-based protocols are now quite mainstream and are implemented, for example, in Algorand
[Chen and Micali, 2019, Gilad et al., 2017] and Ethereum.3

Manipulating BFT-based Proof-of-Stake Protocols. In practice, there is no ‘dominant’ BFT-
based protocol, and di�erent cryptocurrencies each seem to have their own protocol. However,
there are some unifying themes. Most BFT-based protocols have the concept of a leader in each
round, and the consensus goal of each round is for everyone to agree on the leader’s proposed block.
Leader selection is challenging, though: it should be done proportional to stake, but in a way that
neither relies on a trusted external source of randomness nor is manipulable by participants. This
has proved to be quite challenging, and to-date there are no nonmanipulable proposals without
heavyweight cryptography (such as Multi-Party Computation or Veri�able Delay Functions).
While the underlying consensus protocols are often both complex and completely nonmanipulable
(without su�cient stake to simply subvert consensus in the �rst place), the leader selection protocols
are more vulnerable, and can be studied independently of the supported consensus protocol.

Algorand’s initial proposal serves as a canonical process of study due to its elegance. The initial
seed &1 is a uniformly drawn random number. Then, in each round C with seed &Ī , every wallet
digitally signs the statement (&Ī , 2) for every coin 2 they own, hashes it,4 and broadcasts the hash
as their credential CredęĪ . The holder of the coin with the lowest credential is the leader, and their
winning credential becomes the seed&Ī+1 for round C +1. This elegant protocol has several desirable
properties (for example, it is not vulnerable to any form of ‘stake grinding’ to in�uence next round’s
seed – you can either broadcast your credential or not),5 but Chen and Micali [2019] acknowledge
that it may still be manipulable by cleverly choosing not to broadcast credentials, and Ferreira et al.
[2022] indeed establish that any size staker has such a pro�table manipulation.

To get brief intuition for a pro�table manipulation, imagine that an attacker controls 10% of the
coins. Perhaps they are also well-enough connected in the network so that they can choose which
credentials of their own to broadcast in round C as a function of other participants’ credentials (this
corresponds to V = 1 – in general, the adversary is V-well-connected if they see a V fraction of
honest credentials before broadcasting their own). Such an attacker might be in a position where
they own (say) the three lowest credentials. In this case, the adversary could look one round ahead
and determine which of these round-C-winning credentials gives them the best chance of winning
round C + 1, and broadcast only that credential. This particularly simple manipulation, termed the
One-Lookahead strategy in Ferreira et al. [2022], is strictly pro�table for any sized staker. While
strictly better than honest, this strategy does not reap enormous pro�ts: even with 10% stake, a
1-well-connected staker can lead at most 10.08% rounds. On the other hand, the only previous upper
bounds derived on the maximum gains come from a loose analysis of an omniscient adversary
who not only sees the credentials of honest wallets in round C , but can predict their future digital
signatures to know exactly which hypothetical future rounds they’d win. This results in an upper

3Ethereum does maintain some longest-chain aspect to its protocol, but the key role that validators play make the protocol

closer to BFT-based consensus.
4We will elaborate on this rigorously in Section 2.2. The role of the digital signature is simply to get a signature unique to

the owner of coin ę that no other player can predict, and the role of the hash function is to turn this into a uniformly drawn

random number from [0, 1].
5The live Algorand protocol seems to have recently pivoted from their initial proposal to a leader-selection protocol that

has the winning credential of every ġĪℎ round set the seeds for the next ġ rounds.

678

EC ’24, July 8–11, 2024, New Haven, CT, USA

bound of 21.12% on the maximum possible rounds led by a 10% staker. Needless to say, the level of
concern that would arise from a 10% staker who is able to slightly increase their staking rewards
by less than 1% to 10.08% is vastly di�erent than what would arise from a 10% staker who can more
than double their staking rewards to 21.12%.

Our Contributions. Using both theoretical and computational tools, we precisely nail down the
manipulability of Algorand’s canonical leader selection protocol. That is, we design computational
methods to compute, for any fraction of stake U and network connectivity parameter V that an
attacker might have,6 the maximum fraction of rounds the attacker can lead (assuming other players
are honest). We rigorously bound the error in our methods – some bounds hold with probability one
(due to discretization, truncation, etc.) while others hold with high probability (due to sampling).
We consider this methodology to be our main contribution. We also make the following adjacent
contributions:

• We implement our computational procedure in Rust, and run it across several personal laptops
and university clusters. We plot several of our �ndings in Section 5 (and future researchers
can run our code to even higher precision, if desired). For example, we close the gap on the
maximum pro�t of a 1-well-connected 10% staker from [10.08%, 21.12%] to [10.08%, 10.15%].
We produce several plots in Section 5 demonstrating our results in comparison to prior
bounds.
• One conclusion drawn from our simulations is that the gains from manipulation are quite
small. For example, we con�rm that 1-well-connected 10% staker can lead at most 10.15%
of all rounds. A 0-well-connected 10% staker can lead at most 10.09% of the rounds. Even a
0-well-connected 20% staker can lead at most 20.21% of the rounds. This suggests that, while
supralinear rewards are always a cause for concern as a potential centralizing force among
stakers, the situation is unlikely to be catastrophic.
• A second conclusion drawn from our simulations is V plays a signi�cant role in the magnitude
of pro�tability. For example, a 0-well-connected 20% staker can lead at most 20.21% of the
rounds, while there exists a strategy for a 1-well-connected 20% staker that leads at least
20.68% of the rounds – a 320% ampli�cation in the marginal gains.
• Beyond our provably accurate computational methodology, we also provide two analytical
results of independent interest.
– We improve [Ferreira et al., 2022]’s analysis of the omniscient adversary, and in particular
describe a recursive formulation that achieves an arbitrarily good approximation to the
precise pro�t of an optimal omniscient adversary. This appears in Section 3.3.

– Finally, we prove one conjecture and disprove another of Ferreira et al. [2022] characterizing
“Balanced Scoring Functions.” Balanced Scoring Functions are a tool used in leader selection
to replace computing a digital-signature-then-hash per coin with computing a digital-
signature-then-hash per wallet (in order to appropriately weight the hash before taking
the minimum amongst all credentials). We state this result in Section 2.1.

As a whole, our results signi�cantly improve our understanding of manipulating the canon-
ical leader selection protocol �rst introduced in Algorand [Chen and Micali, 2019]. First, while
supralinear rewards are always a cause for concern, the maximum achievable pro�ts are at quite a
small order of magnitude. Second, our results highlight the pivotal role that V plays in the rate of
supralinear rewards. This suggests that protocol designers may wish to invest in augmentations to

6We de�ne the network connectivity formally in Section 3.1.

679

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

bring V closer to zero.7 Methodologically, our approach provides a blueprint for how similar leader
selection protocols (such as Ethereum’s) might be analyzed.

1.1 Very Brief Technical Highlight

We defer full details to our technical sections, but give a brief overview of the key technical
challenges here. The optimal strategy can be phrased as a Markov Decision Process (MDP), and in
some sense the obvious approach is to “write down the MDP and solve it.” Unfortunately, states
in our MDP are countably long lists of real numbers. That is, a state corresponds to (a) the list of
credentials the attacker has in this round, but also (b) for each of those credentials 8 , and each other
wallet 9 controlled by the adversary, the credential wallet 9 would provide the next round if wallet 8
wins this round (which can be computed as the seed for the next round is simply a digital signature
plus hash of its credential 8), and moreover (c) for each of those pairs of credentials (8, 9), and each
other wallet : controlled by the adversary, the credential wallet : would provide two rounds from
now if credential 8 wins this round and credential 9 wins the next round, and (d) so on.

A �rst step is to truncate this countably long list of real numbers to (a) look only) < ∞ rounds
in the future, (b) store only : < ∞ credentials per round, and (c) discretize each credential to a
multiple of Y > 0. These steps can all be done with provable upper bounds on the error they induce.
However, even with : = 8 and) = 15, states still correspond to a list of 815 multiples of Y, and is
clearly intractable.

Instead, our key idea is to reformulate the question as �nding the distribution of future rewards
that an optimal strategist receives. That is, consider the process of sampling a state for the attacker
(a list of credentials for this round, hypothetical future credentials, etc.), and ask what future reward
the attacker would get when playing optimally. If we can compute this distribution of rewards
� , then its expected value is exactly the number we seek. We de�ne an operator Θ(·) that takes
as input samples from some distribution � and produces samples from the distribution Θ(�), and
establish that � is a �xed point of Θ(·).
Again, the process now appears straight-forward: start from any distribution, and iterate Θ(·)

until it stabilizes. This is indeed our approach, and the remaining challenge is to account for
sampling error. Essentially, we are looking for E[Θ15 (�)] for some simple initial distribution � ,

and instead of computing Θ(·) at each stage we’ll take an empirical estimate Θ̂(·) instead. This
appears ripe for a Cherno� plus union bound to bound the error due to sampling, except that

E[Θ̂(·)] is not an unbiased estimator for E[Θ(·)]. So even establishing that we take su�ciently
many samples to be close to the process’s expected value does not guarantee we are close to

E[Θ15 (�)]. Instead, at each round we both in�ate (resp. de�ate) our empirical Θ̂ğ (�) so that we
know it stochastically dominates (resp. is stochastically dominated by) Θğ (�) using a variant of the
DKW inequality [Dvoretzky et al., 1956].

We share this to give the reader a sense of the technical developments necessary to analyze this
particular Markov Decision Process, and ways in which it di�ers from more common MDPs.

1.2 Related Work

Manipulating Leader Selection Protocols. Chen and Micali [2019] propose the Algorand leader
selection protocol, and acknowledge that it may be manipulable. They also prove an upper bound
on the fraction of rounds an adversary can win after being honest in the previous round. Ferreira
et al. [2022] provide a strategy that is strictly pro�table for all V-well-connected U-sized stakers,
and upper bound the attainable pro�t of an omniscient adversary who can predict future digital

7One such possibility is to broadcast credentials using commit-reveal: players make a large deposit alongwith a cryptographic

commitment to their credential, and unlock their deposit only upon revealing it.

680

EC ’24, July 8–11, 2024, New Haven, CT, USA

signatures of honest players. We provide provably accurate computational methodology to nail
the optimal manipulability up to arbitrary precision (and implement our algorithms and draw
conclusions from the results). In concurrent and independent work, [Cai et al., 2024] establish that
any strictly pro�table manipulation of our same leader selection protocol is statistically detectable
(that is, an onlooker who sees only the seeds of each round can distinguish whether someone is
pro�tably manipulating the protocol from when all players are honest but sometimes o�ine). This
work is orthogonal to ours, but also provides an argument that solid defenses against manipulation
exist (we argue that the manipulations are not particularly pro�table, they argue that they are
always detectable).

Manipulating Consensus Protocols.We have already brie�y cited a subset of the substantial body
of work studying pro�table manipulations of consensus protocols [Bahrani and Weinberg, 2023,
Brown-Cohen et al., 2019, Carlsten et al., 2016, Eyal and Sirer, 2014, Ferreira et al., 2022, Ferreira and
Weinberg, 2021, Fiat et al., 2019, Goren and Spiegelman, 2019, Kiayias et al., 2017, Sapirshtein et al.,
2016, Tsabary and Eyal, 2018, Yaish et al., 2023, 2022]. Of these, [Brown-Cohen et al., 2019, Ferreira
and Weinberg, 2021] also study Proof-of-Stake protocols, but longest-chain variants (and therefore
have minimal technical overlap). Sapirshtein et al. [2016] bears some technical similarity, as they
are the unique prior work that �nds optimal manipulations (in Bitcoin’s Proof-of-Work), and they
also use computational tools with theoretical guarantees. We also use a lemma of theirs to reduce
from maximizing the fraction of rounds won to maximizing reward in a linear MDP. Still, there is
minimal technical overlap beyond these. For example, their problem can be phrased as a Markov
Decision Process with countably-many states (i.e. a state in their setup is of the form “how many
hidden blocks do you have?”, which is an integer), and therefore the key steps in their provable
guarantees are truncations. In comparison, we’ve noted that our problem is a Markov Decision
Process with uncountably many states, and therefore the two MDPs have minimal overlap.8

2 Preliminaries

2.1 Primitives

In this section, we review various cryptographic primitives required to construct a cryptographic
self-selection protocol. Since our model is identical, we use notations identical to Ferreira et al.
[2022]. We begin by discussing a tool central to many Proof-of-Stake protocols– veri�able random
functions. Veri�able random functions are useful in enabling a source of randomness endogenous
to the blockchain for the leader election protocol.

De�nition 1 (Ideal Veri�able Random Function (Ideal VRF)). An ideal veri�able random function

satis�es the following properties:

(1) Setup: There is an e�cient randomized generator that can produce a pair (B:, ?:) of a secret
key and a public key that characterizes the instance 5ĩġ (·).

(2) Private computability: For a string G , there exists an e�cient algorithm to compute the

encryption 5ĩġ (G) of G with the knowledge of B: .

(3) Perfect randomness:Without the knowledge of B: , the random variables 5ĩġ (G) and 5ĩġ (~)
are distributed i.i.d. over* [0, 1]. In particular, the random variable 5ĩġ (G) ∼ * [0, 1] even with

the knowledge of
(
(~ğ , 5ĩġ (~ğ))

)
1fğfģ such that ~ğ ≠ G for all 1 f 8 f <.

(4) Veri�ability: Verifying the claim ~ = 5ĩġ (G) can be done e�ciently conditioned on the knowl-

edge of ?: and a proof +Į , even if B: remains unknown. Generating a proof +Į such that a

veri�er con�rms equality when ~ ≠ 5ĩġ (G) is impossible.
8This is also perhaps expected, as there is little technical similarity between creating forks in a longest-chain protocol and

manipulating credentials in a leader-selection protocol.

681

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

An ideal VRF allows the holder of the secret key B: (through property 3) to provably generate a
random number, i.e, show that the random number was generated through a prescribed process.
However, it is impossible to construct an ideal VRF whose outputs are statistically indistinguishable

from* [0, 1]. On the other hand, it is possible to construct a VRFwhose outputs are computationally

indistinguishable from* [0, 1]. For the sake of simplicity, we proceed with an Ideal VRF instead of
computational – this results in only a negligible di�erence.

Example 1 (VRFs through digital signatures). Let f be a digital signature scheme with a public key,

secret key pair (?:, B:) and let ℎ be a hash function. Then, ℎ(fĩġ (·)) is a veri�able random function.

~ = ℎ(fĩġ (G)) can be computed e�ciently with the knowledge of B: . With a proof +Į = fĩġ (G),
~ = ℎ(fĩġ (G)) can be veri�ed as follows- verify that (i) the proof +Į = fĩġ (G) with the public key ?:

and G and (ii) verify ~ = ℎ(+Į).

Next, we proceed to discuss balanced scoring functions that enable electing a leader proportional
to its stake.

De�nition 2 (Balanced Scoring Functions). A scoring rule (: [0, 1] × R −→ [0, 1] is balanced if:

(1) For - ∼ * [0, 1], the distribution of ((-, U) has no point masses for all U ∈ [0, 1]
(2) For all = ∈ N and

(
Uğ
)
1fğfĤ ∈ R

Ĥ
g0,

%AĔ1,...,ĔĤ∼đ [0,1]

(
arg min

1fğfĤ
{((-ğ , Uğ)} = 9

)
=

U Ġ∑Ĥ
ğ=1 Uğ

At a high level, a fair leader selection to elect a wallet with probability proportional to its stake
can be conducted by choosing the wallet with the smallest score, while VRFs provide the source
for the random variable -ğ for a wallet 8 .
Ferreira et al. [2022] conjecture that ((-,

∑Ĥ
ğ=1 Uğ) and min1fğfĤ{((-, Uğ)} are identically dis-

tributed for all balanced scoring functions (, = ∈ N and U1, . . . , UĤ ∈ Rg0
9. Intuitively, their

conjecture claims an adversary with a total stake
∑Ĥ

ğ=1 Uğ cannot increase the probability of a
smaller score and thus, the probability of getting elected by splitting their stake as

(
Uğ
)
1fğfĤ across

= di�erent wallets. We settle their conjecture.

Theorem 1. Let ((-, U) be any balanced scoring function. Then, for all = ∈ N and
(
Uğ
)
1fğfĤ , the

random variables

((-,

Ĥ∑

ğ=1

Uğ) and min
1fğfĤ

{((-ğ , Uğ)}

are identically distributed for -,-1, . . . , -Ĥ ∼ * [0, 1].

The proof of Theorem 1 and further details on scoring functions are deferred to the full version
of the paper.

2.2 Cryptographic Self-Selection

We are now ready to describe a cryptographic self-selection protocol.

De�nition 3 (Cryptographic Self-Selection Protocol � (CSSPA); Ferreira et al., 2022). A Crypto-

graphic Self-Selection Protocol � is the following:

(1) Every wallet 8 sets up an instance of an ideal VRF with public key, secret key pair (?:ğ , B:ğ) prior
to round 1. Wallet 8 holds a stake Uğ .

9They also claim that ď (Ĕ,Ă) is continuous in Ă . We provide a counterexample to their claim. However, we show that

ČĨ (ď (Ĕ,Ă) g ĩ) is continuous in Ă . Refer the full version of the paper for a detailed discussion on scoring functions.

682

EC ’24, July 8–11, 2024, New Haven, CT, USA

(2) &Ī denotes the seed of round C . The seed&1 for the initial round is computed through an expensive

multi-party computation and is distributed according to* [0, 1].
(3) In each round C , the user with wallet 8 computes its credential CredğĪ := 5ĩġğ (&Ī).
(4) Each user can choose either to broadcast its credential or remain silent. Any credential broadcast

by a user is received by all other users10.

(5) The wallet with the smallest score ((CredğĪ , Uğ) amongst all broadcasted credentials is elected

the leader ℓĪ for round C .

(6) The seed for round C + 1,&Ī+1 = Cred
ℓĪ
Ī , the credential of the winner of round C . All wallets learn

the seed &Ī+1.

Importantly, note that the blockchain cannot be forked in the CSSPA as in the case with many
BFT-based consensus protocols including Algorand.
We consider strategic manipulations rather than network security attacks, and so the action

space of users is restricted to distributing their stakes across multiple wallets and choosing between
broadcasting and remaining silent for each of its wallet, as opposed to a network partition attack.
An honest player keeps its stake in a single wallet and always broadcasts its credential. Conditioned
on all players in the network being honest, observe that the probability of a wallet with stake U Ġ

getting elected equals the probability that wallet 8 has the smallest score, which happens with a
probability proportional to Uğ .
We discuss choosing an explicit balanced scoring function for our model. Ferreira et al. [2022]

argue that the game induced by the CSSPA is independent of the choice of the scoring function and
show a bijection between the strategies of a strategic player in the games induced by two di�erent
scoring functions that preserve the player’s rewards (De�nition 7). We choose the logarithmic
scoring function de�ned below.

De�nition 4 (Logarithmic Scoring Function). For - ∈ [0, 1] and U ∈ Rg0,

(ln (-, U) =




∞ when U = 0

0 when - = 0, U ≠ 0
− lnĔ
Ă

otherwise

De�nition 5 (Exponential Distribution). The exponential distribution exp(U) with rate U is the

distribution with a cumulative density function (CDF) � (G, U) = 1 − 4−Ă Į and a probability density

function (pdf) 5 (G, U) = U4−Ă Į .

Lemma 1 (Lemma 2.1 from Ferreira et al., 2022). (ln (-, U) is distributed according to exp(U) when
- ∼ * [0, 1].

For notational convenience, we denote (ln by (unless mentioned otherwise.
Consider a user distributing their stake U equally across = wallets for = −→ ∞. The scores of each

wallet is distributed according to exp(Ă
Ĥ
). It is well-known that the minimum of = i.i.d random

variables drawn from exp(\) is distributed according to exp(= \) (see Appendix A from Ferreira
et al., 2022, for example). Therefore, the minimum score over all wallets of the user is distributed as
per exp(U). The following describes the distribution of the 8th-smallest score amongst the = wallets.

Lemma 2 (Lemma 4.3 from Ferreira et al., 2022). Let
(
-ğ

)
ğ∈N be exponentially distributed i.i.d

random variables such that minğ∈N{-ğ } is distributed according to exp(U). Let .ğ be the random

10We assume this to focus on the relevant aspects of the paper and is consistent in prior work that focuses on incentives

[Bahrani and Weinberg, 2023, Carlsten et al., 2016, Eyal and Sirer, 2014, Ferreira and Weinberg, 2021, Ferreira et al., 2019,

Kiayias et al., 2016, Sapirshtein et al., 2016]

683

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

variable denoting the 8 th-smallest value in
(
-ğ

)
ğ∈N. Then,

(
.ğ
)
ğ∈N is distributed according to the

following random process:

.1 ←− exp(U) and .ğ+1 ←− .ğ + exp(U)

We have the prerequisites to study the actions of a strategic player in the CSSPA in place.

3 Model

3.1 The Adversarial Game and Reward

In a network consisting of honest stakers, we study a single strategic adversary whose rewards are
proportional to the fraction of rounds it is elected to propose a block. Conditioned on the stake
the adversary holds in the system, we want to estimate the optimal marginal utility gained by the
adversary from being strategic. We adopt the adversarial model described in Ferreira et al. [2022],
which we review below.

We de�ne the space of strategies available to the adversary. We abuse notation to denote the
cryptographic self-selection protocol, the game played by the adversary and the space of strategies
available to the adversary by CSSPA.

De�nition 6 (CSSPA(U, V)). In CSSPA(U, V), the network consists of three players — the adversary

with stake U , and two honest players � and� with stakes V (1−U) and (1−V) (1−U) respectively.Prior
to round 1, the adversary learns the values of U , V and that � and � are honest. For = −→ ∞, the
adversary distributes its stake into a set� of = wallets, each containing a stake Ă

Ĥ
. The adversary makes

the following decisions in round C :

(1) The adversary learns the seed &Ī of round C .

(2) The adversary computes the credentials CredğĪ for all wallets 8 ∈ �.

(3) Further, the adversary learns the credentials CredþĪ of player �. The adversary knows that the

credential of player � is drawn from exp((1 − V) (1 − U)) but does not learn Cred
ÿ
Ī .

(4) For any A g 0 and (8Ī , 8Ī+1, . . . , 8Ī+Ĩ) ∈
(
�∪{�}

)
×�Ĩ , the adversary precomputes the credentials

Cred
ğĪ+Ĩ ′
Ī+Ĩ ′ for 1 f A ′ f A assuming 8Ī+Ĩ̂ is elected to lead in round C + Â for all 0 f Â < A ′.

(5) The adversary either remains silent or broadcasts the credential of a wallet 8 ∈ �.

The following discussion throws light on bullet 4 of De�nition 6. Before broadcasting any
credential in round C , the adversary observes the credentials of its own wallets and the credential of
�. All credentials CredğĪ for 8 ∈ �∪{�} observed by the adversary are potential seeds for round C +1.
Assuming one of these credentials as a hypothetical seed, the adversary can compute the credentials
Cred

ğ
Ī+1 for all of its wallets 8 ∈ �. These hypothetical credentials are themselves potential seeds

for round C + 2. More generally, the adversary can precompute all possible future credentials of its
wallets, assuming the precomputed credentials keep becoming the seed for successive rounds.

V denotes the network connectivity of the adversary. The stake of� , and therefore the probability
of � having a small score and being selected, decreases with V . Thus, for large values of V , it is
much more unlikely for a credential not precomputed by the adversary, namely Cred

ÿ
Ī , to become

the seed &Ī+1 for the next round. Since both � and � have non-negative stakes, V ∈ [0, 1].
Remember that the honest strategy collects all stake into a single wallet and broadcasts the

credential of the wallet each round. We assume both � and� play the honest strategy. We normalize
the total stake to 1 and as a consequence, use the stake and the fraction of stake held in a wallet
interchangeably.

De�nition 7 (Reward of a Strategy). For a strategy c describing the actions taken by the adversary

in each round of CSSPA(U, V), let the Bernoulli random variable -Ī (U, V ;c) be 1 if the adversary is

684

EC ’24, July 8–11, 2024, New Haven, CT, USA

elected in round C and 0 otherwise. Then, the expected reward

Rew(U, V ;c) = E
[
lim inf

Đ−→∞

∑Đ
Ī=1-Ī (U, V ;c)

)

]

equals the fraction of rounds led by the adversary in expectation over the outcomes of the VRFs in each

round.

When clear from the context, we drop the parameters U and V and denote Rew(U, V ;c) and
-Ī (U, V ;c) by Rew(c) and -Ī (c).

The above model of the CSSPA appears quite restrictive in more than one aspect – the adversary
can broadcast at most one credential, the adversary cannot strategically distribute its stake into
multiple accounts prior to round 1, and there are only two honest players in the network. In
Appendix A, we recap a very general model of CSSPA(U, V) discussed in Ferreira et al. [2022]
and their results showing that the above restricted version of the CSSPA has the same optimal
adversarial reward as the more general version.

3.2 Biased Seeds and Stopping Times

We aim to estimate the reward Rew(c) = E
[
lim infĐ−→∞

∑Đ
Ī=1 ĔĪ (ÿ)

Đ

]
the adversary wins by playing

a strategy c . A tractable closed-form expression for-Ī (c) is hard to �nd and computing its expected
values for all 1 f C f ∞ is infeasible. Therefore, it becomes imperative to �nd a round g such that
the expected adversarial reward can be estimated without computing the expected value of -ă+Ĩ (c)
for any A > 0. We call such a round g a stopping time. The expected adversarial reward has a much
simpler expression in terms of stopping times.

Lemma 3 (Lemma 4.1 from Ferreira et al., 2022). Suppose the strategy c has an expected �nite

stopping time g in CSSPA(U, V). Then,

Rew(c) =
E[

∑ă
Ī=1-Ī (c)]

E[g]

where g is a random variable denoting a stopping time.

Suppose we reach a round g + 1 such that the adversary is indi�erent between the current seed
&ă+1 and a fresh draw from* [0, 1]. We say such a seed &ă+1 is unbiased. The adversary’s rewards
from the rounds following g +1 is similar to restarting CSSPA(U, V) from round 1, whose initial seed
&1 is drawn from * [0, 1] (in practise, this is done through an expensive multi-party computation
and is not susceptible to manipulation). The expected adversarial reward can be computed by
estimating only the distributions of -1 (c), -2 (c), . . . , -ă (c) and thus, g is a stopping time.

For an arbitrary round C , it is hard to determine whether the seed&Ī+1 is unbiased and whether C
is a stopping time. We de�ne forced stopping times so that they are much easier to identify. In the
next few paragraphs, we motivate forced stopping times through an example adversarial strategy.

For a stake U and a random seed &Ī in round C , the probability that the adversary gets elected is
at most U . However, the adversary could have multiple wallets whose scores are smaller than the
score of the honest wallets � and � . When V = 1, the adversary knows the smallest honest score
and that broadcasting the credentials of any of its wallets with a smaller score would ensure an
adversarial wallet getting elected in round C . It is convenient to explicitly christen these candidate
adversarial wallets.

De�nition 8 (Potential Winners and Adversarial Potential Winners). In round C with seed &Ī , let

,̂ (&Ī) be the set of all adversarial wallets with a score less than that of �. Then, ,̂ (&Ī) is the set of

adversarial potential winners and, (&Ī) = ,̂ (&Ī) ∪ {�} is the set of potential winners in round C .

685

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

Out of these adversarial potential winners, the adversary can choose to broadcast the one that
optimizes its future rewards, which can be estimated by computing hypothetical seeds for the
rounds following round C (see bullet 4 from De�nition 6). The adversary can also choose to sacri�ce
the current round and remain silent if the future rewards from the honest wallet � getting elected
more than compensates for losing round C .
Suppose a seed &ă+1 is realized for which the adversary has not computed any hypothetical

future seeds. At the instant in which &ă+1 is realized, the adversary is indi�erent between &ă+1 and
a fresh draw from* [0, 1] and thus,&ă+1 is unbiased. Now, consider a round g in which the smallest
score either belongs to � or � . The �rst time the adversary learns the honest credential with the
smallest score, the adversary would have pre-computed neither the credential nor any hypothetical
future credentials following the honest credential since computing them would require the secret
key of the honest wallet with the smallest score. The adversary cannot thwart Credþă or Credÿă
from becoming the seed &ă+1. Thus, the seed &ă+1 is unbiased and round g is a stopping time. We
call such stopping times as forced stopping times. Forced stopping times are easy to identify since
we only have to ensure that the smallest score does not belong to an adversarial wallet.

De�nition 9 (Forced Stopping Time). Let 8 be the wallet with the smallest score in round g . g is a

forced stopping time if 8 ∉ �.

Lemma 4 (Lemma 4.2 from Ferreira et al., 2022). If g is a forced stopping time, g is a stopping time.

We will use g to denote the �rst forced stopping time of the adversary. We will only consider
forced stopping times (and not any ‘unforced’ stopping times) for the remainder of the paper.
Because of this and for convenience, we abuse notation and refer to forced stopping times plainly
as stopping times.

3.3 The Omniscient Adversary

As a warm up, we look at the omniscient adversary studied by Ferreira et al. [2022] that is stronger
than the adversary in CSSPA(U, V) in the following aspects:

• V = 1. Further, for any A g 0 and (8Ī , 8Ī+1, . . . , 8Ī+Ĩ) ∈
(
�∪{�}

)Ĩ+1
, the adversary pre-computes

the credentials Cred
ğĪ+Ĩ ′
Ī+Ĩ ′ for 1 f A ′ f A assuming 8Ī+Ĩ̂ is elected to lead in round C + Â for all

0 f Â < A ′. In other words, the omniscient adversary can precompute hypothetical future
credentials even when � is elected to be the leader.
• -Ī = 1 for all rounds C < g , i.e., the omniscient adversary is rewarded to delay the �rst
stopping time, even if it entails being elected only for a very small fraction of rounds. By
Lemma 3, the omniscient reward

RewOMNI (c) =
E[

∑ă
Ī=1-Ī (c)]

E[g]
=
E[g − 1]

E[g]
= 1 −

1

E[g]

Similar to the adversary in CSSPA(U, V), we de�ne g to be a stopping time for the omniscient

adversary if the set of adversarial potential winners,̂ for round g is empty.We defer our discussions
on the omniscient adversary to the full version. We summarize our �ndings in Theorem 2.

Theorem 2. For the omniscient adversary with stake U , there exists a constant ^ ≈ 0.38 such that,

(1) for U > ^, there exists a strategy c such that E[g] is unbounded and RewOMNI (c) = 1, and,

(2) for U f ^ and any strategy c , E[g] f 1−3Ă+3Ă2−3Ă3

(1−3Ă+Ă2) (1−Ă+Ă2)
and RewOMNI (c) f U ·

(
1−2Ă+Ă2−Ă3

1−3Ă+3Ă2−3Ă3

)
.

We also show a non-closed form upper bound on the optimal omniscient rewards that can be
made tight up to an arbitrarily small additive error.

686

EC ’24, July 8–11, 2024, New Haven, CT, USA

The following results on the size of potential winners and �rst stopping time of the omniscient
adversary would be bootstrapped further to get upper bounds on the optimal rewards of the actual
adversary in CSSPA(U, V).

Lemma 5 (Corollary 4.1 from Ferreira et al., 2022). For a random seed &Ī ∼ * [0, 1] and 8∗ g 0,

the probability %A (|,Ī (&Ī) | = 8∗ + 1) of the adversary having exactly 8∗ + 1 potential winners equals

Uğ
∗
(1 − U).

Lemma 6. For the omniscient adversary with stake U < ^, %A (g > 0) = 1 and %A (g > 1) = U . For

) g 2,

%A (g >)) f U2 · 2−2Ă+Ă
2

1−Ă+Ă2 ·
(
U · 2−Ă

1−Ă

)Đ−2
.

4 Estimating the Optimal Adversarial Reward

We proceed to designing simulations that estimate the expected adversarial reward from playing a
strategy c in CSSPA(U, V). We �nd the optimal adversarial strategy in CSSPA(U, V) quite complex
to describe. We reformulate CSSPA(U, V) such that a succinct description of the optimal adversarial
strategy becomes possible. Then, we propose a simulation that computes the adversary’s optimal
reward precisely but requires an in�nite run-time. We describe a sequence of modi�cations to the
simulation that trades o� run-time for precision to get provable bounds on the adversary’s optimal
rewards.

4.1 A Linear Version of CSSPA(U, V)

Optimizing the adversarial reward Rew(c) =
E[

∑ă
Ī=1 ĔĪ (ÿ)]

E[ă] depends on maintaining a balance

between getting a myopic gain in the reward by winning the election in the current round and
a long-term gain through delaying the �rst stopping time. This inherent trade-o� between the
short-term and long-term gains of actions in CSSPA(U, V) makes both describing the optimal
adversarial strategy and simulating it hard. We reformulate CSSPA(U, V) through an approach
similar to Sapirshtein et al. [2016] that allows the adversary to myopically optimize its reward
without having to worry about long-term consequences.

We introduce an entry fee _ in CSSPA(U, V) that the adversary is charged to participate in each
round and consider the total adversarial reward instead of the rate at which the adversary is elected.

De�nition 10 (LinearCSSPA(U, V, _)). In LinearCSSPA(U, V, _), the network consists of three players-
the adversary with stake U , two honest players � and � with stakes V (1 − U) and (1 − V) (1 − U)
respectively. Prior to round 1, the adversary learns the values of U , V , the entry fee _ and that � and �

are honest. For = −→ ∞, the adversary distributes its stake into a set � of = wallets, each containing a

stake Ă
Ĥ
. The adversary makes the following decisions in round C :

(1) The adversary pays an entry fee _.

(2) The adversary learns the seed &Ī of round C .

(3) The adversary computes the credentials CredğĪ for all wallets 8 ∈ �. Further, the adversary

learns the credentials CredþĪ . The adversary knows that the credential of player� is drawn from

exp((1 − V) (1 − U)) but does not learn Cred
ÿ
Ī .

(4) For any A g 0 and (8Ī , 8Ī+1, . . . , 8Ī+Ĩ) ∈
(
�∪{�}

)
×�Ĩ , the adversary precomputes the credentials

Cred
ğĪ+Ĩ ′
Ī+Ĩ ′ for 1 f A ′ f A assuming 8Ī+Ĩ̂ is elected to lead in round C + Â for all 0 f Â < A ′.

(5) The adversary either remains silent or broadcasts the credential of a wallet 8 ∈ �.
(6) The game terminates if either � or � have scores smaller than all wallets 8 ∈ �, i.e, a stopping

time is reached.

687

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

De�nition 11 (Reward of a Strategy). For a strategyc played by the adversary in LinearCSSPA(U, V, _),
let the Bernoulli random variable -Ī (c) be 1 if the adversary is elected in round C and 0 otherwise.

The adversary earns an expected reward

RewLin (c) = E
[ă∑

Ī=1

(-Ī (c) − _)
]

We conclude the discussion by relating the rewards Rew(c) in CSSPA(U, V) and RewLin (c) in
LinearCSSPA(U, V, _).

Theorem 3. For an entry fee _ and a strategy c , RewLin (c) > 0 (resp. RewLin (c) < 0) if and only

if _ < Rew(c) (resp. _ > Rew(c)). Further, RewLin (c) = 0 when _ = Rew(c).

A standard binary search would locate the value of _ such that RewLin (c) = 0, in which case,
Rew(c) = _. We defer the proof to the full version.

4.2 The Ideal Simulation

LinearCSSPA(U, V, _) has a recursive structure that we exploit while designing simulations to
estimate RewLin (c) of a strategy c . In some round C , by broadcasting the credential CredğĪ of a
wallet 8 ∈ � and winning the election (or remaining silent and letting � with credential CredþĪ
win), the adversary induces an instance of LinearCSSPA(U, V, _) with an initial seed&0 = Cred

ğ
Ī . If

the adversary recursively "knew" the expected future reward Ağ that it would get from broadcasting
Cred

ğ
Ī for each adversarial potential winner 8 and the reward A0 from letting � win, the adversary

can decide its actions just based on ®A =
(
Ağ
)
ğ∈N∪{0} and the scores ®2 =

(
2ğ
)
ğ∈N∪{0} of the wallets in

� ∪ {�}11. Of course, the adversary always runs the risk of the current round being a stopping
time, in which case, the total future rewards earned by the adversary equals zero.
Let Dÿ be the distribution of rewards the adversary achieves by playing the strategy c in

LinearCSSPA(U, V, _). We are interested in estimating the expected reward Eĩ∼Dÿ [B]. We do so by
constructing the CDF of Dÿ in AddLayer(U, V, _, c,Dÿ) by sampling from Dÿ in�nitely many times.
This can be done by setting up in�nitely many ‘induced-instances’ of LinearCSSPA(U, V, _). For
each of these induced-instances:

(1) For each 8 g 1, we sample the 8th smallest score 2ğ amongst all adversarial wallets using
Lemma 2:

21 ←− exp(U), 2ğ ←− 2ğ−1 + exp(U)

(2) For each 8 g 1, we sample the reward Ağ earned from broadcasting the credential of the
adversarial wallet with the 8th smallest score from the distribution Dÿ .

(3) We compute the adversarial reward in expectation over the reward A0 from letting � win, the
scores 20 and 2−1 of �’s and �’s wallets respectively by simulating the behaviour of c for
scores ®2 =

(
2ğ
)
ğ∈N∪{0} and rewards ®A =

(
Ağ
)
ğ∈N∪{0} .

Estimating the adversarial reward reduces to �nding a �xed-point Dÿ to AddLayer(U, V, _, c,Dÿ).

AddLayer(U, V, _, c,Dÿ):

(1) For 1 f ℓ f =Ī = ∞.
(a) DrawAdv(U,Dÿ):
• Sample ®A−0: Draw : = ∞ rewards A1, A2, . . . , Aġ i.i.d from Dÿ .

11This is not entirely true. The adversary can still play strategies based on the credentials and rewards from previous rounds.

However, given that the adversary’s goal is to optimize the total rewards earned across rounds, such strategies can be safely

ignored. As we will see, the optimal strategy can be codi�ed in this language.

688

EC ’24, July 8–11, 2024, New Haven, CT, USA

• Sample ®2−0: Draw : = ∞ scores 21, 22, . . . , 2ġ of adversarial wallet as follows. Draw
21 ←− exp(U) and 2ğ+1 ←− 2ğ + exp(U) (a fresh sample for each 8) for 1 f 8 f : − 1.
For convenience, set 2ġ+1 = ∞.
• Return (®A−0, ®2−0).

(b) sample(U, V, _, ®2−0, ®A−0, c,D
ÿ): Simulate the action of the strategy c in the current

round given Dÿ , ®A−0 and ®2−0. Return the reward Bℓ in expectation over the reward A0
from letting � win, �’s score 20 and �’s score 2−1.

(2) Return Dÿ to be the uniform distribution over {B1, B2, . . . , BĤĪ }.

Simulate(U, V, _, c):

(1) Compute a �xed-point Dÿ to AddLayer(U, V, _, c,Dÿ).
(2) Return Eĩ∼Dÿ [B].

See Appendix D.5 for a summary of the notations and functions used in the simulations.

4.3 The Optimal Solution

We describe the optimal strategy cOPT in the recursive language introduced in Section 4.2. Let

DOPT
= DÿOPT

be the distribution of rewards from playing cOPT. At a start of a round C , the adversary
learns the scores ®2 of wallets in�∪ {�} and rewards ®A from remaining silent and from broadcasting
the credential of each wallet in �. We use ®2−0 and ®A−0 to denote the scores

(
2ğ
)
ğ∈N and rewards(

Ağ
)
ğ∈N associated with the wallets in �. Re-index the adversary’s wallets (and therefore, ®2−0 and

®A−0) in increasing order of its scores. Let 8∗ (®2) := |{8 > 0|2ğ f 20}| be the number of adversarial
potential winners.
We compare the expected future rewards of all possible actions the adversary can take at the

start of round C .

(1) Suppose the adversary abstains from broadcasting. It earns a reward A0 unless a stopping time
is reached, which happens either when 8∗ (®2) = 0 or when� has a score 2−1 ∼ exp((1−V) (1−
U)) smaller than the score 20 of �. The probability of � having a larger score than 20 equals
4−ę0 (1−ÿ) (1−Ă) . Thus, the expected reward from remaining silent equals 4−ę0 (1−ÿ) (1−Ă)A0 ·
1(8∗ (®2) ≠ 0). We de�ne

ℎ(20, A0) := 4−ę0 (1−ÿ) (1−Ă)A0

(2) From broadcasting the credential of an adversarial potential winner 8 with score 2ğ and future
reward Ağ , the adversary earns a reward 1 from getting elected in the current round and thus,
a total reward (1 + Ağ). This, once again, is subject to the current round not being a stopping
time. The current round is not a forced stopping time if � has a score larger than 2ğ , which
happens with probability 4ęğ (1−ÿ) (1−Ă) , and if 8∗ (®2) ≠ 0. The adversary has a potential winner
8 and 8∗ (®2) is at least 1 as a consequence. Hence, the expected reward from broadcasting the
credential of 8 equals 4ęğ (1−ÿ) (1−Ă) (1 + Ağ). The adversary can broadcast the credential of the
wallet that maximizes its reward to earn

6(20, ®2−0, ®A−0) = max
ğfğ∗ (®ę)

{4−ęğ (1−ÿ) (1−Ă) (1 + Ağ)}

The adversary also pays an entry fee _. Between remaining silent and broadcasting its best credential,
the adversary wins

max{ℎ(20, A0)1(8
∗ (®2) ≠ 0), 6(20, ®2−0, ®A−0)} − _

= max{ℎ(20, A0)1(8
∗ (®2) ≠ 0), 6(20, ®2−0, ®A−0)1(8

∗ (®2) ≠ 0)} − _

= max{ℎ(20, A0), 6(20, ®2−0, ®A−0)}1(8
∗ (®2) ≠ 0) − _

689

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

While using the future rewards from round C to compute the optimal action to take in round
C − 1, the adversary will not know the values 20 and A0 since � does not broadcast CredþĪ until the
start of round C . The adversary can only compute the future rewards from playing an action in
expectation over 20 and A0. With this in mind, we construct DOPT to be the distribution of (future)
rewards in expectation over 20 and A0. Given ®2−0 and ®A−0, we implement a sampling procedure
sample(U, V, _, ®2−0, ®A−0, c

OPT,DOPT) by setting the ℓ th sample Bℓ to be

Eę0∼exp((1−ÿ) (1−Ă)),Ĩ0∼D
OPT [max{ℎ(20, A0), 6(20, ®2−0, ®A−0)}1(8

∗ (®2) ≠ 0)] − _

Finding a �xed-point DOPT for AddLayer(U, V, _, cOPT,DOPT) seems intractable and we resort to
heuristic methods instead. One natural heuristic would be to begin at the point-mass distribution
DOPT
0 at 0 and iterate in�nitely many times to get the sequence

(
DOPT
Ī

)
Ī ∈N∪{0} of distributions sat-

isfying DOPT
Ī+1 = AddLayer(U, V, _, cOPT,DOPT

Ī). We end this section by summarizing the challenges
in executing the above heuristic. The pseudo-code for the optimal strategy is in Appendix D.1.

(1) The iterated-point heuristic does not guarantee convergence. Even if the iteration converges,
there could be a multitude of �xed-points and the iteration could converge to a distribution
that is not the optimal reward.

(2) We runAddLayer(U, V, _, cOPT, ·)) = ∞many times. In each execution of AddLayer(U, V, _, cOPT, ·),
the adversary can pick one of : = ∞ actions– one each for broadcasting credentials of wallets
8 ∈ � and one for staying silent. cOPT compares the rewards of each of these actions before
making a decision.

(3) Given a distribution DĪ , we compute AddLayer(U, V, _, cOPT,DĪ) by constructing =Ī = ∞
samples. As we will see in Section 4.4.3, the simulation is not even an unbiased estimator of
the reward Eĩ∼DOPT

Đ
[B] once we constrain =Ī to be �nite.

(4) The sample Bℓ is constructed by computing the reward in expectation over �’s score 20 and
reward A0 from remaining silent. This involves calculating a double integral. The integrals
can be calculated in �nite-time by approximating them by a Riemann sum. However, even a
polynomial run-time would not be practical due to the sheer number of samples we construct.
We require a linear run-time.

4.4 Moving from Ideal to Practical

4.4.1 Convergence of the Iterated-Point Heuristic. Wediscuss the natural variant LinearCSSPA(U, V, _,))
that terminates after) rounds if a stopping time has not been reached yet. We will argue that the
distribution of optimal rewards

(
DOPT
Đ

)
Đ ∈N∪{0} satis�es the same recursion as the iterated-point

heuristic on AddLayer(U, V, _, cOPT, ·) and converges to DOPT as) −→ ∞.
When) = 0, the game terminates even before it starts and the adversary gets a total reward zero.

Thus, DOPT
0 is the point-mass on zero, identical to the initial point of the iterated-point heuristic.

C rounds before termination, by broadcasting the credential Credğ−Ī of a wallet 8 ∈ � (8 = � if
the adversary remains silent), the adversary induces an instance of LinearCSSPA(U, V, _, C − 1)
with an initial seed &0 = Cred

ğ
−Ī . Thus, if the adversary recursively knew the rewards Ağ ∼ DOPT

Ī−1

from each potential winner 8 , the adversary would broadcast the credential (or stay silent) that
would maximize its reward from the last C − 1 rounds. This is the same operation performed
by AddLayer(U, V, _, cOPT, ·) on DOPT

Ī−1 . By induction, the distribution of rewards DOPT
Ī equals the

reward distribution AddLayer(U, V, _, cOPT,DOPT
Ī−1) output by the C th iteration of the iterated-point

method.

690

EC ’24, July 8–11, 2024, New Haven, CT, USA

As) −→ ∞, the distribution of rewards) rounds before termination and) − 1 rounds before
termination are identical. This is equivalent to claiming DOPT

Đ as) −→ ∞ approaches the reward dis-

tribution DOPT. Thus, the iterated-point method converges and converges to the correct distribution
of rewards.

4.4.2 Infinite Rounds andCredentials. Let LinearCSSPA(U, V, _,)) be the variant of LinearCSSPA(U, V, _)
terminating after round) . Simulate(U, V, _, cOPT) loops in�nitely to construct the distribution of
adversarial rewards in LinearCSSPA(U, V, _,)) as) −→ ∞. Further, for each round of the simulation,
DrawAdv(U,DOPT

Ī) samples a score and a reward for each of the in�nite wallets the adversary
operates. We revisit CSSPA(U, V) and argue that terminating CSSPA(U, V) after) rounds and con-
straining the adversary to broadcasting the credentials of a wallet only if it is amongst the : smallest
scores in � does not cause a signi�cant drop in the adversary’s optimal reward. Once established,
we can estimate the reward from playing cOPT

Đ,ġ
, the optimal strategy in CSSPA(U, V) that terminates

after) rounds and never uses a score outside the : smallest scores in �, instead of estimating the
reward from cOPT.

We abuse notation to describe the optimal strategy of the adversary in CSSPA(U, V) as cOPT and
its reward distribution by DOPT. We say the adversary is :-scored if the adversary is constrained to
either stay silent or broadcast a credential amongst its wallets with the : smallest scores.

Theorem 4. For U f 0.29 and a :-scored adversary, the di�erence in the expected rewards between

playing cOPT and cOPT
Đ,ġ

in CSSPA(U, V) satis�es

0 f | Rew(cOPT) − Rew(cOPT
Đ,ġ) | f U2 · 2−2Ă+Ă

2

1−Ă+Ă2 · [U ·
2−Ă
1−Ă]

Đ−2 + Uġ

We defer the proof to the full version of the paper.
We estimate the :-scored adversary’s optimal reward in LinearCSSPA(U, V, _,)) and binary

search over _ to estimate the adversarial reward Rew(cOPT
Đ,ġ
) in CSSPA(U, V). We can then upper

bound and lower bound the optimal reward Rew(cOPT) by

Rew(cOPT
Đ,ġ) f Rew(cOPT) f Rew(cOPT

Đ,ġ) + U
2 · 2−2Ă+Ă

2

1−Ă+Ă2 · [U ·
2−Ă
1−Ă]

Đ−2 + Uġ

Weabuse notation as usual and call the:-scored adversary’s optimal strategy in LinearCSSPA(U, V, _,))
as cOPT

Đ,ġ
. Let DOPT

Đ,ġ
be our estimate of the distribution of rewards from playing cOPT

Đ,ġ
. We modify the

simulation to terminate after) rounds and bake the:-scored adversary intoAddLayer(U, V, _, cOPT
Đ,ġ

, ·).

The modi�ed pseudo-code can be found in Appendix D.2.

4.4.3 Constructing Infinitely many Samples for AddLayer(U, V, _, :, cOPT
Đ,ġ

, ·). We address the in�nite

run-time for AddLayer(U, V, _, :, cOPT
Đ,ġ

, ·) from constructing in�nitely many samples to perfectly

describe the CDF of its output. For an input distribution D0, we want to approximate the sequence
of distributions

(
DĪ

)
0fĪfĐ such thatDĪ := AddLayer(U, V, _, :, cOPT

Đ,ġ
,DĪ−1) while constructing only

�nitely many samples for each of them. We dedicate a section in the appendix of the full version to
discuss the challenges from using the most natural technique to bound the error from estimation
in our simulations– Cherno� bounds or McDiarmid’s inequality followed by a union bound. Even
more importantly, we also �nd that the estimator that arises from constructing �nite number of
samples might not even be unbiased (Appendix B).

We tackle the above challenges by maintaining two distributions, DĪ that dominates DĪ and DĪ

that is dominated by DĪ . We sketch our method for constructing an empirical distribution that is
dominated by the true distribution. Suppose for a su�ciently large number of samples, we can
guarantee that, for all values A , the quantile @̃ in the empirical distribution constructed by sampling
= times and the quantile @ in the true distribution satisfy @̃ ∈ [@ − X, @ + X]. Dropping the X smallest

691

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

(strongest) quantiles and replacing them with X= samples of the in�mum of the true distribution
would give us a new estimated distribution that is dominated by the true distribution. We call this
process de�ation. We will compute DĪ by �rst computing AddLayer(U, V, _, :, cOPT

Đ,ġ
,DĪ−1) and then

de�ating the outcome by a suitable parameter X . By a straightforward induction, DĪ is dominated
by DĪ .

We can construct DĪ from DĪ−1 through an analogous in�ation procedure. However, the error in
the estimated reward due to in�ation is much larger than the error due to de�ation. An in�ated
reward with a quantile @̃ ∈ [0, X] is much more likely to be chosen by an adversary, since the
adversary picks its optimal future rewards). This leaves a bigger impact on the estimated reward
and in�uences the rewards in successive rounds too. This di�ers from de�ate since a de�ated
reward with a quantile @̃ ∈ [1 − X, 1] is very likely to be ignored by the adversary since the reward
from a di�erent wallet is likely to be higher. To mitigate the strong credentials from drifting the
estimated reward far way from Eĩ∼DĪ

[B], we perform a more nuanced in�ation procedure.

De�ate(=,W,D, C) : Given an input � drawn uniformly from = samples,

(1) Delete the largest = ·

√
lnĀ−1

2Ĥ
samples from �

(2) Append = ·

√
lnĀ−1

2Ĥ
copies of −_ to D

In�ate(=,W, l,D, C): Given an input � drawn uniformly from
(
Bℓ
)
1fℓfĤ (in descending order),

(1) Delete the smallest = ·

√
lnĀ−1

2Ĥ
samples from D

(2) Append l= copies of C (1 − _) to D

(3) For 1 f ℓ < Ĥ
Ĉ Ĥ
·

√
lnĀ−1

2Ĥ
:

• Append l= copies of Bℓ

Theorem 5. Let TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ

, W, l) output an upper bound DĐ,ġ and a

lower bound DĐ,ġ . Then,

(1) With probability at least 1 −)
(
W + ě−ĈĤ

Ĉ

√
lnĀ−1

2Ĥ

)
, Eĩ∼DĐ ,ġ

[B] g Eĩ∼DOPT
Đ ,ġ
[B].

(2) With probability at least 1 −) W , Eĩ∼DĐ ,ġ
[B] f Eĩ∼DOPT

Đ ,ġ
[B].

We defer the proof to the full version.
Our estimate is not precisely equal to DOPT

Đ,ġ
and to di�erentiate the two, we denote our estimation

of DOPT
Đ,ġ

by D̂
OPT

Đ,ġ . We update the simulations to contain in�ate and de�ate in Appendix D.3.

4.4.4 Computing Expectations. In this section, we tackle the �nal challenge of needing to compute
integrals accurately while constructing the sample Bℓ . This involves computing a double integral,
one over the score 20 of � and the reward A0 from staying silent. Naively integrating over the reward
distribution from the previous round described by = samples would result in a run-time of ¬(=)
for each of the = samples, and consequently ¬(=2) for simulating one round. Even though this is
Poly(=), it still turns out to be intractable to run for the extremely large number of samples we

expect to handle each round. Instead, we aim to reduce the run-time to $̃ (=).
To begin with, observe that for each sample Bℓ , we are drawing : scores for the wallets of the

:-scored adversary. Thus, we end up with a run-time of ¬(: · =) no matter what we do. Any
additional compute that we perform for each sample is only going to increase the order of the
run-time. Thus, our aim is to run as much pre-compute as possible before even constructing the
�rst sample, and minimize the number of fresh computations needed to be performed with each
sample. We get a practical run-time through a combination of pre-computes and by computing

692

EC ’24, July 8–11, 2024, New Haven, CT, USA

the integrals involved with taking expectations over A0 and 20 as a discrete sum. We defer the
details to the full version. Note that we introduce two parameters n and [that re�ect the precision
to which we discretize the distributions constructed during the simulations and the precision to
which we approximate the two integrals. We do all our pre-computations through the function

Precompute(D̂,n, [, C).

Lemma 7. Precompute(D̂, n, [, C) terminates in $ (Ī
Ċ ā
) time.

TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ

, W, l, n, [) in Appendix D.4 re�ects the updates in terms of

the precomputations. Appendix D.4 also compiles the changes made to the simulations across
various stages and presents a summary.

Lemma 8. A single execution of TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ

, W, l, n, [) terminates in time

$ ():= + Đ 2

Ċ ā
).

4.5 Locating the Optimal Expected Reward and the Optimal Adversarial Strategy

Remember that the end goal of the simulations is to compute the optimal reward for an adversary
playingCSSPA(U, V).We denote the optimal:-scored adversarial strategy in LinearCSSPA(U, V, _,))
by cOPT

Đ,ġ
(_) and in CSSPA(U, V) that terminates in) rounds by cOPT

Đ,ġ
. Let RewLin

ą
(c) be the expected

reward from playing c in LinearCSSPA(U, V, _,)). Remember that Rew()) is the expected reward
from playing c in CSSPA(U, V). By Theorem 3, RewLin

ą
(cOPT

Đ,ġ
) g 0 i� _ f Rew(cOPT

Đ,ġ
) with equality

holding precisely when _ = Rew(cOPT
Đ,ġ
). To estimate Rew(cOPT

Đ,ġ
), we run

TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ
(_), W, l, n, [) and binary search over _ until the expected re-

ward output by the simulation is approximately zero. More precisely, we search for _ such that

the expected values of the upper bound DĐ,ġ (_) and the lower bound DĐ,ġ (_) are slightly larger

and slightly smaller than zero. However, the binary search could potentially output any _ such
that RewLin

ą
(cOPT

Đ,ġ
(_)) ≈ 0 even if _ is far o� from Rew(cOPT

Đ,ġ
). Such an error will become all the

more likely given that the simulations only produce an interval
[
Eĩ∼DĐ ,ġ (ą1)

[B],Eĩ∼DĐ ,ġ (ą1)
[B]

]
such

that RewLin
ą
(cOPT

Đ,ġ
(_)) lies in this interval, instead of exactly computing the rewards. The following

theorem rules out such scenarios.

Theorem 6. Let TruncatedSimulate(U, V, _1,) , :, c
OPT
Đ,ġ
(_1), W, l, n, [) output the upper bound and

lower bound distributionsDĐ,ġ (_1) andDĐ,ġ (_1) respectively, such thatEĩ∼DĐ ,ġ (ą1)
[B]−Eĩ∼DĐ ,ġ (ą1)

[B] f

X . Suppose for some A ∈
[
Eĩ∼DĐ ,ġ (ą1)

[B],Eĩ∼DĐ ,ġ (ą1)
[B]

]
, |A −RewLin

ą2
(cOPT

Đ,ġ
(_2)) | f Z . Then, |_1−_2 | f

Z + X with probability at least 1 −
(
2) W +) ě−ĈĤ

Ĉ

√
lnĀ−1

2Ĥ

)
.

We defer the proof to Appendix C.1. By locating the optimal adversarial reward (approximately),
we also uncover a very succinct description of the adversary’s (near) optimal strategy, which we
describe in Appendix C.2.

5 Simulation Results

Below, we summarize the results from our simulations. In Figure 1 (Appendix E), we compare
the bounds from previous works against our results. We see that our bounds on the adversarial
rewards of both the omniscient adversary (blue) and the actual adversary in CSSPA(U, V) (green) is
signi�cantly tighter than the bound for the omniscient adversary from Ferreira et al. [2022] (orange).
The bounds plotted in Figure 1 is empirical, and are not provably correct, since we did not in�ate
samples when constructing the reward distributions. However, they are fairly representative of the

693

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

scale of the marginal rewards the adversary achieves from being strategic. For instance, even with
an extremely large stake of 0.2, we get the marginal rewards to be in the range [0.0068, 0.0078] (for
a simulation with de�ated and in�ated sampling), which is not considerable. Further, observe that
the rewards from the 1-lookahead strategy (red), which is much more tractable than the optimal
strategy to describe and compute, is already close to the optimal adversarial reward. In Figure 2 in
Appendix E, we plot the marginal rewards of the adversary against its stake for various values of V .
Observe that the network connectivity V plays an important role in the rewards and the adversary
has signi�cant gains for larger values of V . For instance, at U = 0.2 the marginal utility when V = 1

is at least 0.0068 (from a simulation constructed from de�ated sampling) and at most 0.0021 (from
a simulation constructed from in�ated sampling) when V = 0. Finally, Figure 3 (also in Appendix E)
compares the adversary’s marginal rewards as a function of V for a stake U = 0.25, once again,
highlighting the role of connectivity in strategic manipulation in blockchain protocols.

Acknowledgments

This work is supported by a Ripple UBRI grant, and an NSF CAREER Award CCF-1942497. The
authors also thank anonymous reviewers for valuable feedback during the review process.

References

Moshe Babaio�, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2012. On bitcoin and red balloons. In Proceedings of the 13th

ACM Conference on Electronic Commerce, EC 2012, Valencia, Spain, June 4-8, 2012, Boi Faltings, Kevin Leyton-Brown, and

Panos Ipeirotis (Eds.). ACM, 56–73. https://doi.org/10.1145/2229012.2229022

Maryam Bahrani and S. Matthew Weinberg. 2023. Undetectable Sel�sh Mining. CoRR abs/2309.06847 (2023). https:

//doi.org/10.48550/ARXIV.2309.06847 arXiv:2309.06847

Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S. Matthew Weinberg. 2019. Formal Barriers to Longest-

Chain Proof-of-Stake Protocols. In Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019,

Phoenix, AZ, USA, June 24-28, 2019. 459–473. https://doi.org/10.1145/3328526.3329567

Linda Cai, Jingyi Liu, S Matthew Weinberg, and Chenghan Zhao. 2024. Pro�table Manipulations of Cryptographic Self-

Sortition are Statistically Detectable. In In submission to the 25th ACM Conference on Economics and Computation.

Miles Carlsten, Harry A. Kalodner, S. MatthewWeinberg, and Arvind Narayanan. 2016. On the Instability of Bitcoin Without

the Block Reward. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,

Austria, October 24-28, 2016. 154–167. https://doi.org/10.1145/2976749.2978408

Jing Chen and Silvio Micali. 2019. Algorand: A secure and e�cient distributed ledger. Theor. Comput. Sci. 777 (2019), 155–183.

https://doi.org/10.1016/J.TCS.2019.02.001

Phil Daian, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure Proofs of Stake. IACR Cryptology ePrint Archive

2016 (2016), 919. http://eprint.iacr.org/2016/919

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. 1956. Asymptotic minimax character of the sample distribution function

and of the classical multinomial estimator. The Annals of Mathematical Statistics (1956), 642–669.

Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is vulnerable. In Financial Cryptography and

Data Security. Springer, 436–454.

Matheus V. X. Ferreira, Ye Lin Sally Hahn, S. Matthew Weinberg, and Catherine Yu. 2022. Optimal Strategic Mining Against

Cryptographic Self-Selection in Proof-of-Stake. In EC ’22: The 23rd ACM Conference on Economics and Computation,

Boulder, CO, USA, July 11 - 15, 2022, David M. Pennock, Ilya Segal, and Sven Seuken (Eds.). ACM, 89–114. https:

//doi.org/10.1145/3490486.3538337

Matheus V. X. Ferreira and S. Matthew Weinberg. 2021. Proof-of-Stake Mining Games with Perfect Randomness. In EC

’21: The 22nd ACM Conference on Economics and Computation, Budapest, Hungary, July 18-23, 2021, Péter Biró, Shuchi

Chawla, and Federico Echenique (Eds.). ACM, 433–453. https://doi.org/10.1145/3465456.3467636

Matheus Xavier Ferreira, S. Matthew Weinberg, Danny Yuxing Huang, Nick Feamster, and Tithi Chattopadhyay. 2019.

Selling a Single Item with Negative Externalities. In The World Wide Web Conference, WWW 2019, San Francisco, CA,

USA, May 13-17, 2019. 196–206. https://doi.org/10.1145/3308558.3313692

Amos Fiat, Anna Karlin, Elias Koutsoupias, and Christos H. Papadimitriou. 2019. Energy Equilibria in Proof-of-Work Mining.

In Proceedings of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019.

489–502. https://doi.org/10.1145/3328526.3329630

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling Byzantine

Agreements for Cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China,

694

EC ’24, July 8–11, 2024, New Haven, CT, USA

October 28-31, 2017. ACM, 51–68. https://doi.org/10.1145/3132747.3132757

Guy Goren and Alexander Spiegelman. 2019. Mind the Mining. In Proceedings of the 2019 ACM Conference on Economics and

Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019. 475–487. https://doi.org/10.1145/3328526.3329566

Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis. 2016. Blockchain Mining Games. In

Proceedings of the 2016 ACM Conference on Economics and Computation, EC ’16, Maastricht, The Netherlands, July 24-28,

2016. 365–382. https://doi.org/10.1145/2940716.2940773

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-

Stake Blockchain Protocol. In Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,

Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I. 357–388. https://doi.org/10.1007/978-3-319-63688-7_12

Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal Sel�sh Mining Strategies in Bitcoin. In Financial

Cryptography and Data Security - 20th International Conference, FC 2016, Christ Church, Barbados, February 22-26, 2016,

Revised Selected Papers. 515–532. https://doi.org/10.1007/978-3-662-54970-4_30

Itay Tsabary and Ittay Eyal. 2018. The Gap Game. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018. 713–728. https://doi.org/10.1145/3243734.

3243737

Aviv Yaish, Gilad Stern, and Aviv Zohar. 2023. Uncle Maker: (Time)Stamping Out The Competition in Ethereum. In

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, CCS 2023, Copenhagen,

Denmark, November 26-30, 2023, Weizhi Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda (Eds.). ACM,

135–149. https://doi.org/10.1145/3576915.3616674

Aviv Yaish, Saar Tochner, and Aviv Zohar. 2022. Blockchain Stretching & Squeezing: Manipulating Time for Your Best

Interest. In EC ’22: The 23rd ACM Conference on Economics and Computation, Boulder, CO, USA, July 11 - 15, 2022, David M.

Pennock, Ilya Segal, and Sven Seuken (Eds.). ACM, 65–88. https://doi.org/10.1145/3490486.3538250

Roi Bar Zur, Ittay Eyal, and Aviv Tamar. 2020. E�cient MDP analysis for sel�sh-mining in blockchains. In Proceedings of the

2nd ACM Conference on Advances in Financial Technologies. 113–131.

A A More General CSSPA(U, V)

In this section, we review the general version of CSSPA(U, V) de�ned in Ferreira et al. [2022].

De�nition 12 (CSSPA(U, ®U, V)). In CSSPA(U, ®U, V), the network consists of the adversary with stake

U and honest players with stakes given by ®U . Prior to round 1, the adversary learns the values of U, ®U
and V and that the network apart from the adversary is honest. For a choice = g 1, the adversary

distributes its stake arbitrarily over a set � of = wallets. The adversary makes the following decisions

in round C :

(1) The adversary learns the seed &Ī of round C .

(2) The adversary computes the credentials CredğĪ for all wallets 8 ∈ �. The adversary chooses a

subset of honest players � with total stake at most V (1 − U) and learns the credentials CredğĪ
for all 8 ∈ �. For all wallets 8 ∈ � , the adversary knows that CredğĪ will be drawn independently

from exp(Uğ).
(3) For any A g 0 and (8Ī , 8Ī+1, . . . , 8Ī+Ĩ) ∈

(
� ∪ �

)
×�Ĩ , the adversary precomputes the credentials

Cred
ğĪ+Ĩ ′
Ī+Ĩ ′ for 1 f A ′ f A assuming 8Ī+Ĩ̂ is elected to lead in round C + Â for all 0 f Â < A ′.

(4) The adversary either remains silent or broadcasts the credentials of some subset �Ī of the

adversarial wallets �.

From the above de�nition of CSSPA(U, ®U, V), Ferreira et al. [2022] make a series of re�nements
that lead to CSSPA(U, V) without compromising on the adversarial reward.

Lemma 9 (Observation 3.2 from Ferreira et al., 2022). For any U, ®U, V , de�ne ®U ′ to have two honest
players with stakes U1 = V (1 − U) and U2 = (1 − V) (1 − U) respectively. For any strategy c in

CSSPA(U, ®U, V), there exists a strategy c ′ in CSSPA(U, (U1, U2), V) such that Rew(U, (U1, U2), V ;c
′) =

Rew(U, ®U, V ;c).

695

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

Lemma 10 (Lemma 3.1 from Ferreira et al., 2022). Let c be a strategy in CSSPA(U, (U1, U2), V) where
the adversary splits its stake into = wallets. Then there exists a strategy c ′ such that the adversary

divides its stake into 2= wallets and Rew(c ′) g Rew(c).

Lemma 11 (Observation 3.1 from Ferreira et al., 2022). For any strategy c in CSSPA(U, (U1, U2), V)
that distributes the adversarial stake across = wallets, there exists an adversarial strategy c ′ that also

distributes the stake across the same number of wallets, broadcasts the credential of at most one wallet

in � and results in exactly the same leaders as c , thereby getting the same reward as c .

The following conclusion is straightforward from the above lemmas.

Theorem 7. The optimal adversarial reward in CSSPA(U, ®U, V) is at most the optimal adversarial

reward in CSSPA(U, V) for all U, ®U and V .

B Bias from Finite Sampling

We revisit the computation of the adversary’s reward when its : smallest scores are ®2−0 and the
corresponding rewards are ®A−0. The reward from broadcasting the credential 8 (or remaining silent)
equals 4−ęğ (1−ÿ) (1−Ă) (Ağ + 1(8 ≠ 0)) (assuming a stopping time is not reached). The adversary
chooses the action that maximizes its reward.
Consider a toy version of the adversarial game over just two rounds. In the �rst round, a coin

with heads probability 1
ġ
is tossed = times. Let the empirically observed probability of heads be ?1.

For each trial in the second round, toss : coins each with heads probability ?1. The outcome is 1
even if one of : tosses turns out heads (we take the maximum amongst : Bernoulli trials, similar to
the adversarial game). Repeat the trial = times to observe an empirical probability ?2.
We verify that ?2 does not remain constant for : = 2 over di�erent choices of =. If = = ∞,

?1 =
1
ġ
=

1
2
and ?2 = 1 − (1 − 1

ġ
)2 =

3
4
. However, for = = 10 samples, ?1 =

ģ
Ĥ
with probability

(Ĥ
ģ

)
· 2−Ĥ and E[?2] =

∑Ĥ
ģ=0

[
1 −

(
1 − ģ

Ĥ

)2]
×
(Ĥ
ģ

)
· 2−Ĥ ≈ 0.784 ≠ 0.75

A similar bias creeps into the adversarial game. The e�ect of the bias on the estimated rewards
worsens with the number of rounds) and becomes better with the number of samples =.

C Locating _ and Describing the Optimal Adversarial Strategy

C.1 Proof of Theorem 6

We �rst begin with a toy version that says if the rewards from LinearCSSPA(U, V, _1,) , :) and
LinearCSSPA(U, V, _2,) , :) are close, then _1 − _2 is small.

Lemma 12. Suppose that _1 and _2 are such that

| RewLin
ą1
(cOPT

Đ,ġ (_1)) − Rew
Lin
ą2
(cOPT

Đ,ġ (_2)) | f Z .

Then, |_1 − _2 | f Z .

Proof. Without loss of generality, assume that _1 f _2. Assume for contradiction that _2−_1 > Z .
As a thought experiment, let the adversary ape cOPT

Đ,ġ
(_2) in LinearCSSPA(U, V, _1,) , :). Since the

rewards are linear, the adversary earns RewLin
ą2
(cOPT

Đ,ġ
(_2)) plus the savings in entry fee from paying

just _1 < _2. Since the adversary participates in at least one round, the adversary saves more than
(_2 − _1) in entry fee, and thus, the total reward is at least RewLin

ą2
(cOPT

Đ,ġ
(_2)) + (_2 − _1). However,

RewLin
ą1
(cOPT

Đ,ġ
(_1)) − Rew

Lin
ą2
(cOPT

Đ,ġ
(_2)) f Z and (_2 − _1) g Z . The adversary makes strictly more

than RewLin
ą1
(cOPT

Đ,ġ
(_1)) in LinearCSSPA(U, V, _1,) , :). This is a contradiction, since c

OPT
Đ,ġ
(_1) is the

optimal strategy. □

696

EC ’24, July 8–11, 2024, New Haven, CT, USA

In Theorem 6, we show that even if we estimate LinearCSSPA(U, V, _1,) , :) up to an error of
X then, the true reward in LinearCSSPA(U, V, _2,) , :) and our estimated rewards can still not be
close unless _1 − _2 is small.

Proof of Theorem 6. From Theorem 5, with probability at least 1 −
(
2) W +) ě−ĈĤ

Ĉ

√
lnĀ−1

2Ĥ

)
,

RewLin
ą1
(cOPT

Đ,ġ (_1)) ∈
[
Eĩ∼DĐ ,ġ (ą1)

[B],Eĩ∼DĐ ,ġ (ą1)
[B]

]

Thus, | RewLin
ą1
(cOPT

Đ,ġ
(_1)) − A | f X and |A − RewLin

ą2
(cOPT

Đ,ġ
(_2)) | f Z . The claim follows from the

triangle inequality and Lemma 12. □

C.2 The Optimal Adversarial Strategy

Once we (approximately) locate the optimal reward _∗ of the :-scored adversary in CSSPA(U, V)
that terminates in) rounds, the description of a near optimal adversarial strategy becomes succinct.
The adversary pretends that it is :-scored and is participating in LinearCSSPA(U, V, _,)) and
plays the actions recommended by cOPT

Đ,ġ
(_∗). In particular, the adversary resets CSSPA(U, V) with

frequency at least) and behaves like a :-scored adversary. The adversary gets a zero reward in
LinearCSSPA(U, V, _,)), which corresponds to a reward _∗ in CSSPA(U, V).
The reward from the above strategy approaches the optimal reward as the error in locating

_∗ reduces. The loss in the reward from being :-scored and from resetting CSSPA(U, V) every)
rounds would approach zero as) −→ ∞ and : −→ ∞.

D Summary

D.1 Simulating the Optimal Strategy

AddLayer(U, V, _, cOPT,DOPT
Ī−1):

(1) For 1 f ℓ f =Ī = ∞.
(a) DrawAdv(U,DOPT

Ī−1):

• Sample ®A−0: Draw : = ∞ rewards A1, A2, . . . , Aġ i.i.d from DOPT
Ī−1 .

• Sample ®2−0: Draw : = ∞ scores 21, 22, . . . , 2ġ of adversarial wallet as follows. Draw
21 ←− exp(U) and 2ğ+1 ←− 2ğ + exp(U) (a fresh sample for each 8) for 1 f 8 f : − 1.
For convenience, set 2ġ+1 = ∞.
• Return (®A−0, ®2−0).

(b) sample(U, V, _, ®2−0, ®A−0, c
OPT,DOPT

Ī−1):
Return sample Bℓ equal to

Eę0∼exp(ÿ (1−Ă)),Ĩ0∼D
OPT
Ī−1

[
max

0fğfğ∗ (®ę)
{4−ęğ · (1−ÿ) · (1−Ă) (Ağ + 1(8 ≠ 0))} · 1(8∗ (®2) ≠ 0)

]
− _

(2) Return DOPT
Ī to be the uniform distribution over {B1, B2, . . . , BĤĪ }.

Simulate(U, V, _, cOPT):

(1) Initialize DOPT
0 to be the point-mass distribution at 0.

(2) For 1 f C f) = ∞:
(a) DOPT

Ī = AddLayer(U, V, _, cOPT,DOPT
Ī−1).

(3) Return Eĩ∼DOPT
Đ
[B].

D.2 Summary of Simulation A�er Truncating to a Finite Number of Rounds and

Adversarial Wallets

697

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

AddLayer(U, V, _, :, cOPT
Đ,ġ

,DOPT
Ī−1,ġ
):

(1) For 1 f ℓ f =Ī = ∞.
(a) DrawAdv(U,DOPT

Ī−1,ġ
):

• Sample ®A−0: Draw : rewards A1, A2, . . . , Aġ i.i.d from DOPT
Ī−1 .

• Sample ®2−0: Draw : scores 21, 22, . . . , 2ġ of adversarial wallet as follows. Draw 21 ←−
exp(U) and 2ğ+1 ←− 2ğ + exp(U) (a fresh sample for each 8) for 1 f 8 f : − 1. For
convenience, set 2ġ+1 = ∞.
• Return (®A−0, ®2−0).

(b) sample(U, V, _, ®2−0, ®A−0, c
OPT
Đ,ġ

,DOPT
Ī−1,ġ
): Return sample Bℓ

(2) Return D̂
OPT

Ī,ġ to be the uniform distribution over {B1, B2, . . . , BĤĪ }.

TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ
):

(1) Initialize DOPT
0,ġ

to be the point-mass distribution at 0.

(2) For 1 f C f) :
(a) DOPT

Ī,ġ
= AddLayer(U, V, _, :, cOPT

Đ,ġ
,DOPT

Ī−1,ġ
).

(3) Return Eĩ∼DOPT
Đ ,ġ
[B].

D.3 Summary of Simulation A�er Truncating to a Finite Number of Rounds and

Adversarial Wallets

FiniteSampleAddLayer(U, V, _, :, C, =, cOPT
Đ,ġ

, W, l, D̂
OPT

Ī−1,ġ):

(1) For 1 f ℓ f =.

(a) DrawAdv(U, D̂
OPT

Ī−1,ġ).

(b) sample(U, V, _, ®2−0, ®A−0, c
OPT
Đ,ġ

, D̂
OPT

Ī−1,ġ): Return sample Bℓ

(2) D̃
OPT

Ī,ġ be the uniform distribution over
(
Bℓ
)
1fℓfĤ (in descending order)

(3) In�ate while computing the upper bound and de�ate while computing the lower bound.

• De�ate(=,W, D̃
OPT

Ī,ġ , C) :

(a) Delete the largest = ·

√
lnĀ−1

2Ĥ
samples from D̃

OPT

Ī,ġ

(b) Append = ·

√
lnĀ−1

2Ĥ
copies of −_ to D̃

OPT

Ī,ġ

• In�ate(=,W, l, D̃
OPT

Ī,ġ , C):

(a) Delete the smallest = ·

√
lnĀ−1

2Ĥ
samples from D̃

OPT

Ī,ġ

(b) Append l= copies of C (1 − _) to D̃
OPT

Ī,ġ

(c) For 1 f ℓ < Ĥ
Ĉ Ĥ
·

√
lnĀ−1

2Ĥ
:

– Append l= copies of Bℓ

(4) Return D̂
OPT

Ī,ġ to be the uniform distribution over {B1, B2, . . . , BĤĪ }.

TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ

, W, l):

(1) Initialize D̂
OPT

0,ġ to be the point-mass distribution at 0.
(2) For 1 f C f) :

(a) D̂
OPT

Ī,ġ = FiniteSampleAddLayer(U, V, _, :, C, =, cOPT
Đ,ġ

, W, l, D̂
OPT

Ī−1,ġ).

(3) Return E
ĩ∼D̂

OPT
Đ ,ġ
[B].

698

EC ’24, July 8–11, 2024, New Haven, CT, USA

D.4 A Summary of the Simulation

FiniteSampleAddLayer(U, V, _, :, C, =, cOPT
Đ,ġ

, W, l, n, [, D̂
OPT

Ī−1,ġ):

(1) Precompute(D̂
OPT

Ī−1,ġ , n, [, C):

(a) Construct the pdf 3 of D̂
OPT

Ī−1,ġ up to a discretization error n .

(b) Construct the cdf D̂
OPT

Ī−1,ġ recursively using the following recursion up to a discretization
error n .

D̂
OPT

Ī−1,ġ (\ − n) = %A (A0 f \ − n) = D̂
OPT

Ī−1,ġ (\) − 3 (\)

(c) Construct the right tail of the expectation � (\) = EĨ0∼Ā [A0 × 1(A0 > \)] recursively
by

� (\ − n) = � (\) + (\ − n) × 3 (\ − n)

(d) Compute �max (\) = \D̂
OPT

Ī−1,ġ + � (\) for all −C_ f \ f C (1 − _) up to a discretization
error n

(e) If V ≠ 1, 0: For −C_ f 6(8∗, ®2−0, ®A−0) f C (1 − _) in steps of n :
(i) For 0 f 2 f 1 in steps of [

• � (2, 6(8∗, ®2−0, ®A−0)) = [×
∑ę

Ā=0, in steps of ā Z
1−ÿ
ÿ �max (

ĝ (ğ∗,®ę−0,®Ĩ−0)

Ā
1−ÿ
ÿ

)

(2) For 1 f ℓ f =.

(a) DrawAdv(U, D̂
OPT

Ī−1,ġ):

• Sample ®A−0: Draw : rewards A1, A2, . . . , Aġ i.i.d from DOPT
Ī−1 .

• Sample ®2−0: Draw : scores 21, 22, . . . , 2ġ of adversarial wallet as follows. Draw 21 ←−
exp(U) and 2ğ+1 ←− 2ğ + exp(U) (a fresh sample for each 8) for 1 f 8 f : − 1. For
convenience, set 2ġ+1 = ∞.
• Return (®A−0, ®2−0).

(b) SampleFromPrecompute(U, V, _, ®2−0, ®A−0, c
OPT
Đ,ġ

,�, D̂
OPT

Ī−1,ġ):

(i) For 1 f 8∗ f : :
• Compute 6(8∗, ®2−0, ®A−0) = max1fğfğ∗ 4

−ęğ · (1−ÿ) (1−Ă) (1 + Ağ)
(ii) If V = 0:
• return Bℓ = 6(:, ®2−0, ®A−0) − _

(iii) Else if V = 1:
• For 1 f 8∗ f : : 5 (8∗, ®2−0, ®A−0) = �max (6(8

∗, ®2−0, ®A−0))
[
4−ęğ∗ (1−Ă) − 4−ęğ∗+1 (1−Ă)

]

• return Bℓ =
∑ġ

ğ∗=1 5 (8
∗, ®2−0, ®A−0) − _

(iv) V ≠ 0, 1:
• For 1 f 8∗ f : : 5 (8∗, ®2−0, ®A−0) = � (2ğ∗+1, 6(8

∗, ®2−0, ®A−0)) −� (2ğ∗ , 6(8
∗, ®2−0, ®A−0))

• return Bℓ =
∑ġ

ğ∗=1 5 (8
∗, ®2−0, ®A−0) − _

(3) D̃
OPT

Ī,ġ be the uniform distribution over
(
Bℓ
)
1fℓfĤ (in descending order)

(4) In�ate while computing the upper bound and de�ate while computing the lower bound.

• De�ate(=,W, D̃
OPT

Ī,ġ , C) :

(a) Delete the largest = ·

√
lnĀ−1

2Ĥ
samples from D̃

OPT

Ī,ġ

(b) Append = ·

√
lnĀ−1

2Ĥ
copies of −_ to D̃

OPT

Ī,ġ

• In�ate(=,W, l, D̃
OPT

Ī,ġ , C):

(a) Delete the smallest = ·

√
lnĀ−1

2Ĥ
samples from D̃

OPT

Ī,ġ

699

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

(b) Append l= copies of C (1 − _) to D̃
OPT

Ī,ġ

(c) For 1 f ℓ < Ĥ
Ĉ Ĥ
·

√
lnĀ−1

2Ĥ
:

– Append l= copies of Bℓ

(5) Return D̂
OPT

Ī,ġ to be the uniform distribution over {B1, B2, . . . , BĤĪ }.

TruncatedSimulate(U, V, _,) , :, cOPT
Đ,ġ

, W, l, n, [):

(1) Initialize D̂
OPT

0,ġ to be the point-mass distribution at 0.
(2) For 1 f C f) :

(a) D̂
OPT

Ī,ġ = FiniteSampleAddLayer(U, V, _, :, C, =, cOPT
Đ,ġ

, W, l, , n, [, D̂
OPT

Ī−1,ġ).

(3) Return E
ĩ∼D̂

OPT
Đ ,ġ
[B].

D.5 A Summary of Notations and Functions in the Simulation

Notation Description

U The fraction of stake held by the adversary

V The fraction of honest stake held by �

_ The per-round entry fee the adversary has to pay to participate in LinearCSSPA(U, V, _)

) We simulate LinearCSSPA(U, V, _,))

: We simulate a :-scored adversary

cOPT
Đ,ġ

The optimal adversarial strategy in LinearCSSPA(U, V, _,)) for a :-scored adversary

D̂
OPT

Ī,ġ

The estimated distribution of optimal rewards in LinearCSSPA(U, V, _, C) for a
:-scored adversary

W Probability of estimation error from the DKW inequality in in�ate/de�ate

l A small quantile gets duplicated l= times while in�ating

n Discretization parameter of the reward distributions

[Discretization parameter to compute Riemann sums

Table 1. A summary of notations

700

EC ’24, July 8–11, 2024, New Haven, CT, USA

Function Description

AddLayer(U, V, _, c, �)

Given a distribution � of rewards achieved by playing c in the
last C − 1 rounds, AddLayer(U, V, _, c, �) computes the distribution
of rewards won by playing c in the last C rounds
of LinearCSSPA(U, V, _, C)

DrawAdv(U, �)
Given the reward distribution � , DrawAdv(U, �) samples rewards and
scores for adversarial wallets

sample(U, V, _, ®2−0, ®A−0, c, �)

Conditional on the rewards and scores of the adversary’s wallets,
sample(U, V, _, ®2−0, ®A−0, c, �) computes the reward of the
adversary, in expectation over � and �’s scores and the reward
from letting � win.

In�ate(=,W, l,D, C)
For an input distribution D, In�ate(=,W,D, C) deletes the smallest samples
and replaces them with samples corresponding to a small quantile

De�ate(=,W,D, C)
For an input distribution D, De�ate(=,W,D, C) deletes the largest samples
and replaces them with the in�mum of the distribution

Precompute(D, n, [, C)
For an input distribution D, Precompute(�, n, [, C) sets up the
pre-computations required to speed up the sampling procedure

Simulate(U, V, _, cOPT
Đ,ġ
) Executes) iterations of AddLayer(U, V, _, cOPT

Đ,ġ
) and returns E

ĩ∼D̂
OPT
Đ ,ġ
[B]

Table 2. A summary of functions used in the simulation. Functions with similar names across dif-

ferent variants of the simulation have similar functions. For example, AddLayer(U, V, _, cOPT
Đ,ġ

, �) and

FiniteSampleAddLayer(U, V, _, :, C, =, cOPT
Đ,ġ

, W, l, �) have the sample functionality (adding an extra layer in

the simulation), but in di�erent variants.

E Results

1 · 10−2 5 · 10−2 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Stake U

M
ar
g
in
al
re
w
ar
d
R
ew
(c

O
P
T
)
−
U

Fig. 1. Marginal reward vs adversarial stake. Legend: orange–upper bound from Ferreira et al., 2022; blue–

tight upper bound for the omniscient adversary; green– un-inflated simulated upper bound for V = 1; red–

reward from the 1-lookahead strategy in Ferreira et al., 2022.

701

Computing Optimal Manipulations in Cryptographic Self-Selection Proof-of-Stake Protocols

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Stake U

M
ar
g
in
al
re
w
ar
d
R
ew
(c

O
P
T
)
−
U

Fig. 2. Marginal reward vs adversarial stake. Legend: brown– un-inflated simulated upper bounds for V = 1;

red– un-inflated simulated upper bounds for V = 0.5; blue– un-inflated simulated upper bounds for V = 0.

0 0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Connectivity parameter V

M
ar
g
in
al
re
w
ar
d
R
ew
(c

O
P
T
)
−
U

Fig. 3. Marginal reward vs network connectivity. Legend: orange– un-inflated simulated upper bound for

U = 0.25, blue– un-deflated simulated lower bound for U = 0.25

702

	Abstract
	1 Introduction
	1.1 Very Brief Technical Highlight
	1.2 Related Work

	2 Preliminaries
	2.1 Primitives
	2.2 Cryptographic Self-Selection

	3 Model
	3.1 The Adversarial Game and Reward
	3.2 Biased Seeds and Stopping Times
	3.3 The Omniscient Adversary

	4 Estimating the Optimal Adversarial Reward
	4.1 A Linear Version of `3́9`42`"̇613A``45`47`"603ACSSPA(,)
	4.2 The Ideal Simulation
	4.3 The Optimal Solution
	4.4 Moving from Ideal to Practical
	4.5 Locating the Optimal Expected Reward and the Optimal Adversarial Strategy

	5 Simulation Results
	Acknowledgments
	References
	A A More General `3́9`42`"̇613A``45`47`"603ACSSPA(,)
	B Bias from Finite Sampling
	C Locating and Describing the Optimal Adversarial Strategy
	C.1 Proof of Theorem 6
	C.2 The Optimal Adversarial Strategy

	D Summary
	D.1 Simulating the Optimal Strategy
	D.2 Summary of Simulation After Truncating to a Finite Number of Rounds and Adversarial Wallets
	D.3 Summary of Simulation After Truncating to a Finite Number of Rounds and Adversarial Wallets
	D.4 A Summary of the Simulation
	D.5 A Summary of Notations and Functions in the Simulation

	E Results

