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Abstract. We provide the first separation in the approximation guarantee achievable by truthful
and nontruthful algorithms for combinatorial auctions with polynomial communication. Specifically,
we prove that any truthful mechanism guaranteeing a (3/4− 1/240+ ε)-approximation for two buyers
with XOS valuations over m items requires exp(Ω(ε2 · m)) communication, whereas a nontruthful
algorithm by Dobzinski and Schapira [Proceedings of the Seventeenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), SIAM, 2006, pp. 1064–1073] and Feige [SIAM J. Comput.,
39 (2009), pp. 122–142] is already known to achieve a 3/4-approximation in poly(m) communication.
We obtain our separation by proving that any simultaneous protocol (not necessarily truthful) which
guarantees a (3/4 − 1/240 + ε)-approximation requires communication exp(Ω(ε2 · m)). The taxation
complexity framework of Dobzinski [Proceedings of the 57th Annual Symposium on Foundations
of Computer Science (FOCS), IEEE, 2016, pp. 209–218] extends this lower bound to all truthful
mechanisms (including interactive truthful mechanisms).
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1. Introduction. Combinatorial auctions have been at the forefront of algorith-
mic game theory since the field’s inception, owing both to their rich algorithmic theory
and their economic relevance. In a combinatorial auction, there are n bidders, and a
seller selling a set M of m items. Each bidder i has a value for all possible subsets
of the items, given by a valuation function vi : 2

M → R+. The bidders are assumed
to have quasi-linear utilities, i.e., the utility of bidder i when given a set S ⊆ M at
a price p is vi(S) − p, and the goal of the bidders is to maximize their own utility.
The seller’s goal is to find a partition of the M items into disjoint sets S1, . . . , Sn such
that the welfare,

∑

i∈[n] vi(Si), is maximized.
The seller faces two challenges in solving this problem. First, the seller must

communicate efficiently with the bidders to find a good allocation. Specifically, the
seller hopes to use poly(n,m) total bits of communication, even though each bidder’s
full valuation function in principle requires (at least) 2m bits to describe. Second, the
seller must accommodate the bidders’ own incentives, i.e., the seller must take into
account the fact that bidders are interested in their own utility and will only follow
the protocol if it maximizes their utility. In other words, the seller desires a protocol
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that each bidder is incentivized to follow—such protocols are called truthful.
The main question we study in this paper is the following: Are there settings

where nontruthful algorithms are strictly more powerful than truthful mechanisms?
More specifically, is it the case that for all valuation classes V and all α, if a poly-
communication algorithm can guarantee an α-approximation when all bidders have
valuations in V, then a poly-communication truthful mechanism can also guarantee
an α-approximation when all bidders have valuations in V?

Our main result is the first setting for which the answer is no, and in fact we show
this separation for the well-studied class of XOS (equivalently, fractionally subaddi-
tive) valuation functions.1 Before detailing our result, we provide some context.

The VCG mechanism. For some valuation classes V, truthful mechanisms
are indeed as powerful as nontruthful algorithms, due to the Vickrey–Clarke–Groves
(VCG) mechanism [Vic61, Cla71, Gro73]. In theoretical computer science terminol-
ogy, the VCG mechanism is a black-box reduction from exact welfare maximization
with a truthful mechanism to exact welfare maximization with a non-truthful algo-
rithm. More specifically, the VCG mechanism is truthful, maximizes welfare exactly,
and can be implemented using n+1 black-box calls to a nontruthful algorithm which
maximizes welfare exactly.

There are indeed some restricted settings (e.g., when V is the set of additive
valuations, or unit-demand valuations, and even up to gross substitutes) for which
a poly-communication algorithm precisely maximizes welfare, implying that VCG is
also poly-communication and precisely maximizes welfare. Still, the cases for which
VCG is poly-communication are very restrictive and do not include, e.g., submodular2

valuations, let alone XOS or subadditive.3

If one considers approximate welfare maximization, then, for general (unre-
stricted) valuation functions, the best achievable approximation guarantee by a poly-
communication algorithm is just O(1/

√
m) [NS06]. Due to the strength of this

lower bound, poly-communication “VCG-based” truthful mechanisms actually suf-
fice to match this guarantee [Rag88, LOS02, LS05]. So in these domains too, poly-
communication truthful mechanisms are as powerful as poly-communication algo-
rithms. Still, the guarantees achievable without any assumptions are quite weak.

In summary, truthful mechanisms are as powerful as nontruthful algorithms at
the extremes. When valuations are heavily restricted, VCG is poly-communication.
When valuations are arbitrary, good poly-communication algorithms don’t exist. Still,
this leaves out the entire intermediate range of valuation classes.

Beyond VCG: Gaps in relevant cases. Consider now this intermediate range
of valuations, such as submodular, XOS, or subadditive: these classes are rich enough
to contain realistic valuation functions, yet also restrictive enough to admit poly-
communication constant-factor approximation algorithms. For these valuation classes,
the state of affairs is drastically different. Indeed, there are huge gaps between the
best-known poly-communication algorithm (where deterministic, constant-factor ap-
proximations are known for all three classes [DS06, Fei09, FV10]) and the best-known
poly-communication truthful mechanism (where no randomized constant-factor ap-
proximation is known for any class [Dob07, AS19], and the best deterministic mecha-
nism guarantees only an Ω(1/

√
m)-approximation [DNS10]). Yet despite these huge

gaps in the state of affairs, it was previously unknown whether any gap (even a

1A valuation function is XOS if it can be written as a maximum of additive functions—see
section 2 for precise definition.

2A valuation function is submodular if v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ).
3A valuation function is subadditive if v(S) + v(T ) ≤ v(S ∪ T ).
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small constant factor) exists in any domain! Our main result provides the first such
separation:

Main Result (informal). No poly-communication, deterministic truthful
mechanism for two bidders with XOS valuations achieves an approximation guar-
antee better than 179

240 = 3
4 − 1

240 , whereas a poly-communication, deterministic
nontruthful algorithm guarantees a 3

4 -approximation.

We note that the part of our main result that deals with nontruthful algorithms
is well known and due to [DS06, Fei09]. Our contribution is the lower bound for
deterministic truthful mechanisms. In fact, our result generalizes to rule out certain
randomized mechanisms as well, but we defer the formal statement to Theorem 2.1.

Brief overview of approach: Simultaneous communication. Communi-
cation lower bounds which hold for truthful mechanisms but not algorithms are no-
toriously hard to come by. Specifically, only two general approaches are known.
The first is to pick a subclass of truthful mechanisms (e.g., VCG-based) and prove
lower bounds against these particular mechanisms. The aforementioned prior work
successfully provides such bounds, so we now know that VCG-based truthful mech-
anisms cannot beat an O(1/m1/3)-approximation for submodular (or XOS, subaddi-
tive) valuations [DN11, BDF+10, DSS15]. While VCG-based mechanisms are sur-
prisingly general [LMN03], (deterministic) truthful mechanisms exist which are not
VCG-based [DN15, KV12, Dob16a, AS19], and these mechanisms indeed achieve bet-
ter approximation guarantees than the aforementioned lower bounds. In particular,
simple posted-price mechanisms are not VCG-based.4

The only alternative framework was recently proposed in [Dob16b], which
establishes the following remarkable theorem (stated formally in Theorem 2.2):
if there exists a deterministic poly-communication truthful mechanism which
achieves an α-approximation for two buyers with XOS valuation functions,
then there also exists a deterministic poly-communication simultaneous algo-
rithm which achieves an α-approximation for two buyers with XOS valuation
functions (that is, the two bidders each send exactly one message, simultane-
ously, and then the designer allocates based only on these messages).5 That
is, while the existence of interactive poly-communication algorithms generally
does not imply the existence of simultaneous poly-communication algorithms
(e.g., [PS82, DGS84, NW93, BGKL03, DNO14, ANRW15, Ass17]), the additional
structure on interactive truthful mechanisms does (at least for two-player combina-
torial auctions). Following [Dob16b], the remaining task was “merely” to establish a
separation between the approximation guarantees achievable in poly-communication
with simultaneous versus interactive communication.

Initially, it seems tempting to conjecture that better than just a 1/2-approximation
(which for two bidders is trivial—simply ask each bidder for vi(M) simultaneously
and award M to the highest bidder) would be impossible with poly-communication
simultaneous algorithms, due to known lower bounds on “sketching” valuation func-
tions [BDF+12]. However, surprising barriers were discovered on this front: [BMW18]
developed a simultaneous, randomized 3/4-approximation with poly-communication

4A posted-price mechanism computes prices p1, . . . , pm in poly-time, then visits each buyer one
at a time and asks them to purchase their favorite set (the one maximizing vi(S)−

∑
j∈S pj).

5Note that [Dob16b] has implications beyond XOS, beyond deterministic protocols, and beyond
two bidders, but the implications are tricky to formally state and not relevant for this paper.
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STOC20-78 ASSADI ET AL.

for two buyers with binary-XOS valuations,6 which is tight even for interactive al-
gorithms with poly-communication. In addition, [EFN+19] established that even
interactive algorithms with poly-communication cannot beat a 1/2-approximation for
two bidders with subadditive valuations (which is matched by the aforementioned
trivial simultaneous protocol, so there cannot possibly be a separation for two subad-
ditive bidders). We prove our main result by establishing a lower bound of 3/4− 1/240
on the approximation guarantee of any deterministic simultaneous algorithm for two
bidders with binary-XOS valuation functions, thus also providing the first successful
instantiation of Dobzinski’s framework [Dob16b], despite these barriers.

As the main ideas behind our construction require preliminaries and a detailed
overview of prior work (especially [BMW18]), we defer further details of our proof to
the technical sections. We conclude with a reminder that our main result is the first
separation between approximation guarantees achievable by (deterministic) truthful
mechanisms and (deterministic) algorithms with poly-communication, which follows
by providing the first separation between approximation guarantees achievable by (de-
terministic) simultaneous algorithms and (deterministic) interactive algorithms with
poly-communication for two bidders, and an application of [Dob16b].

1.1. Related work.

Communication complexity separations. As mentioned above, there are no
previously known separations between approximation guarantees provided by poly-
communication truthful mechanisms and poly-communication algorithms for combi-
natorial auctions. However, some partial results are known.

For example, due to the works [DN11, BDF+10, DSS15], we have a separation be-
tween poly-communication algorithms and poly-communication “VCG-based” truth-
ful mechanisms when the valuation functions are submodular, XOS, or subadditive.
While this rules out a large class of potential mechanisms, we have already noted that
(variants of) posted-price mechanisms, which are not VCG-based, outperform these
lower bounds. Therefore, more general results (like ours) are necessary to consider
these mechanisms.

Along similar lines, [DN15] established that a separation exists between polylog-
arithmic communication algorithms and polylogarithmic communication “scalable”
truthful mechanisms for the special case of multi-unit auctions (where all items are
identical, so a buyer’s valuation is fully specified by m numbers). Scalability is not
a particularly restrictive definition, although the result is still quite specialized be-
cause of its focus on multi-unit auctions (where the entire valuation function can be
communicated with poly(m) bits).

Other complexity measures. We conclude with a brief overview of the line
of work on computational complexity of combinatorial auctions. In this setting, the
resource of interest is the running time of the bidders and the seller during the mech-
anism. The VCG mechanism again shows that poly-time truthful mechanisms are
as powerful as poly-time algorithms in the restricted settings where precise welfare
maximization is poly-time tractable.

Interestingly, welfare-maximization is already inapproximable in poly-time better
than Θ(1/

√
m) for XOS or subadditive valuations (unless P = NP), and again a

VCG-based truthful mechanism matches this guarantee [DNS10]. Note the distinction
in the communication model, where XOS and subadditive valuations admit a poly-
communication constant-factor approximation.

6v(·) is binary-XOS if there exists a collection C of sets and v(S) := maxT∈C{|S ∩ T |}. Binary-
XOS implies XOS.

D
o
w

n
lo

ad
ed

 0
6
/1

6
/2

3
 t

o
 1

7
3
.7

2
.1

0
4
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEPARATING TRUTHFUL/NONTRUTHFUL AUCTIONS STOC20-79

In the computational model, submodular valuations are the sweet spot where
constant-factor poly-time approximations exist (but not poly-time exact solutions).
Specifically, there is a poly-time (1 − 1/e)-approximation [Von08], which is optimal
assuming P = NP [MSV08]. Yet no (randomized) poly-time truthful mechanism can
guarantee anm−1/2+ε-approximation for any ε > 0 (unlessNP ⊆ RP). Details about
this separation can be found in [Von08, MSV08, Dob11, DV11, DV12a, DV12b, DV16].

While these works in the computational model are quite impressive, we briefly
note one major aspect which is better captured by the communication model. Some
algorithms/mechanisms are poly-time as long as the bidders can implement de-
mand queries.7 This includes the (1− 1/e)-approximation algorithm for XOS valua-
tions [DS06], the 1/2-approximation algorithm for subadditive valuations [Fei09], and
the 1/(log logm)3-approximation truthful mechanism for XOS valuations [AS19]. How-
ever, none of these algorithms/mechanisms is “truly poly-time” (unless NP ⊆ RP),
as demand-queries are NP-hard even for submodular valuations.

This means that computational lower bounds do not rule out poly-time approxi-
mations with demand-queries, and indeed the aforementioned algorithms/mechanisms
outperform known computational lower bounds. Put another way, the computational
model declares these algorithms/mechanisms to be not poly-time only because the
computational model assumes that bidders cannot choose a set to purchase from a
simple pricing scheme in poly-time. Communication lower bounds do not face this
issue, as bidders can clearly state the set they wish to purchase with m bits. Along
these lines, our results are also the first lower bounds separating what is achievable
for algorithms and truthful mechanisms with polynomially many demand queries. We
refer the reader to [CTW20] or [BMW18] for a deeper comparison of the two models.

1.2. Road map. In section 2, we provide the minimum preliminaries necessary
to state our main result, with a detailed proof overview given in section 3. Afterwards,
we provide thorough preliminaries necessary for our proofs in section 4, followed by
a complete description of our construction in section 5 and its analysis in section 6.
Appendix A contains the basic information theory tools we use in this paper.

2. Problem statement and main result. We formally define two-player com-
binatorial auctions in subsection 2.1 and state our main result in subsection 2.2. We
additionally include an informal description below for readers familiar with the topic.

We shall consider auctions with one seller and two bidders, Alice and Bob. In
our formalization, the auction would take place in several rounds of communication.
In each round, first Alice and Bob (simultaneously) send messages to the seller, and
thereafter the seller either responds by sending one message each to Alice and Bob or
terminates the auction. When the auction is terminated, the seller outputs an allo-
cation of the items and the price to be charged from both Alice and Bob. Otherwise,
the auction goes on to the next round. Observe that in this definition Alice and Bob
cannot communicate with each other directly and can only do so through the seller.

2.1. Two-player combinatorial auctions. We first formally define the setting
of two-player combinatorial auctions. Let m > 0 denote the number of items, and let
V be a nonempty set of functions from 2

[m] to R. A deterministic protocol Π for the
m-item, V-combinatorial auction problem with two bidders is formally specified by
the following five functions:

• fA determines Alice’s behavior in the protocol. Specifically, fA takes as input
Alice’s valuation function vA ∈ V, and the transcript σA ∈ ({0, 1}∗)∗ of

7A demand query takes as input a price vector ~p and outputs the set argmaxS{v(S)−
∑

i∈S pi}.
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communication with the seller she has seen so far, and decides which message
(in {0, 1}∗) to next send the seller. Alice communicates exclusively with the
seller (and not directly with Bob).

• fB determines Bob’s behavior in the protocol. Similarly, fB takes as input
Bob’s valuation function vB ∈ V, and the transcript σB ∈ ({0, 1}∗)∗ of com-
munication with the seller he has seen so far, and decides which message (in
{0, 1}∗) to next send the seller. Bob communicates exclusively with the seller
(and not directly with Alice).

• fS determines the seller’s behavior in the protocol. fS takes as input the
transcripts σA→S, σB→S ∈ ({0, 1}∗)∗ it has seen so far and selects a pair
{0, 1}∗ × {0, 1}∗ ∪ {(⊥,⊥)} to send. When ⊥ is sent to both parties, the
communication ends.

• alloc determines how to allocate the items, once the communication has con-
cluded. Specifically, alloc takes as input the entirety of Alice’s and Bob’s
communication with the auctioneer (which is in ({0, 1}∗)∗ × ({0, 1}∗)∗) and
selects a pair of sets (OA, OB) ∈ 2

[m]×2
[m], satisfying OA∩OB = ∅, to award

Alice and Bob, respectively.
• price determines how to charge prices once the communication has concluded.
Similarly, price takes as input the entirety of Alice’s and Bob’s communication
with the seller (which is in ({0, 1}∗)∗ × ({0, 1}∗)∗) and selects a pair of prices
(pA, pB) ∈ R× R to charge Alice and Bob, respectively.

Observe that the functions fS, alloc, price output a pair (a message/set/price for
Alice, and another for Bob). We shall use fS→A (respectively, fS→B) to denote the
function that outputs only the message to send to Alice (respectively, the message
to send to Bob). We define the functions allocA, allocB, priceA, priceB analogously. We
also define a randomized protocol to be a distribution over deterministic protocols.

Execution of a protocol. A deterministic, m-item, V-combinatorial auction
Π = (fA, fB, fS, alloc, price) takes place as follows: At the beginning of the protocol,
the seller has m items for sale and Alice and Bob have functions vA ∈ V and vB ∈ V,
respectively, as input. The protocol takes place in multiple rounds, where before
round i, for i > 0, it holds that Alice has received a transcript σA

<i ∈ ({0, 1}∗)i−1

from the seller, Bob has received a transcript σB
<i ∈ ({0, 1}∗)i−1

from the seller, and

the seller has received transcripts σA→S
<i , σB→S

<i ∈ ({0, 1}∗)i−1
from Alice and Bob,

respectively.
In round i, Alice and Bob send messages σA→S

i = fA(vA, σA
<i) and σB→S

i =
fB(vB, σB

<i), respectively, to the seller. The seller appends these to the transcripts

σA→S
<i , σB→S

<i to get transcripts σA→S
≤i , σB→S

≤i ∈ ({0, 1}∗)i. Thereafter, the seller sends

a message σA
i = fS→A(σA→S

≤i , σB→S
≤i ) to Alice and a message σB

i = fS→B(σA→S
≤i , σB→S

≤i )
to Bob.

If (σA
i , σ

B
i ) 6= (⊥,⊥), then Alice (respectively, Bob) appends σA

i to σA
<i (respec-

tively, σB
i to σB

<i) to get transcript σA
≤i (respectively, σ

B
≤i) and continue round i + 1

of the protocol. On the other hand, if (σA
i , σ

B
i ) = (⊥,⊥), then the protocol termi-

nates after round i and no further communication takes place. The seller outputs an
allocation (OA, OB) = alloc(σA→S

≤i , σB→S
≤i ) and prices (pA, pB) = price(σA→S

≤i , σB→S
≤i ).

Observe that if Π is deterministic, then the values of (OA, OB) and (pA, pB) are
completely determined by Π and the inputs vA, vB to Alice and Bob, respectively.
We sometimes denote these values by (OA, OB) = allocΠ(v

A, vB) and (pA, pB) =
priceΠ(v

A, vB). We will also use the shorthand OA = allocAΠ(v
A, vB), etc.
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Properties of a protocol. We consider the following parameters of a protocol:
• Rounds: For a deterministic protocol Π and vA, vB ∈ V, define RΠ(v

A, vB) =
R if the execution of Π when Alice and Bob have inputs vA, vB, respectively,
terminates after round R. If the execution does not terminate at all, then we
define RΠ(v

A, vB) = ∞.
We say that Π has R rounds if, for all vA, vB ∈ V, we have RΠ(v

A, vB) = R.
A randomized protocol has R rounds if all the deterministic protocols in its
support have R rounds. If a deterministic or randomized protocol has exactly
one round, then we say that the protocol is simultaneous.
To emphasize, in a simultaneous protocol Alice and Bob each send exactly
one message. The seller does not send any messages. Then an allocation is
determined only as a function of these messages.

• Communication complexity: For a deterministic protocol Π and vA, vB ∈
V, we define CCΠ(v

A, vB) = ∞ if RΠ(v
A, vB) = ∞. On the other hand, if

RΠ(v
A, vB) = R < ∞, then we define

CCΠ(v
A, vB) =

∑

i≤R

(

len(σA→S
i ) + len(σB→S

i )
)

+
∑

i<R

(

len(σA
i ) + len(σB

i )
)

.

In the above equation, the values σA→S
i , σB→S

i , etc., denote the corresponding
values in an execution of Π when Alice has input vA and Bob has input vB.
These values are well defined as Π is deterministic.
We define CC(Π) = maxvA,vB∈V CCΠ(v

A, vB). Finally we define CC(Π′) for a
randomized protocol Π′ to be the largest value of CC(Π) for all deterministic
protocols Π in its support.

• Truthfulness: We say that a deterministic protocol Π is truthful if for all
vA, vB, v′ ∈ V, following the protocol is an ex-post Nash. Formally,

vA(allocAΠ(v
A, vB))− priceAΠ(v

A, vB) ≥ vA(allocAΠ(v
′, vB))− priceAΠ(v

′, vB),

vB(allocBΠ(v
A, vB))− priceBΠ(v

A, vB) ≥ vB(allocBΠ(v
A, v′))− priceBΠ(v

A, v′).

We say that a randomized protocol is universally truthful if all the deter-
ministic mechanisms in its support are truthful. To clearly emphasize the
distinction between protocols which are truthful and not truthful, we will
often refer to a truthful protocol as a (truthful) mechanism, and one which
is not necessarily truthful as an algorithm.

• Approximation guarantee: For m,V as above and vA, vB ∈ V, define
the function opt(vA, vB) = maxSA,SB⊆[m]:SA∩SB=∅ v

A(SA) + vB(SB). Let ν
be a distribution over pairs drawn from V and α, p > 0. We say that a
deterministic protocol Π is α-approximate over ν with probability p if we
have

Pr
(vA,vB)∼ν

(

vA(allocAΠ(v
A, vB)) + vB(allocBΠ(v

A, vB)) > α · opt(vA, vB)
)

≥ p.

We further say that a randomized protocol Π′ is α-approximate with proba-
bility p if for all vA, vB ∈ V, we have

Pr
Π

(

vA(allocAΠ(v
A, vB)) + vB(allocBΠ(v

A, vB)) > α · opt(vA, vB)
)

≥ p,

where the probability is over all deterministic protocols Π in the support of
Π′.

D
o
w

n
lo

ad
ed

 0
6
/1

6
/2

3
 t

o
 1

7
3
.7

2
.1

0
4
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC20-82 ASSADI ET AL.

2.2. Formal statement of our main result. We now formalize our main
result. For m > 0, let BXOSm be the class of all binary-XOS functions on m items.
That is, BXOSm denotes the set of all v : 2[m] → R such that there exists a collection
C ⊆ 2

[m], such that for all S ∈ 2
[m], v(S) = maxC∈C{|S ∩ C|}. Define also XOSm ⊇

BXOSm to be the class of all XOS functions on m items. That is, XOSm denotes the
set of all v : 2[m] → R such that there exists a collection C ⊆ R

m
+ , such that for all

S ∈ 2
[m], we have v(S) = maxc∈C{

∑

i∈S ci}.
Theorem 2.1 (main result). There exists a constant β > 0 such that for all ε > 0,

there exists an m0 > 0 satisfying the following: For all m > m0, any randomized, m-
item, XOSm-combinatorial auction Π with two bidders and one seller that is universally
truthful and (3/4 − 1/240 + ε)-approximate with probability 1/2+exp(−βε2 ·m) satisfies

CC(Π) ≥ exp(βε2 ·m).

Note, of course, that deterministic protocols are a special case of randomized
protocols, so Theorem 2.1 also applies to deterministic mechanisms. Combining this
with the deterministic 3/4-approximation for XOSm which uses only poly(m) commu-
nication [DS06, Fei09] separates the achievable guarantees of deterministic truthful
mechanisms and deterministic algorithms with poly-communication.

Our proof of Theorem 2.1 makes use of the taxation complexity framework de-
veloped by [Dob16b]. This framework is very rich and has implications beyond XOS
valuations, and beyond two-player auctions. We state below only the case of the
framework necessary for our main results and refer the reader to [Dob16b] for the full
framework.

Theorem 2.2 (see [Dob16b]). There exists a polynomial P (·) such that for all
m, p, α > 0 and all randomized, m-item, XOSm-combinatorial auctions Π with two
bidders and one seller that are universally truthful and α-approximate with probability
p, there is a randomized, m-item, XOSm-combinatorial auction Π′ with two bidders
and one seller that is simultaneous and α-approximate with probability p and satisfies
CC(Π′) ≤ P (max(CC(Π),m)).

Theorem 2.2 provides a poly-communication reduction from simultaneous com-
binatorial auctions to truthful combinatorial auctions. Our main technical result is a
lower bound on the simultaneous communication necessary for a randomized protocol
that is (3/4 − 1/240 + ε)-approximate with probability 1/2 + exp(−βε2 ·m).

Theorem 2.3. For all ε > 0 and all m > 1010

ε2 , any randomized, m-item, BXOSm-
combinatorial auction Π with two bidders and one seller that is simultaneous and
(

3
4 − 1

240 + ε
)

-approximate with probability 1
2 + exp

(

− ε2m
500

)

satisfies

CC(Π) ≥ exp

(

ε2m

500

)

.

We briefly compare Theorem 2.3 to Theorem 1.1 of [BMW18]. Theorem 1.1
of [BMW18] gives a randomized, poly-communication simultaneous algorithm which
gets a 3/4-approximation in expectation. Theorem 2.3 rules out randomized, poly-
communication simultaneous algorithms which achieve a 3/4-approximation with prob-
ability nonnegligibly larger than 1/2. In particular, this includes deterministic algo-
rithms as they achieve the approximation with probability 1.

For the sake of completeness, we prove Theorem 2.1 assuming Theorems 2.2
and 2.3 in Appendix B. The remainder of the paper is devoted to proving Theorem 2.3.
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By Yao’s minimax principle, in order to obtain a lower bound CC(Π) for randomized
m-item simultaneous mechanisms Π that are α-approximate with probability p (for
some m,α, p), it is sufficient to show a distribution ν over pairs of functions in BXOSm,
such that all deterministic simultaneous mechanisms Π′ that are α-approximate over
ν with probability p have large CC(Π′). We construct ν in section 5 and analyze it
in section 6. Before this, we give a detailed sketch of our construction and the key
aspects that drive it.

3. Detailed proof sketch. In this section, we gradually build various aspects
of our main construction and highlight the roles they play. All valuation functions for
the rest of the paper will be BXOS. Recall that each binary-XOS valuation v has an
associated set C of clauses, such that v(S) := maxT∈C{|S ∩ T |}. We shall sometimes
refer to v simply by its set of clauses.

As mentioned previously, our work builds off of a prior construction of [BMW18],
which we first describe in detail.

3.1. The [BMW18] construction. The authors of [BMW18] also study BXOS

combinatorial auctions. Their result, which serves as our starting point, is a lower
bound on the communication required to determine the value of the optimal achiev-
able welfare up to a factor of 3/4. Importantly, though, observe that for simultaneous
protocols hardness for the decision problem does not imply hardness for finding an
approximately optimal allocation (and hardness for the decision problem has no
implications in Dobzinski’s framework). Indeed, deciding the optimal achievable wel-
fare in the [BMW18] construction better than a (3/4 − 1/108)-approximation requires
exponential communication, yet an allocation guaranteeing a 3/4-approximation can
be found with polynomial communication! We elaborate on this after presenting
their construction.8

In the construction of [BMW18], the valuation functions of Alice and Bob are
BXOS with exponentially many regular clauses and may or may not include one special
clause. The regular clauses are constructed so that the union of a regular clause of
Alice and a regular clause of Bob has size < 3m/4 (and therefore the maximum possible
welfare of any allocation is < 3m/4 as well), while the union of a special clause of Alice
and a special clause of Bob has size m (and therefore the optimal allocation has
welfare m). This means that determining the optimal welfare up to a factor of 3/4
(or, in fact, any constant better than 20/27) amounts to determining whether or not
Alice and Bob have special clauses.

However, in the [BMW18] construction, the special clauses of Alice and Bob are
indistinguishable from the regular clauses. Intuitively, determining whether or not
one of their exponentially many clauses is special with a simultaneous protocol then
requires exponential communication (and this is true). We now detail the [BMW18]
construction.

3.1.1. The structure of the clauses in [BMW18].

Step one: Select a basis. For the [BMW18] construction, a basis is a pair of
sets (S, T ) such that |S| = |T | = m/2, and also |S ∩ T | = m/3. In the [BMW18]
construction, a basis (S, T ) is sampled uniformly at random from all possible bases.

8To get a quick intuition for how this can be possible, consider the trivial reduction establishing
that allocation is at least as hard as decision: First, solve the allocation problem. Then ask Alice and
Bob to output their value for the allocation chosen, and solve the decision problem. This reduction
requires an extra round for Alice and Bob to evaluate the solution, and so it cannot be applied
simultaneously. One interpretation of [BMW18] is that this extra round is necessary.
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1 2 3 4 5 6

X X XS :

X X XT :

X X XA :

X X XB :

Fig. 1. The construction of [BMW18]. Each of the numbers 1 to 6 represents a group of m
6

items.

Alice knows S and Bob knows T (Alice does not know T , but has a Bayesian posterior
conditioned on S and the fact that (S, T ) is a uniformly random basis). We provide
an illustration of one possible basis in Figure 1 where each of the six blocks in a row
represents a group of m/6 items.

Step two: Draw regular clauses. Alice’s regular clauses are constructed by
uniformly sampling sets of size m/2 that have intersection exactly m/3 with S, and
Bob’s regular clauses are constructed by uniformly sampling sets of size m/2 that have
intersection exactly m/3 with T . Constructing the regular clauses this way satisfies
the following first key property: The union of a regular clause of Alice and a regular
clause of Bob has size strictly less than 3m/4 (in fact, at most 20m/27+ εm except with
exponentially small probability).

We briefly explain why (it is < 3m/4). As all regular clauses have size m/2, it
is equivalent to describing why the intersection of a regular clause of Alice and a
regular clause of Bob has size strictly more than m/4. Intuitively, this is because each
regular clause of Alice intersects S more than random, while each regular clause of
Bob intersects T more than random, and S and T intersect more than random. Put
another way, if the basis (S, T ) instead satisfied |S∩T | = m/4, the expected size of the
intersection of two independently random sets of size m

2 , then, as the regular clauses
of Alice and Bob are chosen independently of each other, they will also behave like
independently chosen random sets and have an intersection of size m/4 in expectation.
In actuality, the basis (S, T ) has intersection of size m/3, more than the expected size of
the intersection of two independently random sets of size m/2. Thus, the regular clauses
of Alice and Bob also intersect more than random sets, i.e., in more than m/4 places.

Importantly, observe that if we were to curtail the construction here, the optimal
welfare would be < 3m/4.

Step three: Special clauses. The second key property of this construction
is that we can “hide” a special clause inside the exponentially many regular clauses
sampled by Alice and Bob.

To see an illustration of how a special clause is hidden among the regular clauses,
observe the rows corresponding to the special clauses A and B in Figure 1. The special
clauses for Alice and Bob are disjoint, and their union is of size m. Additionally, note
that A intersects S in m

3 places, and similarly B intersects T in m
3 places, just like

all the regular clauses. As the size of their intersections with S and T (respectively)
are the same, Alice and Bob cannot tell the special clauses (if they are present) apart
from the regular clauses.
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Importantly, observe that we can now either add or not add a pair of special
clauses to their input. If we do, then the optimal achievable welfare is now m. If we
don’t, it remains < 3m/4. So for Alice and Bob to simultaneously decide whether they
have a special clause or not, they must somehow send information about each of their
exponentially many clauses, which requires exponential communication.

Two observations. We briefly make two observations about the [BMW18] con-
struction (without proof). First, their lower bound holds only for simultaneous proto-
cols. Indeed, Alice and Bob could first communicate S and T to each other in round
one, and then they could declare in round two whether they have a special clause or
not. In addition, observe that if we simply award to Alice the items corresponding to
a uniformly random clause, this allocation achieves a > 3m/4-approximation with high
probability! We refer the reader to [BMW18] for these calculations, but note that the
main idea is that Bob can have high welfare for a set because of his special clause,
without communicating to the seller that a special clause exists. So if we award Alice
a uniformly random clause, if Bob happens to have a special clause, then his welfare
is at least m/4 (and therefore the achieved welfare is at least 3m/4, good enough for
a 3/4-approximation). If Bob doesn’t have a special clause, then the resulting welfare
is nearly optimal. But observe that this approximation is guaranteed without needing
to learn whether Bob has a special clause or not.

This latter phenomenon is not just an artifact of precise choices in the [BMW18]
construction, but a genuine barrier. For example, [BMW18] also designs a random-
ized, poly-communication simultaneous algorithm that achieves a 3/4-approximation
in expectation. Of course, this algorithm is not deterministic, nor does it guarantee a
3/4-approximation with good probability (see Theorem 2.1). But it does help convey
that the allocation and decision problems are fundamentally different for simultaneous
algorithms.

3.1.2. A minor generalization. In the presented construction, we thought of
each of the blocks from 1 to 6 in Figure 1 as representing a group of m/6 items.
However, the exact same arguments (with numerically different calculations) would
also apply to any construction where blocks 1 and 2 represented u items, and blocks
3 through 6 represented v items (for any u, v).

With these additional parameters, it turns out (we omit the calculations) that
the size of the intersection of a regular clause of Alice and a regular clause of Bob is

2v3 + 2u2v + 3uv2

(u+ 2v)3
·m.

The expression above is maximized when u = v (as observed in [BMW18]) but is
strictly larger than m/4 for all u, v such that u < 2v (to get intuition for the breakpoint:
when u = 2v, then |S ∩ T | = m/4, and S, T behave like independently chosen sets).
We will use this idea later in our construction.

3.2. From the decision problem to the allocation problem. The crucial
difference between [BMW18] and our work is that [BMW18] shows that the problem
of “deciding” whether or not the optimal welfare is close to m is hard, whereas we
wish to show that the problem of “computing” an allocation with welfare close to
the optimal is hard. As [BMW18] emphasizes, these problems are incomparable for
simultaneous mechanisms.

Our construction is based on the following approach of going from a lower bound
for the decision problem to a lower bound for the allocation problem: Consider two

D
o
w

n
lo

ad
ed

 0
6
/1

6
/2

3
 t

o
 1

7
3
.7

2
.1

0
4
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC20-86 ASSADI ET AL.

copies of the [BMW18] construction on disjoint sets of items, where (a uniformly
chosen) one is such that Alice and Bob have the special clauses and the other one
is such that Alice and Bob do not have the special clauses. Suppose further that the
seller can only allocate items in one of the two copies.

We claim that the decision lower bound for [BMW18] implies an allocation lower
bound for this artificial problem. Indeed, the optimal welfare of the copy with the
special clauses is much larger than the optimal welfare of the copy without the special
clauses (by more than a factor of 4/3). Thus, any allocation that allocates items in
only one of the two copies and gets welfare close to optimal must allocate items in the
copy with the special clause. However, this requires the seller to at least determine
which copy has the special clause, which is hard due to [BMW18]. The catch, of
course, is that we needed to assume that the seller can only allocate items in one
of the two copies, so this is not actually an instance of the combinatorial auctions
problem.

Cross-terms. It remains now to transform the system with two copies and a
restriction on the seller to only allocate items in one of the two copies to a standard
combinatorial auction. A first approach may be to have two bases (S1, T 1) and
(S2, T 2) on the same set of items and give Alice and Bob regular clauses generated
from both the bases together with a special clause from (a uniformly random) one of
the bases.

One would then hope that, just like the system described above, computing a
good allocation for this system would require the seller to implicitly determine which
basis has special clause, and maybe we can show that determining this is hard à
la [BMW18].

Unfortunately, this is not actually the case. The reason is that having two bases
on the same set of items gives rise to cross-terms. Specifically, if we have two bases
on the same set of items, then not only do we have to argue about the size of the
union of regular clauses from basis 1 of Alice and regular clauses from basis 1 of Bob,
but we also need to argue about the size of the union of regular clauses from basis 1
of Alice and regular clauses from basis 2 of Bob.

These additional unions, which we call the cross-terms, imply that the two bases
must necessarily be correlated in order to avoid the issues described in subsection 3.1.
Namely, if the two bases are independent, then S1 and T 2 intersect in m/4 places in
expectation (like sets of size m/2 chosen independently), implying in turn that the size
of the union of regular clauses from basis 1 of Alice and regular clauses from basis 2
of Bob is 3m/4 in expectation. This is too large for our lower bound, as we need the
union to be of size strictly less than 3m/4 in expectation.

But we do at least have a candidate approach: pick two correlated bases, and
hope to find an appropriate correlation so that knowing an allocation which achieves
welfare 3m/4 immediately determines which basis had a special clause.

3.3. Finding the right correlations. As shown in the previous section, it is
essential to have the two bases be suitably correlated to deal with the cross-terms.
What is the right way to correlate these bases? It would be ideal if the cross-terms
coming from the “cross-pairs” S1, T 2 and S2, T 1 behave exactly like the terms coming
from the two bases (S1, T 1) and (S2, T 2). If we can make this happen, then the
argument that shows why the size of the union of regular clauses from basis 1 of Alice
and regular clauses from basis 1 of Bob is < 3m/4 would extend to also show that the
size of the cross-terms is < 3m/4.

In order to show that sets S1, T 2 and S2, T 1 behave like bases, we need to ensure
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1 2 3 4 5 6 7 8 9 10 11 12

X X X X X XS1 :

X X X X X XS2 :

X X X X X XT 1 :

X X X X X XT 2 :

X X X X X XA1 :

X X X X X XA2 :

X X X X X XB1 :

X X X X X XB2 :

Fig. 2. An illustration of two correlated bases. Each column denotes a group of m
12

items. This
construction works even if columns 1 through 8 denote groups of u items, and columns 9 through 12
denote groups of v items, for any u, v (see subsection 3.3).

that their intersections, namely, S1 ∩ T 2 and S2 ∩ T 1, have size m/3, just like the
intersections of two sets in a basis. Is it possible to have sets that behave in this way?

The answer turns out to be yes, and one such construction is described in Figure 2.
In Figure 2, each of the 12 columns denotes a group of m/12 items, making a total
of m items, and a X in row S1 and column 1 means that the first m/12 items are
present in the set S1. Importantly, note that the tuples (S1, T 1) and (S2, T 2) behave
like a [BMW18] basis, and have four columns in their intersection, amounting to m/3
items, and so do the cross-terms (S1, T 2) and (S2, T 1).

Thus, the construction in Figure 2 has fixed the issue with the cross-terms de-
scribed in the previous section. This step is clearly necessary in order to have any
hope of a successful construction, but there is one more step to ensure that knowing
a 3/4-approximate allocation reveals which copy is special.

Special cross-terms. Just like there are cross-terms coming from regular clauses
from basis 1 of Alice and regular clauses from basis 2 of Bob, there are also cross-terms
coming from regular clauses from basis 1 of Alice and special clauses from basis 2 of
Bob (and vice versa).9

Before we describe how we deal with these special cross-terms, we first need to
define the special clauses in our system. We omit a precise definition in this sketch,
but mention here that significant structure is imposed by the fact that special clauses
need to be indistinguishable from the regular clauses. In fact, the special clauses need
to more or less look like the sets A1, A2, B1, and B2 in Figure 2, where again a X in
a given column indicates that the corresponding group of m/12 items is in the set.

With this definition of special clauses, one can calculate the expected intersection

9We do not have to deal with cross-terms coming from special clauses from basis 1 of Alice
and special clauses from basis 2 of Bob as only one of the bases will have a special clause in our
construction.

D
o
w

n
lo

ad
ed

 0
6
/1

6
/2

3
 t

o
 1

7
3
.7

2
.1

0
4
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC20-88 ASSADI ET AL.

of the special cross-terms and check if it is > m/4 or not. It turns out that with the
construction in Figure 2, this size is exactly m/4, which means that the construction
does not suffice. The reason this is problematic is because we can now simply award
Alice items corresponding to an arbitrary regular clause, and Bob will get welfare m/4
from its complement (using his special clause, no matter which copy his special clause
is from).

It is here that we use the generalization of [BMW18] given in subsection 3.1, and
let the blocks of items have unequal size. We’ll assume that the first 8 columns in
Figure 2 denote groups of u items each, and the last 4 columns denote groups of v
items each. For general u, v, the intersection of the regular cross-terms has size

5u2v + u3 + 6uv2 + 2v3

2(u+ 2v)2(2u+ v)
·m.

On the other hand, the intersection of a special cross-terms has size

16uv + 5u2 + 6v2

12(u+ 2v)(2u+ v)
·m.

In fact, the parameter governing our lower bound is the minimum of the two
expressions above, and this is maximized when v/u = 1 +

√

3/2. For simplicity’s
sake, we present our main results assuming v/u = 2 when the minimum of the two
expressions above is 61m/240 > m/4. The value 61m/240 corresponds to the parameter
179/240 in our main result.

3.4. Summary of outline. So to summarize, our construction takes two corre-
lated bases for a generalized [BMW18] construction. We carefully choose the param-
eters of both each individual instance, as well as the correlation pattern, so that the
following hold:

• The intersection of a regular clause of Alice and regular clause of Bob within
the same copy is > m/4.

• The intersection of a regular clause of Alice and a regular clause of Bob across
different copies is > m/4.

• The intersection of a special clause of Alice and a regular clause of Bob from
the opposite copy is > m/4.

• It is possible to embed disjoint special clauses for both Alice and Bob within
either copy, in such a way that they are indistinguishable from regular clauses.

If we can accomplish all four properties, this means that any allocation guaran-
teeing welfare ≥ 3m/4 must involve at least one special clause, and a regular or special
clause from the same copy. This sketch omits the calculations, but this property suf-
fices to guarantee that no allocation guarantees welfare ≥ 3m/4 both when copy one is
special and when copy two is special. This in turn means that knowing an allocation
which guarantees welfare ≥ 3m/4 determines which copy is special (and then careful
information-theoretic arguments establish that determining the special copy requires
exponential communication). This completes our detailed sketch, and the technical
sections confirm both that our construction satisfies the properties above and that
these properties guarantee the desired conclusion.

4. Technical preliminaries. This section contains notation and preliminaries
necessary for our complete proofs. The following notation is standard (and some of it is
previously used in our proof sketch and preliminaries), but included for completeness.

Unless otherwise specified, all logarithms are to the base 2. We will use Z to
denote the set of integers and R to denote the set of all real numbers. We also define
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R+ to denote the set of all nonnegative real numbers. If S is a set, then 2S will denote
the power set, i.e., the set of all subsets, of S. Additionally, we shall denote using S∗

the set ∪i≥0S
i, where Si, for i > 0, is the set of all strings of length i that can be

formed with elements of S, and S0 is the set containing only the empty string. The
length of a string σ will be denoted using len(σ).

Let t ≥ 1 be an integer. We define [t] = {1, . . . , t}. For a tuple X = (X1, . . . , Xt)
and integer i ∈ [t], we define X<i = (X1, . . . , Xi−1) and X−i = (X1, . . . , Xi−1,
Xi+1, . . . , Xt).

We will use U(S) to denote the uniform distribution over a finite set S. If X is a
random variable, then dist(X) will denote the distribution of the values taken by X.
Our proofs require careful information-theoretic arguments, and Appendix A contains
thorough preliminaries for the notation and facts we use.

4.1. Partitions and notation. Recall that in the [BMW18] construction, one
defines a distribution D(S) which is uniform over all sets A such that |A∩S| = m/3.
Such a distribution is concise to describe in text and does not merit special notation.
Our construction, however, will eventually define a distribution µ?(·) which is uniform
over all sets A such that |A ∩ Pi| = pi for all i ∈ [16]. We will also frequently
discuss the intersection of two sets drawn independently from such distributions and
show that it concentrates around its expectation (and compute its expectation). This
section provides notation so that we can make concise descriptions and statements of
this form, and concludes with a concentration inequality that we will repeatedly use.
While this notation does (significantly) help keep statements concise, the reader may
wish to refer back to this section for help parsing the precise statements.

We shall denote sequences with a ~ on top, e.g., ~S. We shall use ~S‖~S′ to denote

the concatenation of the sequences ~S and ~S′. Similarly, we shall use ~S‖S′′ to denote

the sequence formed by appending the single element S′′ to the sequence ~S. Let
k > 0 and ~S = S1, S2, . . . , Sk be a sequence of k sets. For a function f defined
on sets, we shall use f(~S) to denote the sequence f(S1), . . . , f(Sk). Thus, |~S| shall
denote the sequence |S1|, . . . , |Sk|, and ~S ∩ A, for a set A, shall denote the sequence
S1 ∩A, . . . , Sk ∩A, etc.

Let k > 0. We say that a sequence ~P = P1, P2, . . . , Pk of subsets of M forms a
partition of M into k sets if the sets P1, . . . , Pk are pairwise disjoint and their union is
M . Formally, it should hold that Pi∩Pj = ∅ for all i 6= j ∈ [k] and ∪i∈[k]Pi = M . For

a partition ~P = P1, P2, . . . , Pk of M into k sets, and an element z ∈ M , we define ~P [z]
to be the unique i ∈ [k] such that z ∈ Pi. Observe that our definition of a partition

above ensures that ~P [z] is well defined for all z.
Definition 4.1 defines the class of distributions over sets that we consider fre-

quently throughout our construction.

Definition 4.1. We say that a tuple (k, ~P , ~p) is a partition parameter if k > 0,
~P = P1, . . . , Pk is a partition of M into k sets, and ~p = p1, p2, . . . , pk is a sequence of
integers satisfying 0 ≤ pi ≤ |Pi| for all i ∈ [k].

For a partition parameter (k, ~P , ~p), we define PC(k, ~P , ~p) to be the uniform dis-
tribution over all sets U satisfying

|~P ∩ U | = ~p.

Recall in our proof sketch that we repeatedly draw regular sets from a distribution
of the form PC(k, ~P , ~p) and wish to argue about the size of the intersection of two
independently drawn regular sets (from different distributions). The following lemma
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states the expected intersection (captured in ∆), and also bounds the probability that
the intersection deviates far from ∆. Mapping back to the [BMW18] construction,
Lemma 4.2 would help claim that all regular sets have intersection at least 7m/27−εm
with high probability. The proof of Lemma 4.2 is in Appendix B.1.

Lemma 4.2. For any partition parameters (k, ~P , ~p) and (k′, ~P ′, ~p′), it holds for all
ε > 0 that

Pr
U∼PC(k, ~P ,~p)

U ′∼PC(k′, ~P ′,~p′)

(|U ∩ U ′| < ∆− εm) ≤ exp(−ε2(m−∆)/3),

where

∆ =
∑

i∈[k]:|Pi|>0

∑

i′∈[k′]:|P ′

i′
|>0

pip
′
i′
|Pi ∩ P ′

i′ |
|Pi| · |P ′

i′ |
.

4.1.1. The function Part. All of the partition parameters that we consider take
a particular form, which enables further concise notation. Specifically, they will arise
from the following construction: Let k > 0. For any sequence ~S = S1, . . . , Sk of k
subsets of M and any sequence ~b = b1, . . . , bk of bits, we define the set

Part~S(
~b) = {z ∈ M | ∀i ∈ [k] : 1(z ∈ Si) = bi} .

We use Part~S to denote the sequence of sets {Part~S(~b)}~b∈{0,1}k ordered lexico-

graphically according to ~b (i.e., Part~S(0
k), followed by Part~S(0

k−11), etc.). Observe
that the sequence Part~S forms a partition of M into 2k sets. Lemma 4.3 and Corol-
lary 4.4 discuss marginals of distributions drawn jointly (intuitively, Alice and Bob will
have inputs drawn jointly, and we will want to reason about the marginal distribution
of the input that Alice sees). Applied to the [BMW18] construction, Corollary 4.4
would be useful to claim that when (S, T ) are drawn uniformly at random among
sets of size m/2 which intersect at m/3, that S is a uniformly random set of size
m/2. It would also be useful to claim that Alice’s special set is indistinguishable from
her regular sets. Lemma 4.3 is a technical generalization of Corollary 4.4 which is
necessary for our construction because we sometimes jointly draw tuples of sets (but
it has no analogue in [BMW18]).

Lemma 4.3. Let k, k1, k2 > 0 and consider ~aj ∈ Z
2k+kj

for j ∈ {1, 2}. Let ~S be a
sequence of k subsets of M . For j ∈ {1, 2}, define µj to be the uniform distribution

over all sequences ~Sj of kj subsets of M satisfying |Part~S‖~Sj
| = ~aj.

For any ~a ∈ Z
2k+k1+k2

such that Pr~S1∼µ1,~S2∼µ2

(

|Part~S‖~S1‖~S2
| = ~a

)

> 0, we have

for all j ∈ {1, 2} and all sequences ~Z of subsets of M ,

Pr
~Sj∼µj

(

~Sj = ~Z
)

= Pr
~S1∼µ1

~S2∼µ2

(

~Sj = ~Z | |Part~S‖~S1‖~S2
| = ~a

)

.

Corollary 4.4. Let k > 0 and ~a1,~a2 ∈ Z
2k be arbitrary. Let ~S be a sequence of

k subsets of M . For j ∈ {1, 2}, define µj := PC(2k,Part~S ,~aj) (which is the uniform
distribution over all sets A ⊆ M satisfying |Part~S ∩A| = ~aj).

For any ~a ∈ Z
2k such that PrA1∼µ1,A2∼µ2

(

|Part~S ∩A1 ∩A2| = ~a
)

> 0, we have
for all j ∈ {1, 2} and all subsets Z ⊆ M ,

Pr
Aj∼µj

(Aj = Z) = Pr
A1∼µ1
A2∼µ2

(

Aj = Z | |Part~S ∩A1 ∩A2| = ~a
)

.
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5. Our construction. For the purposes of this section, we fix m > 0. We
denote the set [m] using the letter M . If S is a subset of M , then we use S to denote
M \ S, i.e., the set of items in M that are not in S. We now give a formal definition
of our lower bound instance.

5.1. Bases and clauses. We next define the notion of a basis.

Definition 5.1 (basis). A pair S = (S1, S2) of subsets of M forms a basis if

|PartS | =
(

5m

16
,
3m

16
,
3m

16
,
5m

16

)

.

To help parse the notation PartS , recall that the first term denotes the number of
elements which are in neither S1 nor S2 (corresponds to ~b = (0, 0)), the second term

is the number of elements which are in S2 but not S1 (corresponds to ~b = (0, 1)), the

third term is the number of elements in S1 but not S2 (corresponds to ~b = (1, 0)),
and the fourth term is the number of elements which are in S1 ∩ S2 (corresponds to
~b = (1, 1)).

We reserve the letters S and T to denote bases. Note that if S = (S1, S2) is a
basis, then the pair Srev = (S2, S1) is also a basis. For notational convenience, we
will treat bases as a sequence of two sets and omit the ~ sign. The following definition
considers a pair of bases. Recall that S||T is a list of four sets, so |PartS||T | has sixteen
possible ~b to consider (and therefore is a list of sixteen numbers).

Definition 5.2 (compatible bases). We say that basis S is compatible with basis
T if

|PartS‖T | =
(

4m

16
,
m

16
, 0, 0, 0,

m

16
,
2m

16
, 0,

m

16
, 0,

m

16
,
m

16
, 0,

m

16
, 0,

4m

16

)

.

For short, we refer to ~cmp :=
(

4m
16 ,

m
16 , 0, 0, 0,

m
16 ,

2m
16 , 0,

m
16 , 0,

m
16 ,

m
16 , 0,

m
16 , 0,

4m
16

)

.

Again, recall that (e.g.) 2m/16 denotes the number of elements in S1∩S2∩T 1∩T 2

(and corresponds to ~b = (0, 1, 1, 0)). An example of a basis S that is compatible with
T is depicted in Figure 3. We note that Definition 5.2 is not symmetric, i.e., basis
S may be compatible with T without basis T being compatible with S. However, it
holds that if basis S is compatible with T , then basis T rev is compatible with basis
Srev.

We will use ξsingle to denote the uniform distribution over all bases and ξ to
denote the uniform distribution over pairs of bases S, T such that S is compatible
with T .

The first step in our construction is the distribution ξ, which defines a distribution
over pairs of bases. Mapping back to our proof sketch, (S1, T 1) denotes the basis for
the “first copy,” and (S2, T 2) denotes the basis for the “second copy.”

5.1.1. Regular clauses. The next step in our construction is to define how to
draw regular clauses once the bases are fixed. In order to have the desired interaction
between cross-terms, we need to specify the intersection of each clause not only with
the basis “of its copy,” but also the basis for the “other copy.”

Definition 5.3 (clause). Let S = (S1, S2) be a basis. We say that a set A ⊆ M
is a clause with respect to S if

|PartS ∩A| =
(

2m

16
,
m

16
,
2m

16
,
3m

16

)

.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X X X X X X X XS1 :

X X X X X X X XS2 :

X X X X X X X XT 1 :

X X X X X X X XT 2 :

X X X X X X X XA1
? :

X X X X X X X XA2
? :

X X X X X X X XB1
? :

X X X X X X X XB2
? :

Fig. 3. A basis S = (S1, S2) that is compatible with another basis T = (T 1, T 2). Also pictured:
a pair of sets (A1

?, A
2
?) special with respect to (S, T ) (see subsection 5.1.2). Observe that (B2

? , B
1
?) =

(A2
?, A

1
?) is special with respect to (T rev , Srev). Here, the blocks inside each column correspond to

the same m/16 elements.

For short, we denote this by ~reg :=
(

2m
16 ,

m
16 ,

2m
16 ,

3m
16

)

.

We define µsingle(S) to be the uniform distribution over all clauses with respect to
S. Observe that the distribution µsingle(S) = PC(4,PartS , ~reg) (recall the definition
of PC from Definition 4.1). We also define the following.

Definition 5.4 (the distribution µ(·)). Let S = (S1, S2) be a basis. A pair
(A1, A2) of subsets of M is called a clause pair with respect to S if A1 is a clause
with respect to S, A2 is a clause with respect to Srev, and we have

|PartS ∩A1 ∩A2| =
(

0, 0,
m

16
,
m

16

)

.

For short, we define ~regpair :=
(

0, 0, m
16 ,

m
16

)

.
We define µ(S) to be the uniform distribution over all clause pairs with respect

to S.

The second step in our construction is the distribution µ(·), which describes how
Alice and Bob draw pairs of regular clauses once their basis is fixed.

Observe that µ(S) is a distribution over pairs of clauses. The first clause in the
pair is a clause with respect to S (this corresponds to a regular clause in the “first
copy”), and the second is a clause with respect to Srev (this corresponds to a regular
clause in the “second copy”). Observation 5.5 below is simple, but key: it states that
a pair of sets (A1, A2) is a clause pair with respect to S if and only if a sequence
of equalities involving the size of sets involving S,A1, A2 holds. Because µ(S) is the
uniform distribution clause pairs with respect to S, this means that any (A1, A2)
satisfying the noted equalities is equally likely to have been drawn from µ(S) (and
this is what lets us later plant an undetectable special clause pair).
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Observation 5.5. Observe that for any basis S, the fact that a pair of sets
(A1, A2) is a clause pair with respect to S implies that |PartS |, |PartS ∩A1|,
|PartS ∩A2|, and |PartS ∩A1 ∩A2| are all fixed functions of m. This means that

there exist a vector ~pair such that (A1, A2) is a clause pair with respect to S if and
only if

|PartS‖A1‖A2 | = ~pair.

In our lower bound construction, Alice’s regular clauses are drawn from the dis-
tribution µ(S), while Bob’s regular clauses are drawn from the distribution µ(T ),
where S and T are bases such that S is compatible with T . The following lemma
shows that the intersection of a regular clause of Alice and a regular clause of Bob
has size at least 51m

200 > m
4 (with high probability). While the proof requires several

steps to be rigorous, the intuition is simple: we first need to argue that each of the
sets A1, A2, B1, B2 is identically distributed to draws from a distribution of the form
µsingle(·), which is of the form PC(k, ~P , ~p). This step uses Lemma 4.3. Once we
have done this, we can use Lemma 4.2 to argue that the intersection of any two pairs
concentrates around its expectation (and that its expectation is 51m/100).

Lemma 5.6. Consider ε > 0 and bases S, T such that S is compatible with T . For
all i, j ∈ {1, 2}, we have

Pr
(A1,A2)∼µ(S)

(B2,B1)∼µ(T rev)

(

|Ai ∩Bj | < 51m

200
− εm

)

≤ exp(−ε2m/20).

Proof. We show the lemma assuming i = j = 1. The proof for other values of
(i, j) is similar (with different calculations), and we discuss necessary modifications
at the end. We derive

Pr
(A1,A2)∼µ(S)

(B2,B1)∼µ(T rev)

(

|A1 ∩B1| < 51m

200
− εm

)

=
∑

Z,Z′:|Z∩Z′|< 51m
200 −εm

Pr
(A1,A2)∼µ(S)

(B2,B1)∼µ(T rev)

(

(A1, B1) = (Z,Z ′)
)

=
∑

Z,Z′:|Z∩Z′|< 51m
200 −εm

Pr
(A1,A2)∼µ(S)

(A1 = Z) Pr
(B2,B1)∼µ(T rev)

(B1 = Z ′)

=
∑

Z,Z′:|Z∩Z′|< 51m
200 −εm

Pr
A1∼µsingle(S)

A2∼µsingle(S
rev)

(A1 = Z | |PartS ∩A1 ∩A2| = ~regpair)

× Pr
B2∼µsingle(T

rev)

B1∼µsingle(T )

(B1 = Z ′ | |PartT rev ∩B2 ∩B1| = ~regpair)

=
∑

Z,Z′:|Z∩Z′|< 51m
200 −εm

Pr
A∼µsingle(S)

(A = Z) Pr
B∼µsingle(T )

(B = Z ′) (Corollary 4.4)

=
∑

Z,Z′:|Z∩Z′|< 51m
200 −εm

Pr
A∼µsingle(S)
B∼µsingle(T )

((A,B) = (Z,Z ′))

= Pr
A∼µsingle(S)
B∼µsingle(T )

(

|A ∩B| < 51m

200
− εm

)

.
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It is thus sufficient to show that PrA∼µsingle(S),B∼µsingle(T )

(

|A ∩B| < 51m
200 − εm

)

≤
exp(−ε2m/20). We show this using Lemma 4.2 as the distributions µsingle(S) =
PC (4,PartS , ~reg) and µsingle(T ) = PC (4,PartT , ~reg). By Lemma 4.2, we have

Pr
A∼µsingle(S)
B∼µsingle(T )

(|A ∩B| < ∆− εm) ≤ exp(−ε2(m−∆)/3),

so we just need to compute ∆. Below, recall that ~cmp lists the size of S1∩S2∩T 1∩T 2,
S1 ∩ S2 ∩ T 1 ∩ T 2, etc., and this is where the terms 4m

16 ,
m
16 , etc., come from. Recall

that ~reg lists the size of A1∩S1∩S2, etc., and also B1∩T 1∩T 2, etc. So, for example,
|A1 ∩ S1 ∩ S2| = 2m/16 (according to ~reg), and |S1 ∩ S2| = 4m/16 +m/16 + 0 + 0 =
5m/16 (according to ~cmp), and therefore A1 contains 2/5 of the elements in S1 ∩ S2:

∆ =
2

5
· 2
5
· 4m
16

+
2

5
· 1
3
· m
16

+
1

3
· 1
3
· m
16

+
1

3
· 2
3
· 2m
16

+
2

3
· 2
5
· m
16

+
2

3
· 2
3
· m
16

+
2

3
· 3
5
· m
16

+
3

5
· 1
3
· m
16

+
3

5
· 3
5
· 4m
16

=
51

200
·m.

Thus, we get

Pr
A∼µsingle(S)
B∼µsingle(T )

(

|A ∩B| < 51m

200
− εm

)

≤ exp(−149ε2m/600) < exp(−ε2m/20),

as desired.
To adjust the proof for the other three values of (i, j), the first half of the proof

would be identical, but perhaps replacing µsingle(S) with µsingle(S
rev) and perhaps

replacing µsingle(T ) with µsingle(T
rev). This also causes the precise calculations above

for ∆ to change, but all four calculations result in ∆ ≥ 51m/200.

Lemma 5.6 is the first key property of our construction, which establishes that the
union of two regular clauses is < 3m/4. Note in particular that Lemma 5.6 covers
both the “like terms” and the “cross-terms” at once. Note also that if we were to have
a construction which draws uniformly random compatible bases from ξ, and then has
Alice and Bob draw exponentially many (but not too many) clause pairs with respect
to their basis, that the optimal welfare would be at most 149m/200.

5.1.2. Special clauses. We now describe how to add special clauses to our
construction. Again recall that there are three properties we need: First, the special
clauses should be indistinguishable from regular clauses. Second, Alice’s and Bob’s
special clauses should be disjoint. Third, a special clause should intersect a regular
clause “from the other copy” at slightly more than m/4.

Definition 5.7 (special clauses). Let S, T be bases such that S is compatible with
T . We say that a set A? ⊆ M is 1-special with respect to (S, T ) if

|PartS‖T ∩A?| =
(

2m

16
, 0, 0, 0, 0,

m

16
, 0, 0,

m

16
, 0,

m

16
, 0, 0,

m

16
, 0,

2m

16

)

.

Similarly, we say that A? is 2-special with respect to (S, T ) if

|PartS‖T ∩A?| =
(

2m

16
, 0, 0, 0, 0, 0,

2m

16
, 0,

m

16
, 0, 0, 0, 0,

m

16
, 0,

2m

16

)

.

D
o
w

n
lo

ad
ed

 0
6
/1

6
/2

3
 t

o
 1

7
3
.7

2
.1

0
4
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SEPARATING TRUTHFUL/NONTRUTHFUL AUCTIONS STOC20-95

For short, we refer to these as ~spec1 :=
(

2m
16 , 0, 0, 0, 0,

m
16 , 0, 0,

m
16 , 0,

m
16 , 0, 0,

m
16 , 0,

2m
16

)

and ~spec2 :=
(

2m
16 , 0, 0, 0, 0, 0,

2m
16 , 0,

m
16 , 0, 0, 0, 0,

m
16 , 0,

2m
16

)

.

For i ∈ {1, 2}, we define µi
?,single(S, T ) to be the uniform distribution over

all sets that are i-special with respect to (S, T ). Observe that µi
?,single(S, T ) =

PC
(

16,PartS‖T , ~speci
)

for i ∈ {1, 2}. We again define a distribution over a pair
of special sets (again intuitively, A1

? is special for the “first copy” and A2
? is special

for the “second copy”).

Definition 5.8 (the distribution µ?(·)). Let S, T be bases such that S is compat-
ible with T . We say that a pair of sets (A1

?, A
2
?) is special with respect to (S, T ) if A1

?

is 1-special with respect to (S, T ) and A2
? is 2-special with respect to (S, T ) and

|PartS‖T ∩A1
? ∩A2

?| =
(

0, 0, 0, 0, 0, 0, 0, 0,
m

16
, 0, 0, 0, 0,

m

16
, 0, 0

)

.

For short, we define ~specpair :=
(

0, 0, 0, 0, 0, 0, 0, 0, m
16 , 0, 0, 0, 0,

m
16 , 0, 0

)

. We de-
fine µ?(S, T ) to be the uniform distribution over all pairs of sets that are special with
respect to (S, T ).

The third step in our construction is the distribution µ?(·), which describes how
Alice and Bob draw potential special clauses once their basis is fixed. Observation 5.9
is again simple, but crucial. In particular, it observes that every pair that is special
with respect to (S, T ) is also a clause pair with respect to S. This means that an
independently drawn special pair will be indistinguishable from clause pairs.

Observation 5.9. Observe that for bases S, T such that S is compatible with
T , the fact that a pair of sets (A1

?, A
2
?) is special with respect to (S, T ) implies that

|PartS‖T |, |PartS‖T ∩A1
?|, |PartS‖T ∩A2

?|, and |PartS‖T ∩A1
? ∩A2

?| are all fixed func-

tions of m. This means that there exists a vector ~opt such that (A1
?, A

2
?) is special

with respect to (S, T ) if and only if

|PartS‖T‖A1
?‖A

2
?
| = ~opt.

We reserve ~opt to denote this vector for the rest of this document. Furthermore,
observe that any pair (A1

?, A
2
?) that is special with respect to (S, T ) is a clause pair

with respect to S. Thus, for all Z1, Z2 ⊆ M , we have that

Pr
(A1

?,A
2
?)∼µ?(S,T )

(

(A1
?, A

2
?) = (Z1, Z2)

)

= Pr
(A1,A2)∼µ(S)

(

(A1, A2) = (Z1, Z2) | |PartS‖T‖A1‖A2 | = ~opt
)

.

Observation 5.9 is the second key property of our construction, which suggests that
special clauses are indistinguishable from regular clauses, prior to any communication.
Recall that if S is compatible with T , then T rev is compatible with Srev. It can be
verified from Definition 5.8 that (A1

?, A
2
?) is special with respect to (S, T ) if and only

if (A2
?, A

1
?) is special with respect to (T rev, Srev). See Figure 3 for a depiction of such

a configuration of sets.
Next, we show, in Lemma 5.10, an analogue of Lemma 5.6 for special sets. Just

like Lemma 5.6 shows that the intersection of a regular clause of Alice and a regular
clause of Bob has size > m

4 with high probability, Lemma 5.10 shows that if (A1
?, A

2
?)

is special with respect to (S, T ), then the intersection of A1
? with any clause with

respect to T rev and the intersection of A2
? with any clause with respect to T has size

> m
4 with high probability.
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We note that Lemma 5.10 does not make similar claims regarding the intersec-
tion of A1

? and clauses with respect to T and the intersection of A2
? and clauses with

respect to T rev. This is no coincidence, as these intersections have size < m
4 (with

high probability). Intuitively, this should be expected: recall from the [BMW18] con-
struction that a special clause for Alice and a regular clause for Bob had intersection
< m/4. The intersection of A1

? with a clause with respect to T is the analogue in our
construction. But we still need to make sure that the intersection of a special clause
of Alice for one copy and a regular clause for Bob in the other copy is large, and this
is what Lemma 5.10 states.

Lemma 5.10. Consider ε > 0 and bases S, T such that S is compatible with T .
For all i ∈ {1, 2}, we have

Pr
(A1

?,A
2
?)∼µ?(S,T )

(B2,B1)∼µ(T rev)

(

|Ai
? ∩B3−i| < 61m

240
− εm

)

≤ exp(−ε2m/20).

Proof. We show the lemma assuming i = 1. The proof for i = 2 is similar (with
different calculations), and we discuss necessary modifications at the end. We derive

Pr
(A1

?,A
2
?)∼µ?(S,T )

(B2,B1)∼µ(T rev)

(

|A1
? ∩B2| < 61m

240
− εm

)

=
∑

Z,Z′:|Z∩Z′|< 61m
240 −εm

Pr
(A1

?,A
2
?)∼µ?(S,T )

(B2,B1)∼µ(T rev)

(

(A1
?, B

2) = (Z,Z ′)
)

=
∑

Z,Z′:|Z∩Z′|< 61m
240 −εm

Pr
(A1

?,A
2
?)∼µ?(S,T )

(

A1
? = Z

)

Pr
(B2,B1)∼µ(T rev)

(

B2 = Z ′
)

=
∑

Z,Z′:|Z∩Z′|< 61m
240 −εm

Pr
A1

?∼µ1
?,single(S,T )

A2
?∼µ2

?,single(S,T )

(

A1
? = Z | |PartS‖T ∩A1

? ∩A2
?| = ~specpair

)

× Pr
B2∼µsingle(T

rev)

B1∼µsingle(T )

(

B2 = Z ′ | |PartT rev ∩B2 ∩B1| = ~regpair
)

=
∑

Z,Z′:|Z∩Z′|< 61m
240 −εm

Pr
A?∼µ1

?,single
(S,T )

(A?=Z) Pr
B∼µsingle(T rev)

(B=Z ′) (Corollary 4.4)

=
∑

Z,Z′:|Z∩Z′|< 61m
240 −εm

Pr
A?∼µ1

?,single(S,T )

B∼µsingle(T
rev)

((A?, B) = (Z,Z ′))

= Pr
A?∼µ1

?,single(S,T )

B∼µsingle(T
rev)

(

|A? ∩B| < 61m

240
− εm

)

.

It is thus sufficient to show that PrA?∼µ1
?,single

(S,T ),B∼µsingle(T rev)

(

|A? ∩B|< 61m
240 −εm

)

≤ exp(−ε2m/20). We show this using Lemma 4.2 as the distribution µ1
?,single(S, T )

= PC
(

16,PartS‖T , ~spec1
)

and µsingle(T
rev) = PC (4,PartT rev , ~reg). By Lemma 4.2,

we have

Pr
A?∼µ1

?,single(S,T )

B∼µsingle(T
rev)

(|A? ∩B| < ∆− εm) ≤ exp(−ε2(m−∆)/3),
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so we just need to compute ∆. Again, recall that the relevant terms come from the
vectors ~spec1, ~reg, ~cmp. Expanding the calculations, we get

∆ =
1

2
· 2
5
· 4m
16

+
2

3
· m
16

+
2

5
· m
16

+
1

3
· m
16

+
2

3
· m
16

+
1

2
· 3
5
· 4m
16

=
61

240
·m.

Thus, we get

Pr
A?∼µ1

?,single(S,T )

B∼µsingle(T
rev)

(

|A? ∩B| < 61m

240
− εm

)

≤ exp(−179ε2m/720) < exp(−ε2m/20),

as desired.
Adjusting the proof for i = 2 just requires replacing 1 with 2 in the first half of

the proof. The calculations for ∆ are similar, and also ≥ 61m/240.

Lemma 5.10 is the third key property of our construction, which establishes that
the union of a special clause for one copy with a regular clause of the other copy is
< 3m/4. With the three building blocks and these three properties, we can now define
our full construction.

5.2. The distribution ν. We now define a distribution ν over pairs of functions
(vA, vB) ∈ BXOSm (recall the definition of BXOSm from subsection 2.2) that we will use

to show Theorem 2.3. Fix ε > 0 and define n = exp
(

ε2·m
100

)

. We assume for simplicity
that n is an integer. This will be our hard instance for BXOSm combinatorial auctions.

• Sampling (vA, vB) ∼ ν:
(1) Sample bases (S, T ) ∼ ξ.

(2) Sample i? ∼ U([n]) and construct sequences ~A1, ~A2, ~B1, ~B2 of n subsets of

M as follows (where ~A1 = A1
1, . . . , A

1
n, etc.):

(a) For i 6= i? ∈ [n], sample (A1
i , A

2
i ) ∼ µ(S) and (B2

i , B
1
i ) ∼ µ(T rev)

independently.
(b) Sample (A1

?, A
2
?) ∼ µ?(S, T ) and set (A1

i?
, A2

i?
, B1

i?
, B2

i?
) =

(A1
?, A

2
?, A

1
?, A

2
?).

(3) Sample θ ∈ U({1, 2}) and sequences ~rA = rA1 , . . . , r
A
n ∈ {1, 2}n and ~rB =

rB1 , . . . , r
B
n ∈ {1, 2}n uniformly at random subject to rAi? = rBi? = θ.

(4) Define vA(Z) = maxF∈FA |Z ∩ F | and vB(Z) = maxF∈FB |Z ∩ F | where, for
all Z ⊆ M ,

FA = {ArAi
i | i ∈ [n]} and FB = {BrBi

i | i ∈ [n]}.

Before continuing, we briefly elaborate upon each step and connect it to our
proof sketch. In (1), we jointly draw a basis for each copy of the modified [BMW18]
construction. (S1, T 1) is the basis for the first copy, and (S2, T 2) is the basis for
the second copy. In step (2), we first draw a uniformly random index in [n] where
we will hide the special clauses. Each index i corresponds to two clauses for Alice
and two clauses for Bob. Intuitively, the first clause for Alice is in “copy one” and
the second is in “copy two.” In (2a), we draw pairs of regular clauses uniformly at
random for each nonspecial index for both Alice and Bob. In (2b) we jointly draw
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special clauses for Alice and Bob that are disjoint. In step (3), we visit each index
and pick one of the two clauses uniformly at random to include. That is, for each
index, there is a “copy one” clause and a “copy two” clause. One of these will be a
clause in the defined valuation function in step (4), and one of them will be ignored.
Importantly, rAi? = rBi? = θ, meaning that Alice and Bob have a special set from the
same copy, and therefore the optimal welfare ism in every instance drawn from ν. This
further implies that knowing θ is equivalent to knowing which copy is special. This
setup allows us to provide a somewhat clean outline of an information-theoretic proof
that learning θ requires exponential communication—rAi? appears indistinguishable
from rAi for all other i ∈ [n]. Therefore, any simultaneous algorithm which reveals
nontrivial information about rAi? must reveal nontrivial information about all rAi . We
now proceed with analysis of our construction.

For notational convenience, it will be easier to consider ν as the distribution
of a random variable Υ = (S, T, i?, ~A

1, ~A2, ~B1, ~B2, θ, ~rA, ~rB) and consider vA, vB as
functions of Υ. We will also need shorthand for certain entries of Υ. We will use A
to denote the pair ( ~A1, ~A2), B to denote the pair ( ~B1, ~B2), ΥA to denote (S,A, ~rA),
ΥB to denote (T,B, ~rB), and finally Υ−θ to denote (ΥA,ΥB, i?). Next, using Υ, we
define random variables vAj , v

B
j ∈ BXOSm for j ∈ {1, 2}. To simplify notation, we omit

Υ from these random variables even though they are functions of Υ. We define, for
j ∈ {1, 2} and Z ⊆ M ,

vAj (Z) = max
F∈FA

j

|Z ∩ F |, vBj (Z) = max
F∈FB

j

|Z ∩ F |,

where

FA
j = {Aj′

i | i ∈ [n], j′ ∈ [2]} \ {A3−j
i?

}, FB
j = {Bj′

i | i ∈ [n], j′ ∈ [2]} \ {B3−j
i?

}.

Intuitively, vAθ has strictly more clauses than vA; it contains every regular clause
(but still only one special clause). While of course Alice does not know the valuation
vAθ (because she does not know which clause is special), we can still nonetheless use
it to upper bound the value of vA for any set.

5.3. A good allocation determines θ. Two key properties establish ν as a
hard distribution. The first property is that θ can be recovered immediately from any
allocation which guarantees a 3/4-approximation. This is captured in Lemma 5.11
below.

We mention that the proof of item 3 of Lemma 5.11 uses the observation that
|Aj

i | = |Bj
i | = m

2 for all i ∈ [n], j ∈ [2]. It also crucially leverages the fact that we are
taking the minimum over j ∈ {1, 2} (as is captured by ∀). In particular, the same
statement with the minimum replaced by an average over j is not true. This should
be expected, as otherwise it would contradict the randomized simultaneous algorithm
of [BMW18] which guarantees a 3/4-approximation in expectation.

In Lemma 5.11 below, item 1 simply states that the optimal welfare is always
m. We have given intuition for this immediately following the definition of ν, but
the proof below makes this rigorous. Item 2 is straightforward as vAθ has strictly
more clauses than vA. Item 3 is the crucial bullet, which states that (except with
exponentially small probability) no allocation achieves welfare 3m/4 when θ = 1 and
when θ = 2. Therefore, learning an allocation which guarantees welfare at least 3m/4
immediately determines θ.

Recall the definition of opt(·) from section 2 and that Υ defines vA, vB.
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Lemma 5.11. We have the following:
1. For all Υ ∼ ν, we have opt(vA, vB) = m.
2. For all Υ ∼ ν and Z ⊆ M , we have vA(Z) ≤ vAθ (Z) and vB(Z) ≤ vBθ (Z).
3. It holds that

Pr
Υ∼ν

(

∃Z ⊆ M : ∀j ∈ {1, 2} : vAj (Z) + vBj (Z) >
179m

240
+ εm

)

≤ 12n2 · exp
(

−ε2m

20

)

.

Proof. We show each part in turn:
1. For the first part, is is enough to show that opt(vA, vB) ≥ m. We have

opt(vA, vB) ≥ vA(Aθ
i?
) + vB(Aθ

i?
) = vA(Aθ

i?
) + vB(Bθ

i?
) = m.

2. For the second part, we only argue for vA(Z) ≤ vAθ (Z) as the other argument
is symmetric. This follows by the definition of vA and vAθ and the fact that
FA ⊆ FA

θ .
3. For the third part, we define the following events over the randomness in Υ:

Ereg ≡ ∃i, i′ 6= i?, j, j
′ ∈ {1, 2} : |Aj

i ∩Bj′

i′ | <
51m

200
− εm,

EA
special ≡ ∃i 6= i?, j ∈ {1, 2} : |Aj

i?
∩B3−j

i | < 61m

240
− εm,

EB
special ≡ ∃i 6= i?, j ∈ {1, 2} : |A3−j

i ∩Bj
i?
| < 61m

240
− εm.

Finally, define the event E = Ereg∨EA
special∨EB

special. We claim the following.

Claim. Pr(E) ≤ 12n2 · exp
(

− ε2m
20

)

.

Proof. By the union bound, we have Pr(E) ≤ Pr(Ereg) + Pr(EA
special) +

Pr(EB
special). We next show that each one of Pr(Ereg), Pr(EA

special),

Pr(EB
special) is at most 4n2 · exp

(

− ε2m
20

)

.

We start by showing Pr(Ereg) ≤ 4n2 · exp
(

− ε2m
20

)

. We derive the following
using Lemma 5.6:

Pr(Ereg) ≤
∑

i,i′ 6=i?

∑

j,j′∈{1,2}

Pr

(

|Aj
i ∩Bj′

i′ | <
51m

200
− εm

)

≤ 4n2·exp
(

−ε2m

20

)

.

We next show that Pr(EA
special) ≤ 4n2 · exp

(

− ε2m
20

)

. Using Lemma 5.10, we
derive

Pr(EA
special) ≤

∑

i 6=i?

∑

j∈{1,2}

Pr

(

|Aj
i?
∩B3−j

i |< 61m

240
− εm

)

≤4n2·exp
(

−ε2m

20

)

.

Finally, we show that Pr(EB
special) ≤ 4n2 · exp

(

− ε2m
20

)

. For this part, recall
that if a basis S is compatible with T , then T rev is compatible with Srev.
Furthermore, a pair(A1

?, A
2
?) is special with respect to (S, T ) if and only if

(A2
?, A

1
?) is special with respect to (T rev, Srev). We apply Lemma 5.10 to

T rev, Srev to get

Pr(EB
special) ≤

∑

i 6=i?

∑

j∈{1,2}

Pr

(

|A3−j
i ∩Bj

i?
| < 61m

240
− εm

)

≤ 4n2·exp
(

−ε2m

20

)

.
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This finishes the proof for Pr(E) ≤ 12n2 · exp
(

− ε2m
20

)

.

We next claim that whenever we have a Z ⊆ M such that vAj (Z) + vBj (Z) >
179m
240 + εm for all j ∈ {1, 2}, then E happens. This finishes the proof of the
lemma as it follows that

Pr
Υ∼ν

(

∃Z ⊆ M : ∀j ∈ {1, 2} : vAj (Z) + vBj (Z) >
179m

240
+ εm

)

≤ Pr(E)

≤ 12n2 · exp
(

−ε2m

20

)

.

We now prove the claim. Let Z ⊆ M be such that vAj (Z)+vBj (Z) > 179m
240 +εm

for all j ∈ {1, 2}. Using the definition of vAj and vBj , we get that for all

j ∈ {1, 2}, we have FA
j ∈ FA

j and FB
j ∈ FB

j such that |FA
j ∩ Z|+ |FB

j ∩ Z| >
179m
240 + εm. We proceed via a case analysis on FA

j , F
B
j for j ∈ {1, 2}.

• ∃j ∈ [2] : F A

j 6= A
j
i?

∧ F B

j 6= B
j
i?
: Let j? be such a j. We use the

identity10 |Z ′ ∩ Z|+ |Z ′′ ∩ Z| ≤ |Z ′ ∪ Z ′′| for any sets Z,Z ′, Z ′′ to get

179m

240
+ εm < |FA

j? ∩ Z|+ |FB
j? ∩ Z| ≤ |FA

j? ∪ FB
j? |.

Next, as FA
j?

∈ FA
j?

and FB
j?

∈ FB
j?
, we have that |FA

j?
| = |FB

j?
| = m

2 and

we get |FA
j?

∩ FB
j?
| < 61m

240 −εm. As FA
j?

6= Aj?
i?

and FB
j?

6= Bj?
i?
, this means

that Ereg, and thus E happens.

• If ∃j ∈ [2] : F A

j ∈ ~A3−j ∨F B

j ∈ ~B3−j: Let j? be such a j and assume

that FA
j?

∈ ~A3−j? . The proof is symmetric when FB
j?

∈ ~B3−j? . We begin

by showing that ~A1 and ~A2 are disjoint. Indeed, all elements of ~A1 are
clauses with respect to S, whereas all elements of ~A2 are clauses with
respect to Srev (Observation 5.9). By Definition 5.3 no set can be a

clause with respect to both S and Srev, and thus ~A1 and ~A2 must be
disjoint.
As ~A1 and ~A2 are disjoint, we have that FA

j?
∈ ~A3−j? =⇒ FA

j?
/∈

~Aj? =⇒ FA
j?

6= Aj?
i?
. If FB

j?
6= Bj?

i?
, then we are done by the previous

part, so we assume that FB
j?

= Bj?
i?
.

Using the definition of FA
j?
, we have that FA

j?
/∈ ~Aj? =⇒ FA

j?
= A3−j?

iA

for some iA 6= i?. We use the identity |Z ′ ∩ Z| + |Z ′′ ∩ Z| ≤ |Z ′ ∪ Z ′′|
for any sets Z,Z ′, Z ′′ to get

179m

240
+ εm < |A3−j?

iA
∩ Z|+ |Bj?

i?
∩ Z| ≤ |A3−j?

iA
∪Bj?

i?
|.

Next, as |A3−j?
iA

| = |Bj?
i?
| = m

2 , we get |A3−j?
iA

∩Bj?
i?
| < 61m

240 − εm. As

iA 6= i?, this means that EB
special, and thus E happens.

• Otherwise: As we are not in case 2, we can assume that for all j ∈ [2],
we have an iAj and an iBj such that FA

j = Aj

iAj
and FB

j = Bj

iBj
. We have

10To see why this identity holds, note that both the sets Z′, Z′′ ⊆ Z′ ∪Z′′. This gives |Z′ ∩ Z|+
|Z′′ ∩ Z| ≤ |(Z′ ∪ Z′′) ∩ Z| + |(Z′ ∪ Z′′) ∩ Z|. As Z,Z form a partition of the universe, the latter
expression is just |Z′ ∪ Z′′|.
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that

|A1
iA1
∩ Z|+ |B1

iB1
∩ Z|+ |A2

iA2
∩ Z|+ |B2

iB2
∩ Z| > 2 ·

(

179m

240
+ εm

)

.

By an averaging argument, this means that there exists j? ∈ [2] such
that |Aj?

iAj?
∩ Z|+ |B3−j?

iB3−j?

∩ Z| > 179m
240 + εm. Using |Z ′ ∩ Z|+ |Z ′′ ∩ Z| ≤

|Z ′ ∪ Z ′′| for any sets Z,Z ′, Z ′′ and the fact that |Aj?
iAj?

| = |B3−j?
iB3−j?

| = m
2 ,

we get that

|Aj?
iAj?

∩B3−j?
iB3−j?

| < 61m

240
− εm.

If iAj? 6= i? and iB3−j?
6= i?, then the above inequality implies that Ereg,

and therefore E happens. If iAj? = i? and iB3−j?
6= i?, then the above

inequality implies that EA
special, and therefore E happens. If iAj? 6= i?

and iB3−j?
= i?, then the above inequality implies that EB

special, and
therefore E happens. Finally, one of these three cases must hold as
otherwise we have iAj? = iB3−j?

= i?, implying

m

2
− |A1

i? ∩A2
i? | =

m

2
− |Aj?

i?
∩A3−j?

i?
|

= |Aj?
i?

∩B3−j?
i?

| < 61m

240
− εm,

contradicting Definition 5.8.

Again, the key aspects of our construction which we have established so far is that
(a) the optimal welfare is always m, and (b) learning an allocation which achieves
welfare ≥ 179m/240 + εm determines θ. Therefore, any algorithm which guarantees
a 3/4-approximation also learns θ. It now remains to show that learning θ requires
exponential communication.

5.4. Key technical lemma: i? is independent of all else. Section 6 contains
our final proof that learning θ requires exponential communication. We wrap up this
section with one key lemma regarding our construction. Absent any conditioning,
i? is clearly a uniformly random index in [n]. Clearly, i? is not uniformly random
conditioned on the entire rest of the construction (because it is the only index with a
special clause, which can be determined from the rest of the construction). However,
we have carefully constructed ν so that i? remains a uniformly random index in [n],
even conditioning on Alice’s other information (and ditto for Bob). Lemma 5.12
states this formally.

Lemma 5.12. For the random variable Υ = (ΥA,ΥB, i?, θ), it holds that
1. the marginal i? is independent of the marginal ΥA;
2. the marginal i? is independent of the marginal ΥB.

Proof. We only show the first claim as the second one is similar. To show that
the marginal i? is independent of the marginal ΥA, we show that the distribution ν
is equivalent to the distribution ν′ below. It is clear from the definition of ν′ that the
marginal i? is independent of the marginal ΥA.
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• Sampling (vA, vB) ∼ ν′: Recall n = exp
(

ε2·m
100

)

.
(1) Sample a basis S ∼ ξsingle.

(2) Construct sequences ~A1, ~A2 of n subsets of M (where ~A1 = A1
1, . . . , A

1
n, etc.)

by sampling (A1
i , A

2
i ) ∼ µ(S) independently for i ∈ [n].

(3) Sample i? ∼ U([n]) and let T be sampled uniformly at random such that
|PartS‖T‖A1

i?
‖A2

i?
| = ~opt. Observe that any such T is a basis. We show in our

proof that at least one such T exists, and therefore this step is well defined.
(4) Construct sequences ~B1, ~B2 of n subsets of M (where ~B1 = B1

1 , . . . , B
1
n,

etc.) as follows:
(a) For i 6= i? ∈ [n], sample (B2

i , B
1
i ) ∼ µ(T rev) independently.

(b) Set (B1
i?
, B2

i?
) = (A1

i?
, A2

i?
).

(5) Sample θ ∈ U({1, 2}) and sequences ~rA = rA1 , . . . , r
A
n ∈ {1, 2}n and ~rB =

rB1 , . . . , r
B
n ∈ {1, 2}n uniformly at random subject to rAi? = rBi? = θ.

(6) Define vA(Z) = maxF∈FA |Z ∩ F | and vB(Z) = maxF∈FB |Z ∩ F | where for
all Z ⊆ M

FA = {ArAi
i | i ∈ [n]} and FB = {BrBi

i | i ∈ [n]}.

We first show why item (3) in the definition of ν′ is well defined. For this, we need
to show that for any basis S and any (A1, A2) in the support of µ(S), there exists a
T such that |PartS‖T‖A1‖A2 | = ~opt. As for any basis S and all (A1, A2) in the support
of µ(S), the value of |PartS‖A1‖A2 | (Observation 5.5) is the same, by symmetry, it is
sufficient to show this for any one (A1, A2) in the support of µ(S) for any one S. But
such an S, (A1, A2), and T are described in Figure 3

Next, we show why distribution ν is equivalent to distribution ν′, proceeding in
steps, each time changing the description of ν a little bit so that it eventually becomes
ν′. We show that the distributions described in all the steps are equivalent.

• Step (a): In this step, we replace line (1) in the definition of ν by the
following:

(1a) Sample a basis S ∼ ξsingle and basis T uniformly at random
such that S is compatible with T . This step is well defined for
the same reason as above.

To show that this does not affect the actual distribution, we use Lemma 4.3.
We get that, for all bases Z,Z ′,

Pr
(S,T )∼ξ

((S, T ) = (Z,Z ′)) = Pr
(S,T )∼ξ

(S = Z) Pr
(S,T )∼ξ

(T = Z ′ | S = Z)

= Pr
S∼ξsingle

T∼ξsingle

(

S = Z | |PartS‖T | = ~cmp
)

Pr
(S,T )∼ξ

(T = Z ′ | S = Z)

= Pr
S∼ξsingle

(S = Z) Pr
(S,T )∼ξ

(T = Z ′ | S = Z) (Lemma 4.3)

= Pr
S∼ξsingle

(S = Z) Pr
T∼ξsingle

(T = Z ′ | Z is compatible with T ) ,

(Definition of ξ)

as required.
• Step (b): In this step, we replace line (1a) from Step (a) and line (2) in the
definition of ν by the following:
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(1b) Sample a basis S ∼ ξsingle.

(2b) Sample i? ∼ U([n]) and construct sequences ~A1, ~A2, ~B1, ~B2 of

n subsets of M as follows (where ~A1 = A1
1, . . . , A

1
n, etc.):

(a) For i 6= i? ∈ [n], sample (A1
i , A

2
i ) ∼ µ(S) independently.

(b) Sample basis T uniformly at random such that S is com-
patible with T .

(c) Sample (A1
?, A

2
?) ∼ µ?(S, T ) and set (A1

i?
, A2

i?
) = (A1

?, A
2
?).

(d) For i 6= i? ∈ [n], sample (B2
i , B

1
i ) ∼ µ(T rev) independently.

(e) Set (B1
i?
, B2

i?
) = (A1

i?
, A2

i?
).

This change does not affect the distribution as i? and (A1
i , A

2
i ) for i 6= i? were

picked independently of T and (B2
i , B

1
i ) for i 6= i? were picked independently

of (A1
?, A

2
?), and thus we can interchange the order in which these are picked.

• Step (c): In this step, we replace line (2b) from Step (b) with the following:

(2c) Sample i? ∼ U([n]) and construct sequences ~A1, ~A2, ~B1, ~B2 of

n subsets of M as follows (where ~A1 = A1
1, . . . , A

1
n, etc.):

(a) For i ∈ [n], sample (A1
i , A

2
i ) ∼ µ(S) independently.

(b) Sample basis T uniformly at random such that
|PartS‖T‖A1

i?
‖A2

i?
| = ~opt. Observe that any such T is al-

ways a basis.
(c) For i 6= i? ∈ [n], sample (B2

i , B
1
i ) ∼ µ(T rev) independently.

(d) Set (B1
i?
, B2

i?
) = (A1

i?
, A2

i?
).

Before showing that this change does not affect the distribution, we define
some helpful notation. For a basis S, we let ξcmp(S) denote that the uniform
distribution over all bases T such that S is compatible with T . Using this
notation, we get that for all bases Z and Z1, Z2 ⊆ M ,

Pr
T∼ξcmp(S)

(T = Z) Pr
(A1

?,A
2
?)∼µ?(S,Z)

(

(A1
?, A

2
?) = (Z1, Z2)

)

= Pr
T∼ξcmp(S)

(T =Z) Pr
(A1,A2)∼µ(S)

(

(A1, A2)=(Z1, Z2) | |PartS‖Z‖A1‖A2 |= ~opt
)

(Observation 5.9)

= Pr
T∼ξcmp(S)

(T = Z)

× Pr
T∼ξcmp(S)

(A1,A2)∼µ(S)

(

(A1, A2) = (Z1, Z2) | |PartS‖T‖A1‖A2 | = ~opt, T = Z
)

= Pr
T∼ξcmp(S)

(A1,A2)∼µ(S)

(

(T,A1, A2) = (Z,Z1, Z2) | |PartS‖T‖A1‖A2 | = ~opt
)

(Observation 5.5, Lemma 4.3)

= Pr
(A1,A2)∼µ(S)

(

(A1, A2) = (Z1, Z2)
)

× Pr
T∼ξcmp(S)

(A1,A2)∼µ(S)

(

T = Z | |PartS‖T‖A1‖A2 | = ~opt, (A1, A2) = (Z1, Z2)
)

(Observation 5.5, Lemma 4.3)

= Pr
(A1,A2)∼µ(S)

(

(A1, A2) = (Z1, Z2)
)

× Pr
T∼ξcmp(S)

(

T = Z | |PartS‖T‖Z1‖Z2 | = ~opt
)

,

as desired.
• Step (d): To finish the proof, we claim that ν′ is the same as the distri-
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bution in Step (c) above. This is because (A1
i , A

2
i ) for i ∈ [n] were picked

independently of i? in line (a) of the distribution in Step (c), and thus we can
interchange the order in which they are picked. As interchanging this order
converts the distribution in Step (c) above to ν′, we are done.

6. The proof of Theorem 2.3. In this section, we complete our proof of Theo-
rem 2.3. Our proof crucially relies on Lemmas 5.11 and 5.12 from section 5. Note that
the main remaining task is to establish that exponential communication is required
to learn nontrivial information about θ.

Proof of Theorem 2.3. Let ε > 0 and m > 1010

ε2 be arbitrary. By Yao’s minimax
principle, in order to show Theorem 2.3, it is sufficient to show a distribution ν over
pairs of functions from BXOSm such that any deterministic combinatorial auction that

is simultaneous and
(

3
4 − 1

240 +ε
)

-approximate over ν with probability 1
2 +exp

(

− ε2m
500

)

satisfies CC(Π) ≥ exp
(

ε2m
500

)

.
We let ν denote the distribution defined in subsection 5.2 for m, ε and let Υ be a

random variable denoting a sample from ν as in subsection 5.2. Recall how Υ defines
the valuation functions vA, vB, and also vAj , v

B
j for j ∈ [2]. Fix Π to be a simultaneous

deterministic mechanism that is
(

3
4 − 1

240 + ε
)

-approximate over ν with probability
1
2 + exp

(

− ε2m
500

)

. We have from section 2 that

(1)

Pr
Υ∼ν

(

vA(allocAΠ(v
A, vB)) + vB(allocBΠ(v

A, vB)) >
(179

240
+ ε
)

· opt(vA, vB)
)

≥ 1

2
+ exp

(

− ε2m

500

)

.

To simplify notation, we will henceforth omit Υ ∼ ν with the understanding that
all the probabilities and expectations are over the randomness in Υ ∼ ν. We use
item 1 and item 2 of Lemma 5.11, the fact that the functions vA and vB are mono-
tone, and that allocAΠ(v

A, vB) and allocBΠ(v
A, vB) are disjoint to get the following from

equation (1):

(2) Pr

(

vAθ (Z(Υ)) + vBθ (Z(Υ)) >
(179

240
+ ε
)

·m
)

≥ 1

2
+ exp

(

− ε2m

500

)

,

where Z(Υ) = allocAΠ(v
A, vB). Let

Ebad = ∃Z ⊆ M : ∀j ∈ {1, 2} : vAj (Z) + vBj (Z) >
(179

240
+ ε
)

m

be the event from item 3 of Lemma 5.11. By the law to total probability we have

Pr

(

vAθ (Z(Υ)) + vBθ (Z(Υ)) >
(179

240
+ ε
)

·m
)

≤ Pr (Ebad) + Pr

(

Ebad ∧ vAθ (Z(Υ)) + vBθ (Z(Υ)) >
(179

240
+ ε
)

·m
)

≤ 12n2 · exp
(

−ε2m

20

)

+ Pr

(

Ebad ∧ vAθ (Z(Υ)) + vBθ (Z(Υ)) >
(179

240
+ ε
)

·m
)

≤ 12n2 · exp
(

−ε2m

20

)

+ Pr
(

vAθ (Z(Υ)) + vBθ (Z(Υ)) > vA3−θ(Z(Υ)) + vB3−θ(Z(Υ))
)

,

(3)
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using item 3 of Lemma 5.11 in the penultimate step. Now, we focus on the second
term in the expression above. For every value ω that the tuple (A,B, i?) can take, we
define the event Eω ≡ (A,B, i?) = ω. By the law of total probability, we have

Pr
(

vAθ (Z(Υ)) + vBθ (Z(Υ)) > vA3−θ(Z(Υ)) + vB3−θ(Z(Υ))
)

≤
∑

ω

∑

Z⊆[m]

∑

j∈[2]

Pr(Eω ∧ Z(Υ) = Z) Pr(θ = j | Eω, Z(Υ) = Z)

× Pr
(

vAθ (Z(Υ))+vBθ (Z(Υ)) > vA3−θ(Z(Υ))+vB3−θ(Z(Υ)) | Eω, Z(Υ)=Z, θ=j
)

.

Observe that, conditioning on Eω, Z(Υ) = Z fixes the value of vA1 (Z(Υ)) + vB1 (Z(Υ))
and vA2 (Z(Υ)) + vB2 (Z(Υ)). Thus, the last factor in the summand above is either 0 or
1 and it can be 1 for at most one value of θ. In conclusion,

Pr
(

vAθ (Z(Υ)) + vBθ (Z(Υ)) > vA3−θ(Z(Υ)) + vB3−θ(Z(Υ))
)

≤
∑

ω

∑

Z⊆[m]

Pr(Eω ∧ Z(Υ) = Z)max
j∈[2]

Pr(θ = j | Eω, Z(Υ) = Z).
(4)

Next, we concentrate on upper bounding the term maxj∈[2] Pr(θ = j | Eω, Z(Υ) = Z).
Since θ is chosen independently of A,B, i? in the distribution ν, we have

max
j∈[2]

Pr(θ=j | Eω, Z(Υ)=Z) =
1

2
+ max

j∈[2]

(

Pr(θ = j | Eω, Z(Υ)=Z)− 1

2

)

=
1

2
+max

j∈[2]

(

Pr(θ = j | Eω, Z(Υ)=Z)− Pr(θ = j | Eω)
)

=
1

2
+ ‖dist(θ | Eω, Z(Υ) = Z)− dist(θ | Eω)‖tvd

(Definition A.8)

≤ 1

2
+

√

1

2
· D(dist(θ | Eω, Z(Υ) = Z) || dist(θ | Eω)).

(Fact A.9, item 2)

Plugging this into (3) and (4) and using concavity of
√·, we get

Pr

(

vAθ (Z(Υ)) + vBθ (Z(Υ)) >
(179

240
+ ε
)

·m
)

≤ 1

2
+ 12n2 · exp

(

−ε2m

20

)

+

√

√

√

√

1

2
·
∑

ω

∑

Z⊆[m]

Pr(Eω ∧ Z(Υ) = Z)D(dist(θ | Eω, Z(Υ) = Z) || dist(θ | Eω))

≤ 1

2
+ 12n2 · exp

(

−ε2m

20

)

+

√

1

2
· I(θ;Z(Υ) | A,B, i?).

(5)

To finish the proof, we make the following claim.

Lemma 6.1. It holds that I(θ;Z(Υ) | A,B, i?) ≤ 4 · CC(Π)
n .
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We prove Lemma 6.1 later but assuming it for now, we can combine (2) and (5)
as

exp
(

− ε2m

500

)

≤ 12n2 · exp
(

−ε2m

20

)

+

√

2 · CC(Π)

n
,

and Theorem 2.3 follows using n = exp
(

ε2m
100

)

.

We finish this section by showing Lemma 6.1.

Proof of Lemma 6.1. Let ΠA and ΠB be random variables denoting the messages
sent by Alice and Bob to the seller in the first round of Π when inputs to Alice and
Bob are drawn from the distribution ν. As Π is simultaneous, it has only one round
and Z(Υ) is a function of ΠA and ΠB. We get, invoking Lemma A.5 multiple times,

I(θ;Z(Υ) | A,B, i?) ≤ I(θ; ΠAΠB | A,B, i?) (item 5 of Fact A.4)

= I(θ; ΠA | A,B, i?) + I(θ; ΠB | A,B, i?,ΠA) (item 4 of Fact A.4)

≤ I(θ; ΠA | A,B, i?) + I(θ; ΠB | A,B, i?) + I(ΠA; ΠB | A,B, i?, θ)
≤ I(θ; ΠA | A, i?) + I(θ; ΠB | B, i?)

+ I(B; ΠA | A, i?, θ) + I(A; ΠB | B, i?, θ) + I(ΠA; ΠB | A,B, i?, θ).

We now show that the last 3 terms are all 0. To show this, we go term by term
using the fact that ΠA is a function of Alice’s input vA, and therefore a function of
A, ~rA. Similarly, ΠB is a function of Bob’s input vB, and therefore a function of B, ~rB.
For the term I(B; ΠA | A, i?, θ), we get I(B; ΠA | A, i?, θ) ≤ I(B;A~rA | A, i?, θ) =
I(B;~rA−i?

| A, i?, θ) = 0 as θ = rAi? and ~rA−i?
is sampled independently of A,B, i?, θ.

Recall that ~rA−i?
denotes ~rA with the coordinate i? removed. Similarly, we can deduce

that I(A; ΠB | B, i?, θ) = 0. Finally, for the term I(ΠA; ΠB | A,B, i?, θ), we get
I(ΠA; ΠB | A,B, i?, θ) ≤ I(A~rA;B~rB | A,B, i?, θ) = I(~rA−i?

;~rB−i?
| A,B, i?, θ) = 0 as

~rA−i?
is sampled independently of ~rB−i?

,A,B, i?, θ. Combining, we get

I(θ;Z(Υ) | A,B, i?) ≤ I(θ; ΠA | A, i?) + I(θ; ΠB | B, i?).

We next show that I(θ; ΠA | A, i?) ≤ 2 · CC(Π)
n . A similar argument shows that

I(θ; ΠB | B, i?) ≤ 2 · CC(Π)
n , finishing the proof of Lemma 6.1. As θ = rAi? , ΠA is

a function of A and ~rA, and i? is sampled from U([n]), we have the following by
Lemma 5.12:

I(θ; ΠA | A, i?) = I(rAi? ; Π
A | A, i?)

≤ 1

n
· I(rA; ΠA | A) (Lemma A.6)

≤ 1

n
·H(ΠA) ≤ CC(Π) + 1

n
≤ 2 · CC(Π)

n
.

We note that we lose an extra “+1” in the argument only because, in our model in
section 2, the length of Alice’s and Bob’s messages can be anywhere from 0 to CC(Π).
Thus, the total number of possible messages can be upper bounded by 2CC(Π)+1 but
not 2CC(Π).

Appendix A. Tools from information theory. We include a very brief
summary of the tools from information theory that we use in this paper. We refer the
interested reader to the text by Cover and Thomas [CT06] for an excellent introduction
to this field.
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A.1. Entropy and mutual information.

Definition A.1 (entropy). The Shannon entropy of a discrete random variable
X is defined as

H(X) =
∑

x∈supp(X)

Pr(X = x) log
1

Pr(X = x)
,

where supp(X) is the set of all values X can take and 0 log 1
0 = 0 by convention.

Definition A.2 (conditional entropy). Let X and Y be discrete random vari-
ables. The entropy of X conditioned on Y is defined as

H(X | Y ) = E
y∼dist(Y )

[H(X | Y = y)] .

Definition A.3 (mutual information). Let X, Y , and Z be discrete random vari-
ables. The mutual information between X and Y is defined as

I(X;Y ) = H(X)−H(X | Y ).

The conditional mutual information between X and Y conditioned on Z is defined as

I(X;Y | Z) = H(X | Z)−H(X | Y Z).

We note that mutual information is symmetric in X and Y , i.e., I(Y ;X | Z) =
I(X;Y | Z) and I(X;Y ) = I(Y ;X).

Fact A.4. The following holds for discrete random variables W,X, Y, Z:
1. We have H(XY ) = H(X) + H(Y | X) ≤ H(X) + H(Y ). Equality holds if X

and Y are independent.
2. If the random variable X takes values in the set Ω, it holds that 0 ≤ H(X) ≤

log|Ω|.
3. We have 0 ≤ I(X;Y | Z) ≤ H(X) and I(X;Y | Z) = 0 if and only if X is

independent of Y given Z.
4. Chain rule of mutual information:

I(WX;Y | Z) = I(W ;Y | Z) + I(X;Y | WZ).

5. Data processing inequality: for any deterministic function f ,

I(X; f(Y ) | Z) ≤ I(X;Y | Z).

We also use the following technical lemmas about mutual information.

Lemma A.5. For discrete random variables W , X, Y , and Z, we have

max(I(W ;X | Y Z), I(Y ;X | Z)) ≤ I(W ;X | Z) + I(Y ;X | WZ).

Proof. Observe that

max(I(W ;X | Y Z), I(Y ;X | Z)) ≤ I(W ;X | Y Z) + I(Y ;X | Z) (item 3, Fact A.4)

= I(WY ;X | Z) (item 4, Fact A.4)

= I(W ;X | Z) + I(Y ;X | WZ). (item 4, Fact A.4)
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Lemma A.6. Let n > 0 and X = X1, X2, . . . , Xn, where X1, X2, . . . , Xn are in-
dependent and identically distributed discrete random variables. Let I be a random
variable distributed uniformly over [n]. For all discrete random variables Y such that
X is independent of Y and I is independent of (X,Y ) and all functions f , we have

I(XI ; f(X,Y ) | Y, I) ≤ 1

n
· I(X; f(X,Y ) | Y ).

Proof. Using the fact that I is distributed uniformly over [n], we get

I(XI ; f(X,Y ) | Y, I) = H(f(X,Y ) | Y, I)−H(f(X,Y ) | XI , Y, I) (Definition A.3)

=
1

n
·
∑

i∈[n]

(

E
y∼dist(Y )

[H(f(X,Y ) | Y = y, I = i)]

− E
y∼dist(Y )

E
x∼dist(Xi)

[H(f(X,Y ) | Xi = x, Y = y, I = i)]

)

(Definition A.2)

=
1

n
·
∑

i∈[n]

(

E
y∼dist(Y )

[H(f(X,Y ) | Y = y)]

− E
y∼dist(Y )

E
x∼dist(Xi)

[H(f(X,Y ) | Xi = x, Y = y)]

)

(independence of I and (X,Y ))

=
1

n
·
∑

i∈[n]

H(f(X,Y ) | Y )−H(f(X,Y ) | Xi, Y ) (Definition A.2)

=
1

n
·
∑

i∈[n]

I(Xi; f(X,Y ) | Y ) (Definition A.3)

≤ 1

n
·
∑

i∈[n]

I(Xi; f(X,Y ) | Y,X<i) + I(Xi;X<i | Y ) (Lemma A.5)

=
1

n
·
∑

i∈[n]

I(Xi; f(X,Y ) | Y,X<i) (item 3, Fact A.4)

=
1

n
· I(X; f(X,Y ) | Y ). (Item 4, Fact A.4)

A.2. Measures of distance between distributions. We use two main mea-
sures of distance (or divergence) between distributions, namely, the Kullback–Leibler
divergence (KL-divergence) and the total variation distance.

Definition A.7 (KL-divergence). For two distributions µ and ν over the same
set Ω, the KL-divergence between µ and ν, denoted by D(µ || ν), is defined as

D(µ || ν) =
∑

x∈Ω

µ(x) log
µ(x)

ν(x)
.

Definition A.8 (total variation distance). For two distributions µ and ν over
the same set Ω, the total variation distance µ and ν is defined as

‖µ− ν‖tvd := max
Ω′⊆Ω

∑

x∈Ω′

µ(x)− ν(x).
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These definitions satisfy the following properties.

Fact A.9. The following hold:
1. For discrete random variables X, Y , and Z, we have

I(X;Y | Z) = E
(y,z)∼dist((Y,Z))

[D(dist(X | Y = y, Z = z) || dist(X | Z = z))] .

2. (Pinsker’s inequality) For any distributions µ and ν, we have

‖µ− ν‖tvd ≤
√

1

2
· D(µ || ν).

Appendix B. Omitted proofs.

Proof of Theorem 2.1 assuming Theorem 2.3. The proof is by contradiction.
Suppose that Theorem 2.3 is true and Theorem 2.1 is not. Let P (·) be the poly-
nomial promised by Theorem 2.2, and let d be the degree of P . Define β = 1

500(d+1) .

Let ε? > 0 be the constant promised by the negation of Theorem 2.1 for this value
of β (recall that we assume that Theorem 2.1 is false). Let m1 be large enough so
that (1) P (m′) ≤ m′d+1 for all m′ > m1, (2) exp(βε

2
? ·m′) ≥ m′ for all m′ > m1, and

(3) m1 > 1010

ε2?
.

Using our assumption that Theorem 2.1 is false, we get that there is an m > m1,
and a randomized, m-item, XOSm-combinatorial auction Π with two bidders and one
seller that is truthful, is

(

3
4 − 1

240 + ε?
)

-approximate with probability 1
2 + exp(−βε2? ·

m), and satisfies CC(Π) < exp(βε2? ·m).
Plugging Π into Theorem 2.2, we get a randomized, m-item, XOSm-combinatorial

auction Π′ with two bidders and one seller that is simultaneous and
(

3
4 − 1

240 + ε?
)

-

approximate with probability 1
2 +exp(−βε2? ·m) > 1

2 +exp
(

− ε2?m
500

)

and satisfies (using
m > m1)

CC(Π′) < P (max(exp(βε2? ·m),m)) ≤ exp

(

ε2?m

500

)

.

This contradicts Theorem 2.3 and we are done.

B.1. Omitted proofs from section 4.1.

Concentration inequalities. We use the following version of Chernoff bound
for negatively correlated random variables.

Definition B.1 (negatively correlated random variables). For n > 0, let
X1, . . . , Xn be random variables taking values in {0, 1}. The random variables
X1, . . . , Xn are negatively correlated if for all subsets S ⊆ [n], we have Pr(∀i ∈
S : Xi = 1) ≤∏i∈S Pr(Xi = 1).

Lemma B.2 (generalized Chernoff bound; cf. [PS97]). For n > 0, let X1, . . . , Xn

be negatively correlated random variables that take values in {0, 1}. Then, for any
ε > 0, we have (where µ =

∑

i∈[n] E[Xi] ≤ n)

Pr





∑

i∈[n]

Xi > µ+ εn



 ≤ Pr





∑

i∈[n]

Xi > (1 + ε) · µ



 ≤ exp(−ε2µ/3).

Much of the proofs in this section will follow by connecting PC(k, ~P , ~p) to a related
product distribution, defined below.
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Definition B.3. For a partition parameter (k, ~P , ~p), define PC-ally(k, ~P , ~p) to be

the distribution over subsets of M such that we have PrU∼PC-ally(D)(z ∈ U) =
p~P [z]

|P~P [z]|

independently for all z ∈ M .

We will need the following technical lemmas about partition parameters.

Lemma B.4. For any subset S ⊆ M and any partition parameter (k, ~P , ~p), it
holds that

Pr
U∼PC(k, ~P ,~p)

(U ∩ S = ∅) ≤ Pr
U∼PC-ally(k, ~P ,~p)

(U ∩ S = ∅).

Proof. We have

Pr
U∼PC(k, ~P ,~p)

(U ∩ S = ∅) = |{U ⊆ S | |~P ∩ U | = ~p}|
|{U ⊆ M | |~P ∩ U | = ~p}|

=

∏

i∈[k]:|Pi|>0

(

|S∩Pi|
pi

)

∏

i∈[k]:|Pi|>0

(

|Pi|
pi

)

=
∏

i∈[k]:|Pi|>0

(|Pi| − pi) (|Pi| − pi − 1) · · ·
(

|S ∩ Pi| − pi + 1
)

|Pi| (|Pi| − 1) · · ·
(

|S ∩ Pi|+ 1
)

≤
∏

i∈[k]:|Pi|>0

(

1− pi
|Pi|

)|S∩Pi|

= Pr
U∼PC-ally(k, ~P ,~p)

(U ∩ S = ∅).

Corollary B.5. For any partition parameter (k, ~P , ~p) and any distribution D∗

over subsets of M , it holds that

Pr
U∼PC(k, ~P ,~p)

U∗∼D∗

(U ∩ U∗ = ∅) ≤ Pr
U∼PC-ally(k, ~P ,~p)

U∗∼D∗

(U ∩ U∗ = ∅).

Proof. We have

Pr
U∼PC(k, ~P ,~p)

U∗∼D∗

(U ∩ U∗ = ∅) =
∑

S⊆M

Pr
U∼PC(k, ~P ,~p)

U∗∼D∗

(U ∩ S = ∅, U∗ = S)

=
∑

S⊆M

Pr
U∼PC(k, ~P ,~p)

(U ∩ S = ∅) Pr
U∗∼D∗

(U∗ = S)

≤
∑

S⊆M

Pr
U∼PC-ally(k, ~P ,~p)

(U ∩ S = ∅) Pr
U∗∼D∗

(U∗ = S) (Lemma B.4)

=
∑

S⊆M

Pr
U∼PC-ally(k, ~P ,~p)

U∗∼D∗

(U ∩ S = ∅, U∗ = S)

= Pr
U∼PC-ally(k, ~P ,~p)

U∗∼D∗

(U ∩ U∗ = ∅).

Proof of Lemma 4.2. Let D denote the partition parameter (k, ~P , ~p) and D′ de-

note the parameter (k′, ~P ′, ~p′). Let U and U ′ be sets sampled from distributions
PC(D) and PC(D′), respectively. For z ∈ M , we define the indicator random variable
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Xz to be such that Xz = 1 if and only if z /∈ U ∩ U ′. We have that

E[Xz] = Pr(Xz = 1) = Pr
U∼PC(D)
U ′∼PC(D′)

(z /∈ U ∩ U ′) = 1− Pr
U∼PC(D)
U ′∼PC(D′)

(z ∈ U ∩ U ′)

= 1− Pr
U∼PC(D)

(z ∈ U) · Pr
U ′∼PC(D′)

(z ∈ U ′) = 1−
p~P [z]

|P~P [z]|
·
p′~P ′[z]

|P ′
~P ′[z]

| ,

(6)

implying
∑

z∈[m] E[Xz] = m −∑z∈M

p~P [z]

|P~P [z]|
·

p′

~P ′[z]

|P ′

~P ′[z]
| . = m − ∆. We now show that

the random variables X1, . . . , Xm are negatively correlated (Definition B.1), whence
it follows from Lemma B.2 that

Pr
U∼PC(D)
U ′∼PC(D′)

(|U ∩ U ′| < ∆− εm) = Pr





∑

z∈[m]

Xz >
∑

z∈[m]

E[Xz] + εm





≤ exp(−ε2(m−∆)/3).

In order to show that the random variables X1, . . . , Xm are negatively corre-
lated, we pick an arbitrary subset S of M and show that Pr(∀z ∈ S : Xz = 1) ≤
∏

z∈S Pr(Xz = 1). We have

Pr(∀z ∈ S : Xz = 1) = Pr
U∼PC(D)
U ′∼PC(D′)

(S ∩ U ∩ U ′ = ∅)

≤ Pr
U∼PC-ally(D)
U ′∼PC(D′)

(S ∩ U ∩ U ′ = ∅) (Corollary B.5)

≤ Pr
U∼PC-ally(D)
U ′∼PC-ally(D′)

(S ∩ U ∩ U ′ = ∅) (Corollary B.5)

= Pr
U∼PC-ally(D)
U ′∼PC-ally(D′)

(∀z ∈ S : z /∈ U ∩ U ′)

=
∏

z∈S

Pr
U∼PC-ally(D)
U ′∼PC-ally(D′)

(z /∈ U ∩ U ′)

=
∏

z∈S

(

1−
p~P [z]

|P~P [z]|
·
p′~P ′[z]

|P ′
~P ′[z]

|

)

=
∏

z∈S

Pr(Xz = 1). (equation (6))

Proof of Lemma 4.3. We only argue for the case j = 1 as the case j = 2 is
symmetric. Let C be the set of all sequences ~Z ′ of k1 subsets of M satisfying
|Part~S‖~Z′ | = ~a1. If ~Z /∈ C, then the result holds as both the terms are 0. We

thus assume that ~Z ∈ C. We immediately get Pr~S1∼µ1

(

~S1 = ~Z
)

= 1
|C| .

For ~Z ′ ∈ C, define the set D(~Z ′) to be the set of all sequences ~Z ′′ of k2 subsets of
M such that |Part~S‖~Z′‖~Z′′ | = ~a. Owing to the fact that Pr~S1∼µ1,~S2∼µ2

(

|Part~S‖~S1‖~S2
| =
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~a
)

> 0, we have |Part~S‖~Z′′ | = ~a2 for all ~Z ′′ ∈ D(~Z ′). Furthermore, by symmetry, the

value of |D(~Z ′)| is the same for all ~Z ′ ∈ C.
It follows that

Pr
~S1∼µ1

~S2∼µ2

(

~S1 = ~Z | |Part~S‖~S1‖~S2
| = ~a

)

=
|D(~Z)|

∑

~Z′∈C |D(~Z ′)|
=

1

|C| ,

finishing the proof.

Proof of Corollary 4.4. Observe that there exist unique ~a′1 = ~a′1(
~S,~a1) and ~a′2 =

~a′2(
~S,~a2), both in Z

2k+1

such that, for any j ∈ {1, 2} and A ⊆ M ,

|Part~S ∩A| = ~aj ⇐⇒ |Part~S‖A| = ~a′j .

Similarly, for any ~a such that PrA1∼µ1,A2∼µ2

(

|Part~S ∩A1 ∩A2| = ~a
)

> 0, there exists

a unique ~a′ = ~a′(~S,~a1,~a2,~a) ∈ Z
2k+2

such that, for all A1, A2 such that |Part~S ∩Aj | =
~aj for j ∈ [2], we have

|Part~S ∩A1 ∩A2| = ~a ⇐⇒ |Part~S‖A1‖A2
| = ~a′.

The proof then follows by applying Lemma 4.3 with k1 = k2 = 1.
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D
o
w

n
lo

ad
ed

 0
6
/1

6
/2

3
 t

o
 1

7
3
.7

2
.1

0
4
.1

6
5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOC20-114 ASSADI ET AL.

bounds for welfare maximization in combinatorial auctions, in Proceedings of the
9th ACM Conference on Electronic Commerce (EC), 2008, pp. 70–77.

[NS06] N. Nisan and I. Segal, The communication requirements of efficient allocations and
supporting prices, J. Economic Theory, 129 (2006), pp. 192–224.

[NW93] N. Nisan and A. Wigderson, Rounds in communication complexity revisited, SIAM
J. Comput., 22 (1993), pp. 211–219, https://doi.org/10.1137/0222016.

[PS82] C. H. Papadimitriou and M. Sipser, Communication complexity, in Proceedings of
the 14th Annual ACM Symposium on Theory of Computing (STOC), ACM, 1982,
pp. 196–200.

[PS97] A. Panconesi and A. Srinivasan, Randomized distributed edge coloring via an exten-
sion of the Chernoff–Hoeffding bounds, SIAM J. Comput., 26 (1997), pp. 350–368,
https://doi.org/10.1137/S0097539793250767.

[Rag88] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximating
packing integer programs, J. Comput. Syst. Sci., 37 (1988), pp. 130–143.

[Vic61] W. Vickrey, Counterspeculations, auctions, and competitive sealed tenders, J. Finance,
16 (1961), pp. 8–37.
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