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Abstract—In this work, the problem of communicating deci-
sions of a classifier over a noisy channel is considered. With
machine learning based models being used in variety of time-
sensitive applications, transmission of these decisions in a reliable
and timely manner is of significant importance. To this end,
we study the scenario where a probability vector (representing
the decisions of a classifier) at the transmitter, needs to be
transmitted over a noisy channel. Under the assumption that
the distortion between the original probability vector and the
reconstructed one at the receiver is measured via f-divergence,
we study the trade-off between transmission latency and the
distortion. We completely analyze this trade-off for the setting
when uniform quantization is used to encode the probability
vector, and the latency incurred is obtained via results on finite-
blocklength channel capacity. Our results show that there is an
interesting interplay between source distortion (i.e., distortion
for the probability vector measured via f-divergence) and the
subsequent channel encoding/decoding parameters; and indicate
that a joint design of these parameters is crucial to navigate the
latency-distortion tradeoff.

I. INTRODUCTION

In recent years, machine learning (ML) has been increas-
ingly applied to time-sensitive applications, including Vehicle
to Vehicle (V2V) and Vehicle to Infrastructure (V2I) commu-
nications. These applications require reliable and rapid data
transmission for tasks such as trajectory prediction [1] and
lane change detection [2]. Similarly, this need for reliable, fast
communication extends to other domains like internet of things
(IoT) and edge computing. Coinciding with the increasing
use of ML in low-latency applications, there has also been
a growing body of work on context-dependent low-latency
communications; which includes semantic communications
[3]-[6], ultra-reliable low latency communications (URLLC)
[7], [8], and joint source channel coding (JSCC) [9]-[12].

Semantic communication generally focuses on sending con-
text dependent features/decisions dependent on the data to the
receiver (rather than the entire raw message) [6]. In doing
so, the amount of bits required for transmission is often
reduced [5]. For example, in [13], a transformer-based network
was used to learn/transmit semantic features of sentences
and decode the received features to ensure that the original
meaning of the sentences were preserved. In [14], an approach
to modeling the length of a semantic message and its distortion
based on noise due to the model and the channel is presented
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along with masking strategies that can be applied before
transmission. [15], [16] present rate-distortion approaches for
semantic communications for general block-wise distortion
functions. The focus of URLLC is to design protocols in
order to transmit transmitting low-data rate (short packets)
with high reliability (low probability of error) within a small
latency [8]. A rate-distortion analysis is also performed in
[17] for short control packets, assuming transmissions are
being made to a remote agent, where the distortion measures
considered are quantization error and the freshness of the data
(age of information); however, this analysis is done under the
assumption of noiseless channels.

Overview and Main Contributions: In this paper, we fo-
cus on the following problem: a transmitter wishes to send
a probability vector (e.g., representing the decisions of a
ML based classifer) to a receiver over a noisy channel.
Transmitting the results of a classification task incurs lower
latency/overhead compared to sending a compressed form of
the data required for classification at the receiver. It also
enables the receiver to quickly execute tasks that depend
on knowing the classification results, which applies to goal-
oriented communications [5]. Additionally, this problem falls
under the umbrella of JSCC as its objective is to attain low-
latency transmissions by operating in the finite blocklength
regime [11]. The main new elements herein are two fold: we
measure utility of the reconstruction of the probability vector
in terms of statistical divergence measures; and secondly, we
simultaneously want to minimize the transmission latency over
the noisy channel. We note that there has been prior work
on quantizing probability distributions, including [18]-[22].
In particular, [21], [22] investigated quantizing probability
distributions in order to minimize Kullback-Leibler (KL)-
divergence (with [22] providing additional analysis for L,
& L2 distances) by performing a non-linear operation and
then using uniform quantization. However, the existing works
did not study the scenario when a probability vector has to
be transmitted through a noisy channel, and what would be
the right quantization strategy/parameters if the goal is to
minimize latency. By considering the distortion introduced
by the channel and quantization, we aim to analyze the
trade off between the end-to-end distortion of the system
and the incurred transmission latency. Our main contributions
are as follows: (a) Characterizing the end-to-end distortion
between received and transmitted vectors using the statistical

2131

Authorized licensed use limited to: University of Arizona. Downloaded on March 11,2025 at 03:18:20 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

Pre-trained

Encoder &£

,@ Channel
Source 4:9

encoder encoder

¥(-) ()

X

B = E[Ds(p, p)]

Decoder D
y | Channel ¢  Source f)
Channel decoder decoder

K() w()

(Expected total distortion)

Fig. 1: End-to-End block diagram for communicating classifier decisions (probability vector) efficiently over a noisy channel.

f-divergence measure, especially when classification probabil-
ities are uniformly quantized; (b) Determining the bit budget
required to meet specific latency and distortion constraints,
considering both source and channel distortion; (c) We show
the interplay between source distortion and encoder/decoder
parameters; and leveraging this relationship, along with in-
sights from finite block length analysis, to explore a trade-off
between latency and end-to-end distortion.

II. SYSTEM MODEL

We consider the scenario illustrated in Fig. 1: a pre-
trained classifier (e.g., a neural network), denoted as h(-),
is used for a k-class classification problem and is situated
at a transmitter. The output classification probabilities are
represented as p = [p[1],p[2],- -+, p[k]] ", where p € RF*L.
Let p = [p[1],p[2],--- ,P[k]] " denote the estimated classifier
output at the receiver. In this paper, we measure the distortion
between p and p via f-divergence, defined as

Di(p, p) = éf (E’M) Bl

pli]
The transmitter’s goal is to communicate the probability vector
p within a latency budget of T},,,x with minimum total expected
distortion S, i.e., E(D¢(p,P)) < B¢ where the expectation
is over the noisy channel realizations. We next describe
the main components (source/channel encoder/decoder(s)): a
source encoder 1 (-) quantizes the probability vector p, such
that g = ¢(p). The lossy compression caused by quantization
results in source distortion, denoted by (3. The total number of
bits required by q, given the source distortion, is represented as
J(Bs), where J(+) is a function of 3. We note that q may not
necessarily be a probability vector. We normalize the values in
q to obtain the corresponding probability vector q after source
encoding, where q[i] = q[i]/Zf=1 q[i] and @ € R¥*!. The
source distortion [, is quantified as 8; = D¢(p, Q). We use the
channel encoder ¢(-) to generate the n-length channel input
x = ¢(q), where x = [x[1],x[2], -+ ,x[n]]" and x € X™. Let
& denote the source and channel encoder pair. We consider the
scenario of a bandwidth constrained AWGN channel, where
the channel output is given by y[i| = x[i]+z]i], for all i € [n];
where y € R™*! and the AWGN noise vector is given by
z = [z[1],2[2],--,z[n]]T with z € R"*L. The signal-to-
noise ratio (SNR) of the channel for a bandwidth By Hz,

D

is defined as vy = N%, where P denotes the signal power

and NNy denotes the noise power. To simulate using the same
transmit powers at different bandwidths, as done in [8], we
define the operational SNR for a channel of bandwidth B Hz
as vy = %Tfo where B9 acts as a scaling factor for relating
different channel conditions. We denote the decoding error
probability by €*(n), where €*(n) € [0,1]. At the receiver,
we consider a channel decoder, denoted by x(-), such that
4 = k(y). Subsequently, we consider the source decoder w(-)
and a normalization operation to obtain an estimate of the
classifier probabilities, given by p = w(q). Let D denote the
source and channel decoder pair.

The channel noise, in addition to the source distortion,
contributes to the total end-to-end distortion. Given a specific
SNR, it is possible to vary the source distortion [35 to achieve
a maximum total expected distortion of ;. In other words,
we have 5 € [0, 8,]. This choice will also affect the incurred
transmission latency; given a bandwidth of B Hz, the time
required to transmit an n-length vector x is calculated as:

T(E,D) = -

=35 ?)

In this paper, we focus on understanding the tradeoff
between latency and distortion for the task of communicat-
ing probability distributions. Specifically, given the channel
statistics (e.g., bandwidth, SNR) and desired maximum latency
Thax, the optimal distortion can be defined as follows:

D*(Tmax) B:(E,D), st. T(E,D) < Tax-

£ min 3)
(€,D)

Alternatively, we can fix the maximum permissible distortion

Bmax> and minimize the total latency 7' over encoder-decoder

pairs as

T*(Bmax) = min

< Bmax-
i T(&,D), st Bi(E,D) < Prmax

@)
In the lemma stated next, we show that the optimal latency
T*(Pmax) is a convex non-increasing function of the total
distortion Ppn.x; and likewise, we show that the minimal
distortion D*(T},x) is a convex non-increasing function of
Tmax~

Lemma 1. T*(B,.:) is convex non-increasing function of
Bumax- D* (Tpax) is convex non-increasing function of Ty

Proof. The minimal achievable latency 7%(8) is a non-
increasing function of . This is clear from the fact that
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any decoder which satisfies a distortion constraint of 3 also
satisfies the distortion constraint of 3’ for 5’ > .

We next show that 7*(f5) is a convex function of 3. Let
T*(Bt,) (T*(Bt,), respectively) represent the minimum laten-
cies obtained using encoder-decoder pair (£, D5) (&5, D5),
respectively) that satisfy Di(p,p1) < 8y, (De(p,P2) < Bt
respectively). We define a new encoder-decoder pair (&3, Ds)
such that,

(6.D) = {(51*,@7)

with probability «
(&,D5) with probability 1 — o
The expected latency using (&3, D3) is oT™* (B, ) + (1 —
a)T*(Bt,). The total distortion using (&3, Ds3) is Di(p, ap; +
(1 — a)py), which can be upper bounded as,
(a)
Di(p,ap1 + (1 —a)p2) < aDi(p,p1) +
(b)
<afy, +(1

(1 - a)Df(p7 152)
)Py,
®)

where (a) follows from convexity of f-divergence, and (b)
follows from the bounds on end-to-end distortion for the two
individual decoders. Let us now consider the optimal encoder-
decoder pair (£*,D*) that satisfies the distortion constraint
Di(p,p) < afy, + (1 — a)Bt,. The minimum latency using
(E*,D*) is then T*(af, + (1 — )B4, ). Recall, (£*,D*) is
optimal encoder-decoder pair, and therefore, the corresponding
latency must be always less than the latencies obtained using
any (&3,D;) pair. That is,

T*(aﬁtl + (1 - a)ﬁtz) < aT*(/Btl) + (1 - a)T*(ﬁtz)'

This proves that T*(8) is convex. D*(T') can be shown to
be convex in a similar manner by leveraging the convexity of
f-divergence. O

III. MAIN RESULTS & DISCUSSION

In this section, we present the framework for analyzing the
latency-distortion tradeoff. We begin by assuming a noiseless
channel and uniform quantization as the source encoder (i.e.,
transforming p to q) and analyze the corresponding source
distortion (Lemma 2). We note that other non-uniform quanti-
zation techniques can be readily substituted in this framework.
We then incorporate and analyze the impact of channel noise
on the end-to-end distortion (Lemma 3). Subsequently, we
use results on finite-blocklength capacity, which allow us to
connect latency with the overall distortion. This, in turn, also
leads to an explicit optimization (Theorem 1), which can be
solved to trade latency with distortion.

A. Quantizing Classifier Probabilities

Suppose we have a total budget of J bits to quantize the k-
dimensional probability vector p. Under uniform quantization,
we use j = |J/k] bits to quantize each element p[i],i =
1,2,...,k. We denote q[i] as the resulting quantized output.
Note that q may not necessarily be a 1[3robabllity vector. We
can however, normalize it as q[i] = SE @’ fori=1,... k.

Recall that our objective is to minimize the f- dlvergence

between p & P; in the noiseless scenario, this would be
equivalent to minimizing D¢(p, q), as 85 would be the only

distortion present. When f(z) = i|z — 1|, f-divergence
results in total variation (TV): D¢(p,q) = Div(p,q) =
3 Zfil |p[i] — alé]| [23]. For the remainder of this paper, we

use TV as the divergence metric. The next lemma shows a
sufficient condition on the quantization budget to achieve a
source distortion of 3.

Lemma 2. For a k-class classification problem, if the total
quantization budget satisfies

J > 2k - log, (Bk) ) (6)

then DTV(p7Q) < ﬂs-

Proof We consider uniform quantization with bins of width
o, where j = LJ/kJ Forr € {1,2,---,2/—1}, we define the
values for the 7 bin in the range |25, T;gl) In other words,
for any i € [k], q[¢] is obtained by mapping the value of pli]

in the range [;J , “;;1) to T1+2 . We define the probability
vector q, by normalizing the Values in q, to ensure that the
resulting values in the quantized vector sum to 1. Therefore,

for any i € [k], we can write p[i] and q[i] as follows:

4 T+ 0 ~._Ti+%
where §; € [0,1) and S = ZZ 1 “;J 2. Returning to our goal,

recall that we wish to pick J such that Drv(p,q) < fs. To
this end, we first bound

Lk
Drv(p,q) = 3 Z Ipli] —

_ TL+5 7’¢+%
_72 S .9
1 1 1

@ 1 & 1 1

ek
1 0; 1

f2<y+1>z ~5)| %)

®)

where (a) follows from trlangle inequality, and (b) follows
from the fact that r; < 27. We also know that, Z pli] =1

and Z q[i] = S. Consider the difference,
k k 1 1
i + 61 T + 2 ‘61 5 k
Syt ey boal e B
i=1 i=1 i=1
Therefore, we have that,
1-5]< 5 (10)
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Suppose that j is given as

| = lo ﬁ
J = logy %

for some « € (0,0.5]. Therefore, from (10) we have that,
1-a<S<1+a (12)
Using (11) and (12) in (8), we can further bound Drv(p, Q)
as,
Drv(p. ) < ak 4 ma « «
— 4+ max o —
WP D= 190 ") 20—a) " 21 +a)
(a)
<

ak n Q o« k+1
“2(1-a) 21—-a) 1—-a\ 2 /)’
(13)

where (a) holds for all a € (0,0.5]. Now, since we require

Drv(p,@) < Bs, we can pick « such that 2 (&) < 3.

We can pick « to satisfy this constraint with equality, i.e.,

* 255
k145

Next, substituting (14) in (11), we can then claim that as

long as the total bit budget J = kj > klogy(k/2a*),
then Drv(p,q) < Bs. Now, using the fact that k¥ > 2 and

B, € [0,1], it can be readily verified that 2k - log, (Bﬁ) >

(1)

a (14)

klogy(k/2a*), completing the proof of Lemma 2.

Remark 1. (Impact of normalization) The proof of Lemma
2 is non-trivial due to the nature of the vectors involved. To
apply the statistical f-divergence measure, we normalize the
entries of q by their sum, i.e., S = ) . q[il. However, this
normalization operation makes the analysis of bounding the f-
divergence challenging. The proof above overcomes this issue,
by first assuming that the number of bits j is of the form
j = log(k/2a), and then we are able to bound the sum S as
S € [1—a,1+«al. This allows us to determine the number of
bits required to achieve a desired source distortion (3.

Impact of Channel Noise & Decoding Error: We now in-
corporate the effects of channel noise and decoding errors
in the analysis of the end-to-end distortion. The next lemma
shows a bound on the overall expected distortion (expectation
is over the channel noise realizations) if the source distortion
is bounded by s, and the decoding error probability is given

by €*(n).
Lemma 3. For a given source distortion Bs and decoding

error probability €*(n), the overall expected distortion is upper
bounded as follows:

E[Drv(p, p(r(y)))] < (1 —€(n))Bs + € (n).  (15)

Proof. We can bound the end-to-end expected distortion as

E[Drv(p, B(s(y))] 2 P(1(p)=k(y)) Di+P(1:(p) # #(y)) D

(b)
< (1- " (n))Dy + € (n) Dy
2 (1= )b+ (),

—

—

(16)

where (a) follows from the total probability theorem, and D =
E[Di(p,¥(p))|v(p) = r(y)] (D2 = E[Di(p,p)[¢(p) #
k(y)], respectively) is the expected distortion when quan-
tized probability vector is exactly constructed (not exactly
reconstructed, respectively) at the receiver; (b) follows from
considering a bound on the decoding error probability such
that, P(¢)(p) # k(y)) < €*(n). (c) follows using the source
distortion constraint D < f3,, and from the fact that the total
distortion is quantified using TV-divergence which allows us
to bound Dy < 1. O

Remark 2. An observation from Lemma 3 is that there is no
explicit dependence on the specific quantization technique. The
bound on overall distortion is only dependent on the source
distortion Bs and decoding error probability introduced via
€*(n). This indicates that this framework can work generally
for different quantization techniques (for instance, one could
replace uniform quantization with some other sophisticated
non-uniform quantizer) and the bound will only be a function
of the corresponding source distortion.

B. Tradeoff Between Latency & End-to-End Distortion

In this Section, we show how the lemmas shown up to
this point can be used to devise a framework for analyzing
the tradeoff between latency and distortion. In Lemma 3, we
showed that the overall expected distortion E[Dyy (p, p(k(y))]
can be upper bounded by (1 — €*(n))8s + €*(n). For brevity,
we refer to E[Drv(p, p(k(y))] as B: (i.e., the total expected
distortion). To derive a relationship between the overall dis-
tortion 3; and latency T, we first recall the finite blocklength
result from [8], which states that the decoding error probability
€*(n) that can be assured for sending .J bits through an AWGN
channel is given by [8] [24]:

nC(y) — J + Llog, n> o
nV ()

where n represents the blocklength, ~ represents the
SNR, C(v) represents the capacity defined by 3log,(1 +

v) and V(y) denotes the channel dispersion defined by

L) (logy (€))2.

Let us now return to the problem of transmitting a probabil-
ity vector p over an AWGN channel. Observe that the number
of bits one can use to represent p can be chosen as a function
of the source distortion 3, (via Lemma 2, i.e., J(f5)). How-
ever, the choice of 3, and therefore J(3;) also directly impact
the decoding error probability €*(n,~,J(Bs)) as given in
(17). Thus, the resulting overall distortion from Lemma 3 can
then be bounded by (1 —€*(n,~, J(Bs)))Bs +€*(n, v, J(Bs)).
Hence, if we are given a target total expected distortion of [,
one can then optimize 3, to minimize latency while satisfying
the total distortion budget. This is the core idea behind our
approach and is formalized in the following Theorem.

6*(77/7’77‘]) =Q <

Theorem 1. Given a total distortion budget (5, using uniform
quantization, we can achieve the following latency:

TUnif(Bt) = n(ﬁé)

0<h.2s 2B (18)
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where

——— T4 \/r2+4C(7)J(Bs)

J(Bs) = 2klog, (BL)’ and r = \/V(1)Q~! (51,7;;)

Proof. First, the number of bits to quantize p can be ob-
tained based on the choice of quantization technique (we pick
J(Bs) = 2klog, (%) for uniform quantization based on
Lemma 2). We can thén rearrange Lemma 3 to solve for the
desired decoding error probability €*(n,vy, J(5)) = %
in terms of 3; & fPs. Hence, the next step is to find the
minimum number of channel uses (n) that can support the
desired decoding error probability of % by using (17).
Specifically, we wish to solve for the smallest non-negative
integer n satisfying:

5t - Bs TLC(’}/) B J(ﬂs) + %IOgQ n
(1—35) SQ( nV(y) ) 0)

As the Q(-) function (complementary CDF of standard Gaus-
sian) is monotonically decreasing, this means that for any
n > 1, we can bound the r.h.s. of (20) as:

nC(y) — J(Bs) + 5 logyn nC(v) — J(5)
N ( 0 ) = ( 0 ) |

ey
Thus, we can find n by instead solving for the simpler equation

(4) = @ <"C(”)"(ﬁ 2 ). Applying Q7'(-) on both
sides, we arrive at the following:

V1V (v)
nC(y) = v/nV(NQ (B —Bs)/(1-Bs)) —J(Bs) = 0. (22)

This equation can be viewed as a quadratic by setting 7. = y/n.
Solving for n, we arrive at the latency expression (setting 7' =
n/2B). One can then optimize the latency by minimizing over
all 8, € [0, B¢], thus completing the proof of Theorem 1. [J

IV. EXPERIMENTAL RESULTS

In this section, results are presented investigating the trade-
off between the latency and overall distortion for sending
a probability vector to a receiver over the AWGN channel.
Unless otherwise stated, we assume that £ = 10, B = 25
kHz, By = 10 kHz, and 7y = 5 dB, which yields the SNR of
~v =~ 1.021 dB. We also assume 0 < €*(n) < 0.5.

Minimum latency for a fixed total distortion (;): Figure 2a
shows the lower convex hull of the minimum latencies that can
be attained at different 3; under uniform quantization. These
results were obtained by solving the optimization problem
presented in Theorem 1. The figure indicates an inverse
relationship between latency and [3;, where a smaller latency
can be attained at the cost of a higher end-to-end distortion and
vice versa. Because T*(+) is convex, as proven in Lemma 1,
the figure also indicates that there exists an encoder-decoder
pair, whose convex combination can attain smaller latencies
while still satisfying the constraint on f.

Interplay between source distortion (fs) and latency: Figure
2b shows the latencies attained for different values of 3, at
a fixed total distortion [3;. Three observations can be made.
First, as [(3; increases, it is noted that the optimum source
distortion (35 also increases, which is in agreement with the
theoretical result in Lemma 3. Secondly, higher values of 3,
(which correspond to higher source distortions §) allow for
lower achievable latencies. Third, surges in the latency occur
as [, approaches (;. This intuitively makes sense because as
Bs approaches [, this implies that no compensation for the
distortion is being performed by the source encoder/decoder.
This means that the channel encoder/decoder are responsible
for satisfying the requirement on 3; and can only do so by
using higher blocklengths.

Latency as a function of channel bandwidth: Figure 2c dis-
plays the latencies achieved for different bandwidths and
values of (;. It is important to recall that the Signal-to-Noise
Ratio (SNR) is related to the bandwidth B as v = %Tf",
indicating that SNR decreases as B increases. Firstly, it is
observed that as the total distortion 3; increases, the latencies
decrease. Secondly, for a fixed total distortion 5;, the latency

decreases with an increase in bandwidth B.

Impact of number of classes, k (dimensionality of p): Figure
3 presents the plot of latencies against total distortion 3; for a
varying number of classes k. In line with our theoretical result
in (6), it is noted that for larger values of k, the minimum
bit-budget required to achieve a given distortion constraint is
higher, as observed in Fig. 3.

V. CONCLUSION

In this work, we have investigated a framework where
results from a classification task are sent from a transmitter
to a receiver. Specifically, we analyze the tradeoff between
the latency associated with transmitting this result against the
distortion incurred with quantizing the result and the impact
of channel noise on the transmission. Our results show that
there is an interesting interplay between source distortion (i.e.,
distortion for the probability vector measured via f-divergence)
and the subsequent channel encoding/decoding parameters;
and indicate that a joint design of these parameters is crucial
to navigate the latency-distortion tradeoff. There are several
directions for future work, including investigating non-uniform
quantization, fading channels, assuming different divergence
functions, as well as developing converse results (for instance,
obtaining lower bounds on the distortion as a function of a
target latency, and vice-versa).
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