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ABSTRACT

Causal Graph Discovery (CGD) enables the estimation of di-
rected acyclic graph (DAG) that represents the joint proba-
bility distribution of observational data. To estimate DAGs,
typical constraint-based CGD algorithms run a sequence of
conditional independence (CI) tests, making the estimation
process prone to privacy leakage. Now, privacy affects utility,
and due to the high inter-dependency, initial CI tests need to
be more accurate to avoid error propagation through subse-
quent iterations. Based on this key observation, we present
CURATE (CaUsal gRaph AdapTivE privacy), a differentially
private constraint-based CGD algorithm. In contrast to the
existing works, in CURATE we propose a privacy preserv-
ing framework with adaptive privacy budgeting by minimiz-
ing error probability while keeping the cumulative leakage
bounded. To validate our framework, we present compre-
hensive set of experiments on several datasets and show that
CURATE achieves significantly higher utility compared to the
existing DP-CGD algorithms.'

Index Terms— Causal Graph Discovery, Differential Pri-
vacy, Adaptive Privacy Budgeting.

1. INTRODUCTION

Causal graph discovery (CGD) is the method of estimating
the underlying causal graph from observational data. CGD is
an important part of causal inference [1], and is widely used
in biology [2], genetics [3], finance, education and so on.
CGD algorithms are broadly classified into two categories:
(i) Constraint-based algorithms which run a sequence of con-
ditional independence (CI) tests to estimate the causal graph,
and (ii) Score-based algorithms which optimize a score func-
tion for the estimation.

Differentially Private CGD: Datasets used in CGD often con-
tain sensitive information about the participants. Traditional
constraint-based CGD algorithms need to run a sequence of
interdependent statistical CI tests which makes the estimation
process prone to privacy leakage. There is a line of work
which incorporates Differential Privacy (DP) [4, 5, 6] that

ensures the estimated DAG is approximately the same; irre-
spective of the presence/absence of a user in the observational
dataset. For instance, EM-PC [7] uses Exponential Mecha-
nism, Priv-PC and SVT-PC [8] adopt Laplace Mechanism
and Sparse Vector Technique (SVT) for privatizing CI tests.
Score-based DP-CGD algorithm, NOLEAKS [9] uses the
Gaussian Mechanism to privatize the optimization process.
For the scope of this paper, we focus on constraint-based DP-
CGD algorithms, due to their low computational complexity.
Overview and Summary of Contributions: Existing constraint-
based DP-CGD algorithms ensure privacy by perturbing ev-
ery CI test with the same amount of noise. As we discuss
in Section 3, the CI tests in CGD can be highly interdepen-
dent. If an edge between two vertices is erroneously deleted
by a CI test, then the conditional interdependence between
them (conditioned on any other subset of features) is never
checked in later iterations. This issue also impacts the scal-
ability of DP-CGD as the total privacy leakage blows up for
datasets with a large number of features (d >> 1). This
brings forth the important point that initial CI tests are more
critical and motivates the idea of adaptive privacy budgeting
in CGD. Specifically, given a total privacy budget, the ini-
tial CI tests need higher privacy budget to reduce the risk of
error propagation to subsequent iterations. As uniform pri-
vacy budget allocation throughout any iterative optimization
process affects the utility, several recent works [10, 11, 12]
use the adaptive privacy budgeting in the context of DP. We
adopt adaptive budgeting in the context of DP-CGD with
our proposed framework, CURATE (CaUsal gRaph Adap-
TivE privacy). Based on the outcome of the previous order,
CURATE optimizes privacy budgets for each order by mini-
mizing the surrogate of total error probability. The adaptive
budget allocation along with the error probability minimiza-
tion enables CURATE to scale up utility while ensuring better
privacy guarantees.

2. PRELIMINARIES ON CGD AND DP

Definition 1 (Probabilistic Graphical Model) Given ajoint
probability distribution P(Fy,...,Fy) of d random vari-
ables, the graphical model G* with V vertices (vy,...,vq)
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Fig. 1. Workflow of the skeleton-phase of non-private canonical PC algorithm for an observational dataset with 4 features.
Through a sequence of interdependent CI tests the estimated graph is updated and the algorithm returns the skeleton graph.

and E C 'V x V edges is known as Probabilistic Graphical
Model (PGM) if the joint distribution decomposes as:

P(Fy,....F)) =[]  P(F.Pa(F.)),
F,e{F1,....F;}

where, Pa(F,) represents the direct parents of the node F,. It
relies on the assumption of probability independence (F, 1L
pFy|S) = graphical independence (v, L gvy|S) [13].

Definition 2 (Causal Graph Discovery) Given dataset D
with the collection of n i.i.d. samples (x1,...,%,) drawn
from a joint probability distribution P(F, ..., Fy) where x;
is a d-dimensional vector representing the d features of the
ith sample (user); the method of estimating the PGM (G*)
from D is known as Causal Graph Discovery (CGD)[8].

Overview of PC algorithm: Canonical constraint-based
CGD algorithms (such as the PC algorithm [1]) work in two
phases: a skeleton phase followed by an orientation phase. In
the skeleton phase, the algorithm starts with a fully connected
graph (G) and prunes it by conducting a sequence of condi-
tional independence (CI) tests. The CI tests in PC are order
dependent, and the order of a test represents the cardinality
of the conditioning set .S of features. In order-(¢) tests, all the
connected node pairs (vg, vp) in G are tested for statistical in-
dependence conditioned on the set S. The conditioning set S
is chosen such that S C {Adj(G,v,)\vp}, where Adj(G,v)
represents the adjacent vertices of the node v in the graph G.
Edge between the node pairs (v,, vp) gets deleted if they pass
order-(7) CI test and never get tested again for statistical inde-
pendence conditioned on set S with |S| > i. The remaining
edges in G then get tested for independence in order-(i+1) CI
tests conditioned on a set S with |S| = (i + 1). This process
of CI testing continues until all connected node pairs in G are
tested conditioned on set S of size (d — 2). At the end of
this phase, PC returns the skeleton graph. In the orientation
phase, the algorithm orients the edges based on the separation
set S of one independent node pair (v,, vp) without introduc-
ing cyclicity in G [1, 7] as shown in Figure 1. The privacy
leakage in this two-step process is only caused in the skeleton
phase, as this is when the algorithm directly interacts with
the dataset D. Therefore, the existing literature has focused
on privatizing CI tests subject to the notion of differential
privacy [4, 5, 6] which ensures the presence/absence of a user
will not significantly change the estimated graph.

Definition 3 ((¢, §)-Differential Privacy) [4, 5, 6] For all
pair of neighboring datasets D and D' that differ by a single
element, i.e., ||D — D'||1 < 1, a randomized algorithm M
with an input domain of D and output range ‘R is considered
to be (¢, 0)-differentially private, if VS C R:

PM(D) € S] < e PIM(D’) € S] +6.

Differentially private CGD algorithms have adopted Expo-
nential Mechanism [7], Laplace Mechanism, Sparse Vector
Technique (8], Gaussian Mechanism [9] to ensure DP.
Sensitivity of CI tests & Composition of DP: For the class
of constraint-based algorithms, an edge between the nodes
(vq, vp) from estimated graph G gets deleted conditioned on
set S'if (fy, v,15(D) > T), where f,,, ., 5(+) is the test statis-
tic, and 7' is the test threshold. Thus the structure of the es-
timated causal graph depends on the nature of f(-) and the
threshold (7"). Also, in DP-CGD, the amount of added noise
is proportional to the [j-sensitivity (Ag) of the test statis-
tic fu, v,|s(-). Therefore, to maximize the predictive per-
formance, test statistics with lower sensitivity with respect to
sample size n of the dataset D are preferred. Through analysis
we observed the [;-sensitivity of the Kendall’s T test statistic
can be bounded as A; < % (C' is a constant obtained from
the analysis presented in Supplementary document). How-
ever, any other CI test statistics mentioned in Section 1 can be
readily adopted in the framework of CURATE. As Composi-
tion is a critical tool in DP-CGD, the total leakage can be cal-
culated by Basic Composition [4, 5, 14, 15], Advanced Com-
position [15, 6], Optimal Composition [16], Adaptive Compo-
sition [17], Moments Accountant [18].

3. MAIN RESULTS

Overview and Key Idea Behind CURATE: In this Section,
we present the main proposed idea of this paper, CURATE,
that enables adaptive privacy budgeting while minimizing
the error probability. As, the CI tests in constraint-based
CGD algorithm are highly interdependent, predicting the to-
tal number of CI tests in CGD before the execution of the
tests is difficult. The number of order-(7) CI tests (¢;) en-
ables the framework to have an approximation of per-order
privacy budgets for later iterations (€;,...,€q—2) based on
the total remaining privacy budget (e%)ml). One naive data

agnostic way to upper bound ¢; is: t; < (‘21) : (dzg), where
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Fig. 2. The composition mechanism in CURATE across all order of CI tests. For every order-(3), total privacy leakage is calcu-
lated with Advanced Composition, and across all orders the total leakage by CURATE is calculated with Basic Composition.

(g) represents the number of ways to select an edge from
the edges of a fully connected graph (the way of selecting
an edge between 2 connected nodes out of d nodes), and
d_,z) refers to the selection of conditioning set (S) with
cardinality |S| = i. However, this upper bound is too large
and does not depend on the outcome of the previous itera-
tion. A better approximation of ¢; is always possible given
the outcome of the previous iteration. As, DP is immune
to post-processing [5], releasing the number edges (e;+1)
after executing order-(¢) differentially private CI tests will
preserve differential privacy. For instance, the possible num-
ber of order-(¢ + 1) CI tests can always be upper-bounded
as tiy1 < ejqq - (f;lz) where e, represents the remain-
ing edges after order-(7) tests. We have studied both of the
methods and observed that ¢;.1 < e;jy1 - (‘5;12) is a better

estimate of ¢;,1 as ¢; < (g),Vi € {0,d — 2}. Given the

outcome of order-(i — 1) tests graph G with edges e; and a
total (remaining) privacy budget of e(Tf))ml, we assign a privacy
budgets (€;, . . ., €4—2). Asevery order-(¢) CI testin CURATE
is (€;,0)-DP, with DP failure probabilities 4,6’ > 0, the total
leakage in order-(¢) is calculated with Advanced Composition

[6] as: € = tie? + \/2log(3;)t:€2, and the total failure
probability in DP as: 5 = (6" + t;0). However, as dif-

curate
ferent orders have different privacy budgets, the total privacy

leakage by CURATE is calculated with Basic Composition [6]

as: Z?;g 6gl‘r)ate = 27;02 (tjG? + \/ 2t log(%)ef), and the

cumulative failure probability of CURATE is 300 6%). ...
(refer Figure 2). Therefore, given the outcome of order-

(¢ — 1) tests, the total leakage in CURATE must satisfy:
d—2 i
St (e + 2t 0a($)€2) < e,
(d;2), and Zj;g §9) o < Otow. We enforce ¢; > ... >
€4—2, so that the initial CI tests get a higher privacy budget.
DP-CI Test in CURATE: The differentially private order-(i)

CI test with privacy budget ¢;, for variables (v,,vy) € G
conditioned on a set of variables S is defined as follows:

where t; = ¢; -

. iff >T(1+ B2) = delete edge (v, vp)
. elseif f < T(1—31) = keepedge (vq,vp)

* else keep the edge with probability %,

where f := Joa,o515(D) + Lap(%), Lap(e%) is Laplace
noise, A denotes the [i-sensitivity of the test statistic, T
denotes the threshold, and (8i,082) denote margins. In
order to keep the utility high, one would ideally like to
pick (€;, €41, ,€4—2) that minimize the error probabil-
ity P[E] = P|G # G*|, where G* is the true causal graph,
and G is the estimated causal graph. Unfortunately, we do
not have access to G*; in this paper, we instead propose to
use a surrogate for error by considering Type-I and Type-
IT errors relative to the unperturbed (non-private) statistic.
Type-I error relative to the unperturbed CI test occurs when
the private algorithm keeps the edge given that the unper-
turbed test statistic deletes the edge (fy, v,|s(D) > T'), and
relative Type-II error occurs when the algorithm deletes an
edge given that the unperturbed test statistic keeps that edge
(fva,vo|s(DP) < T). The next Lemma gives upper bounds on
relative Type-I and Type-II error probabilities in CURATE.

Lemma 1 For some c1,co € (0,1), and non-negative test
threshold margins (831, 32), the relative Type-1 (P[E]) and
Type-1I (P[E})) errors in order-(i) CI tests in CURATE with
privacy budget €; and l,-sensitivity /A can be bounded as:

) c1 1 _TBie . co 1 _TBae
P[E;]g5+§e< 2, P[E;]§5+§e< a0,
~—_———— —_——
qgl) q§2)

The proof of Lemma 1 is presented in the Supplementary doc-
ument. The main objective of CURATE is to allocate privacy
budgets adaptively for order-(i) CI tests by minimizing the
total relative error. The leakage in DP-CGD depends on the
number of CI tests and the number of CI tests depend upon the
number of edges in the estimated graph G. As, the number of
edges in the true graph is not known, we use P[Ei] + P[E%]
as a surrogate for the total error probability P[E]. Given the
outcome of order-(z — 1) tests, the algorithm can make Type-I
error by preserving an edge which is not present in the true
graph till order-(d — 2). If such an edge is present after order-
(¢ — 1) tests, the probability of Type-I error at the end of the

order-(d — 2) can be represented as: H?;? q](-l) since inde-
pendent noise addition to each CI test enables the framework
to bound the probability of error in each order independently
and at the end of order-(d — 2) the total probability of er-

ror is the cumulative error made by the algorithm in every

Authorized licensed use limited to: University of Arizona. Downloaded on March 11,2025 at 03:37:51 UTC from IEEE Xplore. Restrictions apply.



order-(j). Probability of keeping an edge which is present in
the ground truth after order-(¢ — 1) tests can be represented

as HJ — ( I —gq; )), therefore, the total Type-II error can be
d—2 (2) .

1- (HJ —i(1—q; ))) This leads to the

construction of the main objective function of this paper given

the outcome of order-(¢ — 1) CI tests G. The minimization ob-
jective function is given as:

represented as: (

d—2 d—2
e+ (1= {TTa-¢) |- )
j=i j=i

Since the number of edges in true graph are unknown, we pro-
pose to minimize (1) as a surrogate for the error probability.
Optimization for Privacy Budget Allocation: By observing
the differentially private outcome of order-(z — 1) CI tests (re-
maining edges e; in graph G), CURATE optimizes for € =
{€i,..,€4—2} (privacy budgets for subsequent order-(7) tests
and beyond) while minimizing the objective function as de-
scribed in (1). Formally, we define the optimization problem

in CURATE, denoted as OPT(eTOml, €i,0):

OPT () ,e:i)
1 .
d—2
D ici <tj€? + 210%((;,)%'6?) < ESF:))tal

total leakage in order-(j)

@

€j > € j+1-
Given the outcome of order-(i — 1) tests, the above optimiza-
tion function OPT(e(TO)tal, el, 1) takes the following inputs: (a)

remaining total budget (eTotal) (b) remaining edges (e;) in the
output graph G after all order-(: — 1) tests, (c) the index of
order, i.e., . The function then optimizes and outputs the pri-
vacy budgets (¢;, ..., €4—2) for remaining order tests, while
satisfying the two constraints mentioned in (2). As the opti-
mization problem in (2) is difficult to solve in a closed form,
in our experiments we have used Sequential Least Squares
Programming (SLSQP) for optimizing the objective function.
CURATE Algorithm: Now we present the algorithm CU-
RATE that enables adaptive privacy budget allocation by solv-
ing the optimization problem in (2). In CURATE, we use the
optimization function OPT(-) recursively to observe adap-
tively chosen per-order privacy budgets. Given remaining pri-

Initially, the remaining budget for order-(0) CI tests is equal
to the assigned total privacy budget, i.e., e(T?)zal = €Total and the
edges in the complete graph G can be expressed as ey = (g)
In order-(0), CURATE solves for (eg, . .., €4—2) by using the
function OPT(G%))BM, €0, 0). After completion of all order-(0)
CI tests, the algorithm calculates the remaining budget for

order-(1) CT tests as e{) = e{”) — (toe% + €04/ 2t0 log(%))
and by observing the remaining edges e1, it solves for the next
set of privacy budgets (€1, ..., €eq—2). We recursively apply
this process to get e; Vi € {0,1,...,d—2} CItests. CURATE
ensures (€rotal, dotal)-differential privacy. Notably, CURATE
inherits the low computational complexity characteristic from
constraint-based algorithms [1], which makes CURATE read-
ily applicable for large datasets. As sub-sampling amplifies
differential privacy [19], we can readily incorporate sub-
sampling parameters within the optimization framework of
CURATE.

Algorithm 1 CURATE Algorithm

Data: Dataset D, total privacy budget (eror), DP-failure
probabilities (4,8’ > 0), total failure probabil-
ity (Orotar), test statistic f(-), threshold 7', margins
(81, B2), l1-sensitivity A, fully connected graph G

Result: Partially connected graph G

Perform sub-sampling: D" <= D,n = |D|,m = |D"|

= €Total 0 < 1071.5m, €o = (d)

Initiation: ¢ = 0, E(T?)t)m 2

fori ={0,1,...,d —2} do
Initiate number of order-: CI tests as: t; = 0
(€i.. . €a—2) = OPT(e{) ;1)
V connected node pairs (vq,vp) in G that has not been
tested on S s.t. S C {Adj(G,va)\vp},|S| =i
Evaluate f := f, ,,15(D") +Lap(f—i)

o if f > T(1 + f2) then delete edge (vq, vp)
e else iff < T(1 — B1) then keep edge (v,, vp)
* else keep the edge with probability %

Update G, t; =t; + 1

1+1 [
6"(Fo-t;1) = 6%0131 (tzf? + iy /2l log(%))

6glzx)rate = (tiei + €/ 2t; IOg(%))
5§l7;1)'ate =0+ (ti ’ 6)

e;+1 = edges in updated graph G
if Z; =0 5c(ir)aw < 67'01(11 then

vacy budget for order-(7) tests (eTot dl) OPT () calculates the | Continue
end
remaining budget for order-(z 4+ 1) CI tests e%;;ll ) as: end
i i 1 turn Skeleton G, Total Leak 8 e 022 680
6"(1“0?;11) = 6'(I‘o)tal ti€; + i\ /2t 10g(§/)> | FeTmORE on ¢ Total Leakage (2.0 Cane: 2.5=0 Oerue
—— —

budget for order(i+1) budget before order(i)

RO

curate - total leakage order-7
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Fig. 3. Performance evaluation of private CGD algorithms EM-PC [7], SVT-PC, Priv-PC [8] and CURATE in terms of total
leakage vs F1 score on 3 public CGD datasets: Cancer, Earthquake, and Survey with Test threshold (7") = 0.05.

Dataset Algorithm eTotal = 1.0 eT;: ::osr; emotal — 10.0 Algorithm | Cancer |Earthquake| Survey
CURATE | 027+0.17 072 0.22 0.96 = 0.10
e SVTPC 0.16+0.14 0.22 +0.11 0.24 +0.18 PC (non- 6 6 1
EMPC 0.60£0.00 | 0.75+0.00 0.75 £ 0.00 private)
PrivPC 0.32+0.14 0.43 +0.19 0.62 +0.17
CURATE | 024+017 | 072£020 093 £0.15 CURATE | 22 23 36
Eathquake SVTPC 0.17+0.15 0.13+0.13 0.20 = 0.15
EMPC 0.25 £ 0.00 0.5+ 0.00 0.5+ 0.00 SVTPC 26 24 38
PrivPC 031+0.17 0.44 +0.14 0.62 % 0.20
CURATE | 036+0.19 0.68 +0.22 0.92 +0.14 Priv-PC 58 68 48
Survey SVTPC 022+0.20 0.30 £0.21 0.32+0.21
EMPC 0.33 +0.00 0.33 +0.00 0.33 £ 0.00 EMPC 60 68 50
PrivPC 0.32+0.21 0.52+0.22 0.61 +0.22
@ (b)

Fig. 4. Predictive performance of private CGD algorithms on 3 public CGD datasets: Cancer, Earthquake and Survey: Table
(a) represents the mean and standard deviation of F1-score in three privacy regimes, €= 1.0, €1ota1=9.0, €orar = 10.0. Table
(b) Average CI tests required to achieve the maximum F1 score with comparatively large amount of total leakage (et = 1.0).

4. EXPERIMENTAL RESULTS AND DISCUSSION

Specifications Cancer | Earthquake | Survey
Features (nodes) 5 5 6
Edges 4 4 6
Samples 100K 100K 100K
F1 Score (PC [1]) 1.0 1.0 1.0
Cl tests (PC [1]) 6 6 11

Table 1. Dataset description and causal graph discovery re-
sults of non-private PC algorithm on 3 public CGD datasets
Cancer, Earthquake and Survey.
In this Section, we present experimental results on 3 pub-
lic CGD datasets: Cancer [20], Earthquake [20], and Survey
[21] that demonstrates the utility-privacy trade-off achieved
by CURATE compared to existing differentially private CGD
algorithms: Priv-PC [8], SVT-PC [8], and EM-PC [7]. Utility
of the CGD algorithms are measured using Fl-score?. The
implementation code and supplementary document of CU-
RATE is available 3.

2Given the ground truth graph G* = (V,£*) and the estimated graph
G = (V,€), if Precision= | €057 |, and Recall= |£257 |, the Fl-score is

3

. __ 2-Precision-Recall
defined as:F'1 = Precision+Recall

3https://github.com/PayelBhattacharjee 14/CURATE

Dataset Description and Utility with PC Algorithm [1]: Ta-
ble 1 presents the data description along with the F1-score
obtained by the execution of non-private PC algorithm [1].
The F1-score is obtained using Kendall’s 7 test statistic with
sub-sampling rate (¢ = 1.0), test threshold (7") = 0.05).
Privacy vs Utility Trade-offs: The experimental result pre-
sented in Figure 3 shows that with adaptive privacy budget-
ing and minimization of the relative total probability of error,
CURATE outperforms the existing DP-CGD algorithms in-
cluding EM-PC [7], SVT-PC, Priv-PC [8]. We can observe
that for Cancer and Earthquake in moderate privacy regime
(étott > 1) and for Survey dataset in comparatively high
privacy regime (eroy > 0.1), CURATE outperform all the
existing methods. CURATE achieves the same Fl-score as
PC [1] with less leakage compared to the existing algorithms.
EM-PC (corresponding to the Exponential Mechanism; and is
computationally demanding algorithm) performs better in the
high privacy (very low ery,) regime; however it’s Fl-score
saturates and does not always converge to the Fl-score of
non-private PC [1]. Total failure probability in CURATE is
Otoral = 10710 for all experiments. Figure 4 (Table (a)) rep-
resents the mean and standard deviation of the F1-score for
each algorithm (averaged over 50 trials).
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Comparison of Number of CI Tests: Total number of CI tests
in constraint-based DP-CGD algorithms directly influence the
total amount of leakage. The privacy leakage can be provably
reduced by efficient and accurate CI testing. Intuitively, in
CURATE, the total leakage decreases as the adaptive choice
of privacy budgets makes the initial CI tests more accurate,
therefore, CURATE tends to run less number of overall CI
tests compared to other DP-CGD algorithms. We confirm this
intuition in the results presented in Figure 4 (Table (b)).

5. CONCLUSIONS

In this paper, we presented CURATE, a differentially private
causal graph discovery framework that improves the privacy-
utility trade-off by adaptive privacy budgeting. CURATE is
based on the idea of minimizing a surrogate for error probabil-
ity while ensuring that initial CI tests get higher privacy bud-
get. Our experimental results validate the proposed approach
and show that adaptivity can help in significantly improving
utility subject to differential privacy. There are several inter-
esting directions for future work: (i) adaptive privacy budget
designing for score based algorithms (such as [9]); (ii) use the
outcomes of previous noisy CI tests to adaptively design other
hyper-parameters, including CI test thresholds and margins.
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