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Abstract—In this work, the problem of communicating deci-
sions of a classifier over a noisy channel is considered. With
machine learning based models being used in variety of time-
sensitive applications, transmission of these decisions in a reliable
and timely manner is of significant importance. To this end, we
study the scenario where a probability vector (representing the
decisions of a classifier) at the transmitter, needs to be transmitted
over a noisy channel. Assuming that the distortion between the
original probability vector and the reconstructed one at the
receiver is measured via f-divergence, we study the trade-off
between transmission latency and the distortion. We completely
analyze this trade-off using uniform, lattice, and sparse lattice-
based quantization techniques to encode the probability vector
by first characterizing bit budgets for each technique given a
requirement on the allowed source distortion. These bounds are
then combined with results from finite-blocklength literature to
provide a framework for analyzing the effects of both quantiza-
tion distortion and distortion due to decoding error probability
(i.e., channel effects) on the incurred transmission latency.

Our results show that there is an interesting interplay be-
tween source distortion (i.e., distortion for the probability vector
measured via f-divergence) and the subsequent channel encod-
ing/decoding parameters. We observe that the source distortion
can be optimized for each quantization technique to attain a min-
imum latency. Our results also indicate that sparse lattice-based
quantization is the most effective at minimizing latency for low
end-to-end distortion requirements across different parameters
and works best for sparse, high-dimensional probability vectors
(i.e., high number of classes). To corroborate our framework,
we use the quantization techniques on predictions made on real
datasets and send them through a simulated channel. We use
the metric of ‘relative accuracy’ to measure how often the class
assigned with the highest probability by the classifier at the
transmitter is correctly identified after transmission. Our results
indicate that the lattice-based techniques require significantly
smaller blocklengths than uniform quantization (subsequently
incurring smaller latencies) but can still provide a comparable
performance to uniform quantization.

Index Terms—Low-Latency, Quantization, Finite blocklength
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N recent years, machine learning (ML) has been increas-

ingly applied to time-sensitive applications, including Ve-
hicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)
communications. These applications require reliable and rapid
data transmission for tasks such as trajectory prediction [2] and
lane change detection [3]. Similarly, this need for reliable, fast
communication extends to other domains like internet of things
(IoT) and edge computing. Coinciding with the increasing
use of ML in low-latency applications, there has also been
a growing body of work on context-dependent low-latency
communications; which includes semantic communications
[4]-[7], ultra-reliable low latency communications (URLLC)
[8], [9], and joint source channel coding [10]-[13].

Semantic communication generally focuses on sending con-
text dependent features/decisions dependent on the data to
the receiver (rather than the entire raw message) [7]. In
doing so, the amount of bits required for transmission is
often reduced [6]. For example, in [14], a transformer-based
network was used to learn/transmit semantic features of sen-
tences and decode the received features to ensure that the
original meaning of the sentences were preserved. In [15],
an approach to modeling the length of a semantic message
and its distortion based on noise due to the model and the
channel is presented along with masking strategies that can be
applied before transmission. [16], [17] present rate-distortion
approaches for semantic communications for general block-
wise distortion functions. The focus of URLLC is to design
protocols in order to transmit low-data rate (short packets)
with high reliability (low probability of error) within a small
latency [9]. A rate-distortion analysis is also performed in
[18] for short control packets, assuming transmissions are
being made to a remote agent, where the distortion measures
considered are quantization error and the freshness of the data
(age of information); however, this analysis is done under the
assumption of noiseless channels.

Related Works and Main Contributions: In this paper, we
focus on the following problem: a transmitter wishes to send
a probability vector (e.g., representing the decisions of a
ML based classifier) to a receiver over a noisy channel. Our
objective in focusing on transmitting probability vectors is to
observe if there are any properties of such a vector that can be
exploited for obtaining reductions in latency when transmitting
while still preserving the decision of the classifier. When
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Fig. 1. End-to-End block diagram for communicating classifier decisions (probability vector) over a noisy channel.

using datasets with a high number of classes (e.g. CIFAR-100,
Imagenet-1k), for example, there will be many entries in the
vector that do not add any substantial information regarding
the classifier’s decision. In such a scenario, a vector containing
a small number of a classifier’s highest predictions may be
sufficient for identifying a classifier’s decision compared to
sending the entire vector. Results obtained from classifiers
operating on real datasets are provided later in the paper that
further support this idea. Additionally, transmitting probability
vectors enables the use of specific quantization techniques that
can be efficient. One such technique, which is considered
in this work, is a lattice based quantization proposed in
[19], where a given probability distribution is fitted to its
nearest match on a certain finite-dimensional lattice. This
algorithm was also applied in [20] for the application of
image retrieval. Descriptors representing the histogram of
gradients of an image were quantized using the technique in
[19] and sent to a server hosting a database of images; the
gradient descriptors of the desired images from the server
then underwent the same quantization and were sent back
to the transmitter. The algorithm itself, as noted in [19] is
similar (but more specialized) to the algorithm presented by
Conway and Sloane in [21], which showed how to find the
nearest representative point on various lattices for a given
input vector. This problem can also be viewed within the
umbrella of semantic communication and joint source channel
coding. Transmitting the results of a classification task incurs
lower latency/overhead compared to sending a compressed
form of the data required for classification at the receiver. It
also enables the receiver to quickly execute tasks that depend
on knowing the classification results, which is essential to
conducting goal-oriented communications [5]. Additionally,
this problem falls under the umbrella of JSCC as its objective
is to attain low-latency transmissions by operating in the finite
blocklength regime [11].

The main new elements herein are two fold: we measure
utility of the reconstruction of the probability vector in terms
of statistical divergence measures; and secondly, we simulta-
neously want to minimize the transmission latency over the
noisy channel. We note that there has been prior work on
quantizing probability distributions, including [19], [22]-[25].
In particular, [24], [25] investigated quantizing probability
distributions in order to minimize Kullback-Leibler (KL)-
divergence by performing a non-linear operation and then

using uniform quantization. However, the existing works did
not study the scenario when a probability vector has to be
transmitted through a noisy channel, and what would be
the right quantization strategy/parameters if the goal is to
minimize latency. By considering the distortion introduced
by the channel and quantization, we aim to analyze the
trade off between the end-to-end distortion of the system
and the incurred transmission latency. Additionally, a similar
framework considering quantization noise was introduced in
[26], but focused on transmitting control signals and ensuring
the stability of the assumed control system rather than quan-
tizing/transmitting probability vectors. There have also been
works such as [27]-[29] that look at relating finite blocklength
analysis with latencies but do not consider quantization noise.
Our main contributions are as follows:

o In-depth investigation of quantization techniques for clas-
sification results: The performance of uniform, lattice,
and sparse lattice-based quantization techniques are in-
vestigated with respect to balancing the trade-off between
latency and end-to-end distortion. We show that the
lattice-based methods are more efficient than the baseline
uniform quantization as they require less complexity and
make use of the properties of the probability vector to
require fewer bits. The sparse-lattice based technique is
proposed to employ the assumed lattice-based quantiza-
tion technique on only a few of the highest probabilities
of the vector. This amount should be determined such that
a large portion of the mass of the vector is represented,
which is investigated on predictions from classifiers on
real datasets; specifically, CIFAR-100 & Imagenet-1K.
We provide results bounding the necessary bit budgets
under each technique to satisfy a requirement on the
allowable source distortion (Lemmas 2-4). Our results
show the expected trend that to ensure a lower source
distortion when quantizing the probability vector, a higher
bit budget is needed for each of the assumed techniques.
For a probability vector of length 50 classes and the
same source distortion, for example, our results show that
sparse-lattice based quantization incurs a reduction in bit
requirement of approximately 96% and 80% with respect
to uniform and lattice-based quantization.

o Latency-Distortion trade-off analysis: We derive a rela-
tionship (Lemma 5) between the source distortion in-
curred for each of the afroementioned quantization tech-
niques and the decoding error probability (i.e. accounting
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for distortion caused by noisy channel effects) to obtain a
bound on the end-to-end distortion between the received
and transmitted vectors. By incorporating these two
sources of distortion, the subsequent blocklength under
these parameters can be obtained and used to calculate the
transmission latency (Theorem 1). Our results show that
by using the proposed framework, an optimized source
distortion can be found that achieves a minimal latency
for different levels of end-to-end distortion. In doing so,
this also enables us to extend our framework to fading
channels (Theorems 2 & 3).

o Application to noisy channels: We provide a comprehen-
sive set of simulation results to validate the proposed
framework. Specifically, we study the trade-off between
accuracy, latency and distortion while varying parameters
of the framework; such as, channel conditions (i.e. SNR),
source distortion, and the length of the probability vector
(i.e. number of classes). We first report results assum-
ing additive white gaussian noise (AWGN) and fading
channels using results from the literature on finite block-
length, focusing on the latency-distortion tradeoff. For
a probability vector of length 100 classes and the same
end-to-end distortion, for example, our results show that
the sparse-lattice based quantization can incur a latency
reduction of approximately 97% and 85% with respect
to uniform and standard lattice-based quantization for the
AWGN channel. Our results indicate that sparse lattice-
based quantization is the most effective at minimizing
latency for low end-to-end distortion requirements across
different parameters. Specifically, the results indicate that
sparse lattice-based quantization works best for sparse,
high-dimensional probability vectors (i.e. high number
of classes). We then present results showing the tradeoff
between accuracy, latency, and distortion through simu-
lated AWGN channels by quantizing predictions made
on real datasets. The metric of ‘relative accuracy’ is used
to measure how often the receiver can determine which
class was originally given the highest probability by the
classifier at the transmitter. Finally, as an application,
results are presented on a collaborative scenario where
multiple transmitters pass their noisy observations of
an input to a classifier and the subsequent classifica-
tion results (probability vectors) are transmitted through
multiple channels of different quality. The receiver must
employ a fusion strategy on the received vectors to decide
which class the classifier would have assigned the highest
probability at the transmitter if given a noiseless version
of the input.

The paper is structured as follows: Section II presents
the system model studied in this work; Section III presents
results analyzing the distortion incurred with each of the
quantization techniques and details our framework for ana-
lyzing the latency-distortion tradeoff using these techniques
for AWGN and fading channels; Section IV presents results
from simulations and experiments; Section V concludes the
paper and proposes future work. The proofs for the technical
results are presented in the Appendix.

II. SYSTEM MODEL

We consider the scenario illustrated in Fig. 1: a pre-
trained classifier (e.g., a neural network), denoted as h(:),
is used for a k-class classification problem and is situated
at a transmitter. The output classification probabilities are
represented as p = [p[1],p[2], - ,p[k]]", where p € RF*L,
Let p = [p[1],P[2], - ,P[k]] " denote the estimated classifier
output at the receiver. In this paper, we measure the distortion
between p and p via f-divergence, defined as

k .
Di(p,p) = Z f (p[ZD pli. (1)

" \pli

The transmitter’s goal is to communicate the probability vector
p within a latency budget of T},,x with maximum total ex-
pected distortion 3, i.e., E(D¢(p, P)) < S:, where the expec-
tation is over the noisy channel realizations. We next describe
the main components (source/channel encoder/decoder(s)): a
source encoder 1 (-) quantizes the probability vector p, such
that g = ¢(p). The lossy compression caused by quantization
results in source distortion, denoted by ;. The total number of
bits required by q, given the source distortion, is represented
as J(fs), where J(-) is a function of 3,. We note that based
on the quantization technique, g may not necessarily be a
probability vector. In this scenario, we normalize the values
in q to obtain the corresponding probability vector q after
source encoding, where q[i] = q[é]/ Zle qli] and @ € R¥*1,
The source distortion (3, is quantified as 3 = D¢(p, q). We
use the channel encoder ¢(-) to generate the n-length channel
input x = ¢(q), where x = [x[1],x[2], - ,x[n]]" and
x € X™. Let € denote the source and channel encoder pair. We
consider a fading channel, where the channel output is given
by y[i] = h[i]x[i] + z[i], for all i € [n]; where y € R"*1, the
channel fading gains are given by h = [h[1],h[2],---  h[n]]T
with h € R™*!, and the AWGN noise vector is given by
z = [z[1],2[2], - ,z[n]]" with z € R"*1. We also consider
an AWGN channel which can be obtained from the above
model by setting h[i] = 1V ¢ € n. The signal-to-noise ratio
(SNR) of the channel for a bandwidth By Hz, is defined as
Yo = NLO, where P denotes the signal power and N denotes
the noise power. To simulate using the same transmit powers at
different bandwidths, as done in [8], we define the operational
SNR for a channel of bandwidth B Hz as v = VOBB % where
% acts as a scaling factor for relating different channel
conditions.

We denote the decoding error probability by €*(n), where
€*(n) € [0, 1]. At the receiver, we consider a channel decoder,
denoted by k(:), such that § = k(y). Subsequently, we
consider the source decoder w(+) and a normalization operation
to obtain an estimate of the classifier probabilities, given by

D = w(q). Let D denote the source and channel decoder pair.

The channel noise, in addition to the source distortion,
contributes to the total end-to-end distortion. Given a specific
SNR, it is possible to vary the source distortion (s to achieve
a maximum total expected distortion of ;. In other words,
we have 8 € [0, £;]. This choice will also affect the incurred
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transmission latency; given a bandwidth of B Hz, the time

required to transmit an n-length vector x is calculated as:

n

BYeR 2
In this paper, we focus on understanding the tradeoff

between latency and distortion for the task of communicat-

ing probability distributions. Specifically, given the channel

statistics (e.g., bandwidth, SNR) and desired maximum latency

Tmax, the optimal distortion can be defined as follows:

T(€,D) =

D*(Thax) £ min

(&,D) Bt (57 D)7

s.t. T(E,D) < Thax- (3)
Alternatively, we can fix the maximum permissible distortion
Bmax, and minimize the total latency 7' over encoder-decoder

pairs as

T((S,’D), S.t. 51&(572)) S ﬂmaw (4)

* A .
T (Bar) = 1,
In the lemma stated next (proof is presented in the Appendix),
we show that the optimal latency 7™ (fmax) is @ convex non-
increasing function of the total distortion Sy.x; and likewise,
we show that the minimal distortion D*(T.x) is a convex
non-increasing function of Tj.

Lemma 1. T*(8,.) is convex non-increasing function of
Bumax- D* (Thax) is convex non-increasing function of Tpax.

III. MAIN RESULTS & DISCUSSION

In this section, we present the framework for analyzing the
latency-distortion tradeoff. We begin by assuming a noiseless
channel and uniform quantization as the source encoder (i.e.,
transforming p to q) and analyze the corresponding source
distortion (Lemma 2). We perform a similar analysis for lattice
and sparse lattice-based quantization techniques to analyze the
source distortion for a noiseless channel (Lemma 3 & Lemma
4). We then incorporate and analyze the impact of channel
noise on the end-to-end distortion (Lemma 5). Subsequently,
we use results on finite-blocklength capacity, which allow us
to connect latency with the overall distortion. This, in turn,
also leads to an explicit optimization (Theorem 1), which can
be solved to trade latency with distortion. We then extend this
result to account for fading channels with and without CSI
(Theorems 2 & 3).

A. Quantizing Classifier Probabilities

1) Uniform Quantization (UQ): Suppose we have a total
budget of J bits to quantize the k-dimensional probability
vector p. Under uniform quantization (UQ), we use j = | J/k]
bits to quantize each element p[i],i = 1,2,..., k. We denote
q[i] as the resulting quantized output. Note that q may not
necessarily be a probability vector. We can however, normalize
it as q[i] = qu[z] o for i = ., k. Our objective
is to minimize the f-divergence between p & p; in the
noiseless scenario, which would be equivalent to minimizing
Ds(p, @), as S5 would be the only distortion present. When
f@) =Lz —1
Df(paq) = DTV(paq) =

15K Ipli] — alil| [30]. The next

lemma shows a sufficient condition on the quantization budget
to achieve a source distortion of 3.

Lemma 2. For a k-class classification problem, if the total
uniform quantization (UQ) budget satisfies

JUQ > 2k - 1Og2 <ﬁk> )

then DTV(PKl) < 65"

Remark 1. (Impact of normalization) The proof of Lemma 2
is non-trivial due to the nature of the vectors involved. While p
is a probability vector, the corresponding quantized q may not
be a probability vector. To apply the statistical f-divergence
measure, we normalize the entries of q by their sum, i.e.,
S =", qli]. However, this normalization operation makes the
analysis of bounding the f-divergence challenging. The proof
above overcomes this issue, by first assuming that the number
of bits j is of the form j = log(k/2«), and then we are able
to bound the sum S as S € [1 — o, 1 + a]. This allows us
to determine the number of bits required to achieve a desired
source distortion (.

®)

2) Lattice-based Quantization (LQ): There are a few dis-
advantages when using UQ. First, UQ does not exploit the fact
that the vector being compressed is a probability distribution.
There are more efficient methods that can further reduce the
number of bits required for quantization by exploiting this
property. Additionally, as the number of classes k increases,
the length of p will increase, leading to a significant increase
in the number of bits required to satisfy the source distortion
requirement as shown in Lemma 2. Also, as noted in Remark
1, UQ requires an additional normalization step which com-
plicates deriving a bound on the source distortion between p
and q. Subsequently, we now consider the algorithm presented
in [19], which presents a lattice-based approach for quantizing
probability distributions. The algorithm uses a lattice to repre-
sent a set of k-length probability distributions that is a subset
of the k-dimensional probability simplex (i.e. the set of all
possible k-length probability vectors Ay = {[q[1],...,q[k]] €
Q% | 3=, 4qli] = 1}). The probability vectors in the lattice
are defined to have the property that each of their elements
must have the same denominator ¢, which is a positive integer
set by the user. Subsequently, each element in the probability
vector must be of the form q[i] = #, where b[i] are also
positive integers. Because q must sum to 1, this implies that
>, b[i] = £. Denoting the lattice as @, the formal structure
for the lattice is given as follows [19]:

Qe = {[a[1],..q[k]] € Q" | q

Zb =}, ()

From (6), we can see that (), C .Ak and if a probability
distribution satisfies (6), it is a point on ;. The algorithm’s
objective is to find the point (i.e. probability distribution) on
Q¢ closest, under an assumed distance metric, to a given
probability distribution p. We denote the resulting probability
distribution chosen from @, as qLo(p). The procedure for
this method is summarized in Algorithm 1. First, an initial
guess of the nearest distribution based on p and ¢ is made
using a simple mapping. If the mapping immediately results
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Algorithm 1 Lattice-based Quantization (LQ) [19]

Inputs: p, Qe )
Compute b [i] = [p[i] + 5], ¢/ =3, b [i]

if ¢ = ¢ then
Done
else

Calculate ([i] = b [i] — ¢p[i] and sort in increasing order.
if ¢ —¢> 0 then

Decrease |[¢/ — (| values with largest ¢[i] in b'[i] by 1
else if ¢/ — ¢ < 0 then

Increase |¢/ — ¢| values with smallest C[i] in b [i] by 1
end if

end if
Compute lexicographic index to represent b[1],...,b[k] as
follows:
(=2 blj]-1 u
b[1],...,b[k]) = bk —1] (7
bl =3 Y (4 )+l 0

where u=(—i— 5" Tbla] +k—j—1.

in a probability distribution on @), the algorithm is complete;
otherwise, updates are made to the guess based on the observed
error to push it to the nearest point on . Thus, by mapping p
to one of the available distributions on (), lattice-based quan-
tization (LQ) requires significantly less complexity compared
to UQ. As an example, assume that we are given a probability
vector p = [0.18,0.52,0.3] (meaning that &k = 3) and ¢ = 5.
This means that ()5 consists of all probability vectors of
length 3 whose entries have 5 as a denominator. Examples of
candidate probability vectors in ()5 include [%,%,%], [%,%,%],
and [%,%,0]. Applying the initial mapping of p as shown
in Algorithm 1, results in an initial guess of b’ = [1,3,2].
However, this means that we have ¢ = ). b’[i] = 6. Because
¢ # £, we must perform updates to push this guess closer
to QQ¢. We first calculate how far away the guess is from an
actual point on @, by performing ([i] = bl[i] — ¢pli], which
results in ¢ = [0.1,0.4,0.5]. Because ¢/ — ¢ = 1, we must
decrement the element in b’ with the largest ([i] by 1. From
this example, we can see that the third element in b’ has the
largest error; decrementing it gives us b’ = [1, 3, 1], which
results in qLo(p) = [1, 2, 1.

We note that [19] uses the L;, Lo and L., norm to report
worst-case distance metrics between p and qr¢(p). By noting
that the L; norm is equivalent to 2Dpy (p, qro(p)). based on
[19] the maximum source distortion between p and qrq(p)
is as follows:':

k
Drv(p,quo(p)) = YT ®)

Two observations can be made from (8). First, for high

dimensional lattices, the resulting source distortion decreases,

meaning that the distributions on the lattice are closer repre-

sentations of p. Second, the guarantee on the source distortion

becomes looser as the length of p increases. This intuitively

1 2a(k—a)
k

[2
By assuming even values of k, the simplified expression in (8) is obtained.

1'119] proves the maximum L, distance as , where a = {g .

makes sense because each distribution on the lattice will have a
longer length but still need to satisfy the summation constraint
in (6), leading to distributions that are more distinct from
p. Once qro(p) is determined, its corresponding index is
calculated and transmitted. The number of bits required to
send this index under this method is as follows [19]:

l+k—-1
JLQ:’710g2< —;_1 >-‘ (9)

The next lemma shows the number of bits required under this
quantization technique to attain a source distortion [

Lemma 3. For a k-class classification problem, if the total
lattice-based quantization (LQ) budget under Algorithm 1

satisfies
(+k—-1
oz (5]

where { = [ﬁ—‘, then D1y (p,q) < Bs.

Complexity Comparison of Various Schemes: Under LQ, any
updates that may be needed after the projection of p onto
Q¢ are only performed once on the values that contribute
to the largest error (see Algorithm 1); thus, these updates
require at most O(k) complexity. Once the vector from Q,
is determined, its lexicographic index is calculated as summa-
rized in Algorithm 1, which can require significant complexity.
However, this can be reduced by pre-saving the binomical
coefficients which would only require storing O(k{) terms
instead of O(k’) and would only need O(f) operations to
determine the index [20]. As stated earlier, unlike LQ, UQ
does not exploit any property of the probability vector to
reduce the complexity of quantization. As k increases UQ
will need significantly more bits to represent the probability
vector. An increase in k will also cause LQ to incur high
computational complexity, which motivates us to propose a
sparse version of the algorithm later in this work. Finally, we
pose the last disadvantage UQ has in the following remark.

(10)

Remark 2. It can be observed from Lemma 3 that the required
bits for LQ has an expression similar to the required bits for
UQ as shown in Lemma 2. However, unlike UQ, LQ does not
require an additional normalization operation, which reduces
the complexity of the derivation.

3) Sparse Lattice-based Quantization (SLQ): For large
values of k, it may be desired to only send a certain number
of the top highest predictions in the k-dimensional probability
vector due to many elements of the vector being very close to
0. To accommodate this, we now propose a sparse version of
the algorithm presented in [19]. The motivation for this method
comes from the notion that for high dimensional datasets
(i.e. high k), a large portion of the mass of a classifier’s
decisions is concentrated in the ki highest predictions (i.e.
Ziekmp pli] > 1 — 4, where 0 < § < 1 represents the mass of
the k — kip lowest probabilities). As a case study, Figures 2b
plots the average mass of the k., highest predictions outputted
by different neural network architectures on various datasets.
The networks and datasets evaluated used to generate the
figure are summarized in Figure 2a. Imagenet-1K [40] and
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Fig. 2. (a) Table summarizing the pre-trained network architectures and datasets used to generate Figure 2b. (b) Percentage of average mass
of kiwp highest predictions from different pre-trained networks and datasets across 10, 000 test images. (c) Bit requirements for UQ, LQ, and
SLQ (with kwp = 5 & § = 0.00001) for different class sizes as a function of source distortion.

CIFAR-100 [41] are variations of the Imagenet and CIFAR-10
image datasets that have been frequently used in the machine
learning literature, containing 1000 and 100 classes respec-
tively. Kinetics-400 [42] and UCF-101 [43] are datasets that
have been generated for classifying human actions present in
videos, with each having 400 and 101 classes respectively. The
figure indicates that as ki, increases gradually, the average
mass of the probability vector encapsulated by these Fiqp
values also increases. This is beneficial as it further shows that
transmitting the whole probability vector may not be required
to accurately identify the classifier’s decision on an image.
Under sparse-lattice based quantization (SLQ), the Kip
highest values of the probability vector p are chosen to
constitute the sparse vector q. However, q does not constitute a
probability vector and must be normalized, which is denoted as
q. Algorithm 1 is then used to perform LQ on the normalized
sparse vector; the resulting vector is denoted as qgsLq(p).
The positions of the K, highest predictions also need to
be transmitted for the receiver to know which classes the
probabilities correspond to. We quantize the set of positions of
the ki, highest values by generating a set of k bits where a 1
is used for an index if it is one of the ki, highest probabilities
and a 0 is used otherwise. Subsequently, the k bits needed to
represent the indices can be lower bounded by {log2 (kipﬂ

The total number of bits needed to send the index for qs.q(p)
is given as |log, (%{f“’il)—‘. This has a similar form to the
number of bits neo;adedp for the regular LQ given in (9). It can
be observed that using this procedure introduces two sources
of distortion: normalization and lattice-based quantization. The
next lemma shows a lower bound on the required number of
bits for this technique to satisfy this more stringent restriction
on the source distortion.

Lemma 4. For a k-class classification problem, if the total
sparse lattice-based quantization (SLQ) budget satisfies

k 0t by — 1
>
oz o (g ) = os (1,70 ) o0

where { = [4(52"‘15)—‘ & g, Plil < 0. then
Drv(p,asto(p)) < Bs.

Remark 3. Despite the additional term in Lemma 4, compared
to that of Lemma 3, because fewer bits are sent, the number
of bits required under SLQ should be less compared to its
standard counterpart for large k-dimensional vectors. Addi-
tionally, we also see that compared with the standard LQ, the
choice of £ is also dependent on the mass encapsulated by the
k — kiop lowest values in the probability vector.

Comparison of Bounds: To develop an intuition as to how
the bounds in Lemmas 2-4 compare with each other, Figure
2c plots each of them as a function of the source distortion
Bs. The figure was generated assuming & = 50 classes and
for SLQ kip = 5. The figure indicates that as the allowable
amount of source distortion increases, the number of bits
required for UQ, LQ, and SLQ decreases. The figure also indi-
cates that for a relatively high number of classes, SLQ requires
the lowest number of bits. Looking at 5; = 0.05, for example,
SLQ incurs a reduction in bit budget of approximately 96%
and 80% with respect to UQ and LQ. However, it can also be
observed that LQ requires significantly fewer bits compared
to UQ. Observing Lemmas 2-3 for large %k, the number of
bits for UQ and LQ an be approximated as O(klog(rgs)) &
O(k 1og(4—[13s)). This implies that LQ requires approximately
O(log(k)) fewer bits compared to UQ for the same [;.

It is worth noting that for high fs, the figure indicates
that the number of bits required for LQ starts to approach
that of SLQ. However, this phenomenon is intuitive, because
when a high amount of source distortion is allowed, this
implies that fewer bits are needed as the requirement to meet
the total distortion constraint is placed more on the channel
encoder/decoder rather than the source encoder. Thus, we
care more about the performance of the quantization schemes
for low [, and Figure 2c indicates that SLQ significantly
outperforms UQ and LQ in this regime.

Selection of k,: The latency incurred by using SLQ is
contingent on the choice of ki,. However, kip cannot be
chosen arbitrarily because the choice of ki, affects the average
mass of the probability vector represented in the transmitted
quantized vector. Figure 3 shows the average mass of the
k — kiop lowest probabilities (denoted as day,) for predictions
made on CIFAR-100 and Imagenet-1K. As k, increases, and
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Fig. 3. Average mass of k — ki, lowest probabilities for different values of ki for classifications made on 10,000 images of (a) CIFAR-100

(b) Imagenet-1K.

more of the mass of the probability vector is subsequently
represented by the ki, highest values, we see that the average
mass of the k — ki, values decreases for both datasets.
Because of the higher number of classes in Imagenet-1K, a
larger choice of ki, is needed to reduce d,, compared to
CIFAR-100. If a requirement was given for 6, < 0.01, for
example, then for CIFAR-100 and Imagenet-1K this would
require approximately a ki, of 6 & 140 respectively.

B. Tradeoff Between Latency & End-to-End Distortion

Impact of Channel Noise & Decoding Error: We now incor-
porate the effect of channel noise and decoding errors in the
analysis of the end-to-end distortion. The next lemma shows
a bound on the overall expected distortion (expectation is
over the channel noise realizations) if the source distortion
is bounded by f,, and the decoding error probability is given

by €*(n).
Lemma 5. For a given source distortion Bs and decoding

error probability €*(n), the overall expected distortion is upper
bounded as follows:

E[Dn(p,p(s(y)] < (1 = € (n)s + €' (n).  (12)
Remark 4. An observation from Lemma 5 is that there is no
explicit dependence on the specific quantization technique. The
bound on overall distortion is only dependent on the source
distortion Bs and decoding error probability introduced via
€*(n). This indicates that this framework can work generally
for different quantization techniques (for instance, one could
replace uniform quantization with some other sophisticated
non-uniform quantizer) and the bound will only be a function
of the corresponding source distortion.

We next show how the results obtained up to this point
can be used to devise a framework for analyzing the tradeoff
between latency and distortion. In Lemma 5, we showed
that the overall expected distortion E[Dyy (p, p(x(y))] can be
upper bounded by (1 —€*(n))8s +€*(n). For brevity, we refer
to E[Drv(p, P(k(y))] as SB: (i.e., the total expected distortion).
To derive a relationship between the overall distortion 3; and
latency 7', we first recall the finite blocklength result from [8],

which states that the decoding error probability €*(n) that can
be assured for sending J bits through an AWGN channel is
given by [8] [44]:

_ 1
e*(n,v,J)=Q<"C(7) J+210g2”>, (13)

nV(v)

where n represents the blocklength, ~ represents the
SNR, C(v) represents the capacity defined by 3log,(1 +
v) and V(y) denotes the channel dispersion defined by

2022 (log, (¢))?.

It should be noted that (13) is derived assuming that the
messages being sent are equally likely to be chosen. However,
the results generated by a classifier (i.e. probability vector)
are entirely dependent on the data it is given (i.e. image, time
series, etc.) As such, we do not have any prior knowledge
regarding the underlying distribution of the data. Thus, to
utilize the results from the finite blocklength literature, we
assume that all probability vectors are equally likely. We also
note that making this assumption does not prevent using the
derived results on real-world data. As Section IV-C indicates,
our obtained experimental results corroborate the insights
derived in this paper and help validate the utility of our
framework.

Let us now return to the problem of transmitting a probabil-
ity vector p over an AWGN channel. Observe that the number
of bits one can use to represent p can be chosen as a function
of the source distortion (4 (via Lemmas 2-4, i.e., J(8s)). How-
ever, the choice of 3, and therefore J(/3;) also directly impact
the decoding error probability €*(n,~, J(8s)) as given in
(13). Thus, the resulting overall distortion from Lemma 5 can
then be bounded by (1 —€*(n,v, J(8s)))8s + € (n,v, J(Bs))-
Hence, if we are given a target total expected distortion of [,
one can then optimize (5 to minimize latency while satisfying
the total distortion budget. This is the core idea behind our
approach and is formalized in the following Theorem.

Theorem 1. Given a total distortion budget (3, for a certain
quantization technique we can achieve the following latency
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assuming an AWGN channel:

n(fs)
T(p) = min = (14)
where 5

2C(v) ’
and r = \/WQ_l (%)

Proof. Our objective is to minimize latency while satisfying
a constraint on the overall distortion ;. First, the number
of bits to quantize p can be obtained based on the choice
of quantization scheme (e.g. J(8s) = 2klog, < ) for UQ
on Lemma 2). We can then rearrange Lemma 5 to solve for
the desired block error probability €*(n, v, J(5s)) = 5 t=2= in
terms of 3; & fs. Hence, the next step is to find the mlmmum
number of channel uses (n) that can support the desired block

Bt

error probability of 1_7;?' by using (13). Specifically, we wish

to solve for the smallest non-negative integer n satisfying:

(51_5) SQ(nC(w)—J(ﬁs)tglogzn) 16)

nV(y
As the Q(+) function (complementary CDF of standard Gaus-
sian) is monotonically decreasing, this means that for any
n > 1, we can bound the r.h.s. of (16) as:

nC(y) — J(Bs) + Llogyn nC(y) — J</3s>>
© ( 0 ) =@ ( o) )
(17)

Thus, we can find n by instead solving for the simpler equation

(51t75<> _ Q( \/TWJ(BS))' Applying Qfl(-) on both

sides, we arrive at the following:

-V nV Q 5t_ﬁs /(1_55))_‘](55) =0. (13)

This equation can be viewed as a quadratic by setting 2 = /n.
Solving for n, we arrive at the latency expression (setting 1" =
n/2B). One can then optimize the latency by minimizing over
all B, € [0, B¢, thus completing the proof of Theorem 1. [

C. Generalization to Fading Channels

In this section, we now extend our framework to derive
results for fading channels. To accomplish this, we leverage
finite blocklength results for coherent and non-coherent fading
channels [31]. The probability of error €*(n) for sending J ()
bits through a Rayleigh fading channel assuming access to
channel state information (CSI) at the receiver is given by

[31]:
€ (n,v,J(Bs)) = Q <nCC(VT)LFVJE%);;(2)> , (19

where F represents the coherence interval, C. is the capacity
defined as FEllog(l + vZ1)] (where Z; is a sequence of
variables samples from the Gamma(l,1) distribution), and
V (F, 'y) is the channel dispersion given as var[log(14+vyZ1)]+
- Bl

1+’YZ1

Similarly, an approximation for the error probability sending
J(Bs) bits through a Rayleigh fading channel without CSI was
derived in [31] for high SNRs assuming that 0 < €*(n) < 1.
The approximation is as follows:

¢ (n,y,9(8)) = @ | I ZIGITIEN g,
nFU(F)
where I(F,v) can be approximated as (F' — 1)log(F~y) —

logI'(F) — (F — 1)(1 +n) + K}(F,~), n represents Euler’s
constant, I' is the Gamma function, U(F) = (F — 1)2’% +
(F'—1), and K7 is a function that must be 0 as y — oo and
F > 2. In this work, we assume K (F,vy) = %

With respect to (19) & (20), recall that in this work, J
is determined based on a given requirement on the source
distortion (5 and choice of quantization: UQ, LO, or SLQ.
Theorem 1 introduced our framework for finding the optimal
Bs to achieve the minimum latency for a specific total dis-
tortion [3;. Following similar steps as shown in the proof for
Theorem 1, and using (19) & (20), the following theorems
can be obtained for analyzing the latency-distortion tradeoff

in fading channels with/without CSI.

Theorem 2. Given a total distortion budget B, for a certain
quantization technique we can achieve the following latency
assuming a Rayleigh fading channel with CSI at the receiver:

TG0 = i, o
where
2
AP A I CAITE R

2C(v) ’
and r = VFV,Q! (7%:;)

Theorem 3. Given a total distortion budget (3, for a certain
quantization technique we can achieve the following latency
assuming a Rayleigh fading channel at high SNRs without

CSI:
n(Bs)
T(B) = min = 23)
where
2
n(B = EVT +4§C(7)) (B)FIn2 =y

and r = FU(F)Q_1 (Lf:ﬁ%), with 0 < ﬁl*‘:ﬁﬁ: < %

IV. EXPERIMENTAL RESULTS

In this section, we present results which illustrate the
tradeoff between the latency and overall distortion for sending
a probability vector to a receiver over AWGN and fading
channels for UQ, LQ, and SLQ. Unless otherwise stated,
we assume that By = 10 kHz, 6 = 0.00001 for SLQ, and
0 < e*(n) <0.5.
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Fig. 4. Lower convex hull of latencies for different 5; for UQ, LQ, and SLQ (obtained from Theorem 1). Results are reported for & =
10(a), 50(b) & 100(c) to observe the impact varying the number of classes has on the quantization schemes.
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Fig. 5. Impact of varying source distortion on incurring latency for

fixed B: = 0.05,0.2 & 0.4. Collecting results for (a) UQ, (b) LQ, (c)

and SLQ assuming k = 70 & kop = 20. It can be observed that as (; increases, the source distortion that obtains the minimal latency also
increases. It can also be observed that SLQ is able to obtain the lowest latencies out of the three techniques.

A. Comparison of Quantization techniques

We first observe the trade-off between latency and distortion
for the uniform and lattice-based quantization techniques for
the AWGN channel. In this section, we use the theoretical
results from Lemmas 2-4 and Theorem 1 to determine the
latencies for each quantization technique.

Minimum latency for a fixed 5y & different k: Figure 4 re-
ports results comparing the incurred latencies for the three
quantization methods by solving the optimization problem in
Theorem 1 as the number of classes is varied for k£ = 10, 50
& 100. We assume that B = 320 kHz and ~y = 5 dB, which
yields an SNR of v = —10.1 dB. We also assume ki, = 5
for SLQ. The figure indicates that LQ and SLQ can incur
lower latencies over an AWGN channel compared to UQ as the
number of classes is varied. Additionally, the figure indicates
that as k increases, the latency reduction from LQ to SLQ
increases. At kK = 100 and 3; = 0.05, for example, SLQ can
attain a latency reduction of approximately 97% and 85% with
respect to UQ and LQ. However, it’s interesting to note that
for low k and high 3;, Figure 4a indicates that LQ can incur
less latencies compared to SLQ. This emphasizes that when
using SLQ, more benefits are obtained at higher k.

Interplay between source distortion () and Latency: Fig. 5

compares the quantization schemes for a fixed total distortion
B¢ with k = 70 classes and kt,, = 20 for SLQ. We also
set B = 100 kHz and vy = 15 dB, which results in v = 5
dB. Each of the figures indicate, that for higher dimensional
probability vectors, a reduction in latency can be achieved
when more source distortion is allowed. However, as the total
distortion is increased, the optimal source distortion increases
for each of the lattice-based methods. The figure also indicates
that the lattice based quantizers can attain lower latencies
compared to UQ, with SLQ performing better than LQ when
quantizing high dimensional probability vectors. Each of the
figures also indicate that surges in the latency occur as f;
approaches (;. This intuitively makes sense because as [
approaches (;, this implies that no compensation for the
distortion is being performed by the source encoder/decoder.
This means that the channel encoder/decoder are responsible
for satisfying the requirement on 3; and can only do so by
using higher blocklengths.

Impact of degree of sparseness: Figure 6a presents the effect
of varying ki, (i.e. how many of the highest probabilities are
chosen for transmission) has on the latency for a fixed S,
when using SLQ. It’s assumed that B = 100 kHz and vy = 8
dB resulting in v = —2 dB. Similar to Figure 4a, to observe
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Fig. 6. (a) Impact of varying k., for sparse lattice-based quantization on latency as a function of source distortion, with k£ = 1000 classes
and 3; = 0.05. As expected, a lower choice of ki, incurs lower latency. (b) Lower convex hull of observed latencies as a function of ; for

different SNRs (—6.46, —1.46, 3.54 dB) with £ = 100 classes.

the full merit of the method, £ = 1000. The figure indicates
that as kp increases, the latency also increases, which is as
expected as this means more predictions are included in the
sparse vector. The figure also indicates, similar to Figure 5,
that as more source distortion is allowed, smaller latencies can
be attained. This means that to quantize and send additional
values from the probability vector at a lower latency, more
source distortion must be allowed.

Latency as a function of SNR: Figure 6b presents the laten-
cies incurred for LQ and SLQ at different SNRs. Recall that
the SNR is related to the bandwidth B as v = 7OTfO; thus
by varying the reference SNR 7y, different SNRs v can be
simulated. In Figure 6b, v is varied to 5 dB, 10 dB, and 15
dB respectively, which corresponds to v of —6.46, —1.46, 3.54
dB respectively. To observe the full benefits of SLQ, k = 100
and kip = 20. The figure indicates that for both techniques,
the incurred latency decreases as the SNR increases. Figure
6b also indicates that SLQ significantly outperforms LQ at
each of the simulated SNRs. This means that for a high k-
dimensional probability vector, SLQ can incur lower latencies
even in poor channel conditions.

B. Application to Fading Channels

We now analyze our framework considering Rayleigh block-
fading channels using the finite blocklength approximations
presented in Section III-C. In this section, we use the theoret-
ical results from Lemmas 2-4 and Theorems 2-3 to determine
the latencies for each quantization technique. We assume
kiop = 16, B = 100 kHz, oy = 11 dB, and k = 100, which
results in v = 1 dB. Figure 7a shows the latency-distance
tradeoff for the three quantization schemes for a Rayleigh
fading channel assuming CSI at the receiver and F' = 20.
The figure indicates that, similar to our previously presented
results, SLQ can still outperform UQ and LQ. Figure 7b
shows the latency-distortion tradeoff for the three quantization
schemes for a Rayleigh fading channel without CSI. As (20)
is a high SNR approximation, we have adjusted the following
parameters: B = 200kHz, By = 800kHz, 7o = 15 dB,

which results in v ~ 21 dB. Additionally, %k is set to 1000
classes, with kop = 70 for SLQ. It can be observed that even
without access to CSI, similar trends are observed with SLQ
performing significantly better than UQ & LQ.

C. Experimental Validation & Accuracy vs.
Tradeoffs

In this section, we study the relationship between block-
lengths required by the quantization techniques and the
achieved accuracies to help navigate the latency-accuracy
tradeoff. Predictions from real datasets are quantized, coded
with a % rate convolutional code, modulated using baseband
BPSK and sent through a simulated channel. After imposing
channel effects, the signal is demodulated, decoded, and
unquantized and the class with the highest probability is
identified. We use the metric ‘relative accuracy’ to measure
how often the class assigned with the highest probability by
the classifier at the transmitter is correctly identified after
transmission. For each technique, we optimize the source
distortion that enables the smallest blocklength needed to
achieve a certain relative accuracy and use Lemmas 2 — 4 to
calculate the respective bit budgets. In these experiments, for

SLQ, we use k bits to represent the indices of the k;,, highest

Blocklength

probabilities (recall that [log2 ( kﬁp)—‘ serves as a lower bound).
Tables I & II shows results for predictions made on the CIFAR-
10, CIFAR-100 and UCF-101 datasets using a convolutional
neural network [45], VGG architecture [32] [33] and I3D
network [38] [39] respectively. Each reported relative accuracy
is averaged over 7 passes of 9500 predictions made on CIFAR-
10 and 10000 predictions made on CIFAR-100 & UCF-101.
Tables I & II show the blocklengths needed to achieve relative
accuracies greater than 95% and 89% respectively for each of
the quantization techniques assuming SNRs of approximately
5 & 14 dB. It should be noted that for SLQ, the dimension of
the lattice used may vary based on the mass of the non ki
values in each set of prediction results; recall from Theorem

3 that £ = [ Fuop

PT= 5)—‘. To account for this, the table presents
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the mean and standard deviation of the blocklength used for
SLQ, where k., = 4 for the predictions made on CIFAR-
10 dataset and k., = 13 for the predictions made on the
CIFAR-100/UCF-101 datasets.

Table I indicates that for CIFAR-10, to achieve a relative
accuracy greater than 95%, the blocklengths needed for LQ
and SLQ are significantly smaller than the blocklength needed
by UQ at both 5 & 14 dB. This implies that LQ and SLQ
can incur smaller latencies than UQ while also performing
comparably to it. For CIFAR-100, a similar trend is observed
where the blocklength needed for SLQ to achieve a relative
accuracy greater than 95% is significantly smaller than the
blocklength needed for UQ at both SNRs. This trend can
also be observed on the UCF-101 dataset at 14 dB, where
UQ and SLQ are being used on predictions made over 400
classes. At 5 dB, however, both UQ and SLQ are not able to
achieve greater than 95% relative accuracy for the UCF-101
dataset. Table II shows the blocklengths needed for UQ, LQ,
and SLQ to achieve a relative accuracy greater than 89% on the
same sets of predictions. As in Table I, LQ and SLQ require
significantly lower blocklengths than UQ (and subsequently
lower transmission latencies) but can still provide comparable
performance to UQ. Additionally, the table indicates that as
the threshold for relative accuracy is lowered (from 95% with
respect to Table I), there can be additional reductions in the
required blocklength for lattice-based techniques. Looking at
CIFAR-10 at v ~ 14 dB, for example, the blocklengths needed
for LQ to achieve a relative accuracy greater than 95% and
89% are 22 and 16 respectively. Thus, Tables I & II indicate
that LQ and SLQ while incurring smaller blocklengths (and
subsequently smaller transmission latencies) than UQ can still
perform comparably to UQ.

end-to-end delay was calculated for 4 separate passes through
the predictions on each dataset, with Table III presenting the
average across the four runs. We use the same setup used to
generate the results in Table I, including the same source dis-
tortions for each technique to enable the smallest blocklength
that still reaches a 95% relative accuracy for v ~ 14 dB for
each dataset. We calculate the transmission latency using (2)
assuming a bandwidth of 100 kHz. For CIFAR-10, similar to
Table I, the results show that the lattice-based techniques incur
lower end-to-end latencies than UQ while still performing
comparably to UQ. Similarly, for CIFAR-100, the table also
indicates that SLQ incurs a lower end-to-end latency than UQ
while still satisfying the 95% relative accuracy threshold.

Dataset Technique v~ 14 dB v~ 5 dB
CIFAR-10 UQ 120 120
LQ 22 22
SLQ 30.14 £ 0.58 30.21 £0.71
CIFAR-100 UQ 2600 2600
SLQ 222 222
UCF-101 UQ 13600 n/a
SLQ 828.13 +4.03 n/a
TABLE I

BLOCKLENGTHS TO ACHIEVE RELATIVE ACCURACIES > 95%
OVER AWGN CHANNEL FOR UQ, LQ, AND SLQ ON
PREDICTIONS MADE ON CIFAR-10, CIFAR-100 AND UCF-101.

Dataset Technique v~ 14 dB v~ 5 dB
CIFAR-10 UuQ 120 120
LQ 16 16
SLQ 29.71 £ 0.77 29.71 £0.77
CIFAR-100 UQ 2600 2600
SLQ 222 222
UCF-101 UuQ 13600 13600
SLQ 822.36 +1.43 830.63 + 3.31
TABLE II

BLOCKLENGTHS TO ACHIEVE RELATIVE ACCURACIES > 89%
OVER AWGN CHANNEL FOR UQ, LQ, AND SLQ ON
PREDICTIONS MADE ON CIFAR-10, CIFAR-100 AND UCF-101.

To further investigate the latency-accuracy tradeoff, we
analyze the full end-to-end delay (encoding, transmission, and
decoding latencies) when using UQ, LQ, and SLQ for an
AWGN channel. Table III reports the end-to-end delays for
UQ, LQ and SLQ on predictions made on CIFAR-10 and
UQ/SLQ for predictions made on CIFAR-100. The average

Technique Dataset Average End-to-End Delay (ms)
UQ CIFAR-10 0.95
LQ CIFAR-10 0.35
SLQ (kop = 4) CIFAR-10 0.48
UQ CIFAR-100 15.4
SLQ (kwp = 13) | CIFAR-100 1.5
TABLE III

AVERAGE END-TO-END LATENCIES (IN MS) OVER 4 RUNS OF
USING UQ, LQ AND SLQ ON PREDICTIONS MADE ON CIFAR-10
AND UQ/SLQ ON PREDICTIONS MADE ON CIFAR-100.

D. Collaborative Reasoning via Classifier Predictions

In this section, we investigate a collaborative scenario where
L transmitters pass their noisy observation of an input x to
their respective local classifiers. The results (i.e. probability
vectors) are quantized and transmitted through multiple chan-
nels of varying quality. The receiver must deduce which class
the classifier would have assigned the highest probability if it
were provided a noiseless version of = by leveraging infor-
mation from the received distorted probability vectors. This is
akin to the work in [46], where two transmitters monitoring
the same input pass images through a deep learning based joint
source channel coding method to send the most representative
features to a receiver which subsequently performs image
retrieval. Two strategies are used in this section:

e Majority voting: After decoding the received probability
vectors, the highest class from each vector is chosen.
Whichever class is chosen the most frequent from the
vectors, is used as the final answer.

o Averaging: Average the received decoded vectors and
choose the class with the highest probability from this
averaged vector.

Table IV shows the average relative accuracy for predictions
made on the CIFAR-10 dataset and sent through an AWGN
channel using UQ and LQ. We assume the same setup as in
Section IV-C, with a % rate convolutional code and baseband
BPSK modulation. In this setup, we assume that each transmit-
ter has the same ML classifier. The source distortion is set to
0.35 for all reported results; meaning that UQ and LQ require
blocklengths of 180 and 30 respectively. Each point in the table
is the average relative accuracy after taking 7 passes through
a set of 9500 predictions. An important note to make is that
under both majority voting and averaging, LQ with only a %th
of the blocklength of UQ is able to perform comparably to UQ.
For three AWGN channels with v =~ (—2, —1,0) dB, the table
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Fig. 7. (a) Lower convex hull of latencies for different 8; for UQ, LQ, and SLQ for a Rayleigh fading channel assuming CSI at the receiver.
(b) Lower convex hull of latencies for different 3; for UQ, LQ, and SLQ for a Rayleigh fading channel without CSI at the receiver.

indicates that when a limited number of channels are available,
and of extremely poor quality, the averaging method performs
much better than using a majority vote. For channels with
v =~ (1,2,3) dB, the table indicates that when the channels
are of poor but similar quality, the improvement gained by
averaging the received vectors over using a majority vote
shrinks significantly. However, when the number of available
channels is increased to seven, each of relatively poor quality,
the table indicates that using a majority vote gives a very
slight improvement in performance compared to averaging.
This implies that for a limited and larger number of channels,
majority voting and averaging should be used respectively.
Other fusion strategies could also be employed in this setup,
which is left as future work.

Num. of Channels | Approx. SNR set (dB) | Technique | Majority vote Acc. | Averaging Acc.
3 (-2, -1, -0.01) UQ 59.15% 80.43%
LQ 68.47% 79.47%
3 1.2.3) UQ 97.82% 98.70%
LQ 94.72% 95.43%
3 (3.5.8) uQ 99.94% 99.75%
LQ 97.39% 97.44%
7 (-2-1,-001,123.4) UQ 99.12% 98.48%
LQ 96.84% 96.31%
TABLE IV

RELATIVE ACCURACIES FOR TRANSMITTING CIFAR-10
PREDICTIONS ACROSS MULTIPLE AWGN CHANNELS WITH UQ &

LQ.

V. CONCLUSION

In this work, we have investigated a framework where
the decisions (a probability vector) from a classification task
are transmitted over a noisy channel. Specifically, we study
the tradeoff between the latency associated with transmitting
this result against the distortion incurred with quantizing the
result and the impact of channel noise on the transmission.
To accomplish this, we have analyzed the performance of
uniform and lattice-based quantization techniques by first
providing results bounding the necessary bit budgets under
each technique to satisfy a requirement on the allowable source
distortion. Then by linking distortion due to decoding errors
(using results from finite blocklength channel capacity) with
the distortion due to quantization, we are able to create a
framework that allows us to find an optimized source distortion

that achieves a minimal transmission latency at different levels
of end-to-end distortion. Our results show that there is an
interesting interplay between source distortion (i.e., distortion
for the probability vector measured via f-divergence) and
the subsequent channel encoding/decoding parameters; and
indicate that a joint design of these parameters is crucial to
navigate the latency-distortion tradeoff. After varying different
parameters of the framework, and assuming both AWGN and
fading channels, our results show that sparse-lattice based
quantization is the most efficient at minimizing latency at dif-
ferent levels of end-to-end distortion. Specifically, our results
indicate that sparse-lattice based quantization outperforms all
other methods for high dimensional probability vectors (i.e. a
higher number of classes) and sparse predictions generated
by the classifier (which is often the case in various ML
classifiers, as also evidenced in CIFAR-100, Imagenet-1K, and
Kinetics-400 datasets). We believe that the sparse lattice based
quantization techniques could also be useful for other ML
based systems requiring low latency, such as in transmitting
semantic information.

APPENDIX
PROOF OF LEMMA 1

The minimal achievable latency 7*(3) is a non-increasing
function of . This is clear from the fact that any decoder
which satisfies a distortion constraint of § also satisfies the
distortion constraint of 3’ for 8’ > 3.

We next show that 7*(8) is a convex function of . Let
T*(B¢,) (T*(Bt,), respectively) represent the minimum laten-
cies obtained using encoder-decoder pair (£, D;) (&5, D5),
respectively) that satisfy D¢(p,p1) < B, (Di(p,P2) < Bty
respectively). We define a new encoder-decoder pair (&3, Ds)
such that,

(€5, D7)
(&,D3)

The expected latency using (£3,D3) is aT*(B:,) + (1 —
a)T*(fBt,). The total distortion using (&3, Ds3) is De(p, ap1 +

with probability «
(&,D3) = P i
with probability 1 — .
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(1 — a)p,), which can be upper bounded as,

(a)
Df(p7apAl + (1 - O[)ISQ) < an(p7f)l) + (1 - a)Df(p7f)2)

(b)
a)ﬁtz ’
(25)

< afy, +(1

where (a) follows from convexity of f-divergence, and (b)
follows from the bounds on end-to-end distortion for the two
individual decoders. Let us now consider the optimal encoder-
decoder pair (£*,D*) that satisfies the distortion constraint
Di(p,p) < af:, + (1 — a)B:,. The minimum latency using
(E*,D*) is then T* (B, + (1 — )Py, ). Recall, (£*,D*) is
optimal encoder-decoder pair, and therefore, the corresponding
latency must be always less than the latencies obtained using
any (&3,D;) pair. That is,

T*(aﬁtl + (1 - O‘>Bt2) < aT*(/Btl) + (1 - a)T*(ﬁtz)'

This proves that T*(8) is convex. D*(T') can be shown to
be convex in a similar manner by leveraging the convexity of
f-divergence.
PROOF OF LEMMA 2

We consider uniform quantization (UQ) with bins of width
2, where j = LJ/kJ For r € {1,2,---,2/ — 1}, we define
the values for the r™ bin in the range [Z,Zt!). In other
words, for any ¢ € [k], q[i] is obtained by mapping the
n+2

value of pli] in the range [5%, 75H) to . However, we
note that g may not necessarily be a probablhty vector. We
define the probability vector q, by normalizing the values in
q. Therefore, for any i € [k], we can write p[i] and q[i] as

follows:

4 TPt 0 arq Tit 3
where 6; € [0,1) and S = Zl 1 “; 2. Returning to our goal,

recall that we wish to pick J such that Drv(p,q) < f§s. To
this end, we first bound

Drv(p,a E |p[]
1
_ T1+5 r2+§
= Z BT
k
1 1 1
:Wzﬂ <1s>+5i25‘

INE

1 k
2(3+1) ; (
k

(P

1 1
m<1—5>‘+ 51‘—25,‘)
1
b~ 55])

(-5)l
27

where (a) follows from triangle inequality, and (b) follows
from the fact that r; < 27. We also know that, Z pli] =1

2(J+1

and E q[i] = S. Consider the difference,
k k 1 k 1
i +0; rit 3 |5i_§| k

Therefore, we have that,

[1-5] < PYESE (29)
Suppose that j is given as
k
i =1 — 30
J = 108> (2a> (30)
for some « € (0,0.5]. Therefore, from (29) we have that,
l-a<S<1+ca. (31)

Using (30) and (31) in (27), we can further bound Drv(p, q)
as,

e |
Yt ae - e (),

(32)
where (a) holds for all a € (0,0.5]. Now, since we require
Drv(p,q) < fBs, we can pick a such that 2 (%) < Bs.
We can pick « to satisfy this constraint with equality, i.e.,

. 2B,
k+1+8
Next, substituting (33) in (30), we can then claim that as
long as the total bit budget J = kj > klog,(k/2a*),
then Dry(p,q) < Bs. Now, using the fact that £ > 2 and
Bs €10,
klogy(k/2a*), completing the proof of Lemma 2.

(33)

1], it can be readily verified that 2k - log, (ﬁﬁ) >

PROOF OF LEMMA 3

We denote the probability distribution on ), closest to a
given probability vector p as qro(p). Recall from [19] that
by performing lattice-based quantization (LQ), the distortion
incurred is given by D(p, qLQ(p)) = 2. For our framework,

we propose setting { = .In domg s0, we can obtain the

4ﬁ
following upper bound on D(p, qLo(p)):
k
D(p,ao(p) = 47
_k
k
1[5

o

<

(i)

:ﬁs-

Thus, sending [logz (Z-i-k 1)—[ bits under LQ, with ¢ = [%i‘
will satisfy the source distortion requirement.

'

PROOF OF LEMMA 4

For sparse lattice-based quantization (SLQ), we assume p
has the following property: .. oy pli] > 1 — 6, where § €
[0,1]. In other words, we assume that the ki, highest values
constitute a significant portion of the mass of p. This implies
that Ziékmpp[i] < 4. Let § = Zz‘ekmpp[i]' We denote q as
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the resulting probability vector normalized by the sum of the
kiop values; more explicitly, q[i] = % if ¢ € kiop and zero
otherwise. Lastly, gsLo(p) is the subsequent probability vector
after passing the non-zero values of q into the standard LQ
algorithm (Algorithm 1).

To determine the number of bits needed to send the index
of gsLo(p) we want to bound the bit budget as a function
of the source distortion incurred. Under SLQ, there are two
causes of distortion: normalization of the k., highest values
and standard LQ. To represent this, we first prove the following
statement on the distortion encapsulated by both operations:

Drv(p,asio(P)) < Drv(p,d) + Drv(q, asio(p)), (34)

where Dry (p,q) represents the distortion incurred through
normalization and Dy (q, qsLo(p)) represents the distortion
incurred through LQ. We prove (34) as follows:

1
Drv(p,asio(p)) = §|p — qgsLe(P)|
1 o
= §|P —q+9q—qse(p)|
(@) 1 1
< 5\1’ —q|+ i\q — qsLo(p)|

= Drv(p,q) + Drv(Q, dsto(P))s

where (a) follows from the triangle inequality. Having proved
(34), we now upper-bound Dry(p, gsLo(p)) by the required
source distortion 35, which can be explicitly stated as:

Drv(p,asie(p)) < Drv(p,q) + Drv (@, aste(p)). (35)
We upper bound Drv (p,q) as follows:
_ 1 a
Drv(p.@) = 5 XZ: Ip[i] —
-3 \ -2t | + 3 ol
’Lekmp lgktop
a) 1
(v 4|+ S
1€ kiop ¢ Kiop
=5 2 pl + > Ipli]
1€ Kop i€ kop
1 S8 —1
R DR 0] BRRED
1€ Kiop i€ Kiop

where (a) follows from q[i] = 0 Vi ¢ kip, (b) follows from

14
S >0.
(@)1
DTV(paq) = 5 Z A
1€ kmp 'L¢ klop
1 pli] .
=5 ?—ZP[Z]‘FZP[Z]
i€ktop 1€ Kiop i€kiop
» 1 )
IR SRS BE0
Zek'mp 7;ikwp
(9
1-— Z p
1€ Kiop
(d)
=
(37)

where (a) follows from 0 < S < 1, (b) follows from S =
Zlekl pli], (c) follows from Zigkh plil=1- Ziekmp pli],

d follows from Zlgk[ pli]=1- ilek[ pli] <d.
From (8), we can upger bound the distortion due to LQ as

Drv(q,asLo(p)) < 57, as only the ki, non-zero values of
q will be passed into Algorithm 1 for quantization. Recalling
(9), this would imply that [1og2 (‘R )
send the index of the resulting probablhty vector. Substituting
these bounds into (35) gives

—‘ bits are needed to

ktop
0+ S < Bs. (38)
Solving for ¢ in (38) gives:
kio W
(= P , (39)
’74(55 - 5)

which implies that 55 > J. We now have a bound on the
choice of ¢ to ensure a source distortion no greater than [
accounting for normalization and standard LQ. The positions
of the kip highest predictions also need to be transmitted for
the receiver to know which classes the probabilities correspond
to. To address this, the set of positions of the ki, highest
values are represented by generating a set of k bits where a 1
is used for an index if it is one of the ki, highest probabilities
and a 0 is used otherwise. Subsequently, the & bits needed to

represent the indices can be lower bounded by {log2 (kipﬂ
Thus, ’VIOgQ (ézﬁozl)-‘ + {log2 (k]:p)-‘ bits under SLQ with

= [ Fuop will satisfy the source distortion requirement.

4(55 _6)

PROOF OF LEMMA 5

We can bound the end-to-end expected distortion as

E[Dry (p, p(k(y))] L P(1(p)=r(y)) Di+P((p) # (y))D
g) (1 —€*(n))Dy + €"(n)Dy

(b
(c)
< (1= €*(n))Bs + € (n),

where (a) follows from the total probability theorem, and D; =
E[Drv(p,¢¥(P)[¥(p) = k(y)] (D2 = E[Drv(p,p)[¢(P) #

—~

(40)
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k(y)], respectively) is the expected distortion when quan-
tized probability vector is exactly constructed (not exactly
reconstructed, respectively) at the receiver; (b) follows from
considering a bound on the decoding error probability such
that, P(¢¥(p) # k(y)) < €*(n). (c) follows using the source
distortion constraint D1 < 34, and from the fact that the total
distortion is quantified using TV-divergence which allows us
to bound Dy < 1.
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