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Abstract—In this paper, we present an unsupervised learning

framework for message allocation in Cell-free networks (CFNs)

for latency minimization. One of the key features of CFNs

is that users’ data can be decoded by multiple access points

(APs), i.e., in a “cell-free” manner by letting users connect to

multiple APs simultaneously; leading to the problem of message

allocation across APs. While a fully centralized approach for

message allocation can make the most out of the flexibility offered

via CFNs, it requires prohibitive coordination overhead. In this

paper, we instead propose a novel semi-decentralized machine

learning based framework for message allocation. It allows each

user to split their messages using a “learned” model (e.g., a

neural network) which takes two inputs: a user’s local channel

gains and aggregate global SINRs at the APs.

The model is trained with the objective of minimizing the

latency of the network. To accomplish this, the total latency

derived from the model’s learned message split for each user

is the main component of the loss used to update the model.

Different methods are investigated for training the model by

presenting variations of how the latency is computed. We

use the cumulative distribution function (CDF) of latency as

the key performance metric and compare our proposed semi-

decentralized approach against several centralized methods as

well as uniform and greedy message allocation techniques. Our

results indicate that the semi-decentralized machine learning

based method can approach the performance of the centralized

methods with very little coordination overhead and outperforms

greedy/uniform allocation methods.

I. INTRODUCTION

Cell-Free networks (CFNs) have been proposed to deal with
the challenges of dense cellular networks, including higher
interference and complexity [1]. They become critical as wire-
less standards have encouraged incorporating frequency reuse
strategies in cellular networks to conserve spectrum; however,
if the same frequencies were shared across cells, it could result
in increased intercell interference [2]. This is especially worse
for cell-edge user equipment (UEs) as they would experience
increased intercell interference [3]. A concrete example of a
CFN in the literature is Cell-Free MIMO, where instead of
organizing access points (APs) and UEs into cells, the APs
are spread over an area, while connected to a CPU, and are
responsible for serving every UE in that area [4] [5]. Cell-
Free MIMO can also be considered as a more efficient form
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CNS-2209951, CNS-1822071, CNS-2317192, and by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing under
Award Number DE-SC-ERKJ422, and NIH Award R01-CA261457-01A1.

of Coordinated Multipoint with Joint Transmission (CoMP-
JT) due to reduced overhead requirements enabled via time
division duplexing [6].

Several architectures have been proposed for implementing
CFNs. In [7], varying levels of interaction between the APs
and the CPU are investigated for cell-free MIMO, ranging
from fully centralized to fully distributed. Generally, cen-
tralized operation refers to the CPU managing the system
using the signals received at the APs; contrarily, distributed
operation involves the APs serving the UEs [7]. In [7], for
example, centralized operation is implemented by having the
CPU handle channel estimation and data decoding; however,
distributed operation is implemented as a small-cell network
where the APs use their local channel estimates for decoding,
and decoding duties for a UE are determined based on which
AP can provide it the highest spectral efficiency. There has
also been significant work in user-centric Cell-Free MIMO,
where a UE is served only by a certain number of APs based
on a particular feature [8].

A. Main Contributions

Given the flexibility of CFNs, the design of message
allocation schemes is critical to optimize overall network
performance and spectral efficiency. In this work, a message
allocation framework is presented where each AP is designated
a certain amount of data from each UE to decode; these
message allocations are determined with the objective of min-
imizing the total latency of the CFN. To accomplish this, we
propose a novel semi-decentralized machine learning based

approach. While a fully centralized approach for message
allocation can make the most out of the flexibility offered via
CFNs, it requires prohibitive coordination overhead (in terms
of global channel state information (CSI)). Instead, in our
proposed approach, the machine learning (ML) model operates
locally at every user and takes two inputs: a) Coarse global
information (aggregate signal-to-interference-plus noise ratios
(SINRs) from APs from previous blocks) and b) current local
CSI from the user.

Another key challenge we address is the training procedure
for such semi-decentralized networks. Supervised learning
cannot be directly applied in this setting, as it would require a-
priori knowledge on the latency incurred for a particular split
of a UE’s message for multiple channel conditions. Instead,
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Fig. 1: Illustration of uplink message/power allocation problem in
Cell-free networks for K UEs and M APs. Message and power
allocation parameters {↵(b)

m,k, ⌘
(b)
m,k} are generated for each UE by

a local model (i.e. MPA-NN) to minimize the overall latency.

we train the model via an unsupervised learning approach,
where the latency derived from the model’s message allocation
decision(s) is treated as the main component of the loss used
to update the model. The latency is composed of both compu-
tational and transmission latencies. We study two variations on
computing the transmission latency, namely average and worst
case (maximum) latency across the system. We compare our
approach against fully centralized methods (Interior Point (IP)
and Sequential Quadratic Programming (SQP) optimization
algorithms) as well as uniform and greedy message allocation
approaches for various path loss models. Our results highlight
the effectiveness of the semi-decentralized machine learning
based approach and show that it comes quite close to the
performance of fully centralized methods with very little coor-
dination overhead and outperforms greedy/uniform methods1.

B. Related Works

Rate-splitting, where messages are split into public/private
portions that are decoded differently, for the downlink of
a Cell-Free MIMO system was investigated in [9] [10].
Additionally, works in the literature have proposed cell-free
MIMO as a framework for Mobile Edge Computing (MEC),
which can be considered a form of message allocation, while
addressing latency in varying degrees. In [11], an optimiza-
tion problem is formulated, assuming a user-centric Cell-Free
MIMO setup, for assigning UEs transmit powers and deciding
how much of an AP’s (i.e. edge server) and CPU’s (i.e.
central server) resources are assigned for serving each UE.
A latency constraint is explicitly considered, incorporating
the computational, transmission (between UE and APs), and
fronthaul (between APs and CPU) latencies, while assuming
that signaling/feedback latencies are implicitly covered un-
der this formulation. In [12], a user-centric cell-free MIMO
MEC system is analyzed via a metric called the successful
computation probability (SCP), representing how likely the
computational latency of a task is smaller than a certain
deadline. In [13], two optimization problems for latency and

1The simulation code for this paper is available on
https://github.com/nteku1/Cell Free Code

energy consumption formulations are derived for a user-centric
Cell-Free MIMO MEC network, where the latency formulation
explicitly includes the downlink latency for retrieving the
processed bits from the cloud.

In [14]— [16], approaches were presented for a MEC user-
centric Cell-Free MIMO setup using deep reinforcement learn-
ing (DRL). In [14], a decentralized approach was proposed,
where the DRL technique was implemented at each user. In
[15] [16], this assumption is expanded on by having the DRL
techniques at each UE share information with each other
during training but not during testing, making it a hybrid
centralized/decentralized approach. Latency is included as part
of the input to the DRL technique (as a single deadline, whose
success in being met is represented by a binary value [14]
and as user-specific deadlines [15] [16]); however, the primary
objective of these works are to minimize energy consumption.

II. SYSTEM MODEL

A. System Operation

We consider a CFN with M APs, m = 1, 2, ...,M and K

UEs for k = 1, 2, ...,K as shown in Figure 1. We consider
uplink transmission from the UEs to the APs, where each
AP is responsible for decoding a certain fraction of data
from each UE. It is assumed that the UEs conduct slotted
transmissions to the APs and that the CFN is synchronized.
We assume that time is organized in blocks, where a block
encapsulates the slotted transmissions from the UEs to the
APs and the decoding of the data at the APs. This is shown
in Figure 2(a). Additionally, the channels between the UEs
and the APs are assumed to be constant over a block and
can vary across blocks. At each block, the k

th UE wants
to send a message of size Sk bits. The set of fractions the
k
th UE uses to assign portions of the Sk bits to each AP is

denoted as ↵(b)
k = [↵(b)

1,k,↵
(b)
2,k, ...,↵

(b)
M,k], where b represents

the block index, 0  ↵
(b)
j,k  1, and

P
j ↵

(b)
j,k = 1. For the

k
th UE, we denote the codeword generated for each sub-

message as x
(b)
j,k, where x

(b)
j,k encodes the ↵

(b)
j,k fraction of

the k
th UE’s message. The power available at the k

th UE
(Pk) is allocated to each codeword for transmission using
power control factors denoted as ⌘(b)

k = [⌘(b)1,k, ⌘
(b)
2,k, ..., ⌘

(b)
M,k],

where 0  ⌘
(b)
m,k  1 and

P
j ⌘

(b)
j,k = 1. Each UE then

transmits Xk =
p
Pk

PM
j=1

q
⌘
(b)
j,kxj,k. The portion of the

k
th UE’s signal that the m

th AP is responsible for decoding
is:

q
Pk⌘

(b)
m,kg

(b)
m,kx

(b)
m,k, where g

(b)
m,k represents the channel

between the m
th AP and the k

th UE.

There are two sources of interference the m
th AP expe-

riences when decoding the k
th UE’s signal. The first source

is from the k
th UE sending codewords intended for the other

(M�1) APs, which is given as:
PM

j 6=m,

q
Pk⌘

(b)
j,kg

(b)
j,kx

(b)
j,k. The

second is from the other (K�1) UEs sending the portions of
their respective messages across all M APs, which is given
as:

PM
j=1

PK
k0 6=k,

q
Pk0⌘

(b)
j,k0g

(b)
j,k0x

(b)
j,k0 . The signal received by
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the m
th AP in the b

th block can then be written as follows:

y
(b)
m =

q
Pk⌘

(b)
m,kg

(b)
m,kx

(b)
m,k| {z }

Desired Signal of kth UE

+
MX

j 6=m,

q
Pk⌘

(b)
j,kg

(b)
j,kx

(b)
j,k

| {z }
Self-interference of kth UE

+
MX

j=1

KX

k0 6=k,

q
Pk0⌘

(b)
j,k0g

(b)
j,k0x

(b)
j,k0

| {z }
Interference from (K � 1) UEs

+!m,

(1)

where !m represents additive noise. During the first block,
because the optimal (↵(b)

k ,⌘(b)
k ) are not known a-priori, we

randomly initialize the (↵(b)
k ,⌘(b)

k ) for each UE (while also
normalizing them by their respective sums). The ⌘(b)

k are then
used to calculate the uplink SINR between the k

th UE and
m

th AP as follows:

SINR(b)
m,k =

Pk⌘
(b)
m,k|g

(b)
m,k|2

1 +
PM

j=1

PK
k0 6=k Pk0 ⌘

(b)

j,k0 |g(b)j,k0 |2
. (2)

Because of this constraint, the SINRs passed into the model
are always derived from the previous block, as shown in Figure
2(a). However, because it is assumed that channel estimation
is conducted at the beginning of subsequent blocks, the UEs
have access to local CSI (i.e. knowledge of the channel gains
between itself and the M APs) during the current block. The
set of channel gains between the k

th UE and the M APs is
denoted as g(b)

k = [|g(b)1,k|, |g
(b)
2,k|, ..., |g

(b)
M,k|]. The set of coarse

aggregate SINRs at the APs from the previous block is denoted
as SINR(b�1) = [SINR(b�1)

1 , SINR(b�1)
2 , ..., SINR(b�1)

M ].
These two vectors, as shown in Figure 2(b), constitute the input
to the message and power allocation model. The UEs then split
their messages using their ↵(b)

k obtained from the model and
transmit these portions using their ⌘(b)

k to the respective APs
for processing.

B. Latency Formulations

We adopt the same method for computing the compu-
tational and transmission latencies as in prior works [14]
[17]. The largest transmission latency from the k

th UE to

the M APs is as follows: L
Tran
k = max

m
(

↵(b)
m,kSk

B log2(1+SINRm) )

where B denotes the channel bandwidth. The average and
maximum/worse-case transmission latencies of the CFN are
denoted by L̄Tran =

PK
k=1 LTran

k

K and L
Max
Tran = max

k
(LTran

k )

respectively. The computational latency of the M
th AP is

as follows: L
Comp
m =

(
PK

k=1 ↵(b)
m,kSk)cm
fm

where
PK

k=1 ↵
(b)
m,kSk

represents the portions of data from the K UEs that the m
th

AP is responsible for decoding, cm is the number of cycles for
the m

th AP to process one sample, and fm is the processing
frequency of the m

th AP. Similar to [14], the computational
latency term indicates how the m

th AP’s services are split
across the UEs. The formulations of the total latency for the
CFN used in this work are as follows: LMax

1 = L̄Tran+L
Max
Comp

and L
Max
2 = L

Max
Tran + L

Max
Comp, where L

Max
Comp = max

m
(LComp

m )

represents the largest computational latency across the M APs.
The model is evaluated by adopting L

Max
1 and L

Max
2 to analyze

how well it can perform under different latency scenarios.
The models are assumed to be placed near/called by the UEs
so that their respective (↵(b)

k ,⌘(b)
k ) can be acquired quickly.

In doing so, latencies associated with control signaling (e.g.
passing information to the model and delivering the (↵(b)

k ,
⌘(b)
k ) to their respective UEs) are assumed to be negligible.

The objective of this effort is to learn a message and power

allocation model with the goal of minimizing L
Max

1 and L
Max

2 .

III. SEMI-DECENTRALIZED MACHINE LEARNING BASED
MESSAGE ALLOCATION

Motivation and overview: As stated in Section I, the proposed
method of latency minimization in this work is a semi-
decentralized machine learning approach. The objective is to
enable UEs to make decisions on how their messages should
be split across APs that minimize the total latency of the
CFN. This approach is presented as a balance between two
extreme modes of operation. On one extreme, the model could
exclusively use coarse global information (i.e. accessible to all
UEs) to perform message allocation but this would come at
the cost of significant overhead. On the other extreme, the
model could exclusively use local CSI but, in doing so, would
suffer significant performance degradation. In this work, to
strike a balance between the two extremes, each UE uses the
same model, which is given SINR(b�1) (i.e. coarse global
information) and g(b)

k (i.e. fine local information) as input as
shown in Figure 2(b). The output of the model, after post-
processing (described in more detail later), is then used as
the (↵(b)

k , ⌘(b)
k ) for the k

th UE. The (↵(b)
k , ⌘(b)

k ) for each of
the K UEs are generated at every block with the objective of
minimizing either LMax

1 (M (b)
✓ ) or LMax

2 (M (b)
✓ ), where M✓ and

✓ represents the model and model parameters respectively.
Training Methodology: First, the model parameters, message
allocation ↵(0)

k , and power allocation ⌘(0)
k for the K UEs are

initialized. Channel gains are sampled from the initial block
and are used with ⌘(0)

k to calculate the initial SINRs at the
M APs. During the next block, the current channel gains and
the SINRs from the previous block (i.e. SINR(0)) are passed
into the model to determine the message and power allocation,
(↵(b)

k , ⌘(b)
k ) for each UE. The learned ⌘(b)

k and channel gains
are used to re-calculate the SINRs, which are then used with
the learned ↵(b)

k to calculate L
Max
1 (M (b)

✓ ) or LMax
2 (M (b)

✓ ). The
loss function is as follows (assuming L

Max
1 (M (b)

✓ )): Lgrad =

rL
Max
1 (M (b)

✓ ). Lgrad is the gradient of the subsequent total
latency derived from the message/power allocations for each
UE. This implies that the model is applied in an unsupervised
learning context as no a-priori labels are used to guide its
training process. Lgrad is then passed to an Adam optimizer
to update the model’s weights, and the procedure continues
for T blocks. For each UE, only the top ⌧ ↵

(b)
m,k are used for

message allocation, where ⌧ is a hyperparamater restricting
how many APs a UE can connect to. ⌧ is used to limit the
overhead a UE needs for message allocation. The indices of the
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k

(a) System Operation In Blocks.

Current Local CSI @ user k α(b)
1,k

Cell-Free Message 
Allocation Model:  
M(b)

θ (g, SINR)

g(b)
k

SINR(b−1)

Aggregate SINRs @ APs from  block(b − 1)th

α(b)
M,k

η(b)
M,k

.


.


.


.


.


.


η(b)
1,k

(b) Cell-Free Message Allocation Model Workflow.

Fig. 2: (a) In one block, SINR from previous block and CSI from current block are passed to the model to determine message allocation.
UEs split/transmit messages to appropriate APs for decoding using (↵(b)

k ,⌘(b)
k ) determined by the model. (b) Cell-Free Message Allocation

model using coarse aggregate SINRs at the APs from the previous block and local CSI from the current block at the UEs to learn (↵(b)
k ,⌘(b)

k ).

top ⌧ ↵
(b)
m,k are used to select which ⌘

(b)
m,k are used for that UE.

The resulting (↵(b)
k , ⌘(b)

k ) are normalized by their respective
sums. The training procedure is summarized in Algorithm 1.

Algorithm 1 Training for Semi-Decentralized Message Allo-
cation Model

Initialize ✓
(0) (Model Parameters)

Initialize ✏ (learning rate), ⇢1 & ⇢2 (exponential decay
rates), � (small constant), s = r = 0
Initialize [↵1

(0), ..., ↵(0)
K ] (Initial Message Allocation)

Initialize [⌘(0)
1 , ..., ⌘(0)

k ] (Initial Power Allocation)
Calculate SINR(0) at APs using gains from channel model
and initial power allocation: [g(0)

1 ,..., g(0)
K ,⌘(0)

1 ,...,⌘(0)
k ]

for b = 1, ....T do

Sample [g(b)
1 , g(b)

2 , ..., g(b)
K ] from channel model

(↵(b)
k ,⌘(b)

k ) = M
(b�1)
✓ (g(b)

k ,SINR(b�1))

Get ⌧ largest elements from ↵(b)
k and normalize.

Get corresponding indices from ⌘(b)
k and normalize.

Compute SINRs using [g(b)
1 ,..., g(b)

K ,⌘(b)
1 ,...,⌘(b)

k ]
Compute Latency using Message Allocation decided by

model: LMax
1 (M (b�1)

✓ ) (assuming L
Max
1 )

Update ✓
(b) using Adam on loss function [20]:

s = ⇢1s+ (1� ⇢1)Lgrad

r = ⇢2r + (1� ⇢2)Lgrad �Lgrad

✓
(b) = ✓

(b�1) � ✏

s
1�⇢t1

�+ r
1�⇢t2

Lgrad

end for

IV. SIMULATION RESULTS AND DISCUSSION

A. Datasets & Simulation Setup

For simulation and validation, CFNs with two different
path loss scenarios are considered. The three-slope path loss
(PLm,k) model used in [5] is as follows:

PLm,k =

8
><

>:

-L-15 log10 d1-20 log10 d0 dm,k  d0

-L-15 log10 d1-20 log10 dm,k d0 < dm,k  d1

-L-35 log10 dm,k dm,k > d1,

where dm,k is the distance between the m
th AP and the k

th

UE, d0 and d1 are 10 and 50 m respectively, and L is a
constant that depends on the assumed carrier frequency and

height of the antennas of the APs and UEs [5]. If the path loss
�L � 35 log10(dm,k) is chosen, shadow fading is added [7].
The path losses are applied to a spatially correlated Rayleigh
fading channel which results in g

(b)
m,k [7] as used in (1) and

(2). The path loss is also normalized by the noise power, set to
�92dBm as in [7]. We perform experiments on two scenarios,
each assuming a 100m x100m grid. The first scenario uses the
full three-slope path model. The second scenario only uses the
path loss �L�35 log10(dm,k). To keep the spirit of the model,
shadow fading was added for any dm,k greater than 50 m.

We adopt a similar experimental setup as the prior works:
[5] [7] [17] [18] [19]. We use a neural network as our message
and power allocation model (abbreviated as MPA-NN) to show
the results of the proposed approach using Tensorflow/Keras.
The MPA-NN’s input layer is 2M neurons, taking in M SINRs
and M channel gains between a UE and the APs. The output
layer is 2M neurons to assign an ↵

(b)
m,k and ⌘

(b)
m,k for each

AP, with a sigmoid activation. Unless otherwise stated, ⌧ = 2.
The MPA-NN has 2 hidden layers and its learning rates are
chosen from [0.002, 0.0002, 0.00002]. Other attributes (hidden
activations, dropout, `1/`2-norm regularization) are varied for
each CFN. For all results, the methods were tested for 1000
blocks (with the result of the first block excluded as it is used
to get the initial SINRs). In all CFNs, fm = 1MHz, cm =
20 cycles

sample , Sk = 1000, Pk = 100mW , B = 20MHz, and the
carrier frequency is 1.9 GHz. Each AP and UE has a single
antenna and their positions are fixed. More simulation details
are presented in the code.

We compare the MPA-NN with four approaches. The first
is uniform allocation; equal amounts of data are sent to each
AP with equal power (e.g. for 10 APs, ↵(b)

m,k = ⌘
(b)
m,k = 0.1

8m, k). The second approach is greedy allocation, where the
AP with the largest channel gain (|g(b)m,k|) with respect to a
UE is assigned to decode that UE’s signal, with full power
used in that transmission. The third and fourth approaches are
the Interior Point (IP) and Sequential Quadratic Programming
(SQP) methods, which act as our centralized approaches,
using Matlab’s in-built optimization toolbox. The centralized
methods have access to the global CSI of the K UEs and can
calculate the SINRs using (2); their objective is to determine
the (↵(b)

k , ⌘(b)
k ) for the K UEs that minimize the total latency.

The CDF of the total latency is the metric for all simulations.
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(a) (b) (c)
Fig. 3: Comparison of all approaches under LMax

1 (latency) formulation for noisless CSI (a) and noisy CSI (b), (c) with CSI noise standard
deviations of � = 0.01 and � = 0.1 respectively. MPA-NN is more robust to noisy CSI than centralized methods.

B. Impact of CSI Error

In this section, we study the impact of imperfect CSI on
our proposed method by corrupting the local CSI available at
the UEs with complex Gaussian noise, distorting the SINRs
and local channel gains passed into the model. Figure 3(a)
shows the performance of the MPA-NN, centralized (IP, SQP),
uniform, and greedy methods assuming the single path loss
and L

Max
1 formulation for a CFN of 25 APs and 6 UEs with

noiseless CSI. It indicates that the MPA-NN is more likely to
ensure lower latencies than uniform and greedy allocation. The
centralized methods outperform all methods but require more
overhead. Figures 3(b) & 3(c) show the performance of the
techniques assuming noisy CSI for the same CFN with noise
standard deviations of � = 0.01 and � = 0.1 respectively.
For the MPA-NN, the same neural network structure is used
but now trained on noisy CSI instead of noiseless CSI. In
both setups, the centralized methods suffer performance loss
compared to when noiseless CSI is assumed. The MPA-NN,
however, in both setups, maintains a very similar performance
to when noiseless CSI is assumed. The MPA-NN outperforms
and performs comparably with the centralized IP and SQP
methods respectively in ensuring relatively low latencies with
high probability. Greedy allocation is also robust in both
scenarios but is still suboptimal compared to the MPA-NN.

C. Comparison with Other CFN Message Allocation Methods

In this section, we study the impact of using the different
latency formulations LMax

1 and L
Max
2 on our proposed model.

Figures 4(a) & 4(b) show results for a CFN of 10 APs and
6 UEs under the three-slope path loss model, with ⌧ = 3.
Figure 4(a) shows results under the L

Max
1 formulation. It

indicates that with a smaller number of APs, each method
performs reasonably well. The MPA-NN can still ensure
lower latencies with a higher probability compared to uniform
and greedy allocation. Figure 4(b) shows results under the
L
Max
2 formulation. All methods still perform reasonably well

except uniform allocation, which suffers a significant loss in
performance compared to the L

Max
1 formulation. This hints

at the L
Max
2 formulation being more stringent compared to

L
Max
1 . The MPA-NN still ensures lower latencies with a higher

probability compared to uniform and greedy allocation. In both
setups, the centralized methods outperform all other methods

but require significantly more overhead. Figure 4(c) shows
the performance of the techniques for a CFN of 20 APs and
6 UEs. The MPA-NN attains a high probability of ensuring
lower latencies compared to uniform and greedy allocation as
it starts to outperform both at approximately 13 ms. The MPA-
NN also outperforms the IP method after approximately 29 ms
and performs closely to the SQP method with less overhead.

D. Complexity & Impact of Scaling up CFN network size

Figure 5(a) shows the results of a CFN with 50 APs and
6 UEs under the single path loss scenario to represent a
scaled up CFN (M >> K). It indicates that even with
more APs to split the message, the greedy and uniform based
methods perform relatively worse to the MPA-NN. While the
centralized SQP method outperforms all methods, the MPA-
NN performs comparably with the centralized IP method at
approximately 40 ms. We also compare the time complexity
of the MPA-NN with the centralized methods. Table I shows
the time required for the methods to generate (↵(b)

k ,⌘(b)
k ) for

the test sets of CFNs with 10, 20 and 50 APs. The values
reported were averaged over 5 runs of each test set. The table
indicates that the MPA-NN is significantly faster in generating
(↵(b)

k ,⌘(b)
k ) compared to the centralized methods, showing

that it is more efficient for message allocation. Figure 5(b)
provides the means and standard deviations (in ms) on the
latencies incurred on the test sets of each CFN with the L

Max
1

formulation, further validating that the MPA-NN can approach
and outperform the performance of the centralized methods
when noisless and noisy CSI are assumed respectively.

Method/APs MPA-NN [Ours] IP SQP
10 APs 6.73± 0.054 90.91± 0.3 121.66± 0.29
20 APs 5.97± 0.083 112.43± 0.22 298.52± 1.26
50 APs 7.46± 0.089 256.76± 0.56 1600.44± 14.15

TABLE I: Average inference times (in seconds) over 5 runs of
proposed and centralized methods for CFNs with 10, 20 & 50 APs.

V. CONCLUSION
In this paper, we presented a semi-decentralized learning

approach for message and power allocation for CFNs. An
approach for training this model was detailed with the incurred
latency being the main component of the loss function. Results
were presented evaluating the approach on different path loss
models. Our approach almost always outperforms uniform
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(a) (b) (c)
Fig. 4: Comparison of all approaches under two different latency optimization objectives for the three-slope path loss scenario. Figure (a)
shows the comparison for LMax

1 and (b) for LMax
2 . In (c), we consider single path loss scenario under LMax

1 . MPA-NN significantly outperforms
uniform and greedy allocations and approaches the performance of centralized (IP, SQP) methods.

(a)

Avg. Latency ± SD. 
(in ms) 

MPA-NN  
(This Paper)

Centralized Decentralized

IP SQP Uniform Greedy

Noiseless 
CSI

10 APs 24.26 ± 5.64 12.2 ± 0.2 12.7 ± 0.604 107.26 ± 703.57 39.73 ±  11.15

20 APs 40.14 ±114.04 199.7 ± 1199.5 28.1 ± 67.9 144685.37± 
630978.73

717.13 ± 747.51

25 APs 34.85 ± 57.63 6.1 ± 2.5 10.8 ± 3.8 1248.29 ± 
5755.76 

44.54 ± 13.15

50 APs 50.68 ± 276.66 83.1 ± 884.7 16.1 ± 21.2 29728.61 ±  
272765.82

56.16 ± 22.85

Noisy CSI  
(25 APs)

33.4 ±  30.58  289.9 ± 1611.5 60.1 ± 584.3 1248.29 ± 
5755.76

44.48 ±  13.12

33.69 ± 41.36 1097.9 ± 5956.3 201.3 ± 1223.5 1248.29 ± 
5755.76

44.5 ± 12.9

σ = 0.01

σ = 0.1

(b)
Fig. 5: (a) Impact of scaling up CFN on various approaches as we increase the number of APs to 50. (b) Means and standard deviations
of latencies incurred for test sets of CFNs under various scenarios including both noiseless and noisy CSI.

and greedy-based methods and performs close to centralized
methods. Furthermore, the approach remains robust even when
the size of CFN scales and is also robust to noisy CSI.
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