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that incentivizing miners to follow the intended protocol can be tricky, however. For example,
Nakamoto observes that a miner with > 1/2 of the total hashrate in the network can strictly pro�t
by deviating from the Bitcoin protocol. However, for several years it was largely assumed that
50% was the cuto�: as long no miner controlled more than half the total hashrate in the network,
everyone should follow the intended protocol.

Eyal and Sirer [2014] prove this assumption false with their seminal paper introducing the Sel�sh
Mining strategy (we will overview their strategy in detail in Section 2). Their strategy is strictly
pro�table compared to honestly following the Bitcoin protocol even with just > 1/3 of the total
hashrate. Followup work of Sapirshtein et al. [2016] later provides an improved strategy that is
strictly pro�table with just ≈ 32.9% of the total hashrate, which is tight (for a strategic miner with
poor network connectivity). With better network connectivity, Sel�sh Mining can be pro�table
with arbitrarily small fraction of hashrate — see discussion in Section 2.

From amechanism design perspective, these facts initially appear somewhat alarming: Depending
on the hashrate of the largest miner, and also on network conditions, following the protocol is not
a Nash equilibrium. Moreover, the Sel�sh Mining attack is in a sense untraceable: because Bitcoin
is pseudonymous, there is no way to distinguish among identities of block creators to determine
which blocks were created by a dishonest miner. That is, depending on the hashrate of the largest
miner and network conditions, there is an untraceable and strictly pro�table deviation from the
Bitcoin protocol.
However, one key critique of Sel�sh Mining (and other strategic deviations) in practice is its

statistical detectability. That is, the pattern of blocks created in a world with a Sel�sh Miner does
not have any “innocent explanation” due to network latency, and it will be clear that someone is
Sel�sh Mining.1 Should Sel�sh Mining be detected, it is possible that the value of the underlying
cryptocurrency will su�er signi�cantly. Therefore, while Sel�sh Mining may be pro�table when
denominated in the underlying cryptocurrency (e.g. BTC), it could be wildly unpro�table when
denominated in an objective unit of value (e.g. USD).2

Themain result of our paper introduces a statistically undetectable Sel�shMining strat-

egy in Theorems 4 and 5. That is, the pattern of block creation induced by our strategy is statistically
identical to that of a world with only honest miners but increased latency. The mathematics behind
our results apply to the canonical setting studied in Eyal and Sirer’s seminal work: proof-of-work
longest-chain protocols with block rewards.3 Still, we hope the reader takes away the following
conceptual point much more broadly: attackers concerned about the impact of their attack on
a cryptocurrency’s value may seek an undetectable variant. Therefore, designers must consider
this possibility when claiming incentive compatibility of protocols (and especially if those claims
reference a strategic deviation’s impact on the cryptocurrency’s value).

We discuss the implications of our results in more detail in Section 6. After overviewing related
work below in Section 1.1, we proceed with a detailed description of Sel�sh Mining, along with a
description of our model in Section 2. We follow this with formal statements of our main results in
Section 3. Section 4 proves a warmup result to demonstrate some key ideas, and Section 5 proves

1To clarify: it may not be clear who is Sel�sh Mining, nor how to punish them, but it will be clear that someone is Sel�sh

Mining. Note also that collecting the relevant data needed to run the statistical test is non-trivial.
2Note that even if a deviator were to hedge against this possibility by shortselling the underlying cryptocurrency, there is

still signi�cant uncertainty in how the market might react (which may be su�cient to dissuade a risk-averse player, even if

hedges exist to make deviating pro�table in expectation).
3Our techniques may certainly be relevant more broadly to longest-chain protocols (e.g. with transaction fees instead of

block rewards, or proof-of-stake instead of proof-of-work), simply because these settings have signi�cant technical overlap.

Still, we do not claim that any of our formal results carry to another setting, and applying our techniques in this setting

may still require novel insight.
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our �rst main result. Appendix A contains a summary of discussions regarding Sel�sh Mining in
practice. Extensions of our main results and omitted proofs are contained in later appendices.

1.1 Related Work

1.1.1 Strategic Manipulations of Consensus Protocols. Following Eyal and Sirer [2014], there
have been numerous papers on Sel�sh Mining. Most relevant to our work are those that understand
the limits of its pro�tability, such as [Kiayias et al., 2016, Sapirshtein et al., 2016]. In analyzing our
most general result, we use tools initially developed in [Sapirshtein et al., 2016].

Strategic manipulation of consensus protocols via some form of “blockwithholding” is studied in a
wide array of related domains. Those most similar to our work consider deviations in proof-of-work
longest-chain protocols with transaction fees [Carlsten et al., 2016], proof-of-stake longest-chain
protocols [Brown-Cohen et al., 2019, Ferreira and Weinberg, 2021, Neuder et al., 2019, 2020], and
leader-selection protocols [Ferreira et al., 2022]. Our work bears some similarity to these in that we
also study strategic manipulation of consensus protocols via block withholding, but the models are
distinct.
Other works examine di�erent styles of pro�table deviations from Proof-of-Work blockchain

protocols. For example, [Fiat et al., 2019, Goren and Spiegelman, 2019, Yaish et al., 2022a,b] consider
manipulating di�culty adjustments to earn extra rewards. [Yaish et al., 2022a,b] do so in particular
by manipulating the timestamp of created blocks.

1.1.2 Strategic Manipulation in Practice. Among the broad line of works referenced above, [Yaish
et al., 2022a] is especially impactful, as they also provide clear evidence of strategic manipulation
in practice (which is the �rst such evidence, to the best of those authors’ and these authors’
knowledge). It is important for future work to understand the impact that their discovery had on
the deviator (F2Pool) and/or the underlying currency (ETH) – this would quantitatively impact any
risk assessment by miners considering strategic manipulation. In relation to our work, this would
impact the importance of statistical undetectability to strategic miners.

We’ve informally used the term “strategic manipulation” to describe deviations from an intended
consensus protocol that net the deviator additional rewards issued directly by the consensus protocol

in the form of block rewards. There is also a signi�cant history of block producers acting sel�shly
to pro�t from economic activity on top of consensus protocols (e.g. double-spend attacks.)

1.1.3 Incentives beyond the Consensus Layer. Beyond incentive compatibility concerns arising
from block rewards, there is also a growing literature considering incentive design in other as-
pects of blockchain protocols. One example is recent work on transaction fee mechanism design
(auction design for the inclusion of transactions within a block in the presence of strategic block
producers) [Bahrani et al., 2023, 2024, Chung and Shi, 2023, Huberman et al., 2021, Lavi et al., 2019,
Roughgarden, 2021, Shi et al., 2023, Yao, 2018]. These works also �t into a growing literature on
mechanism design within consensus protocols, but otherwise have no technical overlap with ours.

1.1.4 Detection of Selfish Mining in practice. We are aware of two lines of work related to
statistical detection of Sel�sh Mining. One proposes statistical tests (such as the length of orphaned
chains – longer orphan chains are claimed to be indicative of Sel�sh Mining), and perhaps evaluates
them in a simulation environment [Chicarino et al., 2020, Saad et al., 2019, Wang et al., 2021]. To
the best of our knowledge, most of these tests have not been deployed in practice, and therefore do
not o�er an opinion on whether or not Sel�sh Mining is occurring in practice.
A smaller line of work aims to detect Sel�sh Mining empirically. [Li et al., 2022] claims to

be the �rst paper to detect sel�sh mining in practice, building upon previous work of [Li et al.,
2020a,b]. Their statistical test looks exclusively at the main chain, and focuses on the distribution
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of consecutive blocks mined by the same miner. Their null hypothesis is that the miner of each
block on the main chain should be independent of prior blocks, whereas a Sel�sh Miner would
disproportionately mine their blocks consecutively. They claim that observed mining patterns fail
their null hypothesis to varying degrees across �ve blockchains: Bitcoin, Litecoin, Ethereum PoW,
Monacoin, and Bitcoin Cash. But, the authors acknowledge that their null hypothesis could fail for
other reasons. For example, note that their null hypothesis would also fail when orphans naturally
occur and miners tiebreak in favor of their own blocks (this is because a block competing in a
natural fork is more likely to wind up in the longest chain when its creator �nds the next block).

2 BACKGROUND

2.1 Nakamoto Consensus and the Longest Chain Protocol

Bitcoin and many other altcoins use a longest-chain protocol with proof-of-work, which is often
referred to as Nakamoto Consensus. We overview relevant details of the protocol below, and refer
the reader to resources such as [Narayanan et al., 2016] for an explanation of why these details
capture the Bitcoin protocol. Note that the features we highlight below are exactly the same features
from [Eyal and Sirer, 2014] — the stylized model we pose below is not new, and is extensively
studied following [Eyal and Sirer, 2014].

Nakamoto Consensus Game (NCG). There is a set N of n miners, and miner i has hashrate ³i > 0.
Time proceeds in discrete steps t = 1, 2, . . .. At the start of each timestep t , there is a set of blocks
Bt that have been previously broadcast, and a set of blocks Bit that have been previously created by
miner i (perhaps broadcast, perhaps not). Initially, Bi

1
is empty for all i , and B1 contains a single

“genesis block.” At every time step t :

• A minermt is selected so thatmt := i with probability ³i/(
∑n

j=1 ³ j ), independently of all
previous rounds.mt creates a block bt , andmt chooses the block to which bt points:mt may
choose any block in Bt ∪ B

mt

t (that is, the newly created block must point to exactly one
block, and that block can be any block that was broadcast before time t , or created bymt

before time t , or both).
• Every miner i can choose to broadcast any blocks in Bit+1 \ Bt (that is, every miner i can
broadcast any block that they created in a timestep f t and have not already broadcast).

We refer to the height of a block h(bt ) as the number of blocks in the path leaving bt (i.e. by
following pointers). A Longest Chain at time t is any block in Bt of greatest height. If the longest
chain at time t is unique, we denote by Rit to be the fraction of blocks in the longest chain that were
created by miner i . If the longest chain at time t is not unique, let t ′ < t denote the most recent
timestep where the longest chain at t ′ is unique, and de�ne Rit := Rit ′ . Observe that the longest

chain at time 1 is unique, so this is always well-de�ned. Player i’s reward is lim inf t→∞ Rit .
4

In particular, observe in this game that every miner has two decisions every round: (a) if they
create a block, what does it point to? and (b) what previously-created blocks do they broadcast?
Observe also that miners are paid proportionally to the steady-state fraction of blocks they produce
in the longest-chain — this captures the fact that miners are paid primarily according to a block
reward that comes with each block, and that Nakamoto Consensus has a di�culty adjustment that
causes the length of the longest chain to grow proportionally to time (we again refer the reader
to [Eyal and Sirer, 2014, Narayanan et al., 2016] for further details on connecting this game to
Bitcoin and related cryptocurrencies).

4Our work and all prior works only consider strategy pro�les where the limit exists, so the distinction between lim and

lim inf is just a formality.
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Longest Chain Protocol. The longest-chain protocol asks each miner to use a speci�c strategy in
this game: Whenever you create a block, point to a longest chain, and immediately broadcast your
block. We call a miner honest if they follow the longest-chain protocol, and strategic otherwise.
The key question is whether it is a Nash equilibrium for every miner to follow the longest-chain
protocol.

It is folklore knowledge from Nakamoto’s whitepaper [Nakamoto, 2008] that the longest-chain
protocol is not a Nash equilibrium if ³i >

∑

j ³ j/2 for any i . In that case, Player i can simply ignore
all blocks created by other miners and point only to their own most recent block (broadcasting
all blocks upon creation). Then Player i will have reward 1, and all other players have reward 0.5

However, until Eyal and Sirer’s seminal work, it was assumed that the longest-chain protocol is
indeed a Nash equilibrium when ³i <

∑

j ³ j/2 for all i .

2.2 Selfish Mining

We now overview the Sel�sh Mining strategy, and review its performance when all other miners
are using the longest-chain protocol. Let’s �rst consider the case where all other miners break ties
in favor of the strategic miner i (that is, if the longest chain is not unique, they will point their
block towards the one that is created by miner i). Consider the following strategy in NCG:

Strong Sel�sh Mining:

• When selected to mine a block, point to a longest-chain, breaking ties in favor of a block
created by yourself.

• Do not immediately broadcast this block. Instead, during any round t where you are not
selected to mine, and the longest chain before round t has height h, broadcast a block of
height h + 1 (if you have one).

If a strategic miner i uses Strong Sel�sh Mining and all other miners follow the longest chain
protocol, then the following occurs. First, every block created by miner i is broadcast during the
same round as a block created by another miner of the same height. In other words, every height
either contains a single block created by a miner , i , or two con�icting blocks broadcast during
the same round, with one created by miner i . Second, because every miner tiebreaks in favor of
miner i , all of i’s blocks will enter the longest chain (and con�icting blocks will not). Therefore:

Theorem 1 ([Eyal and Sirer, 2014]). If all miners , i use a longest-chain protocol that tiebreaks

in for Miner i , and Miner i uses Strong Sel�sh Mining, then Miner i gets reward
αi /

∑

j α j
1−αi /

∑

j α j
> ³i/

∑

j ³ j .

Strong Sel�shMining is strictly pro�table for any³i > 0, but relies on the fact that all otherminers
tiebreak in its favor. Eyal and Sirer connect tiebreaking in the above-described Nakamoto Consensus
Game to network connectivity in practice. Really, a “timestep” in the Nakamoto consensus game
corresponds to “some miner has just succeeded in inverting SHA-256 and created a new block.” An
extremely well-connected miner can (a) listen for this block to be broadcast, and then (b) broadcast
their own previously-withheld block, while still (c) ensuring that their own block arrives at other
miners �rst. Mapping this onto the stylized Nakamoto consensus game yields Strong Sel�sh Mining.
For the rest of this paper, we’ll replace “during any round t where you are not selected to mine,
and the longest chain before round t has height h” with “during any round t where another miner
broadcasts a block of height h + 1” to emphasize this connection (and so that our language sounds
less tailored to this speci�c stylization).

5Note that, beyond the fact that Player i is accumulating all of the mining rewards, they control the entire content of the

ledger, and can launch signi�cantly more malicious attacks.
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Of course, it is not realistic to assume that any strategic miner has such strong network connectiv-
ity. Eyal and Sirer further pose the (canonical) Sel�sh Mining strategy that is pro�table even when
the strategic miner loses all tiebreaks — this corresponds to a reality where the poorly-connected
miner can still execute (a) and (b), but not (c). Instead, their canonical strategy (paraphrased below)
relies only on the fact that honest miners will still always select a strictly longer chain over a strictly
shorter one.

Sel�sh Mining:

• When selected to mine a block, point to a longest-chain, breaking ties in favor of a block
created by yourself.

• Do not (necessarily) immediately broadcast this block. Instead, for each block b of height h that
you create:
– At the moment where another miner broadcasts a block of height h, broadcast b.
– Or, during the moment/round where b becomes pivotal, broadcast b. A block of height h is
pivotal if (a) a block of height h − 1 has been broadcast by another miner, (b) you created a
block of height h − 1, and (c) you have not yet created a block of height h + 1.

If a strategic miner i uses Sel�sh Mining, and all other miners follow the longest-chain protocol,
then the following occurs. At all points in time, there may be a unique longest chain with height h.
If so, and a miner , i creates the next block, it will be broadcast and the height increases to h + 1. If
instead i creates the next block, i will withhold the block and eventually create a con�ict at height
h + 1. If there are multiple longest chains with height h, then miner i may have created blocks
that haven’t been broadcast. If miner i has only one such block, then it is pivotal, and miner i will
immediately broadcast it (to ensure that it wins the con�ict, because it can only win with a strictly
longer chain). If miner i has multiple such blocks, it can safely wait until broadcasting, as long as
they broadcast their last hidden block the moment it becomes pivotal. Intuitively, the Sel�sh Miner
faces a risk compared to the longest-chain protocol: when withholding their �rst block, there is a
chance that they do not �nd either of the next two blocks. In this case, their block is orphaned.6

If they �nd exactly one of the next two blocks, then this block becomes pivotal and broadcast —
this allows the Strategic Miner to orphan another miner’s block (thus increasing its own ratio). If
instead they �nd both of the next two blocks, then they now have a lead of three withheld blocks,
and will be able to orphan even more blocks of other miners (thus further increasing its own ratio).
Because there is a risk, the strategy is only pro�table for su�ciently large ³i .

Theorem 2 ([Eyal and Sirer, 2014]). If all miners , i use a longest-chain protocol that tiebreaks

againstMiner i , and Miner i uses Sel�sh Mining, then Miner i gets reward > ³i if and only if ³i > 1/3.

2.3 Detecting Selfish Mining

Because Bitcoin is pseudonymous, an attacker can create a new public key for every block they
create, so there is no record of the same miner creating multiple blocks. With no identity attached
to any particular block, there is little to distinguish the Sel�sh Miner’s blocks from others.7

6A block is “orphaned” if it is not in the eventual longest chain.
7But they are not fully indistinguishable. The Sel�sh Miner’s blocks will always be created before the competing blocks, and

this can manifest in a few ways (including timestamps and transaction content). One might therefore propose to mitigate

the pro�tability of Sel�sh Mining by asking honest miners to tiebreak in favor of blocks that were created most recently.

Unfortunately, this creates signi�cant incentive issues (that designers are well aware of): now an attacker need not build

upon the current longest-chain because they can just replace it instead. In general, targeted punishments against blocks

that could have been created by Sel�sh Mining may be worthwhile to explore, but this is very far from current norms (and

may be impossible to do without creating new incentive issues).
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While a Sel�sh Miner may not be identi�able, their presence is statistically detectable. To help
make this point more rigorous, consider the following generalized Nakamoto consensus game,
parameterized by a latency ℓ.8

Nakamoto Consensus Game, parameterized by ℓ (ℓ-NCG). The Nakamoto Consensus Game, pa-
rameterized by ℓ > 0 is identical to the Nakamoto Consensus Game except in who is selected to
mine during a step t . Instead of picking a miner proportional to their hashrate, a coin is �ipped
independently for each miner i that is heads with probability ℓ · ³i (we will only ever consider
games where ℓ f maxj {1/³ j }). The set of coins is repeatedly �ipped until at least one lands heads.
Then, all miners whose coins are heads produce a block this round.

As ℓ > 0 approaches 0, the distribution of miners selected to create blocks in each round
approaches that of the original Nakamoto Consensus Game, so we formally de�ne 0-NCG as the
original NCG (where exactly one miner is selected each round).
ℓ-NCG is a natural extension of the original stylized model to incorporate a stylized model of

latency. Even if every miner is honestly following the longest-chain protocol, there will inevitably
be con�icts and orphaned blocks (for example, during any round in which there are multiple
miners). We now build up language to formalize what we mean by statistical undetectability.

Definition 1 (View of a Nakamoto Consensus Game). As a Nakamoto Consensus Game is

played, we refer to the view as the collection of all blocks that are eventually broadcast (treated as

nodes in a directed graph — the only information in the view is the pointer). We also refer to the view
up to height h as the collection of all blocks of height at most h that are eventually broadcast. Observe

that for any ℓ-NCG and any strategy pro�le, the view is drawn according to some distribution.9

Definition 2 (Statistically Undetectable Deviant Strategy). We say that a strategy s for

miner i in ℓ-NCG is ℓ′-statistically undetectable with respect to ®s−i if the view of the game when

Miner i uses s and and all other miners use ®s−i is identically distributed to the view of the ℓ′-NCG
when Miner i uses some longest-chain strategy and all other miners use ®s−i .

We say that an ensemble of strategies {sε }ε>0 is statistically undetectable with respect to ®s−i if for
all ε > 0 there exists an ℓ′ ∈ (ℓ, ℓ + ε) such that sε is ℓ′-statistically undetectable with respect to ®s−i .
In all applications of these de�nitions, each sj will be a longest-chain strategy (but may tie-break

di�erently for di�erent applications).

Note that in order to pro�t, Attacker must create orphans even if the base game is NCG. Therefore,
in order for the view to look consistent with fully honest participants, Attacker will need to target
an ℓ′ > 0 (and hence, even if one primarily wishes to study the original NCG as the “real world”,
one must study ℓ′ > 0 for the world created by Attacker).
Let us now quickly understand why both Sel�sh Mining Strategies are statistically detectable.

Both claims will use the following notation (which our later proofs will also use) – the purpose of
this is to ease notational burden and support a reduction from analyzing the full n-player game to
a 2-player game. To ease notation here, and in the rest of the paper, we will w.l.o.g. always consider
Player 1 to be the strategic player.

8Appendix B contains a brief discussion relating this stylized latencymodel to richer latencymodels considered in Distributed

Systems.
9Note that while view does contain orphaned blocks, nodes do not propagate already-orphaned blocks for them to enter the

view – nodes only propagate blocks that currently appear to be in the longest chain but might later be orphaned (nodes

who are interested to detect sel�sh mining then store them in their own view, but do not propagate them once orphaned).

Indeed, every block ever broadcast (and added to our view) is broadcast only during a period when it is believed to be in the

longest chain.
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Definition 3 (Single/Pair). We say that height h in a view of a Nakamoto Consensus Game has

state Pair if there is a block of height h created by Player 1, and also a block of height h created by a

Player > 1 (possibly multiple players). Otherwise, h has state Single.

Definition 4 (SP-Simple). Consider any execution of a Nakamoto Consensus Game where all

other players use the same deterministic longest-chain strategy. Consider also modifying the execution

so that in every round, if at least one Miner > 1 is selected to create a block, instead only Miner 2

creates a block. A strategy for Miner 1 is SP-Simple if it takes identical actions in both games.

That is, when playing against a pro�le of identical deterministic longest-chain strategies, an SP-

Simple strategy is agnostic to how many blocks are created by other miners during a particular round,

or which miner created them, given that some other miner created a block during this round.

Proposition 1. Let s be any SP-Simple strategy for Miner 1 and ®s−1 be a pro�le where all other
players use the same longest-chain strategy s ′, and s ′ tiebreaks in either lexicographical or reverse lexico-
graphical order.10 Then for all ℓ, ℓ′, s is ℓ′-statistically undetectable for ℓ-NCG with hashrates ®³ with re-

spect to ®s−i if and only if s is ℓ′-statistically undetectable for ℓ-NCG with hashrates ï³1, 1−
∏n
i=2(1−αi ·ℓ))

ℓ
ð

with respect to s ′.
Moreover, Miner 1’s reward using s in ℓ-NCG with hashrates ®³ against ®s−i is equal to that when

using s in ℓ-NCG with hashrates ï³1, 1−
∏n
i=2(1−αi ·ℓ))

ℓ
ð against s ′.

A proof of Proposition 1 appears in Appendix D. Intuitively, Proposition 1 follows by observing
that a single Player 2 produces a block in the proposed two-player game with the same probability
that any player > 1 produces a block in the original game. Proposition 1 allows us to focus just on
the two-player game, which has signi�cantly simpler notation.

Proposition 2. For any ®³ , and any player i , Strong Sel�shMining is not ℓ′-statistically undetectable
for any ℓ′ in the Nakamoto Consensus Game with respect to the strategy pro�le where other players

use longest-chain and tiebreak in favor of i .

Proof. We use Proposition 1 and prove the claim for every two-player game. Indeed, observe

that in any two-player game parameterized by ℓ, if we let ´ ′
=

α1 ·ℓ ·α2 ·ℓ
1−α1 ·ℓ ·α2 ·ℓ denote the probability

that both players produce a block in the same round, then height h is Pair with probability ´ ′

independently for all h.
If instead we consider a Nakamoto Consensus Game where Miner 1 uses Strong Sel�sh Mining,

then observe that height h is Single if and only if Miner 2 produces the �rst block at height h, and
is Pair if and only if Miner 1 produces the �rst block at height h.

So consider any height h such that h is Single. This means that Miner 2 produced the �rst block
at height h and immediately broadcast it. Therefore, Miner 1 produces the �rst block at height h + 1
with probability ³1/(³1 +³2), and height h + 1 has state Pair with exactly this probability. If instead
h is Pair, then Miner 1 has (at least) one withheld block, and Miner 1 produces the �rst block of
height h + 1 with probability > ³1/(³1 + ³2) (because Miner 2 would need to produce at least the
next two blocks in order to produce the �rst block of height h + 1). Therefore, the probability of
seeing Single vs. Pair at height h + 1 depends on whether height h is Single vs. Pair, and this cannot
be identically distributed to honest parties in a Nakamoto consensus game with any latency. □

Intuitively, Proposition 2 observes that Strong Sel�sh Mining is more likely to produce a Pair
when it has just produced a Pair (because it must already have hidden blocks at the moment a
height is determined to be Pair).

10That is, s′ either always tiebreaks in favor of 1, or never in favor of 1.
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Proposition 3. For any ®³ , and any player i , Sel�sh Mining is not ℓ′-statistically undetectable for

any ℓ′ in the Nakamoto Consensus Game with respect to the strategy pro�le where other players use

longest-chain and tiebreak against i .

Proof. We use Proposition 1 and prove the claim for every two-player game. Indeed, observe

that in any two-player game parameterized by ℓ, if we let ´ ′
=

α1 ·ℓ ·α2 ·ℓ
1−α1 ·ℓ ·α2 ·ℓ denote the probability

that both players produce a block in the same round, then height h is Pair with probability ´ ′

independently for all h.
If instead we consider a Nakamoto Consensus Game where Miner 1 uses Sel�sh Mining, then

observe that height h is Single if and only if Miner 1 has no hidden blocks when the block of height
h is broadcast. In particular, if two consecutive states (h,h + 1) are (Single, Pair), it must be that
Miner 1 has no hidden blocks at height h, and h + 1 is determined to be state Pair as soon as Miner
1 �nds the next block. From here, state h + 2 is Pair if and only if Miner 1 �nds the next block,
which occurs with probability ³1/(³1 + ³2).

If instead two consecutive states (h,h + 1) are (Pair, Pair), it must be that Miner 1 found a block
at height h + 2 before Miner 2 found a block at height h, state h + 1 is determined to be Pair the
moment this happens. From here, state h + 2 is Pair with probability > ³1/(³1 + ³2) (because Miner
2 would need to produce at least the next two blocks in order for Miner 1’s block at height h + 2
to become pivotal). Therefore, the probability of seeing Single vs. Pair depends on whether the
previous two heights are (Single, Pair) vs. (Pair, Pair), and this cannot be identically distributed to
honest parties in a Nakamoto Consensus Game with any latency. □

Importantly, the above propositions note that Sel�sh Mining is statistically detectable only by
looking at the view of the game. In particular, it does not require timestamping information (which
can easily be manipulated [Yaish et al., 2022a,b] and intentionally has minimal role in the consensus
protocol), or real-time monitoring of the network (the entire purpose of a consensus protocol is
to cope with the fact that messages arrive at unpredictable times due to latency). Still, we brie�y
discuss in Section 6 alternative detection methods based on these.

3 MAIN RESULTS AND TECHNICAL OUTLINE

We now state our main results, which provide a statistically undetectable and pro�table Sel�sh
Mining strategy. All of our strategies have the following format: they begin with a strictly pro�table
sel�sh mining strategy (for our warmup, Strong Sel�sh Mining. For our �rst main result, Sel�sh
Mining. For our second main result, a natural extension of Sel�sh Mining when there are sometimes
natural forks), and sometimes “wastes” a hidden lead in order to preserve undetectability. That is,
when a strategic miner has (say) �ve hidden blocks, they can reap the greatest pro�t by causing
a fork with at least the �rst four. But, this creates a lot of sequential orphans. Our strategies
will sometimes broadcast some of these blocks without creating an orphan. This sacri�ces pro�t,
but enables the strategy to appear indistinguishable from latency. The challenge is �nding an
appropriate broadcast pattern to be undetectable, and also analyzing when such patterns are still
strictly pro�table. We �rst begin with a warmup theorem that demonstrates some key ideas.

Theorem 3. Let ®s−1 be the strategy pro�le where every miner uses longest-chain and tiebreaks for

Miner 1. Then for any ®³ , there is a statistically undetectable ensemble of strictly pro�table strategies

for Miner 1 in the Nakamoto Consensus Game with respect to ®s−1.

We provide a complete proof of Theorem 3 in Section 4. We give quantitative bounds on the
pro�tability of the strategy in Lemma 3. We then prove our �rst main result:
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Theorem 4. Let ®s−1 be the strategy pro�le where every miner uses longest-chain and tiebreaks

against Miner 1. Then for any ®³ with ³1 g 3−
√
5

2
·∑j ³ j ,

11 there is a statistically undetectable ensemble

of strictly pro�table strategies for Miner 1 in the Nakamoto Consensus Game with respect to ®s−1.

Our bound of 3−
√
5

2
is not tight for our strategy, although we provide a complete description of an

in�nite Markov chain that can be simulated in order to nail the tight bound to higher precision.12

Interestingly, even our loose bound is not too far from the 1/3-fraction of hashrate that is required
for Sel�sh Mining to be pro�table without concern for undetectability. This establishes that adding
undetectability to a pro�table strategy (if possible) need not signi�cantly detriment its performance.

We include a complete proof of Theorem 4 in Section 5. Quantitative bounds on the pro�tability
of this strategy are given in Claim 3 and Lemma 4. Finally, we extend Theorem 4 to begin from any
parameterized Nakamoto Consensus Game.

Theorem 5. Let ®s−1 be the strategy pro�le where every miner uses longest-chain and tiebreaks

against Miner 1. Then for any ®³ with ³1 g 0.382 · ∑j ³ j , there is a statistically undetectable ensemble

of strictly pro�table strategies for Miner 1 in the Nakamoto Consensus Game parameterized by ℓ with

respect to ®s−1.13

At the end of Section 5, we overview ways in which the proof of Theorem 5 requires additional
complexity, and defer a complete proof to the full version of the paper.14 In summary, Theorem 5
establishes that a strategic miner can strictly pro�t against honest miners who tiebreak against
them in a way so that the view appears as though all miners are honest but with an arbitrarily
small increase to latency.

4 WARMUP: TIEBREAKING IN FAVOR OF STRATEGIC MINER

In this section, we prove Theorem 3, which introduces some of the key ideas of our analysis.
For simplicity of notation in this section and in all remaining technical sections, we let n = 2 and

³ := ³1/(³1 + ³2). This is w.l.o.g. due to Proposition 1. We will also refer to Miner 1 as Attacker
and Miner 2 as Honest. We �rst remind the reader of the concept of a state, specialized to n = 2.

Definition 5 (State). When n = 2, observe that the state of a height h, S(h), is Pair if and only if

both players create a block of height h, and Single if only one player creates a block of height h. We let

S(0) = Single, namely there is a unique genesis block.

We will describe our strategy �rst as labeling all heights as Single or Pair, and then describe
the actual broadcasting strategy to match it. The outline of this section is as follows: De�nition 6
describes the labeling strategy. Lemma 1 speci�es how the labeling strategy can be implemented
via a broadcasting schedule. Lemma 2 argues that this strategy achieves undetectability. Finally,
Lemma 3 argues that the strategy is strictly pro�table.

11Note that 3−
√
5

2
⪅ 38.2%.

12We suspect our bound is not far from tight, however.
13We derive a (signi�cantly) more precise su�cient condition on α, β ′ in order for a strictly pro�table and undetectable

strategy to exist (see Proposition 5 of the full paper). Theorem 5 follows by verifying that this condition holds for all

α g 0.382 and all β ′ ∈ [0, 1]. It could be that our su�cient condition also holds for all α g 3−
√
5

2
and all β ∈ [0, 1], but our

computational software is not precise enough to verify this. Recall that 3−
√
5

2
⪅ 0.382, so the gap in analysis for β ′ > 0 and

β ′ = 0 is fairly small.
14The full version can be found at https://arxiv.org/abs/2309.06847. Appendix E of that version proves Theorem 5, and

Appendix D gives a simple analysis of when sel�sh mining is strictly more pro�table than honest mining.
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Recall that our goal is to produce a view so that each height is Pair with probability exactly ´ ,

for some ´ :=
α ·ℓ′ ·(1−α )·ℓ′

1−(1−α )·ℓ′ ·α ·ℓ′ ,
15 and some ℓ′ arbitrarily close to 0 (which corresponds to ´ arbitrarily

close to 0 as well).

Definition 6 (Labeling Strategy). De�ne Ph to be the probability that Attacker creates the �rst

block of height h, conditioned on all information available as of the moment that the �rst block of

height h − 1 is created. Then:

• If Honest creates the �rst block at height h, label h as Single.

• If Attacker creates the �rst block at height h, label h as Pair with probability ´/Ph , and Single
otherwise.

Observe that Attacker can easily compute Ph as a function of the number blocks it is hiding: If
Attacker has i hidden blocks at the moment the �rst block of height h − 1 is created, Attacker will
mine the �rst block of height h unless Honest mines i +1 blocks in a row. That is, Ph = 1−(1−³)i+1.
Observe also that this expression is at least ³ for all i g 0, so the labelling strategy is valid (that is,
´/Ph is a valid probability) as long as ´ f ³ .
Next, we need to de�ne how to implement the proposed labeling strategy with an actual broad-

casting strategy in the game. In particular, we need to specify a broadcasting schedule that realizes
the labels output by the labeling strategy.

Lemma 1 (Implementability). The following broadcasting strategy realizes the labels output by

the labeling strategy in De�nition 6:

• If S(h) is labeled as Single (and Attacker produced a block of height h): broadcast the block of
height h the moment a block of height h − 1 is broadcast (which might mean broadcasting the

moment that Attacker produces a block of height h).

• If S(h) is labeled as Pair: broadcast the block of height h the moment an Honest block of height h

is published.

Proof. Clearly, if this can be implemented, it will cause the state of every block to match its
label (because there will clearly not be a chance for Honest to con�ict with the Single broadcasts,
and Honest clearly will con�ict with the Pairs).

Moreover, this strategy can be implemented: the state of h is determined the moment a block of
height h is created. If you create a block of height h, you learn its state immediately, and can either
broadcast it immediately (if labeled Single), or broadcast once contested (if labeled Pair). □

Lemma 2 (Undetectability). The broadcasting strategy of Lemma 1 applied to the labeling

strategy of De�nition 6, for any ´ f ³ , played against a longest-chain strategy that breaks ties in

favor of Attacker, produces a view where each height has state Pair independently with probability ´ .

Proof. Observe that at the moment that a block of height h − 1 is �rst created, S(h) is equal to
Pair with probability exactly ´ . This is true not only conditioned on S(1), . . . , S(h − 1), but also
conditioned on any additional information known at the instant S(h − 1) is �xed. Therefore, for
all S(1), . . . , S(h − 1), the probability that S(h) is Pair conditioned on S(1), . . . , S(h − 1) is exactly ´ .
Therefore, the distribution of states is independent each round, and equal to Pair w.p. ´ . □

Lemma 2 concludes undetectability, which holds for ´ arbitrarily close to 0 (and therefore ℓ′

arbitrarily close to 0 as well).

15This computation of β follows by observing that in a two-player ℓ′-NCG, both players produce a block during the same

timestep with probability
α ·ℓ′·(1−α )·ℓ′

1−(1−α )·ℓ′·α ·ℓ′ , independently.
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Lemma 3 (Profitability). The broadcasting strategy of Lemma 1 applied to the labeling strategy

of De�nition 6, for any ´ f ³ , when played against a longest-chain strategy that breaks ties in favor

of Attacker, achieves reward ³ + ³´ > ³ .

Proof. The proof is a direct application of Lemma 4 (stated and proved immediately below in
Section 4.1), observing that the strategy wins all Pairs. □

Proof of Theorem 3. The proof follows from Proposition 1, Lemma 2, and Lemma 3. □

4.1 Technical Lemmas

Below are two technical lemmas that we use in this section and will reuse in later sections as well.

Lemma 4. Let n = 2, and consider any strategy that eventually broadcasts all blocks when playing

against a longest-chain. Then, if this strategy wins a ¶ fraction of Pairs, and Pairs occur in a ´ fraction

of rounds, it achieves expected reward:

³ − (1 − ³ − ¶ ) · ´ .
Proof. Say that the strategy results in a ´ fraction of rounds having Pairs. Observe that an ³

fraction of all blocks are created by Attacker, and a (1−³) fraction of all blocks are Honest. Observe
further that every Single round has exactly one block, and every Pair round has one block from
each creator. Therefore, we see that ³ · (1 + ´) blocks must be produced by Attacker per-round.
Moreover, ´ blocks per round of Attacker are in Pair rounds, leaving ³ · (1 + ´) − ´ blocks per
round that are Attacker in Single rounds. This means that Attacker wins ³ · (1 + ´) − ´ fraction of
rounds because they are Attacker Single, and an additional ¶ · ´ fraction of rounds because they
win ¶ fraction of Pairs. □

Corollary 1. An SP-Simple strategy that eventually broadcasts all blocks and wins a ¶ fraction of

Pairs achieves reward strictly better than ³ if and only if ¶ > 1 − ³ .

Proof. Observe that ³ − (1 − ³ − ¶ ) · ´ > ³ ô −(1 − ³ − ¶ ) > 0 ô ¶ > 1 − ³ . □

5 MAIN RESULT I: TIEBREAKING AGAINST STRATEGIC MINER

Here, we prove our �rst main result: a pro�table and statistically undetectable Sel�sh Mining
strategy when all miners tiebreak against the strategic miner. In the same canonical model where
Sel�sh Mining was �rst introduced, we show that a modi�ed strategy is strictly pro�table and also
statistically undetectable. We begin with some concepts, and will also reuse concepts/de�nitions
from our warmup.

5.1 Concepts

Definition 7 (Pivotal Block). A block of height h created by Attacker is pivotal if height S(h−1)
is Pair, and when the honest block of height h − 1 is broadcast, Attacker does not have a block of height

h + 1. That is, Attacker’s block of height h is pivotal if there is a con�ict at height h − 1, and Attacker

needs to use this block in order to win it.

Definition 8 (Safe Block). A block created by Attacker is safe if it is not pivotal. Observe that
a block of height h can be safe if either S(h − 1) is single, or if Attacker �nds a block of height h + 1
before Honest �nds a block of height h − 1.

Intuitively, just like Sel�sh Mining, we really want to broadcast all pivotal blocks immediately,
so that we don’t risk losing a con�ict that we can win right now. If a block is safe, we don’t need to
broadcast it immediately, but our strategy may choose to do so anyway to maintain undetectability.
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5.2 The Strategy

We again �rst describe the strategy as labeling all heights as Single or Pair, and then describe the
actual broadcasting strategy to match it.

Definition 9 (Labeling Strategy). De�ne Ph to be the probability that Attacker creates a block

of height h and that block is safe, conditioned on all information available as of the �rst moment we
know S(h′) for all h′ < h.16 The labeling is strategy is then as follows:

• If Honest �rst creates a block at height h, then h is labeled Single.

• If Attacker �rst creates a block at height h, and it is pivotal, then h is labeled Single.

• If Attacker �rst creates a block at height h, and it is safe, then h is labeled Pair with probability

´/Ph and Single otherwise.

In particular, the instant that we have the necessary information to label a height, we label it (and the

instant we have all the necessary information to know whether to �ip a coin, we �ip it).

Lemma 5 will ensure that the coin �ip probabilities in the third bullet are valid. Before that, we
will �rst show the following useful claim about the moment when there is enough information
to decide the label of a given height. Importantly, we don’t necessarily know S(h) the moment its
created (unlike in the warmup, where this information was su�cient), so we have to carefully track
when it is �rst determined, and the information available at that time.

Claim 1 (When labels are determined). For all h, there is su�cient information to determine

S(h) by the moment that a block of height h + 1 is created (possibly sooner).

Proof. We’ll proceed by induction on h. The base case holds vacuously when h = 0, since the
genesis block is Single by de�nition.

Let’s �rst consider the moment that the block of height h is created. If the �rst block of height h
is created by Honest, then h is certainly Single (and we learn this immediately when the �rst block
of height h is created, which is before the �rst block of height h + 1 is created).

If instead, the �rst block of height h is created by Attacker, then there are a few cases to consider.
Recall that by the inductive hypothesis, we certainly know the labels of all blocks of height h′ < h.
This in particular implies that we have all the necessary information to compute Ph , and can already
�ip any coins that might be needed to label h. The only remaining uncertainty is around whether h
is safe or pivotal. Zooming in on S(h − 1):

(a) If S(h − 1) is Single, then h is safe (by de�nition), and we learn this the moment that the �rst
block at height h is created.

(b) If S(h − 1) is Pair, and Honest has broadcast a block of height h − 1, then h is pivotal, and we
learn this the moment h is created, so we can label S(h) as Single.

(c) If S(h − 1) is Pair, and Honest has not yet broadcast a block of height h − 1, then we do not yet
know whether h is safe or pivotal. We learn this the moment either of the following events
happens (whichever comes �rst):
• Attacker �nds another block (which will be at height h + 1); then h is safe.
• Honest �nds a block at height h − 1 (which may or may not require Honest to �nd multiple
blocks); then h is pivotal.

In particular, by the time there is a block of height h + 1, we certainly know which case
occurred �rst, and thus knowwhetherh is safe or pivotal. From here, we can �ip the necessary
coins to label S(h). □

Corollary 2. For all h, Ph can be evaluated by the time the �rst block of height h is created.

16The value of Ph is easily computable; see Table 2 for explicit expressions.
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Lemma 5 (Validity). The probabilities in De�nition 9 are valid for any ´ f ³2.

Proof. We will show that for all h, we have Ph+1 g ³2, which completes the proof.
Let us again focus on the moment a block of height h is created for the �rst time. Consider the

bullets in the proof of Claim 1. In bullets (a) and (b), we learn S(h) the moment that the block at
height h is created. Then if Attacker creates the next two blocks, they will have created a safe block
at height h + 1. Therefore, Ph+1 g ³2 in both of these cases.
If we learn S(h) through bullet (c), then:

• If it is because Attacker found a block at height h + 1, then if they �nd the next block, this
block of height h + 1 certainly safe (because Attacker found a block of height h + 1 before
Honest found a block of height h − 1). So Ph+1 g ³ g ³2.

• If it is because Honest creates a block at height h − 1, then Attacker broadcasts their pivotal
block of height h and this acts like a new genesis block. From here, if Attacker creates the
next two blocks, they will create a safe block at height h + 1. So Ph+1 g ³2. □

Observe some subtlety in the proof of Lemma 5, and in particular that the choice of moments to
compute Ph is signi�cant. For example, if we were to compute the probability that Attacker creates
a safe block at height h conditioned on S(h − 2) being Single, and S(h − 1) being Pair, and Honest
has broadcast a block of height h − 1, then the Attacker cannot possibly �nd a safe block of height
h (because their block of height h, if created, is immediately pivotal). So, it is important that we
compute Ph at the moment that S(h − 1) is determined (which is immediately when Attacker �nds
its �rst block at height h − 1, and it is unknown whether Honest will �nd the next block or not).
This highlights some of the subtlety needed to keep the analysis clean.

Next, we need to de�ne how to implement the proposed labeling with a broadcasting strategy.

Lemma 6 (Implementability). The following broadcasting strategy realizes the labels output by

the labeling strategy in De�nition 9:

• If S(h) is labeled as Single (and you created a block of height h): broadcast the block of height h

the moment a block of height h − 1 is broadcast (and you know that S(h) is labeled Single). Note
that this may imply broadcasting a block of height h the moment its created.

• If S(h) is labeled as Pair: broadcast the block of height h the moment another block of height h is

broadcast (and you know that S(h) is labeled Pair).17

Proof. We �rst need to con�rm that for all h that are eventually labeled as Single, we learn that
S(h) is Single early enough to broadcast our block of height h according to the rule above before
Honest �nds a block of height h. If we can do this, then h will indeed be Single.
To see this, observe that if a block of height h is pivotal, we learn this immediately when there

are two blocks of height h − 1, and Attacker creates the �rst block of height h. This is before Honest
has a block of height h, and therefore if a block is pivotal, we label it as Single in time.

Similarly, if a block of height h is safe, we learn this either the moment we learn that S(h − 1) is
Single (which we certainly know by the moment the block of height h is created, perhaps earlier, by
Claim 1), or the moment that we create a block of height h + 1 before Honest has a block of height
h − 1. In both cases, Honest does not have a block of height h. This con�rms that if we decide S(h)
is Single, we know this before Honest �nds a block of height h, and therefore our broadcasting
strategy broadcasts our block of height h in time for h to be Single.

For broadcasting Pairs, we just need to con�rm that the timing constraints do not con�ict with
those demanded for Single (that is, we need to con�rm that the strategy does not accidentally claim

17In particular, if the public longest chain has height h − 2, and Attacker has two hidden blocks of heights h − 1 labeled Pair

and h labeled Single, when Honest broadcasts a block of height h − 1, both bullets trigger simultaneously, and the attacker

will broadcast both its hidden blocks at once.
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to broadcast a block of height h + 1 before a block of height h that it points to). Assuming this is
the case, then because we wait until Honest broadcasts their block of height h before broadcasting
ours, there will certainly be a Pair at height h. To see that there is no con�ict, observe that the
broadcasting strategy for h labeled Pair only asks to wait to broadcast a block of height h until
Honest �nds a block of height h, whereas for h + 1 labeled Single it only asks to broadcast a block
of height h + 1 as soon as a block of height h is broadcast. Therefore, there is no con�ict where the
broadcasting strategy asks to broadcast a block of height h + 1 before a block of height h. □

Lemma 7 (Undetectability). The broadcasting strategy of Lemma 6, with the labeling strategy of

De�nition 9, for any ´ f ³2, produces the distribution where a ´-fraction of rounds have Pairs, and

1 − ´ have Singles, independently.

Proof. Observe that at the moment that S(1), . . . , S(h − 1) are �xed, S(h) is equal to Pair with
probability exactly ´ . This is true not only conditioned on S(1), . . . , S(h−1), but also conditioned on
any additional information known at the instant S(h−1) is �xed. Therefore, for all S(1), . . . , S(h−1),
the probability that S(h) is Pair conditioned on S(1), . . . , S(h − 1) is exactly ´ . Therefore, the
distribution of states is independent each round, and equal to Pair with probability ´ . □

5.3 Reward Analysis

We provide in Appendix C a description of a Markov Chain that can be used to compute exactly
the reward of our strategy. In this section, we’ll aim instead to simply �nd a su�ciently large ³ so
that our strategy is strictly pro�table.
Recall that, by Corollary 1, it su�ces to focus on Paired rounds and determine their winner.

Consider the sequence (S(h))∞
h=1

, and observe that by Lemma 7, each of its entries is Pair with
probability ´ and Single otherwise. Consider now a sequence of k Pairs between two Single rounds.

Claim 2. For a sequence of k > 1 consecutive Pair rounds, Attacker wins all these rounds.

Proof. Say that height h is the �rst Pair. Observe that in order for each subsequent height to
possibly be labeled as Pair, Attacker must have a safe block at that height. In order to have a safe
block at heights h, . . . ,h + k − 1, Attacker must also have a block at height h + k before Honest has
a block of height h + k − 1, and height h + k is Single. Therefore, Attacker will certainly win all
these Pairs. □

We can therefore focus on Solo Pairs: h such that S(h) is Pair, and S(h − 1) and S(h + 1) are Single.

Claim 3. Letw denote the fraction of Solo Pairs won by the attacker. We havew g 2α−α 2−β
1−β .

Proof. Consider a Single at height h−1, and a Pair at height h. If Attacker has any hidden blocks,
then Attacker will certainly win the pair at height h. Otherwise, Ph+1 = ³2 (because Attacker’s
next block is safe only if they create each of the next two). This means that:

• If Honest �nds the next two blocks, then h is a Solo Pair, and Honest wins it. This happens
with probability (1 − ³)2.

• If Attacker �nds exactly one of the next two blocks, then their block of height h + 1 is pivotal,
so h is a Solo Pair and Attacker wins it. This happens with probability 2³(1 − ³).

• If Attacker �nds both of the next blocks, then h + 1 is safe, but is marked Single anyway
with probability 1 − ´/³2. Therefore, this is a Solo Pair that Attacker wins with probability
³2 · (1 − ´/³2) = ³2 − ´ .

Altogether, we conclude that Attacker wins at least a
2α−α 2−β

1−β fraction of Solo Pairs. □

Corollary 3. The fraction of pairs won by Attacker is > (1 − ³) as long as ³ > 3−2β−
√
5−4β

2(1−β ) .
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Proof. Recall that the number of Pair rounds in a row (between two Single rounds) is distributed
independently across time, and equal to i with probability (1 − ´) · ´ i . Therefore, we can write the
expected number of Pair rounds between two Single rounds as

∞
∑

i=0

(1 − ´) · ´ i · i = ´

1 − ´
.

Similarly, we can write an expression for the expected number of Pair rounds won by the attacker,

w · (1 − ´)´ +
∞
∑

i=2

(1 − ´) · ´ i · i = w · ´ · (1 − ´) + (2 − ´) · ´2
1 − ´

=

w · ´ · (1 − ´)2 + (2 − ´) · ´2
1 − ´

,

wherew denotes the fraction of Solo Pairs won.
Now, we can compute the expected fraction of Pairs won by the attacker. By linearity of expecta-

tion, the expected number of Pair rounds before we see the nth Single is n · β

1−β , and the expected

number of Pair rounds won by the attacker is n · wβ (1−β )2+(2−β )β 2

1−β . By the law of large numbers, we

have that with probability 1:

lim
n→∞

(# Pairs before nth Single)/n = ´

1 − ´
,

lim
n→∞

(# Pairs won by Attacker before nth Single)/n = w · ´ · (1 − ´)2 + (2 − ´) · ´2
1 − ´

.

Therefore, the expected fraction of Pairs won by the attacker is:

(2−β )·β 2
+w ·β ·(1−β )2
1−β
β

1−β
=

w · ´ · (1 − ´)2 + (2 − ´) · ´2
1 − ´

.

Substituting in our lower bound onw from Claim 3 in the right hand side gives the following
lower bound on the expected fraction of Pairs won by the attacker:

2´ − ´2 +w · (1 − ´)2 g 2´ − ´2 + (2³ − ³2 − ´) · (1 − ´).

And now we need to understand when 2´ − ´2 + (2³ −³2 − ´) · (1− ´) g 1−³ . Rearranging, this
inequality is equivalent to ³2 · (´ − 1) + ³ · (3 − 2´) + (´ − 1) g 0. The left-hand-side has roots of:

−3 + 2´ ±
√

(3 − 2´)2 − 4(1 − ´)2
2(´ − 1) =

3 − 2´ ±
√

5 − 4´

2(1 − ´) .

So the inequality holds i�

³ ∈
(

3 − 2´ −
√

5 − 4´

2(1 − ´) ,
3 − 2´ +

√

5 − 4´

2(1 − ´)

)

.

In particular, observe that the upper bound is at least 1 for all ´ ∈ [0, 1] (the numerator is always at

least 2 and the denominator is at most 2). So the desired claim holds as long as ³ >
3−2β−

√
5−4β

2(1−β ) . □
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Proof of Theorem 4. Observe that
3−2β−

√
5−4β

2(1−β ) is monotone decreasing in ´ .18 Therefore, when

³ > 3−
√
5

2
, we have ³ >

3−2β−
√
5−4β

2(1−β ) for all ´ ∈ (0, 1). Therefore, when ³ > 3−
√
5

2
, there is a range of

´ arbitrarily close to 0 (and therefore a range of ℓ′ arbitrarily close to 0) where our strategy is both
statistically undetectable and strictly pro�table. □

We can use Corollary 3 to derive a bound on how much more pro�t the attacker can make when
allowed a target latency of ´ > 0 compared to a latency of zero. In particular, Lemma 4 states
the reward as a function of ¶ (fraction of pairs won) and ´ (target latency): ³ − (1 − ³ − ¶ ) · ´ .
The proof of Corollary 3 establishes that ¶ g 2´ + ´2 + (2³ − ³2 − ´) · (1 − ´). Plugging this into
Lemma 4 states the reward – the improvement over ³ when allowed a latency of ´ – is at least
(2´ + ´2 + (2³ − ³2 − ´) · (1 − ´) − 1 + ³) · ´ .

We also leverage Corollary 1 to derive a bound on ³ that su�ces for a strictly pro�table strategy
that is ℓ′-statistically undetectable, but not necessarily ℓ′ close to 0.

Proposition 4. Let ³∗ ≈ 0.3586 denote the unique real root in (0, 1) of ³4 − 2³3
+ 3³ − 1. Then

for any ³ > ³∗, there exists an ℓ′ such that there is a strictly pro�table strategy for the Nakamoto

Consensus Game that is ℓ′-statistically undetectable.

Proof. By Lemma 7, our proposed strategy is statistically undetectable for all ´ f ³2, so we will
take ´ = ³2.19 By Corollary 1, we have designed a strategy that is strictly pro�table (and produces

the desired view) as long as ³ > 3−2α 2−
√
5−4α 2

2(1−α 2) . Expanding out the calculations, we need:

³ >
3 − 2³2 −

√
5 − 4³2

2(1 − ³2)
ô 2³(1 − ³2) > 3 − 2³2 −

√
5 − 4³2

ô 3 − 2³(1 − ³2) − 2³2
<
√
5 − 4³2

ô 3 − 2³ + 2³3 − 2³2
<
√
5 − 4³2

Because we are only interested in the range ³ ∈ (0, 1/2), the LHS and RHS are always non-negative.
Therefore we may continue with:

3 − 2³ − 2³2
+ 2³3

<
√
5 − 4³2

ô (3 − 2³ − 2³2
+ 2³3)2 < 5 − 4³2

ô 4³6 − 8³5 − 4³4
+ 20³3 − 8³2 − 12³ + 9 − 5 + 4³2

< 0

ô 4³6 − 8³5 − 4³4
+ 20³3 − 4³2 − 12³ + 4 < 0

ô 4(³ − 1) · (1 + ³) · (³4 − 2³3
+ 3³ − 1) < 0.

The quartic on the LHS has two real roots. One is negative, and the other is ≈ 35.86%. Therefore,
the quartic is positive on [.3586, 1], and the entire LHS is negative. □

18Its derivative with respect to β is
2β−3+

√
5−4β

2·
√
5−4β ·(1−β )2

. The denominator is g 0 for all β ∈ (0, 1]. The numerator is 0 at β = 1,

and has derivative 2 − 2√
4−5β

, which is positive on (0, 1). Therefore, the numerator is negative on the entire interval (0, 1).
19We have previously observed in the proof of Theorem 4 that the pro�tability threshold is monotone decreasing in β , so

taking the largest viable β will optimize this.
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5.4 Looking Forward: Generalizing to Main Result II

Here, we brie�y note complexities extending to our second main result (the complete proof of
which can be found in the full version). Recall that our second main result considers statistically
undetectable Sel�sh Mining strategies for an ℓ-NCG with ℓ > 0.
The key di�erence stems from the following. In our warmup result, Attacker is relatively free

to decide which heights will be Single vs. Pair, because they will win every Pair round anyway.
In our �rst main result, Attacker is sometimes “forced” to set an upcoming height to be Single,
because they have only a pivotal block left (and having a con�ict with this block is risky, and could
cause the loss of many other con�icts that Attacker could instead win right now). In our second
main result, Attacker is still sometimes “forced” to immediately broadcast pivotal blocks and create
Single heights, but they are also sometimes “forced” to label a height as Pair (simply because both
miners �nd a block at the same time). We now brie�y elaborate how this impacts our analysis.
Because of these “Forced Pairs”, our labeling strategy must change. One particular challenge is

that we cannot set Ph conditioned on the entire state of information known to the Attacker at a
given time, as doing so prevents any dishonest strategy from also being statistically undetectable.20

Instead, our labeling strategy instead conditions only on the states, and not on the full information
available to Attacker. For example, our strategy computes (e.g.) P5 (and other related probabilities)
conditioned on the fact that the �rst four states are ïSingle, Single, Pair, Pairð, and at the moment
these states are set. But, it does not condition on further information available to Attacker (such as
whether the last two Pairs were Forced, whether Attacker has any hidden blocks, etc.). This forces
our analysis to be Bayesian, and further understand the probabilities of a particular “complete
world” given the current sequence of states. This is the key complexity associated with con�rming
statistical undetectability.
The key complexity associated with our reward calculation is the following. For our �rst main

result, the honest strategy gets reward ³ , and this provides a clean target fraction of pairs to win (of
> (1−³)) in order to be strictly pro�table. In an ℓ-NCG with ℓ > 0, the honest strategy does not win
an ³ fraction of rewards, so our benchmark is di�erent and calculations become signi�cantly more
involved. In order to keep the calculations as tractable as possible, we use an analysis technique
introduced in [Sapirshtein et al., 2016] to directly understand when withholding Attacker’s �rst
block (and attempting to Sel�sh Mine) might be more pro�table than immediately broadcasting it
(and claiming immediate reward). In particular, Proposition 5 in the full version provides a su�cient
condition (as a function of ³ , ´ ′) for a strictly pro�table and undetectable strategy to exist (and
Theorem 5 follows by con�rming numerically that this condition holds for ³ g 38.2% and all
´ ′ ∈ [0, 1]).

6 CONCLUSION

We provide a statistically undetectable Sel�sh Mining attack. We choose to study the canonical
setting of proof-of-work longest-chain protocols with a block reward, as it is the theoretically
most-developed. The key takeaway from our work is that relying on risk of statistical detection to
dissuade attackers is not necessarily sound — there may be ways for attackers to still pro�t and
avoid statistical detection. Our paper leaves several directions open for future work and discussion.

On the technical front, our paper considers a particular stylized model of latency, where orphans
naturally occur independently every round. It is worthwhile to further explore alternative latency

20We refer the reader to the technical appendices in the full version of the paper to see why. Brie�y, the issue is that if the

attacker �nds a single block following a “Forced Pair”, that block is immediately pivotal, and therefore should be broadcast.

But this then means that following a Forced Pair, we can only get another Pair if we get another Forced Pair, which happens

with a �xed probability set by ℓ′ that is outside our control.
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models, and develop an understanding of which types of “honest-with-latency” worlds can be
induced by pro�table deviations.
On the modeling front, our paper considers detection methods based only on the shape of the

blockchain (e.g. the pattern of orphaned blocks), and not on any time-sensitive information (such as
timestamps and timing of messages). On one hand, it is likely quite challenging (and perhaps even
impossible) to design a pro�table Sel�sh Mining strategy whose timestamps mimic that of natural
latency. On the other hand, if timestamps are necessary to detect a deviant strategy, and detection of
Sel�shMining via timestamps could signi�cantly impact the value of the underlying cryptocurrency,
this is potentially a signi�cant vulnerability (because timestamps are trivial to manipulate). Indeed,
the deviation discovered by [Yaish et al., 2022a] involves manipulating timestamps on Ethereum
(for the purpose of extracting additional mining revenues, not to a�ect the underlying value of
ETH).
Also on the modeling front, our strategy doesn’t risk signi�cantly impacting the underlying

cryptocurrency’s value, as its impact is consistent with orphans caused by latency. Still, note that
while Attacker can safely disguise its behavior as latency, our Attacker still introduces extra latency
into the system (and in particular, causes orphaned blocks at a higher rate). It is entirely possible that
an increased orphan rate might have a smooth negative impact on the underlying cryptocurrency’s
value without outright tanking it. This aspect would also be important to explore, although the
model might look signi�cantly di�erent than ours.

On the broader web3/blockchain ecosystem front, the conceptual contributions of our paper apply
quite generally: deviant behavior can sometimes disguised as natural occurrences. Therefore, our
work motivates further study of any domain where deviant strategies exist that are pro�table when
denoted in the underlying token/cryptocurrency, but are currently believed to be disincentivized
due to risk of detection. In general, wherever detectable pro�table deviations exist, it is important
to understand whether undetectable (or “explainable-by-nature”) pro�table deviations exist as well.
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A SELFISH MINING IN PRACTICE

A.1 Relevance of Selfish Mining

Strategic manipulations, like Sel�sh Mining, which do not directly a�ect consensus do not pose the
same immediate threat as a double-spend attack. However, they are concerning in practice for (at
least) the following two reasons.

Centralizing Force. Strategic manipulations that provide mild supralinear rewards are a centraliz-
ing force: a cohort of miners can achieve greater rewards together than separately. Or, put another
way, a su�ciently large miner will achieve greater per-investment rewards than a smaller miner
simply due to their size. In general, centralizing forces are undesirable in blockchain applications,
as they can lead to centralization over time (which may enable more devastating attacks like
double-spends).

Synergy with consensus-breaking attacks. Canonical strategic manipulations happen to have
synergy with canonical attacks. Consider for example Sel�sh Mining and double-spending. A
Sel�sh Miner sometimes �nds themselves with a hidden chain of several blocks, and launching
a double-spend attack at this time is more likely to succeed. Consider also seed manipulation
and committee takeover in BFT-based protocols. Manipulating the pseudorandom seed not only
helps the deviator lead more rounds, but also helps them control a greater fraction of the BFT
committee. If strategic manipulations are pro�table, they may additionally lower the cost of stronger
consensus-breaking attacks.

Summary. The above two paragraphs give a brief summary of why strategic manipulations that
mildly increase pro�t of deviators are relevant in practice. Although these manipulations don’t
directly undermine consensus, they increase the risk the risk of consensus-breaking attacks in the
future (via centralizing forces) and in the present (via increased success probability).

A.2 Factors impacting Selfish Mining

It is worth distinguishing deviations from consensus protocols in the the following manner: does
the deviator’s pro�t come at the cost of other participants in consensus, or at the cost of a user of the
protocol? For example, Sel�sh Mining steals rewards from other miners, whereas double-spending
steals cryptocurrency from a user. Numerous attacks at the cost of users have been detected across
multiple blockchains. To the best of our knowledge, [Yaish et al., 2022a] recently discovered the �rst
instance of a strategic manipulation of a consensus protocol whose pro�ts were primarily at the
expense of other consensus participants. In particular, to the best of our knowledge, no evidence of
Sel�sh Mining in practice has been discovered.21

Note that this holds on Bitcoin, despite periods of time (including at the time of writing) when
a single mining pool controls > 1/3 of Bitcoin’s total hashrate. This also holds on much smaller
“altcoins” that are vulnerable to the same attack, despite the low cost of a single entity acquiring
> 1/3 of the total hashrate. The following is a summary of several potential explanations for this
put forth by the community:

21It is not entirely clear how much e�ort has been spent aiming to detect Sel�sh Mining in practice, but we are not aware of

any successful detections.
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(1) It is possible that no single entity has had su�cient hashpower/network connectivity for
Sel�sh Mining to be pro�table on large cryptocurrencies like Bitcoin.22

It is worth observing some limitations of this argument, beyond the present state of large
cryptocurrencies. For example, this argument does not apply well to altcoins, as it is signi�-
cantly less expensive to control a > 1/3 fraction of the hashrate. Moreover, it explains why
Sel�sh Mining has perhaps not yet occurred on Bitcoin, but does not explain why it forever
will not occur on Bitcoin. Indeed, recall that with su�ciently high network connectivity, the
hashrate required for Sel�sh Mining to be pro�table can drop all the way to 0 (so con�rming
that Sel�sh Mining is not a threat would require constant estimations of hashrate and network
connectivity of large miners, which may be problematic in a pseudonymous protocol).

(2) There are signi�cant engineering challenges to running a mining operation. Moreover,
implementing Sel�sh Mining requires interacting with ASICs, and may not be as simple as
its pseudocode. Therefore, the small boost to pro�t may not outweigh the opportunity cost
of tackling more signi�cant engineering challenges.23

It is also worth observing some limitations of this argument, beyond the present state of
cryptocurrency mining. Indeed, the cryptocurrency mining industry is still rapidly evolving,
and the opportunity cost of ignoring other engineering challenges is high. But as the industry
stabilizes, miners might have fewer options to improve pro�t margins.

(3) If Sel�sh Mining were traceable to the deviator, the deviator might su�er targeted reper-
cussions. In particular, note that Sel�sh Mining by a public mining pool would be traceable
to the operator, because the mining pool has to ask its participants to Sel�sh Mine on its
behalf24 Therefore, miners may leave the pool, eliminating its ability to Sel�sh Mine in the
�rst place. Similarly, the community (or perhaps a legal enforcement agency) could decide to
censor all coins owned by the deviator. Note that targeted repercussions are certainly not
guaranteed,25 but the possibility may be su�cient to deter a risk-averse miner.
The limitation of this argument is simply that Sel�sh Mining is untraceable in absence of
outside information (such as instructions from a public pool). So, while this argument applies
well to public mining pools, it does not apply well to large individual miners (who can make
a new public key for every block they mine).

(4) Sel�sh Mining is statistically detectable, and the value of the underlying cryptocurrency
may be (signi�cantly) negatively a�ected as a result. Therefore, while Sel�sh Mining may be
pro�table when denominated in the underlying cryptocurrency, it could bewildly unpro�table
when denominated in an objective unit of value (e.g. USD).
This argument applies broadly to any miner considering any statistically detectable deviation.
However, it still has limitations. For example, it relies on the miner’s belief that detection
will negatively impact the underlying cryptocurrency’s value and inability to hedge against

22Note that a public mining pool is not a “single entity” — see later bullet.
23The authors learned of this possibility from Arvind Narayanan and Aviv Zohar, and thank them for suggesting it.
24Observe that in order to successfully Sel�sh Mine, the Sel�sh Miner must not immediately broadcast blocks after creation.

Therefore, if a public mining pool wishes to Sel�sh Mine, they must request that members of the pool not broadcast their

blocks immediately upon creation. Moreover, in order to successfully Sel�sh Mine, the Sel�sh Miner must sometimes point

to a block that has not yet been broadcast when creating a new block. Therefore, if a public mining pool wishes to Sel�sh

Mine, they must request that members of the pool not broadcast the existence of the block to which their own created

blocks will point. Due to both of these, any members of a public mining pool will detect that the mining pool is attempting

to Sel�sh Mine (and because the mining pool is public, it will be hard to keep this hidden).
25Indeed, we’ve previously noted that [Yaish et al., 2022a] recently identify a deviant mining pool on Ethereum. F2Pool

quickly admitted to deviation, but it remains unclear if F2Pool has su�ered as a result.
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this,26 or the miner’s risk-aversion. After our work, another limitation is that perhaps the
deviation is statistically undetectable (in which case the market cannot possibly react to its
detection).

In summary, the above bullets provide answers to the following questions:
Despite theoretical pro�tability in a stylized model,whymight it be the case that no individual

entity has Sel�sh Mined on Bitcoin? Bullet One argues the possibility that no single entity ever
possessed the hashrate/network connectivity to pro�t. Bullet Two argues that even if they did, the
modest gains may not justify the engineering opportunity cost. Bullet Four further argues that
even if the math works out when denominated in bitcoin, there is signi�cant uncertainty and high
risk of signi�cant losses when denominated in USD.
Despite theoretical pro�tability in a stylized model,whymight it be the case that no individual

entity has Sel�sh Mined on smaller altcoins? Bullet Two argues that, even with su�cient
resources to pro�tably Sel�sh Mine, the modest gains may not justify the engineering opportunity
cost. Bullet Four further argues that even if the math works out when denominated in altcoin, there
is signi�cant uncertainty and high risk of signi�cant losses when denominated in USD.
Despite theoretical pro�tability in a stylized model, why might it be the case that no public

mining pool has Sel�sh Mined on any cryptocurrency? Bullet Two argues that, even with
su�cient resources to pro�tably Sel�sh Mine, the modest gains may not justify the engineering
opportunity cost. Bullet Three argues that there is signi�cant uncertainty and high risk of signi�cant
retaliation (denominated in either the underlying cryptocurrency, or USD). Bullet Four further
argues that even if the math works out when denominated in bitcoin, there is signi�cant uncertainty
and high risk of signi�cant losses when denominated in USD.

They key question of interest to mechanism design researchers with an eye towards fundamental
concepts not over�t to the current state of a�airs is the following: given that Sel�sh Mining
is theoretically pro�table in a stylized model but has not been detected in practice, is there a

realistic concern of Sel�sh Mining in the future? Prior to our work, Bullet Four is (in the
authors’ opinion, and anecdotally from community discussions) perhaps the strongest argument
in the negative direction. Our work pushes this answer closer to the a�rmative, and serves as
practical motivation for the design and analysis of updated consensus protocols with stronger
incentive guarantees.
Finally, note that while we have phrased this key question in the language of Sel�sh Mining in

longest-chain proof-of-work cryptocurrencies, and our theorems hold only in this setting, the same
principles apply broadly across the blockchain and web3 ecosystem. Indeed many other consensus
protocols admit pro�table deviations [Brown-Cohen et al., 2019, Carlsten et al., 2016, Ferreira et al.,
2022, Ferreira and Weinberg, 2021, Kalodner et al., 2018, Kiayias et al., 2016, Sapirshtein et al.,
2016, Yaish et al., 2022a,b], and many other aspects of the broader ecosystem currently leave (small
numbers of) individual entities with the power to take signi�cant harmful actions. However, it is
commonly argued that participants in consensus protocols and powerful individuals elsewhere
in the ecosystem are disincentivized from deviant behavior by identical reasoning to Bullet Four:
it may be pro�table when denominated in the underlying cryptocurrency/token/etc., but carry
an uncertain risk of massive unpro�tability when denominated in USD. Our work suggests that
further care should be taken in such settings to understand whether such deviations are indeed
detectable.

26It would be interesting for future work to estimate whether the value of ETH was impacted by [Yaish et al., 2022a]’s

discovery and F2Pool’s admission, although currently this remains unclear.

1039



EC ’24, July 8–11, 2024, New Haven, CT, USA Maryam Bahrani and S. Ma�hew Weinberg

B BRIEF COMPARISON TO RICHER LATENCY MODELS

Here, we �rst brie�y note that all prior work we are aware of concerning strategic block withholding
consider stylized latency models (essentially, our 0-NCG) [Brown-Cohen et al., 2019, Carlsten et al.,
2016, Eyal and Sirer, 2014, Ferreira et al., 2022, Ferreira and Weinberg, 2021, Kiayias et al., 2016,
Neuder et al., 2019, 2020, Sapirshtein et al., 2016]. Still, it is worth a brief e�ort to connect this
common stylized model to richer models from distributed computing, such as [Birmpas et al., 2020,
Garay et al., 2015].

In comparison to [Garay et al., 2015], which is an adversarial latency model, our Attacker could
certainly be implemented by their adversary, and therefore all of our results would hold in their
model. But, our Attacker is using nowhere near their adversary’s capability (in particular, only the
“rushing” aspect of their adversary is relevant to our Attacker). For example, to “win all ties” in our
model, after �nding a block their adversary could wait until an honest party �nds a block, and then
reorder all Receive() strings to place their own block �rst. The adversary does not need to delay
messages outside of this reordering, nor corrupt the content of any messages. To “lose all ties” in
our model, their adversary does not need to take any malicious actions, and just needs to be aware
of all parties’ Receive() strings to time their own broadcasts.
In comparison to [Birmpas et al., 2020], which is a stochastic latency model, our model is

equivalent to their special case with qi = 1 for all i . The two key di�erences to the most general
version of the their model are: (a) their model is more complex in that it allows for di�erent miners
to experience di�erent latency, and (b) in our model, every player is always within one block of
being up to date, whereas players in the [Birmpas et al., 2020] model are sometimes multiple blocks
behind.

C EXACT ANALYSIS OF REWARDS USING MARKOV CHAINS

To do the award analysis using a Markov Chain, we’ll simplify analysis by counting only the Paired

rounds, and who wins. See Lemma 4 for why this su�ces.
To analyze the strategy, we’ll need a state to keep track of the following information:
• How many blocks does the attacker have hidden that we know will form a Pair?
• Is the last hidden block of the attacker Pair, Single, or Undecided? (P, S, U). If there are no
hidden blocks, we leave this blank.

We will transition every time the status of a new height is determined. Note that several blocks
may be created during a single transition. We do this for the following reason. Recall that our
undetectability analysis computed a probability Ph at the moment that S(h − 1) was determined. It
is therefore simplest if we only have transitions from the moment S(h − 1) is determined to the
moment S(h) is determined (and nothing in between). This will let us a) compute Ph the moment
S(h − 1) is determined, and b) use Ph explicitly in the transition to where S(h) is determined.

Table 1 summarises all transitions the Markov chain might take. The column qe refers to the
probability of taking this transition, which fully de�nes the Markov chain. We introduce three

counting schemes, which will let us con�rm that calculations are done correct. H
p
e and S

p
e count the

number of pairs we learn are guaranteed to be won by the honest party and attacker, respectively,
during this transition. Hb

e and Sbe count the number of blocks in the longest chain (part of a pair or
not) that we learn are guaranteed to be won by the honest party and attacker, respectively, during
this transition. H s

e and Sse count the number of solo pairs we learn are guaranteed to be won by the
honest party and attacker, respectively, during this transition.

Lemma 8. Table 2 gives the correct expressions for computing Ph in SP-Simple game.

Proof. Recall that in the SP-Simple model, Ph is de�ned as the probability that Attacker creates
a block of height h and that block is safe, conditioned on all information available as of the �rst
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Table 1. The Markov Chain describing the a�acker’s strategy in the SP-Simple model, along with brief

explanations of the events corresponding to each transition. The transitions out of State 0 are ommi�ed, as

they are identical to transitions out of state iS with i = 0. The respective values of Ph are given in Table 2.

Transition qe H
p
e S

p
e Hb

e Sbe H s
e Sse

(iS,0) (1 − ³)i+1 0 0 0 1 0 0
Honest completes all pairs plus an extra block, then Attacker �nds a block. Attacker publishes
all hidden blocks.

(iS,(i − j + 1)P) (1 − ³)j³ β

Ph
0 0 0 0 0 0

Honest completes j pairs, then Attacker �nds a block. The Attacker immediately decides the
new block is Pair.

(iS,(i − j)S) (1 − ³)j³(1 − β

Ph
) 0 0 0 1 0 0

Honest completes j pairs, then Attacker �nds a block. The Attacker immediately decides the
new block is Single.

(iU, 0) (1 − ³)i 0 0 0 0 0 0
Honest �nds the next i blocks. The last block is pivotal, and Attacker publishes it as Single.

(iU,(i + 1 − j)U) (1 − ³)j³ β

Ph
0 1 0 1 0 0

Honest �nds j blocks and then Attacker �nds a block. Attacker decides (in advance) that the
undecided block is Pair. The new Attacker block might be pivotal.

(iU,(i + 1 − j)P) (1 − ³)j³(1 − β

Ph
)´ 0 0 0 0 0 0

Honest �nds j blocks and then Attacker �nds a block. Attacker decides that the undecided
block is Single and the new block is Pair.

(iU,(i + 1 − j)S) (1 − ³)j³(1 − β

Ph
)(1 − ´) 0 0 0 1 0 0

Honest �nds j blocks and then Attacker �nds a block. Attacker decides that the undecided
block is Single and the new block is Single.

(iP,0) (1 − ³)i+1 1 − µ µ 2 − µ µ 1 − µ µ

Honest completes all pairs, triggers a race, which Honest wins. Tiebreaks for Attacker w.p. µ

(iP,0) (i + 1)(1 − ³)i³ 0 1 0 2 0 1
Honest completes all pairs, triggers a race, which Attack wins.

(iP, (i + 1 − j)U) (j + 1)³2(1 − ³)j β

Ph
0 2 0 3 0 0

Honest �nds j blocks before Attacker �nds 2 blocks a,b, and the �rst Attacker block a is
marked as Pair. Guarantees win of last hidden pair and a for Attacker. b will be in longest
chain.

(iP, (i + 1 − j)P) (j + 1)³2(1 − ³)j (1 − β

Ph
)´ 0 1 0 2 0 1

Honest �nds j blocks before Attacker �nds 2 blocks a,b, with a is marked as Single and b as
Pair. Guarantees win of last hidden pair by Attacker, but the fate of b is unknown.

(iP, (i − j)S) (j+1)³2(1−³)j (1− β

Ph
)(1−´) 0 1 0 3 0 1

Honest �nds j blocks before Attacker �nds 2 blocks a,b and marks both as Single. Guarantees
win of last hidden pair by Attacker.
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Table 2. The values of Ph in the a�acker’s strategy in the SP-Simple Model, described in Table 1. Justification

for these expressions is given in Lemma 8

Transition Ph

(iS,·) 1 − (1 − ³)i+1
(iU,·) 1 − (1 − ³)i
(iP,·) 1 − (1 − ³)i+1 − (i + 1)³(1 − ³)i

moment we know S(h′) for all h′ < h. Recall also that transitions in the Markov chain happen from
when S(h − 1) is determined to when S(h) is determined. When the originating state in a transition
is iS or iP, h − 1 is the height of the last hidden block, since its state is known to be S or P, and h
is the new height whose state is determined via the transition. When the originating state in a
transition is iU, height h refers to the undecided block whose state is determined via the transition.

(iS,·) or (0, ·). Height h − 1 is Single, so if Attacker �nds the �rst block of height h, it will be safe.
Attacker will mine the �rst block of height h unless Honest completes all i Pairs, and then �nds an
extra block, all before Attacker �nds a block. Therefore, Ph = 1 − (1 − ³)i+1.

(iU,·). The Undecided block at height h will be safe unless Honest completes all i Pairs before
Attacker �nds a block, making the undecided block pivotal. Therefore, Ph = 1 − (1 − ³)i .

(iP,·). The event measured by Ph holds unless one of the following (mutually exclusive) events
occures:

• The block at height h is mined by Honest. This happens if Honest completes the i Pairs
and �nds another block before Attacker �nds any blocks, which happens with probability
(1 − ³)i+1.

• The block at height h is mined by Attacker but is Pivotal; that is, Honest �nds a block of
height h − 1 before attacker �nds a block of height h + 1. This happens i� among the next
i + 1 blocks to be discovered, Honest �nds i and Attacker �nds one. The probability of this is
(i + 1)³(1 − ³)i .

Combining the two implies Ph1 − (1 − ³)i+1 − (i + 1)³(1 − ³)i . □
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Theorem 6 (Markov Chain Specification). The following system of equations characterizes the

stationary distribution p of the Markov chain in Table 1:

p0 =

∞
∑

j=0

(1 − ³)j+1 · pj,S +
∞
∑

j=1

(

(1 − ³)j+1 + (j + 1)³(1 − ³)j
)

· pj,P +
∞
∑

j=2

(1 − ³)j · pj,U

pi,S =

∞
∑

j=0

(1 − ³)j³
(

1 − ´

1 − (1 − ³)i+j+1
)

· pi+j,S

+ (j + 1)³2(1 − ³)j
(

1 − ´

1 − (1 − ³)i+j+1 − (i + j + 1)³(1 − ³)i+j
)

(1 − ´) · pi+j,P

+ ³(1 − ³)j
(

1 − ´

1 − (1 − ³)i+j
)

(1 − ´) · pi+j,U (for i g 1)

pi,U =

∞
∑

j=0

(j + 1)³2(1 − ³)j ´

1 − (1 − ³)i+j+1 − (i + j + 1)³(1 − ³)i+j+1 (1 − ´) · pi+j+1,P

+ (1 − ³)j³ · ´

1 − (1 − ³)i+j+1 · pi+j+1,U (for i g 2)

pi,P =

∞
∑

j=0

(1 − ³)j³ · ´

1 − (1 − ³)i+j−1 · pi+j−1,S

+ (j + 1)³2(1 − ³)j
(

1 − ´

1 − (1 − ³)i+j+1 − (i + j + 1)³(1 − ³)i+j+1
)

´ · pi+j+1,P

+ (1 − ³)j³
(

1 − ´

1 − (1 − ³)i+j+1
)

´ · pi+j+1,U (for i g 1)

Theorem 7 (Reward Specification). Let {pu }u denote the stationary distribution of the Markov

Chain described in Table 1. For any transition e from state u to state v , let pe := pu · qe denote the
fraction of transitions spent taking transition e . Then the following three equations each compute the

expected reward of Undetectable Sel�sh Mining:

∑

e pe · Sbe
∑

e pe · (Hb
e + S

b
e )
,

³ − ´ + ´ ·
∑

e pe ·Spe
∑

e pe ·(Hp
e +S

p
e )

1 − ´
.

³ − ´ + ´ ·
(

∑

e pe ·Sse
∑

e pe ·(Hb
e +S

s
e )
+

(

2 −
∑

e pe ·Sse
∑

e pe ·(Hb
e +S

s
e )

)

´ −
(

1 −
∑

e pe ·Sse
∑

e pe ·(Hb
e +S

s
e )

)

´2
)

1 − ´

Proof. The �rst equation follows by the exact same logic as classical Sel�sh Mining analysis.
The second follows by Lemma 4.

The �nal equation follows by the following calculations, building o� Lemma 4. Observe that
Undetectable Sel�sh Mining has the following properties:

• If there are ever multiple Pair rounds in a row, USM wins them all.
• If there is a solo Pair round, USM may win or lose it.
• The number of Pair rounds in a row (between two Single rounds) is distributed independently
across time, and equal to i with probability (1 − ´) · ´ i .
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Therefore, we can write the expected number of Pair rounds between two Single rounds as:
∞
∑

i=0

(1 − ´)´ i · i = ´

1 − ´
.

And the expected number of Pair rounds won by the attacker between two Single rounds as:

w · (1 − ´)´ +
∞
∑

i=2

(1 − ´)´ i · i = (2 − ´)´2
1 − ´

+w´(1 − ´) = 2´2 − ´3 +w´ − 2w´2 +w´3

1 − ´
.

Therefore, the expected fraction of Pairs won by the attacker is:

2β 2−β 3
+wβ−2wβ 2

+wβ 3

1−β
β

1−β
= w + (2 −w)´ − (1 −w)´2. □

D OMITTED PROOFS

Proof of Proposition 1. We will show how to couple an ℓ-NCG with hashrates ®³ with one

with hashrates ï³1, 1−
∏n
i=2(1−αi ·ℓ))

ℓ
ð. Observe that in the �rst case, the probability that only Miner

1 produces a block is ³ ′
:=

α1 ·ℓ ·
∏n
i=2(1−αi ·ℓ)

1−∏n
i=1(1−αi ·ℓ)

, the probability that both Miner 1 and a Miner > 1

produces a block is ´ ′
:=

α1 ·ℓ ·(1−
∏n
i=2(1−αi ·ℓ))

1−∏n
i=1(1−αi ·ℓ)

, and the probability that only Miners > 1 produce a

block is
(1−a1 ·ℓ)·(1−

∏n
i=2(1−ai ·ℓ))

1−∏n
i=1(1−αi ·ℓ)

=
1−∏n

i=1(1−ai ·ℓ)
1−ai ·ℓ−

∏n
i=1(1−αi ·ℓ)

= 1 − ai ·ℓ
1−∏n

i=1(1−ai ·ℓ)
= 1 − ³ ′ − ´ ′.

Consider now ℓ-NCGwith hashrates ï³1, 1−
∏n
i=2(1−αi ·ℓ))

ℓ
ð. Then again we have that the probability

that only Miner 1 produces a block is ³ ′
:=

α1 ·ℓ ·
∏n
i=2(1−αi ·ℓ)

1−∏n
i=1(1−αi ·ℓ)

, the probability that both Miner 1 and a

Miner > 1 produces a block is ´ ′
:=

α1 ·ℓ ·(1−
∏n
i=2(1−αi ·ℓ))

1−∏n
i=1(1−αi ·ℓ)

, and the probability that only Miners > 1

produce a block is
(1−a1 ·ℓ)·(1−

∏n
i=2(1−ai ·ℓ))

1−∏n
i=1(1−αi ·ℓ)

=
1−∏n

i=1(1−ai ·ℓ)
1−ai ·ℓ−

∏n
i=1(1−αi ·ℓ)

= 1 − ai ·ℓ
1−∏n

i=1(1−ai ·ℓ)
= 1 − ³ ′ − ´ ′.

Therefore, the games can be coupled so that in every round whether just Miner 1, Miner 1
and other miners, or just other miners produce a block is identical. Because s is SP-Simple, it
will take the same action across both coupled games. Because s ′ is a longest-chain protocol that
tiebreaks lexicographically or reverse lexicographically, it will also take the same action in both
games (speci�cally, it will tiebreak for or against 1 the same way in both games). This immediately
establishes that the reward of Miner 1 is the same in both games.

To see that statistical undetectability translates between the two games, observe that statistical
undetectability exactly states that ℓ-NCG with strategies s, ®s−i can be coupled with ℓ′-NCG with a
longest-chain strategy and ®s−i and hashrates ®³ . By the work above, this latter game can be coupled

with ℓ′-NCG with a longest-chain strategy and s ′ and hashrates ï³1, 1−
∏n
i=2(1−αi ·ℓ))

ℓ
ð (because all

longest-chain strategies are SP-Simple). Therefore, if either of the two undetectability claims hold,
all four games can be coupled as desired (implying that the other undetectability claim holds as
well). □
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