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Abstract—In this paper, we present an unsupervised learning
framework for message allocation in Cell-free networks (CFNs)
for latency minimization. One of the key features of CFNs
is that users’ data can be decoded by multiple access points
(APs), i.e., in a “cell-free” manner by letting users connect to
multiple APs simultaneously; leading to the problem of message
allocation across APs. While a fully centralized approach for
message allocation can make the most out of the flexibility offered
via CFNs, it requires prohibitive coordination overhead. In this
paper, we instead propose a novel semi-decentralized machine
learning based framework for message allocation. It allows each
user to split their messages using a “learned” model (e.g., a
neural network) which takes two inputs: a user’s local channel
gains and aggregate global SINRs at the APs.

The model is trained with the objective of minimizing the
latency of the network. To accomplish this, the total latency
derived from the model’s learned message split for each user
is the main component of the loss used to update the model.
Different methods are investigated for training the model by
presenting variations of how the latency is computed. We
use the cumulative distribution function (CDF) of latency as
the key performance metric and compare our proposed semi-
decentralized approach against several centralized methods as
well as uniform and greedy message allocation techniques. Our
results indicate that the semi-decentralized machine learning
based method can approach the performance of the centralized
methods with very little coordination overhead and outperforms
greedy/uniform allocation methods.

I. INTRODUCTION

Cell-Free networks (CFNs) have been proposed to deal with
the challenges of dense cellular networks, including higher
interference and complexity [1]. They become critical as wire-
less standards have encouraged incorporating frequency reuse
strategies in cellular networks to conserve spectrum; however,
if the same frequencies were shared across cells, it could result
in increased intercell interference [2]. This is especially worse
for cell-edge user equipment (UEs) as they would experience
increased intercell interference [3]. A concrete example of a
CFN in the literature is Cell-Free MIMO, where instead of
organizing access points (APs) and UEs into cells, the APs
are spread over an area, while connected to a CPU, and are
responsible for serving every UE in that area [4] [5]. Cell-
Free MIMO can also be considered as a more efficient form
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of Coordinated Multipoint with Joint Transmission (CoMP-
JT) due to reduced overhead requirements enabled via time
division duplexing [6].

Several architectures have been proposed for implementing
CFNs. In [7], varying levels of interaction between the APs
and the CPU are investigated for cell-free MIMO, ranging
from fully centralized to fully distributed. Generally, cen-
tralized operation refers to the CPU managing the system
using the signals received at the APs; contrarily, distributed
operation involves the APs serving the UEs [7]. In [7], for
example, centralized operation is implemented by having the
CPU handle channel estimation and data decoding; however,
distributed operation is implemented as a small-cell network
where the APs use their local channel estimates for decoding,
and decoding duties for a UE are determined based on which
AP can provide it the highest spectral efficiency. There has
also been significant work in user-centric Cell-Free MIMO,
where a UE is served only by a certain number of APs based
on a particular feature [8].

A. Main Contributions

Given the flexibility of CFNs, the design of message
allocation schemes is critical to optimize overall network
performance and spectral efficiency. In this work, a message
allocation framework is presented where each AP is designated
a certain amount of data from each UE to decode; these
message allocations are determined with the objective of min-
imizing the total latency of the CFN. To accomplish this, we
propose a novel semi-decentralized machine learning based
approach. While a fully centralized approach for message
allocation can make the most out of the flexibility offered via
CFNs, it requires prohibitive coordination overhead (in terms
of global channel state information (CSI)). Instead, in our
proposed approach, the machine learning (ML) model operates
locally at every user and takes two inputs: a) Coarse global
information (aggregate signal-to-interference-plus noise ratios
(SINRs) from APs from previous blocks) and b) current local
CSI from the user.

Another key challenge we address is the training procedure
for such semi-decentralized networks. Supervised learning
cannot be directly applied in this setting, as it would require a-
priori knowledge on the latency incurred for a particular split
of a UE’s message for multiple channel conditions. Instead,
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Fig. 1: Nlustration of uplink message/power allocation problem in

Cell-free networks for K UEs and M APs. Message and power

allocation parameters {a:)k,ng)k} are generated for each UE by

a local model (i.e. MPA-NN) to minimize the overall latency.

we train the model via an unsupervised learning approach,
where the latency derived from the model’s message allocation
decision(s) is treated as the main component of the loss used
to update the model. The latency is composed of both compu-
tational and transmission latencies. We study two variations on
computing the transmission latency, namely average and worst
case (maximum) latency across the system. We compare our
approach against fully centralized methods (Interior Point (IP)
and Sequential Quadratic Programming (SQP) optimization
algorithms) as well as uniform and greedy message allocation
approaches for various path loss models. Our results highlight
the effectiveness of the semi-decentralized machine learning
based approach and show that it comes quite close to the
performance of fully centralized methods with very little coor-
dination overhead and outperforms greedy/uniform methods'.

B. Related Works

Rate-splitting, where messages are split into public/private
portions that are decoded differently, for the downlink of
a Cell-Free MIMO system was investigated in [9] [10].
Additionally, works in the literature have proposed cell-free
MIMO as a framework for Mobile Edge Computing (MEC),
which can be considered a form of message allocation, while
addressing latency in varying degrees. In [11], an optimiza-
tion problem is formulated, assuming a user-centric Cell-Free
MIMO setup, for assigning UEs transmit powers and deciding
how much of an AP’s (i.e. edge server) and CPU’s (i.e.
central server) resources are assigned for serving each UE.
A latency constraint is explicitly considered, incorporating
the computational, transmission (between UE and APs), and
fronthaul (between APs and CPU) latencies, while assuming
that signaling/feedback latencies are implicitly covered un-
der this formulation. In [12], a user-centric cell-free MIMO
MEC system is analyzed via a metric called the successful
computation probability (SCP), representing how likely the
computational latency of a task is smaller than a certain
deadline. In [13], two optimization problems for latency and

'The  simulation code for this available  on

https://github.com/nteku1/Cell_Free_Code

paper is

energy consumption formulations are derived for a user-centric
Cell-Free MIMO MEC network, where the latency formulation
explicitly includes the downlink latency for retrieving the
processed bits from the cloud.

In [14]— [16], approaches were presented for a MEC user-
centric Cell-Free MIMO setup using deep reinforcement learn-
ing (DRL). In [14], a decentralized approach was proposed,
where the DRL technique was implemented at each user. In
[15] [16], this assumption is expanded on by having the DRL
techniques at each UE share information with each other
during training but not during testing, making it a hybrid
centralized/decentralized approach. Latency is included as part
of the input to the DRL technique (as a single deadline, whose
success in being met is represented by a binary value [14]
and as user-specific deadlines [15] [16]); however, the primary
objective of these works are to minimize energy consumption.

II. SYSTEM MODEL

A. System Operation

We consider a CEN with M APs, m = 1,2,..., M and K
UEs for £ = 1,2, ..., K as shown in Figure 1. We consider
uplink transmission from the UEs to the APs, where each
AP is responsible for decoding a certain fraction of data
from each UE. It is assumed that the UEs conduct slotted
transmissions to the APs and that the CFN is synchronized.
We assume that time is organized in blocks, where a block
encapsulates the slotted transmissions from the UEs to the
APs and the decoding of the data at the APs. This is shown
in Figure 2(a). Additionally, the channels between the UEs
and the APs are assumed to be constant over a block and
can vary across blocks. At each block, the k" UE wants
to send a message of size Sy bits. The set of fractions the
kth UE uses to assign portions of the S, bits to each AP is
denoted as (b) = [a g,)c,a;b,)c,.. ag&) ), where b represents
the block 1ndex 0< a(b). < 1, and Z a(b) 1. For the
k" UE, we denote the ‘codeword generated for each sub-
message as x(b) where 7% encodes the a'”) fraction of

N 7,k 7,k
the k' UE’s message The power available at the k** UE
(Py) is allocated to each codeword for transmission using

power control factors denoted as 771(@) [775 ,)C, né ,)c,. o 77](\12,@],

where 0 < 7]() < 1 and Zj n](k = 1. Each UE then
transmits X, = /Py Zj\il \/n‘g)]zxj,k. The portion of the

kth UE’s signal that the m‘" AP is responsible for decoding

ist 1/ Py ng) gfs)kxff;)k where g( )k represents the channel
between the m™ AP and the k™ UE.

There are two sources of interference the m'" AP expe-
riences when decoding the k" UE’s signal. The first source
is from the k*"* UE sending codewords intended for the other

(M —1) APs, which is given as: Zﬁém \/Pknj(b,gg](b,ix(b) The
second is from the other (K — 1) UEs sending the portions of
their respective messages across all M APs, which is given

M K b b
as: SN TE P68,

k795,50 - The signal received by
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the m!™ AP in the b*" block can then be written as follows:

by _ ./ ®) ) () / (b) (b) 20
y7(n)7 Pnrnkgmk: rnk+ Z Pnj, ik Jk:

Jj#m,

Desired Signal of k*" UE
Self-interference of k' UE

+Z Z \/ Py 77j k;/gj k/x k’ +Wm,

J=1k'#k,

(D

Interference from (K — 1) UEs

where w,, represents additive noise. During the first block,
because the optimal (ocgt ),m(C )) are not known a-priori, we
randomly initialize the (o, n{")) for each UE (while also
normalizing them by their respective sums). The n,&b) are then
used to calculate the uplink SINR between the k** UE and

mt" AP as follows:
b b
P 7)( ) |g( ) |2
I+ ZJ 1 Zk Ak Pk 77

Because of this constraint, the SINRs passed into the model
are always derived from the previous block, as shown in Figure
2(a). However, because it is assumed that channel estimation
is conducted at the beginning of subsequent blocks, the UEs
have access to local CSI (i.e. knowledge of the channel gains
between itself and the M APs) during the current block. The
set of channel galns between the k:th UE and the M APs is
denoted as gk = [l 9 |, | géb,)c gt M .|| The set of coarse
aggregate SINRs at the APs from the previous block is denoted
as SINR(-D [SINR{"™D SINRYY)| . SINR(E Y],
These two vectors, as shown in Figure 2(b), constitute the input
to the message and power allocation model. The UEs then split
their messages using their a,(cb) obtained from the model and
transmit these portions using their n,(Cb)
for processing.

SINR®) —

m,k T

|g(b) |2 @

to the respective APs

B. Latency Formulations

We adopt the same method for computing the compu-
tational and transmission latencies as in prior works [14]
[17]. The largest transmission latency from the k" UE to

(®)
; . 7 Tran L
the M APs is as follows: L, = Blog, (1 +SINRM))

where B denotes the channel bandwidth. The average and
maximunﬂwqrse—case transmission latencies of the CFN are
denoted by Lryq, = Z’ﬁ% and LM&  — m}gx(L?a”)

Tran
respectively. The computational latency of the M*" AP is

K (b) Sk)em
as follows: Lyi™ = (Zk:la% where 33, afl), Sy

represents the portions of data from the K UEs that the mth
AP is responsible for decoding, ¢, is the number of cycles for
the m!* AP to process one sample, and f,, is the processing
frequency of the m™ AP. Similar to [14], the computational
latency term indicates how the m!" AP’s services are split
across the UEs. The formulations of the total latency for the

max(

CFN used in this work are as follows: L& = Lran +LCOmp
and LY = LY 4 LY. where LY, = max(Ly™)

represents the largest computational latency across the M APs.
The model is evaluated by adopting L}™* and LY®* to analyze
how well it can perform under different latency scenarios.
The models are assumed to be placed near/called by the UEs
so that their respective (a,(ﬁb),ngcb)) can be acquired quickly.
In doing so, latencies associated with control signaling (e%
passing information to the model and delivering the ( ak ,
n,(cb)) to their respective UEs) are assumed to be negligible.
The objective of this effort is to learn a message and power

allocation model with the goal of minimizing LY and LY.

ITII. SEMI-DECENTRALIZED MACHINE LEARNING BASED
MESSAGE ALLOCATION

Motivation and overview: As stated in Section I, the proposed
method of latency minimization in this work is a semi-
decentralized machine learning approach. The objective is to
enable UEs to make decisions on how their messages should
be split across APs that minimize the total latency of the
CFN. This approach is presented as a balance between two
extreme modes of operation. On one extreme, the model could
exclusively use coarse global information (i.e. accessible to all
UEs) to perform message allocation but this would come at
the cost of significant overhead. On the other extreme, the
model could exclusively use local CSI but, in doing so, would
suffer significant performance degradation. In this work, to
strike a balance between the two extremes, each UE uses the
same model, Wthh 1s given SINR(®~1) (ie. coarse global
information) and g k (1 e. fine local information) as input as
shown in Figure 2(b). The output of the model, after post-
processing (described in more detail later), is then used as
the (a,gb), n,ib)) for the k' UE. The (a]ib), 'r),(:)) for each of
the K UEs are generated at every block with the objective of
minimizing either Ll{’la"(Me(b)) or Lg’lax(Me(b)), where My and
6 represents the model and model parameters respectively.

Training Methodology: First, the model ;;arameters, message
allocation a,(co), and power allocation nk for the K UEs are
initialized. Channel gains are sampled from the initial block
and are used with n,(co) to calculate the initial SINRs at the
M APs. During the next block, the current channel gains and
the SINRs from the previous block (i.e. SINR(?)) are passed
into the model to determine the message and power allocation,
(a (b), né )) for each UE. The learned fr]g)) and channel gains
are used to re-calculate the SINRs, which are then used with
the learned o\” to calculate ZM* (0P} or LY (M("). The
loss function is as follows (assuming L]}’[aX(M(gb))): Lerad —
VL%’[‘”‘(M(gb)). L#rad s the gradient of the subsequent total
latency derived from the message/power allocations for each
UE. This implies that the model is applied in an unsupervised
learning context as no a-priori labels are used to guide its
training process. L824 is then passed to an Adam optimizer
to update the model’s weights, and the procedure continues
for T" blocks. For each UE, only the top T afz) ;. are used for
message allocation, where 7 is a hyperparam;qter restricting
how many APs a UE can connect to. 7 is used to limit the
overhead a UE needs for message allocation. The indices of the

Authorized licensed use limited to: University of Arizona. Downloaded on March 11,2025 at 03:17:36 UTC from IEEE Xplore. Restrictions apply.

556



MILCOM 2024 Track 5 - Machine Learning for Communications and Networking

Block (b)
Block H
(b-1)

Block
(b+1)

Channel
Estimation

, I—» Transmission

)

by UEs

I‘_A, v Decoding &

N
; (b-1) Cell-Free : :
SINR \ak("" n: Processing
Message —/ :
; : bv APs
Allocation

(a) System Operation In Blocks.

Current Local CSI @ user k
g/:m_>

Cell-Free Message
Allocation Model:

SINR"——| p)(g, SINR)

= (b
> Mk

Aggregate SINRs @ APs from (b — 1)™ block

(b) Cell-Free Message Allocation Model Workflow.

Fig. 2: (a) In one block, SINR from previous block and CSI from current block are passed to the model to determine message allocation.

UE:s split/transmit messages to appropriate APs for decoding using (

b b
o )

) determined by the model. (b) Cell-Free Message Allocation
(b) (b))

model using coarse aggregate SINRs at the APs from the previous block and local CSI from the current block at the UEs to learn (o, , 7,

(b)

. are used to select which nfﬁ?k are used for that UE.

The resulting (ag}), n,(cb)) are normalized by their respective

sums. The training procedure is summarized in Algorithm 1.

top 7«

Algorithm 1 Training for Semi-Decentralized Message Allo-
cation Model

Initialize (©) (Model Parameters)

Initialize € (learning rate), p; & po (exponential decay
rates), 0 (small constant), s =r =0

Initialize [a;(©, ..., 'P] (Initial Message Allocation)

Initialize [ngo), e n,(co ] (Initial Power Allocation)

Calculate SINR(?) at APs using gains from channel model

and initial power allocation: [910),..., g(lg),ngo),...,n,go)]

for b=1,....T do
Sample [g(lb), géb), gg?)] from channel model
b b b— b _
(e, m”) = M"Y (g, SINRCD)

Get 7 largest elements from a,(cb) and normalize.

(b)

Get corresponding indices from 77;,” and normalize.

Compute SINRs using [ggb),..., gg),ngb),...,n;b)]

Compute Latency using Message Allocation decided by
model: LM (A"~ (assuming LYe*)

Update #(*) using Adam on loss function [20]:

s=pis+ (1— py)LErad

T = par + (1 — pZ)IS;grad ® Lerad

e(b) — a(b—l) _ eéi /’7} Lerad

17,)5

end for

IV. SIMULATION RESULTS AND DISCUSSION
A. Datasets & Simulation Setup

For simulation and validation, CFNs with two different
path loss scenarios are considered. The three-slope path loss
(PL,, ) model used in [5] is as follows:

-L-15logy d1-201loggdo dpmi < do
PLp i =< -L-151logy d1-20log g dm k. do < dy e < di
-L-3510g1o dpm i dm,k > di,

where d,;, ;. is the distance between the m™ AP and the k™
UE, dy and d; are 10 and 50 m respectively, and L is a
constant that depends on the assumed carrier frequency and

height of the antennas of the APs and UEs [5]. If the path loss
—L — 35logyo(dm, k) is chosen, shadow fading is added [7].
The path losses are applied to a spatially correlated Rayleigh
fading channel which results in gffz)k [7] as used in (1) and
(2). The path loss is also normalized 7by the noise power, set to
—92dBm as in [7]. We perform experiments on two scenarios,
each assuming a 100m x100m grid. The first scenario uses the
full three-slope path model. The second scenario only uses the
path loss —L—351og;,(dm, ). To keep the spirit of the model,
shadow fading was added for any d,, , greater than 50 m.

We adopt a similar experimental setup as the prior works:
[51[7] [17] [18] [19]. We use a neural network as our message
and power allocation model (abbreviated as MPA-NN) to show
the results of the proposed approach using Tensorflow/Keras.
The MPA-NN’s input layer is 2M neurons, taking in M SINRs
and M channel gains between a UE and the APs. The output
layer is 2M neurons to assign an aiz)k and nﬁs)k for each
AP, with a sigmoid activation. Unless otherwise stated, 7 = 2.
The MPA-NN has 2 hidden layers and its learning rates are
chosen from [0.002, 0.0002, 0.00002]. Other attributes (hidden
activations, dropout, £1/¢2-norm regularization) are varied for
each CFN. For all results, the methods were tested for 1000
blocks (with the result of the first block excluded as it is used
to get the initial SINRs). In all CENs, f,, = 1M Hz, ¢, =
20-2es | Sy = 1000, Py = 100mW, B = 20M Hz, and the
carrier frequency is 1.9 GHz. Each AP and UE has a single
antenna and their positions are fixed. More simulation details
are presented in the code.

We compare the MPA-NN with four approaches. The first
is uniform allocation; equal amounts of data are sent to each
AP with equal power (e.g. for 10 APs, O‘S;)k = fs)k =01
Vm, k). The second approach is greed 7 /

allocation, where the
AP with the largest channel gain (|gnl;)k|) with respect to a
UE is assigned to decode that UE’s siénal, with full power
used in that transmission. The third and fourth approaches are
the Interior Point (IP) and Sequential Quadratic Programming
(SQP) methods, which act as our centralized approaches,
using Matlab’s in-built optimization toolbox. The centralized
methods have access to the global CSI of the K UEs and can
calculate the SINRs using (2); their objective is to determine
the (afcb), n,(cb)) for the K UEs that minimize the total latency.
The CDF of the total latency is the metric for all simulations.
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Fig. 3: Comparison of all approaches under L?’[“X (latency) formulation for noisless CSI (a) and noisy CSI (b), (c) with CSI noise standard
deviations of ¢ = 0.01 and o = 0.1 respectively. MPA-NN is more robust to noisy CSI than centralized methods.

B. Impact of CSI Error

In this section, we study the impact of imperfect CSI on
our proposed method by corrupting the local CSI available at
the UEs with complex Gaussian noise, distorting the SINRs
and local channel gains passed into the model. Figure 3(a)
shows the performance of the MPA-NN, centralized (IP, SQP),
uniform, and greedy methods assuming the single path loss
and L™ formulation for a CFN of 25 APs and 6 UEs with
noiseless CSI. It indicates that the MPA-NN is more likely to
ensure lower latencies than uniform and greedy allocation. The
centralized methods outperform all methods but require more
overhead. Figures 3(b) & 3(c) show the performance of the
techniques assuming noisy CSI for the same CFN with noise
standard deviations of ¢ = 0.01 and o = 0.1 respectively.
For the MPA-NN, the same neural network structure is used
but now trained on noisy CSI instead of noiseless CSI. In
both setups, the centralized methods suffer performance loss
compared to when noiseless CSI is assumed. The MPA-NN,
however, in both setups, maintains a very similar performance
to when noiseless CSI is assumed. The MPA-NN outperforms
and performs comparably with the centralized IP and SQP
methods respectively in ensuring relatively low latencies with
high probability. Greedy allocation is also robust in both
scenarios but is still suboptimal compared to the MPA-NN.

C. Comparison with Other CFN Message Allocation Methods

In this section, we study the impact of using the different
latency formulations L}%* and L21%% on our proposed model.
Figures 4(a) & 4(b) show results for a CFN of 10 APs and
6 UEs under the three-slope path loss model, with 7 = 3.
Figure 4(a) shows results under the L{V[‘“ formulation. It
indicates that with a smaller number of APs, each method
performs reasonably well. The MPA-NN can still ensure
lower latencies with a higher probability compared to uniform
and greedy allocation. Figure 4(b) shows results under the
L= formulation. All methods still perform reasonably well
except uniform allocation, which suffers a significant loss in
performance compared to the L}7%* formulation. This hints
at the LY® formulation being more stringent compared to
LM, The MPA-NN still ensures lower latencies with a higher
probability compared to uniform and greedy allocation. In both
setups, the centralized methods outperform all other methods

but require significantly more overhead. Figure 4(c) shows
the performance of the techniques for a CFN of 20 APs and
6 UEs. The MPA-NN attains a high probability of ensuring
lower latencies compared to uniform and greedy allocation as
it starts to outperform both at approximately 13 ms. The MPA-
NN also outperforms the IP method after approximately 29 ms
and performs closely to the SQP method with less overhead.

D. Complexity & Impact of Scaling up CFN network size

Figure 5(a) shows the results of a CFN with 50 APs and
6 UEs under the single path loss scenario to represent a
scaled up CFN (M >> K). It indicates that even with
more APs to split the message, the greedy and uniform based
methods perform relatively worse to the MPA-NN. While the
centralized SQP method outperforms all methods, the MPA-
NN performs comparably with the centralized IP method at
approximately 40 ms. We also compare the time complexity
of the MPA-NN with the centralized methods. Table I shows
the time required for the methods to generate (a,(cb), fr)g))) for
the test sets of CFNs with 10, 20 and 50 APs. The values
reported were averaged over 5 runs of each test set. The table
indicates that the MPA-NN is significantly faster in generating
(a,(f),ng’)) compared to the centralized methods, showing
that it is more efficient for message allocation. Figure 5(b)
provides the means and standard deviations (in ms) on the
latencies incurred on the test sets of each CFN with the L}1#
formulation, further validating that the MPA-NN can approach
and outperform the performance of the centralized methods
when noisless and noisy CSI are assumed respectively.

Method/APs | MPA-NN [Ours] 1P SQP
10 APs 6.73 = 0.054 90.91 £0.3 121.66 £ 0.29
20 APs 5.97 £ 0.083 112.43 £0.22 298.52 £ 1.26
50 APs 7.46 £+ 0.089 256.76 = 0.56 | 1600.44 £ 14.15

TABLE 1I: Average inference times (in seconds) over 5 runs of
proposed and centralized methods for CFNs with 10, 20 & 50 APs.

V. CONCLUSION
In this paper, we presented a semi-decentralized learning
approach for message and power allocation for CFNs. An
approach for training this model was detailed with the incurred
latency being the main component of the loss function. Results
were presented evaluating the approach on different path loss
models. Our approach almost always outperforms uniform
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Fig. 4: Comparison of all approaches under two different latency optimization objectives for the three-slope path loss scenario. Figure (a)
shows the comparison for LY** and (b) for LY**. In (c), we consider single path loss scenario under Z}*. MPA-NN significantly outperforms
uniform and greedy allocations and approaches the performance of centralized (IP, SQP) methods.

. Comparison under L’lwi -..Sv.?iisf 6 UEs Avg, Latency + SD. MPA-NN Centralized Decentralized
(in ms) (This Paper) P SQP Uniform Greedy

o 10 APs 24264564 | 122202 | 12.7£0.604 |107.26%703.57 39.73 % 11.15
08 i Z."ji;if:” Noiscloss 20APs | 40.14+114.04 | 199.7+1199.5 | 28.1+67.9 16434069875;77; 717.13 + 747.51
° 0a e grezdy:wjocgtij Ll cst 25APs | 3485+57.63 | 6.1+25 10.8+3.8 ‘52;‘;?;’ 6* 4454+ 13.15

. S0APs | 50.68+276.66 | 83.1+884.7 | 16.1+21.2 22"772272565 56.16 = 22.85
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Fig. 5: (a) Impact of scaling up CEN on various approaches as we increase the numger of APs to 50. (b) Means and standard deviations
of latencies incurred for test sets of CFNs under various scenarios including both noiseless and noisy CSI.

and greedy-based methods and performs close to centralized
methods. Furthermore, the approach remains robust even when
the size of CFN scales and is also robust to noisy CSI.
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