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Abstract— Publishing streaming data in a privacy-preserving

manner has been a key research focus for many years. This issue

presents considerable challenges, particularly due to the correla-

tions prevalent within the data stream. Existing approaches either

fall short in effectively leveraging these correlations, leading to

a suboptimal utility-privacy tradeoff, or they involve complex

mechanism designs that increase the computation complexity

with respect to the sequence length. In this paper, we introduce

Sequence Information Privacy (SIP), a new privacy notion

designed to guarantee privacy for an entire data stream, taking

into account the intrinsic data correlations. We show that SIP

provides a similar level of privacy guarantee compared to local

differential privacy (LDP), and it also enjoys a lightweight modu-

lar mechanism design. We further study two online data release

models (instantaneous or batched) and propose corresponding

privacy-preserving data perturbation mechanisms. We provide a

numerical evaluation of how correlations influence noise addition

in data streams. Lastly, we conduct experiments using real-world

data to compare the utility-privacy tradeoff offered by our

approaches with those from existing literature. The results

reveal that our mechanisms achieve better utility-privacy tradeoff

than the state-of-the-art LDP-based mechanisms. Notably, the

improvements become more significant for small privacy budgets.

Index Terms— Information privacy, time series data, continual

release.

I. INTRODUCTION

I
N THE era of big data, data sharing has become extensive
and pervasive across various industries, transforming the

way businesses and organizations operate. The data-sharing
mechanisms play a critical role in enabling decision-making,
analytics, and automation. The setting of these mechanisms
can be broadly classified into two categories: offline and
online. The offline setting considers static data/dataset, such as
database queries, which involve accessing and utilizing stored
data for various applications. The online setting, on the other
hand, often involves real-time processing and dissemination
of data generated by IoT devices or cloud-based systems [1].
These mechanisms encompass varied applications such as
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real-time heart rate monitoring via smartwatches [2], instant
updates from cloud-based infrastructure, and smart grid man-
agement for efficient energy distribution, etc.

As the shared data may contain personally sensi-
tive information, investigating data-sharing methods in a
privacy-preserving manner becomes critical. Differential Pri-
vacy (DP) [3], [4], [5], which is de facto standard in the
privacy research community, has achieved great success in
the offline data-sharing setting and has led many real-world
implementations, such as surveying demographics and com-
muting patterns [6], and the 2020 U.S. Census [7]. DP is
well-suited for answering aggregated queries and requires
a trusted server. Conversely, Local DP (LDP) mechanisms
[5] allow for the publication of individual records without
reliance on a trusted server. They can be used to answer
both statistical and individual queries. LDP-based mechanisms
have been successfully adopted by Google’s RAPPOR [8]
for collecting web browsing behavior, and Apple’s MacOS to
identify popular emojis and media preferences in Safari [9],
[10]. However, previous research has indicated that when
independent ✏-LDP mechanisms are applied to correlated data,
the actual leakage for each mechanism is significantly greater
than ✏ for highly correlated data [11], [12], [13] (the leakage
upper bound is k✏ when releasing k consecutive correlated data
points). A strict way to upper bound the privacy leakage is to
properly allocate the global privacy budget to each LDP-based
mechanism by sequential composition. However, the privacy
budget allocated to each mechanism may be too small to
ensure an ideal utility, because LDP provides strong (worst-
case) privacy guarantees and fails to leverage correlations in
their definitions. This oversight can potentially lead to less-
than-optimal utility-privacy tradeoffs.

Context-aware privacy notions, which incorporate context
information (typically the data distribution) in privacy def-
inition, offer a more relaxed and adaptive way to measure
privacy leakage [14]. Mutual Information Privacy (MIP), for
instance, gauges the mutual information between the raw
data and its release [15]. MIP evaluates the Kullback-Leibler
(KL) divergence, a statistical measure that quantifies the
expected distance between two distributions, thereby naturally
incorporating the data’s prior distribution and correlations.
However, MIP provides an average-case privacy protection,
which may not be sufficient in practice [16]. Moreover, MIP
is not sequentially composable, making it unsuitable for the
online setting. In such settings, the requirement for sequential

composability means that the decomposed privacy guarantee
of each time step must remain independent of subsequent

1556-6021 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Arizona. Downloaded on March 11,2025 at 03:18:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-4341-2032
https://orcid.org/0000-0002-4073-0273
https://orcid.org/0000-0002-6182-6098


JIANG et al.: ONLINE CONTEXT-AWARE STREAMING DATA RELEASE WITH SEQUENCE INFORMATION PRIVACY 4391

steps. Lastly, MIP-based mechanisms, which require averaging
over the input/output’s support, typically introduce substantial
computational complexity due to the exponential growth of
the support with the data sequence length. Notably, as online
data release demands the timely sharing of data, the privacy
protection mechanisms need to be lightweight and have low
computation complexity to avoid causing any delays in the
data release.

Another context-aware privacy notion, Local Information
Privacy (LIP) [17], [18]. LIP bounds the privacy leakage via
the ratio between the posterior and the prior data distribu-
tion, which provides a worst-case privacy guarantee similar
to LDP, while the utility of LIP-based mechanisms can be
significantly enhanced compared to LDP (we provide a further
comparison in section VI). However, LIP and LIP-based
privacy mechanisms were originally proposed/designed for
offline/one-time data release. In this paper, we extend it to
handle the time series data in the online setting and propose
Sequential Information Privacy (SIP). We show that SIP has
sequential composition properties similar to LDP (while the
privacy is bounded by a factor of 2 from LDP, meaning it
also achieves strong privacy). At the same time, SIP enjoys
modular mechanism design with low complexity. We develop
novel mechanisms for two data release settings: instantaneous
release setting, where data is released as it is generated; and
batched release setting, where data is accumulated and released
periodically. Both approaches have their own merits and use
cases. Our proposed mechanisms ensure real-time privacy
preservation while maintaining data utility.

Our main contributions in this paper are three-fold:
• To quantify the privacy leakage in the data stream,

we introduce a novel privacy notion, termed Sequence
Information Privacy (SIP), which measures the over-
all privacy leakage in the data sequence. We consider
two common real-world online data release settings:
instantaneous data release and batched data release.
Subsequently, we define two metrics, Instantaneous Infor-
mation Leakage (IIL) and Batched Information Leakage
(BIL), corresponding to the aforementioned settings.
We show that SIP enjoys similar composition theorems as
LDP, which is upper bounded by the sum of IIL and BIL
in each time step, in accordance with the release setting
in a linear or sub-linear fashion (advanced composition).

• We propose privacy protection mechanisms correspond-
ing to each data release setting. For the instantaneous
release setting, we derive the optimal mechanism and its
parameters in closed form; furthermore, we demonstrate
correlation-dependent noise through an example. For the
batched release setting, we first show the problem can
be degraded to a sub-optimal problem by simplifying the
mechanism parameters. Then, we propose a data release
algorithm with simplified parameters based on gradient
descent. We study the influence of batch size on data
utility and computational complexity.

• We provide extensive experimental results, utilizing two
real datasets with different application types (and cor-
respondingly, different utility measures). We evaluate the
utility-privacy tradeoff provided by both mechanisms and

compare these results with existing solutions. Our anal-
ysis shows that, while the privacy guarantee offered by
✏-SIP is strictly stronger than 2✏-LDP, the utility provided
by ✏-SIP based is higher than the LDP-based mechanisms
under 2✏-LDP, especially under small privacy budgets.

II. SYSTEM AND THREAT MODEL

A. System Setup

Let us consider the scenario of releasing time-series data in
an online manner. Denote the raw data at each time stamp k

as Xk that takes value from a finite support X . Denote the
data stream up to time T as X

T

1 = {X1, . . . , XT }, and x
T

1 as a
realization of X

T

1 . We use the bold symbol to denote a vector.
In the context-aware setting, the data stream is considered
as a correlated random vector with Pr(X1 = x) = P1(x),
and Pr(Xk+1 = v|Xk

1 = u) = C
v
u
, for all u, v sequence.

Further, we consider two types of data release scenarios:
1) instantaneously release and 2) batched release. Instanta-
neous release means each of the data in the sequence is
released instantaneously. One example of the instantaneous
release is the navigation app on the smartphone, users are send-
ing location data to the server and accessing location-based
services on the fly. Another example is online games, users’
operation data is collected by the server continuously (usually
less than every 20 ms). On the other hand, we also consider
data to be released in a batched manner, for the applications
where moderate delay is allowed to minimize the communica-
tion cost. Backend software in smartphones or PCs implements
batched release by periodically sending collected logs to the
server. This allows for efficient data management and analysis.
Traffic monitoring systems utilize batched-release to collect
and upload aggregated traffic flow data at regular intervals.
This approach ensures accurate monitoring of traffic density
and enables effective analysis of traffic patterns. Models of
these two release settings are depicted in Fig. 1.

1) Instantaneous Release Setting: In the instantaneous
release setting, to protect data privacy, data at each time
step (for example, time k) is perturbed to Yk before being
released to the public. Assume that Yk takes a value of y

from the same domain as X , and the perturbation is done by
a randomized mechanism MI

k
, where the superscript I in the

notation denotes instantaneous release setting. The mechanism
outputs Yk by considering the whole data sequence till k as
well as all previous outputs, i.e., Yk = MI

k
(Xk

1, Y
k�1
1 ). Also,

it is natural to assume that Xk+t ?? Yk |{Xk

1, Y
k�1
1 }, for all

t � 1 (we use ?? to denote independent between random
variables), as the current release should not depend on data
at future time steps. More specifically, the mechanism MI

k
is

defined as follows

a
I

k
(yk |xk, x

k�1
1 , y

k�1
1 )=Pr

⇣
Yk = yk | X

k

1 = x
k

1, Y
k�1
1 = y

k�1
1

⌘
.

(1)

2) Batched Release Setting: The raw data sequence is
partitioned into different batches. Denote Ol = X

lw
(l�1)w+1 as

one batch generated from the raw sequence. w here denotes
the length of the batch, and l 2 [1, ⌧ ] represents the batch
index. In this paper, we assume w of each batch to be the
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Fig. 1. Online privacy-preserving data release systems, a side-by-side comparison between the instantaneous data release model and the batched data release
model.

same, however, it is straightforward to extend our analysis
and results to the case where w for each batch is different
from each other.

Similarly to the instantaneous setting, for data privacy con-
sideration, at time l, a privacy protection mechanism considers
all previous input/output and releases a perturbed version Rl .
Denote the mechanism for batched release as MB

l
(Ol

1, R
l�1
1 ),

then Rl = M
B

l
(Ol

1, R
l�1
1 ), it is also natural to assume that

Ol+t ?? Rl |{Ol

1, R
l�1
1 }, for all t > 0. As a result, MB

l
is

defined as follows:
a

B

l
(rl |ol , o

l�1
1 , r

l�1
1 )=Pr

⇣
Rl = rl | O

l

1 =o
l

1, R
l�1
1 = r

l�1
1

⌘
.

(2)

B. Adversary Model

In this paper, the adversary can be anyone who has access
to the released data. e.g. the server, or anyone in the pub-
lic. We assume the adversary is honest but curious. He/She
does not have access to the user’s release system, and can
only passively receive and observe the output sequence from
the privacy-preserving mechanism. It is assumed that the
adversary is interested in learning the raw data sequence.
His/Her inference model stems from the Bayesian posterior
probability distribution, given all historical observations. For
the instantaneous release setting, for a set of observations y

k�1
1 ,

the adversary’s belief of X
k

1 is defined as:
� I

k
(xk

1|yk�1
1 ) = Pr(Xk

1 = x
k

1|Yk�1
1 = y

k�1
1 ). (3)

We denote this posterior belief as the belief state of the
adversary in the instantaneous release setting. For the batched
release setting, similarly, the adversary’s belief of O

l

1 after
receiving r

l�1
1 is

�B

l
(ol

1|rl�1
1 ) = Pr(Ol

1 = o
l

1|Rl�1
1 = r

l�1
1 ), (4)

which is defined as the adversary’s belief state in the batched
release setting.

Besides, it is assumed that the adversary has the following
abilities:

• The adversary knows the initial prior distribution of
the first data P1(·) and the data correlation in the data
sequence. Hence, the adversary’s belief state can be
updated from time to time. This is a common assumption
used in nearly all information-theoretic approaches. Note

that this is a worst-case assumption. According to [18],
if the adversary has a different knowledge from the true
data prior distribution, the privacy leakage is decreased,
and the reduced amount is proportional to the deviation
from the true prior.

• The adversary knows the privacy-protection mechanism,
including the release setting, current data index (time
step), and the perturbation parameters.

III. PRIVACY DEFINITION AND COMPARISON WITH
EXISTING PRIVACY NOTIONS

A. Context-Aware Sequence Information Leakages

For data privacy, we start by defining the Sequence Informa-
tion Leakage that occurs after a series of successive outputs.
We then demonstrate how this leakage can be decomposed
into each local leakage at various time steps.

Definition 1: The sequence information leakage (SIL) for

releasing Y
T

1 as privatized version of X
T

1 is defined as:

L(YT

1 ! X
T

1 ) = max
x

T

1 ,yT

1 2X T

�����log
Pr(XT

1 = x
T

1 |YT

1 = y
T

1 )

Pr(XT

1 = x
T

1 )

����� .

(5)
This can be interpreted as the adversary’s maximum informa-
tion gain about X

T

1 after observing the output sequence of Y
T

1
compared to his prior knowledge. We say a privacy-preserving
mechanism satisfies (✏, �)-Sequence Information Privacy (SIP)
if the following condition holds:

Pr(L(YT

1 ! X
T

1 ) > ✏) < �. (6)

We next define the instantaneous information leakage at
each time step.

Definition 2: The instantaneous information leakage (IIL)

at time k is defined as:

L(Yk ! X
k

1) = max
x

k

12X k ,yk2X

�����log
Pr(Xk

1 = x
k

1|Yk

1 = y
k

1)

Pr(Xk

1 = x
k

1|Yk�1
1 = y

k�1
1 )

����� .

(7)
The operational meaning of the instantaneous information

leakage can be interpreted as the adversary’s additional belief
on the data sequence X

k

1 after observing Yk at time k compared
to the belief before taking this observation. Such a definition is
presented based on an online data release manner, i.e., before
observing Yk , k � 1 outputs have already been published.
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Similarly, we define the information leakage in the setting
of batched data release:

Definition 3: The batched information leakage (BIL) when

releasing the l-th batched data sequence is defined as:

L(Rl ! O
l

1) = max
o

l

12X lw,rl2Xw

�����log
Pr(Ol

1 = o
l

1|Rl

1 = r
l

1)

Pr(Ol

1 = o
l

1|Rl�1
1 = r

l�1
1 )

����� .

(8)
With similar operational meaning as the instantaneous infor-

mation leakage: the adversary’s additional knowledge on O
l

1
after observing Rl .

Regarding the relationship between the IIL/BIL and SIL,
we have the following theorem:

Theorem 1: For a sequence of instantaneous-release pri-

vacy protection mechanisms M
I (1 : T ), such that M

I

k

releases Yk at time k, if the IIL L(Yk ! X
k

1)  ✏k ,

8k 2 1, 2, .., T , then M
I (1 : T ) satisfies (

P
T

k=1 ✏k, 0)-SIP.

Similarly, for a sequence of batched-release privacy protection

mechanisms M
B(1 : ⌧ ), if each BIL satisfies L(Rl ! O

l

1) 
✏l , 8l 2 1, 2, .., ⌧ , then M

B(1 : ⌧ ) satisfies (
P⌧

l=1 ✏l , 0)-SIP.

Theorem 1 posits that the privacy budget, as it pertains to
a sequence of mechanisms, decomposes linearly in relation
to the amount of data disclosed. Additionally, the aggregation
of local leakages contributes to the global sequence leakage.
Importantly, the introduction of a minor failure probability
denoted as �, allows for the achievement of sub-linear growth
in the privacy budget. This property is summarized in the
following Theorem.

Theorem 2: The sequence of mechanisms M
I (1 : T ) in

Theorem 1 satisfies (T ✏(e✏ � 1) +
p

T ✏
p

2 ln(1/�), �)-SIP;

similarly, the mechanisms M
B(1 : ⌧ ) satisfy (⌧✏(e✏ � 1) +

⌧✏
p

2 ln(1/�), �)-SIP.

Remark: Theorem 2 is similar to the sequential composition
of LDP, and the proof is done in a similar way. Theorem 1
and Theorem 2 effectively break down a global task into
manageable local goals. Specifically, to design either the
instantaneousMI or batchedMB mechanism at each moment
under a total SIP budget, it suffices to limit the IIL or BIL.
Detailed proof of Theorem 1 and Theorem 2 are provided in
the appendix.

B. Comparison With Existing Privacy Notions

1) Local Differential Privacy: The decentralized version of
DP, Local Differential Privacy (LDP) [5], has gained much
attention since its introduction. It adopts a similar structure as
Differential Privacy but considers the input as each individual’s
data, so the privacy-utility tradeoff of each individual is
customizable. The definition of LDP, when adapted to the
sequential data release model, can be summarized as follows:

Definition 4: A privacy protection mechanismM, is said to

be ✏-local differentially private for the sequence of X
T

1 , if for

all x
T

1 , x̃
T

1 2 {X }T

1 , and for all y
T

1 2 Range(M(XT

1 )),

Pr(YT

1 = y
T

1 |XT

1 = x
T

1 )

Pr(YT

1 = y
T

1 |X̃T

1 = x̃
T

1 )
2 [e�✏, e

✏]. (9)

The relationship between ✏-LDP and ✏-SIP is shown in the
following Theorem:

Theorem 3: If a privacy-preserving mechanism M satisfies

✏-LDP, then it satisfies ✏-SIP. Conversely, if M satisfies ✏-SIP,

then it satisfies 2✏-LDP.

In essence, ✏-SIP offers a more relaxed privacy guar-
antee compared to ✏-LDP. This is because, while LDP is
designed to defend against adversaries possessing arbitrary
prior knowledge, ✏-SIP operates under the assumption that
both prior knowledge and data correlations are known, fixed,
or at least inferable from existing samples. In Theorem 3 we
present a general conversion bound between SIP and LDP.
Furthermore, a more tightened bound, dependent on data prior,
can be formulated following a methodology similar to that
in [18]. It is important to note, however, that this conver-
sion of the privacy budget does not directly translate into a
weakened privacy guarantee by the respective mechanisms.
In Section VI, we demonstrate that SIP’s relaxed definition and
our mechanism do not compromise privacy under a uniform
privacy measure (in our study, we use identification rate as
the metric). Moreover, the 2✏ bound associated with LDP
is actually advantageous for the SIP framework, as it upper
bounds the worst-case information leakage while taking the
context into consideration, akin to the privacy guarantee of
LDP. Nevertheless, due to the utilization of data prior/context,
our mechanisms exhibit a more favorable utility-privacy trade-
off than that offered by LDP, even when we compare our
mechanisms under the worst-case privacy leakage (with those
satisfying 2✏-LDP).

LDP’s worst-case privacy protection means the condition
in (9) must hold for every possible x

T

1 , x̃
T

1 , and y
T

1 . LDP
is also sequentially decomposable by applying independent
mechanisms [22], and can be adapted in the online release
setting. Formally, for a sequence of privacy-preserving mech-
anisms M(1 : T ), if each mechanism M satisfies ✏k-LDP
for Xk . Then M(1 : T ) satisfies

P
T

k=1 ✏k-LDP for X
T

1 [23].
When implementing LDP with sequential composition, the
total privacy budget could drastically inflate if each local
mechanism is using a budget that is reasonable for ensuring
utility. Conversely, the utility of each local data release could
significantly diminish if a more restrained budget is applied to
maintain robust privacy protection.

The field of sequential data release, employing LDP or its
relaxed variants, has rapidly gained attention. For instance,
the concept of w-event-level LDP was introduced in a study
by [24]. This approach ensures that each segment of a
data sequence within a window of w maintains an ✏-LDP
guarantee. The overall privacy leakage is composed of a
cumulative function of leakages across different windows.
This concept builds upon the central DP version initially
proposed in [25]. However, event-level protection will degrade
the privacy guarantee. In another study by Xue et al. [26],
a Dynamic Difference Report Mechanism (DDRM) was pro-
posed. DDRM is designed to safeguard changes in data during
continuous release, with LDP ensuring the privacy of these
change points. However, DDRM’s applicability is limited in
scenarios where time-series data exhibit significant fluctuations
over time. In [27], another LDP-based mechanism is proposed
for the real-time estimation of item counts in streaming data.
This approach, combining Cuckoo and Bloom filters, enhances
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utility (accuracy of count estimates) and querying efficiency,
particularly for fuzzy counting scenarios. Furthermore, the
work by Jain et al. [28] analyzes the data utility of continual
release mechanisms. They present lower bounds on errors for
DP-based mechanisms, particularly when dealing with “Max-
Sum” and “Sumselect” queries. Despite their significance,
adapting these results to local settings remains a challenging
task, underscoring the need for further research in this area.

Recent studies have begun to incorporate data correlation
into their model assumptions to enhance the utility-privacy
tradeoff provided by the LDP mechanism. For example,
Cao et al. proposed a method to quantify DP leakage for
data with temporal correlations [29]. They developed DP
mechanisms for location aggregations under temporal corre-
lation [30], under the assumption that data correlation can be
discerned by an adversary. Subsequently, they define a subset
of the output’s support to decrease the DP sensitivity. However,
such an approach may result in an increased failure probability
of DP, also the correlation itself is still not leveraged in the
mechanism design. Further studies [31], [32], [33], [34], [35]
also explored scenarios where adversaries possess knowledge
of data correlations. These works primarily concentrate on
creating novel mechanisms to protect a single user’s privacy
by extending DP. Nevertheless, unlike the setting of this
paper, these studies consider sequential data release in an
offline setting. In contrast, Wang et al. put forward an online
data release mechanism in [19], satisfying either DP or LDP,
depending on the specific circumstances. However, still, their
proposed noise-adding mechanisms for each instantaneous
data point operate independently. In [36], Zhang et al. propose
to learn the correlation as the sequence is generated, using
it to estimate future data. This guides the generation of
noisy released data, allowing for real-time queries with higher
utility. However, their work assumes a central setting, which
is different from the setting considered in this paper. Also, [2]
adopts DP as the privacy notion, which is not context-aware.

2) Pufferfish Privacy: Another privacy notion that pro-
vides privacy protection over a set of self-defined secrets is
Pufferfish privacy. When adapted into the data release model,
Pufferfish privacy is defined as:

Definition 5 (✏-Local Pufferfish Privacy [12]): Given set

of potential secrets S, a set of discriminative pairs Spairs ,

a set of data evolution scenarios P{X }T

1 ,S , and a privacy

parameter ✏ 2 R
+

, an (potentially randomized) algorithm M

satisfies ✏-PufferFish (S, Spairs , P{X }T

1 ,S ) privacy if

• for all possible outputs y
T

1 2 range(M),

• for all pairs (si , s j ) 2 Spairs of potential secrets,

• for all distributions P{X }T

1 ,S 2 P{X }T

1 ,S for which

Pr(si |P{X }T

1 ,S) 6= 0 and Pr(s j |P{X }T

1 ,S) 6= 0
the following holds:

e
�✏ 

Pr(M(XT

1 ) = y
T

1 |P{X }T

1 ,S , si )

Pr(M(XT

1 ) = y
T

1 |P{X }T

1 ,S , s j )
 e

✏ .

The relationship between Pufferfish Privacy and SIP isn’t
directly deducible as they operate under different assumptions.
Pufferfish assumes the possibility of multiple data generation
scenarios, captured by PX T

1 ,S . Conversely, SIP presumes that

the correlation among data is given. In the context of streaming
data release, these correlations can naturally be learned from
previous releases, thus SIP is more suitable for the online
release setting.

Pufferfish privacy further distinguishes itself by protecting
a latent variable S that correlates with the data stream,
as opposed to the data itself. This model has been the subject
of other studies, primarily from an information-theoretic per-
spective, such as those in [37], [38], and [39]. Contrarily, SIP
postulates that each individual data value is privately sensitive.
As a result of this assumption, Pufferfish isn’t as intuitively
decomposable like LDP and SIP, without adopting additional
assumptions of Markovity in the data sequence.

Among the existing literature on Pufferfish Privacy, [20]
proposed a privacy protection mechanism that also considers
data correlation. The proposed mechanism operates under the
assumption that the data distribution adheres to the Markov
Quilt properties. This premise simplifies data correlation and
reduces computational complexity, while also allowing the
mechanism to be sequentially composable. However, the data
release mechanism only functions when the secrets are sequen-
tially obtained, whereas the data sequence is predetermined.
This assumption renders the mechanism unsuitable for an
online setting. Furthermore, the algorithm necessitates an
exhaustive search of all possible combinations of proximate
and distant nodes in the Markov Quilt, resulting in only a
modest reduction in complexity.

3) Information Theoretical Approaches: We next compare
SIP with privacy notions borrowed from information theory.
The first definition to compare with is Mutual Information
Privacy (MIP), which is measured by the mutual information
between the input and the output of the privacy-protection
mechanism:

Definition 6: [15] A mechanism M satisfies ✏-MIP for

some ✏ 2 R
+

, if the mutual information between X
T

1 and

Y
T

1 satisfies I (XT

1 ; Y
T

1 )  ✏.

It is evident that a privacy-preserving mechanism M based
on SIP, guaranteeing L(YT

1 ! X
T

1 )  ✏, would also ensure
that the mutual information I (XT

1 ; Y
T

1 )  ✏. This is due to the
mutual information being a statistical average of the SIP. MIP
provides a relatively weak average-case privacy guarantee.
Also, MIP is not sequentially composable: after applying
the chain rule, I (XT

1 ; Y
T

1 )  ✏ can only be decomposed
into bounding each I (XT

1 ; Yt |Yt�1
1 ), which depends on the

whole input sequence. Nevertheless, as mutual information
or conditional mutual information intuitively captures data
correlation and can be easily decomposed using the chain rule,
MIP has been extensively explored as a privacy metric for
time-series data, as demonstrated in [40].

Several studies on privacy-preserving online data release,
such as [21] and [41], have also capitalized on data cor-
relation, releasing aggregated location data online while
ensuring individual or group privacy measured by MIP is
constrained. As mutual information functions are convex, they
can conveniently be integrated into optimization problems. The
obfuscation mechanism at different time stamps is selected by
a reinforcement learning algorithm. However, the complexity
is still high depending on the length of the sequence.
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TABLE I
COMPARISON OF DIFFERENT PRIVACY NOTIONS IN THE ONLINE SETTING

SIP can be perceived as an online sequential version of
local Information Privacy (LIP) [17], [18], [42], defined as
the ratio between the prior and posterior probabilities follow-
ing observation of the output from the mechanism. In [17],
comprehensive results on mechanism design based on LIP are
offered, showing superior utility-privacy trade-offs compared
to LDP, MIP, and Pufferfish. However, none of these mecha-
nisms take into account the context of online sequential data
release.

Considering the four typical challenges for sequential data
release in the online setting: utility-privacy tradeoff, sequential
composability, leveraging correlation, and low computation
complexity, we summarize different privacy notions described
in this section and how these notions address the four chal-
lenges in Table I.

IV. UTILITY PRIVACY TRADEOFF FOR
INSTANTANEOUS RELEASE

A. Problem Formulation

In this paper, we define data utility as the expected distance
between the arbitrary Quality of Service (QoS) function of the
input (Q(X)) and output (Q(Y )). In the instantaneous release
model, the utility is gauged by the expected distance between
Q(Xk) and Q(Yk) at each time stamp k. This measurement is
known as the Instantaneous Expected Distance (IED):

E

h
D(Q(Xk), Q(Yk))

��Yk�1
1 = y

k�1
1

i
. (10)

In (10), Q signifies the query function of X and Y that depends
on the specific application, while D(a, b) : (R, R) ! R

+

denotes a distortion or distance measure between a, b. The
expectation E[·] is taken over both the underlying distribution
of the data PX (x), as well as over the randomness of the
mechanism. The expected distance between Q(X) and Q(Y )

represents a general type of utility measurement. For instance,
in a Location-Based Service (LBS), Q(X) = X , and the
Euclidean distance between X and Y is typically used to
gauge performance: Utility = �E[(X�Y )2]. Another example
is histogram estimation, where the aim is to ascertain how
many people belong to each data category or classification
according to users’ data value. In this case, Q(X) is an
indicator function, and the absolute distance utility function
can be written as Utility = �P

K

i=1 E[| X2Si
� Y2Si

|]. These
examples demonstrate that for different applications, the utility

function can be adapted by modifying the Q function and the
distortion function D(·, ·).

The online mechanism we explore in this paper concentrates
on minimizing the IED defined in Eq. (10), subject to IIL
constraints i.e., the problem is defined as:

min E

h
D(Q(Xk), Q(Yk))

��Yk�1
1 = y

k�1
1

i
,

Such that L(Yk ! X
k

1)  ✏l , 8k 2 [1, T ]. (11)

1) Privacy Metric: By Bayes rule, the privacy metric in the
IIL can be expressed as:

Pr(Xk

1 = x
k

1|Yk

1 = y
k

1)

Pr(Xk

1 = x
k

1|Yk�1
1 = y

k�1
1 )

= Pr(Yk = yk |Xk

1 = x
k

1, Y
k�1
1 = y

k�1
1 )

Pr(Yk = yk |Yk�1
1 = y

k�1
1 )

= a
I

k
(yk |xk

1, y
k�1
1 )

P
x̃

k

12X k a
I

k
(yk |x̃k

1, y
k�1
1 )� I

k
(x̃k

1|yk�1
1 )

. (12)

Note that, the term �k(x̃
k

1|yk�1
1 ) = Pr(Xk

1 = x̃
k

1|Yk�1
1 = y

k�1
1 )

can be further expressed as:
Pr(Xk

1 = x̃
k

1|Yk�1
1 = y

k�1
1 )

= Pr(Xk = x̃k |Xk�1
1 = x̃

k�1
1 )Pr(Xk�1

1 = x̃
k�1
1 |Yk�1

1 = y
k�1
1 )

= C
x̃k

x
k�1
1

a
I

k�1(yk�1|x̃k�1
1 , y

k�1
1 )� I

k�1(x̃
k�1
1 |yk�2

1 )
P

x̄
k�1
1

a
I

k�1(yk�1|x̄k�1
1 , y

k�2
1 )� I

k�1(x̄
k�1
1 |yk�2

1 )
,

(13)

where the nominator is the perturbation probability, and the
denominator is a linear combination of the perturbation param-
eters with coefficients of some calculable posteriors.

2) Utility Function: The utility function can be further
expressed as:

E

h
D(Q(Xk)� Q(Yk))|

��Yk�1
1 = y

k�1
1

i

=
X

x,y

D(Q(x)� Q(y))

·
X

x
k�1
1

a
I

k
(yk |xk�1

1 , x, y
k�1
1 )� I

k
(xk�1

1 , x |yk�1
1 ). (14)

As a result, the utility-privacy tradeoff can be expressed as:
min (14), Such that (12) 2 [e�✏k , e

✏k ]. (15)
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Fig. 2. Illustration of Conditional Randomize Response (CRR) mechanism,
each mechanism parameters depend on data prior as well as previous release.

Hence, the local optimization problem can be represented as
a function of the data correlation, previous data release policy,
and belief state.

B. Conditional Randomize Response Mechanism

Next, we introduce the Conditional Randomized Response
(CRR) perturbation mechanism, followed by our optimal
mechanism based on CRR.

In a context-aware setting, the input to a privacy-preserving
mechanism consists of the data values and their probabilistic
distribution. For the online release setting, this distribution
isn’t fixed but instead depends on all previously observable
releases. Therefore, the data distribution can be symbolized as
the belief state defined earlier. This observation leads us to the
CRR mechanism, which takes as input the current data value,
as well as the belief state.

An illustrative example of the CRR mechanism is shown in
Fig. 2. This mechanism perturbs X1 according to probabilities
designed based on the adversary’s prior knowledge. After Y1 is
output, the adversary’s prior knowledge about X2 shifts to
Pr(X2|Y1). Hence, the mechanism designs the perturbation
parameters at time 2 in accordance with the distribution of
Pr(X2|Y1).

We next derive the closed-form optimal solutions that min-
imize IED at each time step, which follows the next theorem.

Theorem 4: For the class of utility function with dis-

tance D satisfying the following properties: 1. non-negativity:

D(X, Y ) � 0; 2. Identity of Indiscernibles: D(X, X) = 0, 3.

Symmetry: D(X, Y ) = D(Y, X), and 4. Triangle Inequality:

D(X, Y )  D(X, Z) + D(Z , Y ), the following perturbation

parameters at time k is the optimal solution of the problem

defined in (15),

a
I

k
(yk |xk

1, y
k�1
1 ) =

8
>><

>>:

� I (xk |yk�1
1 )

e✏k

, if yk 6= xk;

1� 1� � I (xk |yk�1
1 )

e✏k

, if yk = xk .

Detailed proof is provided in the appendix in the supplemen-
tary document. Key insights of the optimal solutions:

• The optimal perturbation parameters are found at the
boundaries of the privacy constraints so that the least
amount of noise is added while privacy can be protected.

• The conditional probability of Yk is identical to that of Xk

given Y
k�1
1 , i.e., Pr(Xk = xk |Yk�1

1 = y
k�1
1 ) = Pr(Yk =

xk |Yk�1
1 = y

k�1
1 ), which means the output at each time

Algorithm 1 SIP Mechanism for Instantaneous Release
1: Input: current time k, initial prior P1(x), data correlation

C
u
v

, historical release sequence Y
k�1
1 , current Xk , previous

� I (xk�1|yk�2
1 ).

2: Output: Instantaneous release Yk

3: if k = 1:
4: Release Y1 = y1 according to the following rule:
5: y1 = x1 w.p. 1� (1� P1(y1))/e

✏ ;
6: other y1 w.p. P1(y1)/e

✏ .
7: else:
8: for all xk 2 X :
9: update � I (xk |yk�1

1 ) according to (13):
10: Release Yk according to the following rule:
11: yk = xk w.p. 1� (1� � I (yk |yk�1

1 ))/e
✏ ,

12: other yk w.p. � I (yk |yk�1
1 )/e

✏ .

step always has the same marginal distribution of the
input data.

• The mechanism does not depend on the historical raw
data sequence. i.e. x

T�1
1 . This is due to the following

two aspects: 1. the data utility at time k only depends
on Xk . 2. A simplification from x

T�1
1 won’t violate the

privacy constraints.
Given the optimal mechanism parameters, the algorithm for

instantaneous release is shown in Alg. 1. As the calculating
of the belief state takes constant time complexity, the compu-
tation complexity of Alg. 1 is O(|X |).

1) Expected Error Upperbound: We proceed to assess the
worst-case utility that can be attained by the SIP mechanism,
as delineated in Alg. 1. In this analysis, the absolute error
is utilized as a representative instance for the utility distance
metric D(·, ·), though it is worth noting that the methodology
is applicable to other forms of utility distance measures in a
similar manner. Under the mechanism with parameters defined
in Theorem 4, the utility function defined in (10) can be further
expressed as follows:

X

x 6=y

|x � y|�(x |yk�1
1 )�(y|yk�1

1 )/e
✏ . (16)

The next proposition states the utility guarantee provided by
the instantaneous SIP release mechanism.

Proposition 1: The error expression for SIP instantaneous

release, as derived in (16), is upper bounded by

(xmax � xmin)/2e
✏,

where xmax
1= maxX and xmin

1= minX .

Proof: As
P

x2X �(y|yk�1
1 ) = 1, the error upper bound

is achieved when �(xmax|yk�1
1 ) = �(xmin|yk�1

1 ) = 0.5. ⇤
We next theoretically compare the utility provided by instan-

taneous SIP and RR-LDP. Since the error upper bounds may
not be exact or tight, directly comparing the upper bounds may
not accurately reveal the superiority of one mechanism over
another. In the following, we consider a binary example, with
X = {0, 1}, and the comparison between SIP and the exact
expected error of the RR-LDP mechanism is provided in the
following proposition.
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Proposition 2: The error upper bound for the instantaneous

release SIP mechanism, operating under a binary model,

is 1/2e
✏
. In contrast, the ✏-RR-LDP mechanism constantly

incurs an expected error of 1/(e✏ + 1). 1

The expected error of RR-LDP is strictly larger than the
upper bound of the instantaneous release SIP mechanism,
which implies SIP constantly outperforms the RR-LDP mech-
anism.

C. Data Correlation Dependent Noise

We present an illustrative example next to elucidate how
data correlation influences the amount of noise added at
different time steps. When data is correlated, the necessary
noise at each timestamp also relies on one another.

Example 1: Imagine releasing two correlated data points

X1 and X2, and X1, X2 2 {0, 1}. Denote the prior distribution

of X1 as P1 = Pr(X1 = 1) and 1 � P1 = Pr(X1 =
0). We assume that the relationship between X1 and X2 is

represented by a symmetric correlation channel, expressed

as Pr(X2 = 1|X1 = 0) = Pr(X2 = 0|X1 = 1) = �.

Prior to being published, X1 and X2 are perturbed to Y1 and

Y2 respectively by the mechanisms M1 and M2. To ensure

privacy, the local leakage of L1(Y1 ! X1)  ✏1 and L2(Y2 !
X2, X1)  ✏2 must hold.

1) Data Correlation and Noise Correlation: The correlation
coefficient of X1 and X2 can be expressed as:

⇢X1,X2 = �X1 X2

�X1�X2

= E[X1 X2]� E[X1]E[X2]q
{E[X

2
1]� E2[X1]}{E[X

2
2]� E2[X2]}

.

Taking values in, we have:

⇢X1,X2 = (1� 2�)
p

P1(1� P1)p[P1� + (1� P1)(1� �)][(1� P1)� + P1(1� �)]
(17)

Observe that when � = 0, ⇢X1,X2 = 1, when � = 1/2,
⇢X1,X2 = 0; when � = 1, ⇢X1,X2 = �1. Thus by varying
the value of � from 0 to 1, the correlation coefficient also
changes from positive to negative.

The noise N at time 1 / time 2 in this example is defined as a
binary random variable, such that N = 1 means the data value
is flipped before release; N = 0 means the data is directly
released. We refer to Pr(N = 1) as the “amount of noise”. Our
subsequent objective is to determine the correlation coefficient
of ⇢N1,N2 (detailed derivation of ⇢N1,N2 as well as other
parameters are shown in the Appendix).

2) Relationship Between ⇢X1,X2
and ⇢N1,N2

: We initially fix
the value of P1, then vary � from 0 to 1 and observe changes in
⇢N1,N2 . We know that ⇢x1,x2 also ranges from �1 to 1. Besides
charting how noise correlation varies, we are also interested in
identifying some specific cases. For instance, when ⇢X1,X2 =
1 or ⇢X1,X2 = �1, we want to ascertain the value of ⇢N1,N2
and how it is influenced by the prior of X1. Nevertheless, even
if ⇢N1,N2 = 0, it doesn’t conclusively prove independence.

1The optimal RR-LDP mechanism under binary model is p = e
✏/(e✏ +1),

and q = 1/(e✏ + 1), where p denotes the probability to direct release X , and
q denotes the probability to release 1� X .

Thus, we consider calculating the mutual information between
N1 and N2. If I (N1; N2) = 0, we can conclude that N1 and
N2 are independent.

Furthermore, we aim to demonstrate how the prior of
X1 and the correlation between X1 and X2 affect the amount of
noise required at the second timestamp. The hope is that under
the correlated release mechanism when data are more strongly
correlated, the required amount of noise at the subsequent
timestamp decreases.

Finally, we set an upper bound for the noise at time 2,
and identify the optimal parameters that minimize the total
privacy leakage of X1 and X2. For comparison, we also
derive the parameters that minimize the leakage of X2, which
is equivalent to treating X1 and X2 as independent (with
the prior of X2 changing according to the correlations).
The goal of this comparison is to illustrate that by con-
sidering data correlation, under a fixed amount of noise,
we can further minimize the total leakage of the data stream.
In other words, we are adding noise where it matters the
most.

The results of our analysis are depicted in Fig. 3 and 4,
where Fig. 3 shows the outcomes when P1 = 0.5 and Fig. 4
presents the results when P1 = 0.95.

From both Fig. 3 and Fig. 4, we observe a decrease in
⇢N1,N2 as ⇢X1,X2 approaches 0. This suggests that when the
data are more correlated, the noise added is more dependent
on the previous data release mechanisms. Conversely, when
⇢X1 X2 = 0, I (N1; N2) = 0, which implies that when data
X1 and X2 are independent, the noise added at two different
timestamps is also independent. Another observation is that
as X1 and X2 become more correlated, the required amount
of noise at time 2 decreases correspondingly. This is because
Y1 already conveys a substantial amount of information about
X2, and the prior of X2 is relatively more skewed than in
scenarios where X1 and X2 are less correlated. When the
amount of noise at time 2 is bounded, introducing correlated
noise can further minimize the total privacy leakage. When
P1 = 0.5, the independent noise remains unchanged because
the prior of X2 does not fluctuate with �. Upon comparing
Fig. 3 and 4, we find that the intercept of Fig. 4 is greater
than that of Fig. 3. This implies that when the prior is more
uniformly distributed, the correlation of the noise decreases,
while when the prior distribution of P1 is more skewed, the
correlation of the noise increases.

V. UTILITY-PRIVACY TRADEOFF FOR BATCH SETTING

Note that we cannot directly extend the optimal solution in
Theorem 4 to the release vector in the batched release setting,
as the optimal parameters only maximize the probability of
releasing one output that is identical to the input, which is not
optimal for releasing vectors containing multiple data. Because
they fail to enlarge the probabilities to release the sequence
where most data are identical to the input but only a few are
different. In this section, we first investigate the utility and
privacy tradeoff in the batched release setting, followed by
model simplification. Finally, we present our algorithm in the
batched setting.
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Fig. 3. Noise correlation, Mutual Information, Noise at time 2 and minimized leakage as a function of the correlation coefficient (when P1 = 0.5).

Fig. 4. Noise correlation, Mutual Information, Noise at time 2 and minimized leakage as a function of the correlation coefficient (when P1 = 0.95).

A. Utility in the Batched Release Setting

In the batched release setting, the utility measurement is
termed the Batched Expected Distance (BED):

E

h
D(Q(Ol), Q(Rl))

��Rl�1
1 = r

l�1
1

i
. (18)

Similar to the instantaneous release setting, for the batched
release setting, the optimization problem that yields the utility-
privacy tradeoff is defined as:

min E

h
D(Q(Ol), Q(Rl))

��Rl�1
1 = r

l�1
1

i
,

Such that L(Rl ! O
l

1)  ✏l , 8l 2 [1, ⌧ ]. (19)

The privacy constraint of the batch setting can be expressed
as:

a
B

l
(rl |ol

1, r
l�1
1 )

P
õ

l

1
a

B

l
(rl |õl

1, r
l�1
1 )�B

l
(õl

1|rl�1
1 )

. (20)

The belief state �B

l
(ol

1|rl�1
1 ) can be expressed as:

C
õl

õ
l�1
1

a
B

l�1(rl�1|õl�1
1 , r

l�1
1 )�B

l�1(õ
l�1
1 |rl�2

1 )
P

ō
l�1
1

a
B

l�1(rl�1|ōl�1
1 , r

l�2
1 )�B

l�1(ō
l�1
1 |rl�2

1 )
, (21)

where the correlation term can be derived as:
C

ol

o
l�1
1

= Pr(ol |ol�1
1 )

=
lwY

i=(l�1)w+1

Pr
⇣

Xi = xi

��Xi�1
1 = x

i�1
1

⌘
. (22)

The utility function of BED can be further expressed as:

E

h
D(Q(Ol)� Q(Rl))

��Rl�1
1 = r

l�1
1

i

=
X

o,r

D(Q(o)� Q(r))

⇥
X

o
l�1
1

a
B

l
(rl |ol�1

1 , o, r
l�1
1 )�B

l
(ol�1

1 , o|rl�1
1 ). (23)

Mechanism simplification Note that the mechanism param-
eter a

B

l
contains the whole raw data sequence, which makes

the computational cost grow exponentially. Next, we introduce
a subset of policies that requires a memory of length L:

a
s

l
(rl |ol

l�L+1, r
l�1
1 )

= Pr
⇣

Rl = rl | O
l

l�L+1 = o
l

l�L+1, R
l�1
1 = r

l�1
1

⌘
. (24)

The next Theorem states that considering a subset of the
policies (24) will not violate the privacy constraints

Theorem 5: For a batched release mechanism M
s

l
that is

parameterized by a
s

l
, and satisfies the condition in (25),

Pr(Ol

l�L+1 = o
l

l�L+1|Rl

1 = r
l

1)

Pr(Ol

l�L+1 = o
l

l�L+1|Rl�1
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l�1
1 )
2 [e�✏, e

✏], (25)

it is sufficient to show M
s

l
makes the BIL defined in (8) upper

bounded by ✏.

Proof: For the privacy constraints (one term):
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where
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The last equation holds because the new policy does not
depend on the sequence of O

l�L

1 . Then, by considering the
subset of policies, the BIL becomes:
L(Rl ! O

l

l�L+1)

= max
o

l

l�L+1,rl

�����log
Pr(Ol
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1 )

����� . (28)

⇤
The utility function of BED, by adopting a policy in (2),

can be expressed as:
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On the other hand, the simplified belief state using (1) can
be further expressed as:
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where we use C in (30) to denote the correlation among
batched sequences. The simplification allows us to reduce
computation complexity without violating the privacy guar-
antee. In the following, we let L = 1. Note that by restricting
the policy to only using a subset of historical input batches,
the solution to (31) will be a sub-optimal solution of the
original utility-privacy tradeoff formulation in (19). Hence,
the simplified utility-privacy tradeoff of the batched model
becomes:
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Notably, the objective function in (31) is a linear combina-
tion of a

s

l
(r|o, r

l�1
1 ) for all r, o, enabling the attainment of the

Algorithm 2 SIP Mechanism for Batched Release
1: Input: current time l, initial prior PO1(o), transitional

matrix C
l+1
l

for all 0 < l < B, historical release sequence
R

l�1
1 , current ol , Utility function U , step length �.

2: Output: Batched release Rl

3: if l 6= 1:
4: Update belief state for all o according to (30)
5: Initialize al(rl |ol , r

l�1
1 ) = 1/|X |w for all ol and rl , U

⇤ =
1, Act = ones(|X |w, |X |w]).

6: While sum(Act) 6= 0 :
7: for o 2 |X |w:
8: for r 2 |X |w:
9: Calculate the derivative: d(o, r) = @U/@al(r|o, r

l�1
1 )
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11: Check privacy constraints, s(o, r) = 0
12: for õ 2 |X |w:
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15: Act[o][r] = 0
16: Release Rl according to al(rl |ol , r

l�1
1 )

global optimal solution through convergence-based algorithms
such as the gradient descent. Herein, we utilize the gradient
descent algorithm to numerically solve the optimization prob-
lem in (31), as outlined in Alg. 2. In essence, we initialize the
perturbation parameters from a uniform distribution. In each
iteration, we calculate a partial derivative of the utility function
with respect to each parameter. Upon updating each al with
a step length �, we verify if the current parameters satisfy
the privacy constraints. If they do not, we halt the update of
the current parameters. Observe that the mechanism needs to
update all parameters o, r 2 Xw. The computation complexity
of Alg. 2. is O(|X |2w).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed
mechanism and compare it with other solutions from related
works.

A. Evaluations With Synthetic Data

In our first evaluation, we conduct a comparative analy-
sis between the proposed instantaneous release mechanism,
batched release mechanisms, and the following two mecha-
nisms from the literature: 1) Randomized Response Mech-
anism Based on Local Differential Privacy (RR-LDP): This
mechanism perturbs data values independently at each times-
tamp to satisfy ✏k-LDP. Thanks to the sequential composition
theorem of LDP, the global leakage measured by LDP after
time T is the sum of ✏k from k = 1 to T . 2) The LDP
Mechanism from [19] (denoted as ToPS): This mechanism
comprises three phases: threshold estimation, perturbation, and
smoothing. Initially, the mechanism releases samples using
the Laplacian mechanism and uses the first set of samples to
estimate a threshold. A hierarchical method is then employed
to handle the ranged values. Lastly, a post-processing (smooth-
ing) phase ensures that the data sequence aligns with a
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Fig. 5. Privacy-utility tradeoff comparison for different data release settings
using synthetic data.

specified distribution. Our comparison aims to measure the
effectiveness of these techniques, highlighting their relative
strengths and weaknesses in handling privacy-preserving data
releases.

We first simulate by generating a binary time series that
satisfies the first-order Markov chain with an initial probability
of P1 = Pr(X1 = 1) and transitional matrix


q00 q01
q10 q11

�

where qi j = Pr(Xk = j |Xk�1 = i). We then compare
the mechanisms mentioned above under the following two
settings: (Case 1) P1 = 0.5, q00 = q11 = 0.5, which means
the data in the sequence are more correlated with each other.
(Case 2) P1 = 0.9, q00 = q11 = 0.9, indicating the dependence
in the sequence is strong. In each case, we sample 10, 000
(T = 10, 000) data points using the transitional matrix to
create a single time-series data sequence. We then assess the
average absolute distance between the original data sequence
and its perturbed counterpart. The perturbation process is
repeated 1, 000 times to generate the perturbed sequence, from
which we calculate the average distance for each mechanism.

TX

i=1

|xi � yi |/T .

The comparison results are shown in Fig. 5. Observe that
generally, the utility provided by the instantaneous release
mechanism is sandwiched between ✏ and 2✏-RR-LDP mecha-
nisms given any ✏. However, as the data dependence increases,

✏-SIP with instantaneous release even outperforms ✏-LDP.
On the other hand, batched release models always outperform
instantaneous release models, and the advantage increases with
the batch size. It is also worth noting that when the data
correlation is strong. The advantages of context-aware models
(SIP-based mechanisms) are even more obvious.

1) Click Streams Data (Kosarak): Investigating the clicking
streams for a website can be very helpful in learning product
popularity or guiding web page design. On the other hand,
individuals’ clicking data is privately sensitive as it may infer
one’s personal interest, working hours, daily behavior, etc.

a) Dataset: Kosarak is a dataset of click streams on a
Hungarian website that contains around one million users and
41270 categories. The data is formatted so that each user
clicks through multiple categories. After data cleaning and
preprocessing, there are 990002 users in the dataset, each
containing a data stream with lengths from 1 to 2498. We first
extract each user’s data stream and calculate the frequency
of the occurrence of different patterns (every consecutive
data value). For the instantaneous release model, we calculate
the frequency of every pair of data values and estimate the
conditional distribution from the frequency. Then for the
batched release model, we first truncate the data streaming into
several trucks according to the predefined batch size. Then we
analyzed the frequency of every consecutive batch value. Then,
we estimate the distribution from there. Finally, we summa-
rized a frequency lookup table, which is then transferred to a
correlation library. Given every possible current value, we are
able to look up the following data within the correlation library
with certain probabilities. Then we apply the mechanisms
proposed in the previous section to the preprocessed model.

b) Utility and privacy: For our experiment with Kosarak,
we randomly select 1000 users’ data sequence as the input.
Then we perturb these data sequences with the mechanisms
proposed in the previous sections. The utility of this exper-
iment is measured by the average user absolute distance
between the input sequence and the output. Here we use
“average user” to emphasize that the error is further aggregated
among users. The privacy, on the other hand, is customized
by varying the value of ✏. We consider two budget allocation
strategies, in case 1, we consider uniform budget allocation for
each time step, with each privacy budget depicted on the x-
axis. We compare with randomized response LDP mechanism
(RR-LDP) with different privacy budgets. Further, we com-
pare with the state-of-the-art LDP mechanism for continuous
release, which is proposed in [19]. Then in case 2, we consider
the advanced budget allocation algorithm proposed in [24],
which adaptively assigns a privacy budget to each time step
in a time window w, such that the released sequence in the
time window satisfies w-event level LDP. The algorithm can
be summarized as follows: Firstly, uniformly assign a privacy
budget at the current time step according to the length of
the time window and the total privacy budget left. Secondly,
evenly split the assigned budget into two parts, ✏1

k
and ✏2

k
.

Then, privacy-preservingly estimates the dissimilarity between
the previous release and current raw data using ✏1

k
. Subse-

quently, compare with the error incurred at the current time
step by adopting an ✏2

k
-LDP mechanism. If the dissimilarity
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Fig. 6. Utility privacy tradeoff comparison between different data release
settings with Kosarak.

incurs less error, then directly release the previous output and
set ✏2

k
= 0, otherwise, release with the LDP mechanism with

budget ✏2
k
. Under the advanced budget allocation, we further

compare with the Optimal Unary Encoding LDP (OUE-LDP)
mechanism [43], which is shown to achieve better utility than
RR-LDP for large input domains. The idea is to transfer the
input value into a binary vector containing |X | bits, with the x

bit to be 1 (x denotes the true value here), and all other values
being 0. Then the mechanism perturbs each bit independently
with optimized perturbation parameters. The comparison is
shown in Fig.6.

From the above figures, several key observations can be
made: 1) Despite ✏-SIP operating within the bounds of ✏-LDP
and 2✏-LDP, our proposed mechanisms can even outperform
2✏-LDP for some ✏s. 2) In the case of batched release models,
we observe a trend where larger batch sizes contribute to
improved utility. This concept also extends to the instanta-
neous release model, which can be considered a special case
of batched release with a batch size of one. 3) While the
Truncated Output Perturbation under Local Differential Pri-
vacy (ToPs-LDP) mechanism improves data utility compared
to the Randomized Response under Local Differential Privacy
(RR-LDP), primarily due to sensitivity reduction achieved
through truncation, it still performs worse than our SIP-based
mechanisms. This disparity stems from ToPs-LDP’s inability
to capture data correlation, a deficiency not present in our
proposed mechanisms. 4) Employing the advanced budget
allocation algorithm results in an enhancement of utility for

each mechanism when compared to the uniform budget par-
titioning approach. Nevertheless, the advantages gained from
integrating encoding-based optimization techniques within the
LDP framework appear to be marginal. This phenomenon is
primarily attributed to the characteristic structure of the output
vector generated by the OUE-LDP mechanism, which tends
to exhibit multiple 1s scattered across various positions. In the
context of frequency estimation, this multiplicity of 1s does not
present a significant concern. The reason is that the estimated
frequency converges to the true mean as multiple users’ data is
aggregated. Moreover, any deviation from the actual frequency
can be further reduced during the post-processing phase.
Conversely, when dealing with utility metrics that are distance-
based, these metrics necessitate the selection of a singular
value from the output for representation. Consequently, the
act of randomly choosing from multiple positions laden with
1s compromises the precision of the utility measure.

2) Eye-Tracking Data: Eye-tracking data is usually col-
lected online by AR/VR devices. Usually, cameras are
embedded in these devices to track users’ eyeball moving,
and these axis data are uploaded to the server in return
for services, such as online video games, online social, etc.
However, studies have figured out several privacy concerns in
eye-tracking data consumption: In [44], Steil et al. pointed
out that eye-tracking data can reveal one’s private sensitive
information, such as age, gender, health status, sexual ori-
entation, personal trails, etc. Further, a group of researchers
from Stanford University have shown they’re able to reliably
identify individuals Using a pool of 511 participants. Their
system is said to be capable of identifying 95% of users
correctly “when trained on less than 5 min of tracking data
per person [45].

a) Dataset: In this experiment, we compare the per-
formance of our mechanisms with independent LDP-based
mechanisms with the dataset of “MOJO”, which is collected
by “Mojo Vision”. The Mojo dataset contains ten users’ eye-
gazing data. Each user’s data sequence can be viewed as a
three-dimensional vector containing X , Y , and Z axes, where
Z label measures image rotation, and we ignore this factor in
the following experiment. The length of each individual’s eye-
gazing data sequence is different according to his/her recorded
period. On average, each one of them has been collected
for 5 hours, with a sample rate of 50 per second. We first
normalize the coordinates to be within [0, 1]. Then we equally
divided the area into a 100 ⇥ 100 space. Then we quantify
each coordinate and cast the coordinates to the grid. We take
a portion of one individual’s normalized and quantified eye
gazing sequence (1/1000) of the raw data sequence.

We assume the correlation within the data stream has
Markov properties. Further, we assume a first-order and
second-order Markov chain in the stream. Then the correlation
is measured by the conditional probabilities, which can be
estimated by frequency checking in the eye-gazing stream.
We assume the initial probability is uniformly distributed.

We consider three types of data release mechanisms:
(1) Temporal LDP mechanism proposed in [29]. The previous
ToPS mechanism is generally utilized for releasing one-
dimensional data. However, eye-tracking data encompasses
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Fig. 7. Visualization of the eye tracking data: (a) quantized normalized eye-gazing data; (b) Release from independent randomized response LDP mechanisms
(c) Release from correlated randomized response mechanism with the instantaneous release mechanism, (d) Release from correlated randomized response
mechanism with the batched sequential release mechanism (batch size =10). For (b),(c),(d), total budget ✏ = 10;.

both x and y axes, aligning more closely with location data.
Therefore, it is more appropriate to compare with Temporal
LDP, which is a mechanism originally proposed specifically
for the release of location data. We first assign a total
budget ✏ = 10 to the data sequence every second. Then,
the local privacy budget can be calculated by the sequential
composition Theorem. Note that support of the randomized
response mechanism is selected according to the realizations
with non-zero conditional probabilities given the previous
values (according to the Markov properties). (2) Conditional
randomized response mechanism for the instantaneous release
model. The parameters involved in this mechanism are summa-
rized in this paper. (3) Batched data release mechanism, where
we assume the batch sizes are 5 and 10, respectively. The
perturbation parameters are calculated by numerically solving
the optimization problem defined in (31). A visualization of
the release of different mechanisms is shown in Fig. 7.

b) Privacy leakage: Since the privacy protection guaran-
tees provided by different mechanisms are different, we want
to see how they protect the re-identification rate of each
individual under fixed epsilons. The re-identification rate refers
to the probability that an attacker successfully re-identifies
the user by observing his eye-tracking data. This technique
is typically achieved through deep learning. We first design
RNN models that leverage data correlations in predictions.
Models are trained with half of the eye-gazing data streams
from each user. The goal is to learn the eye-moving patterns
of each individual. Then, we consider two scenarios regarding
the RNN’s prediction model: one considers the data correlation
estimated from frequency (for the whole data stream) and
leverages it in the data prediction; the other one makes
predictions solely depending on the observed data.

The privacy leakage comparison of different models is
shown in Fig. 8. Observe that when the reidentification model
is trained with data only, the temporal LDP-based mechanism
provides the most strict privacy protection. When the adversary
trains the model with the pattern information, while the overall
leakage of all mechanisms increases, the increase of SIP-based
mechanisms is relatively smaller, and the leakage of SIP-based
mechanisms is even smaller than LDP-based mechanisms. The
reason is prior information has already been considered in
the definition of SIP and noise is added more effectively to
mitigate the privacy leakage against such adversaries.

c) Query utility: The utility of different mechanisms is
measured by the average Euclidean distance between the raw

Fig. 8. Privacy leakage comparisons, privacy evaluated by the identification
rate of individuals in the dataset; (a) considers a one-step Markov Chain, and
(b) considers a two-step Markov Chain.

and released data at each time stamp. The utility comparisons
of different models are presented in Fig. 9.

Observe that even though different mechanisms achieve
similar privacy protections, their utilities are very different.
SIP-based batched release models outperform other models
significantly and the gap is even larger with bigger batch sizes.
On the other hand, the instantaneous release model provides
better utility even than the 2✏-temporal LDP. This is because
even though temporal LDP leverages correlations to reduce
sensitivity, the definition and the mechanism do not consider
the correlation, while SIP is totally context-aware.

d) Run time comparison: We compare the computational
efficiency of various mechanisms discussed. Given that the
complexity does not depend on the parameter ✏, we combine
the cases of ✏-Temporal LDP and 2✏-Temporal LDP into a
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Fig. 9. Utility comparisons, utility measured by the averaged Euclidean
distance between the raw and the released data at each time step. (a) Considers
a one-step Markov Chain, and (b) considers a two-step Markov Chain. The
shaded area represents a 95% confidence interval.

Fig. 10. Run time comparison of different mechanisms.

single category. Then, we vary the length of the eye-tracking
data from 10 to 1000. The outcomes are shown in Figure 10.
Both the batched release and instantaneous release mecha-
nisms demonstrate a linear increase in run time to the data
length, i.e. order of O(N ). On the other hand, the run time for
Temporal LDP exhibits a substantially steeper growth, which
is in accordance with O(N

4) as presented in the computation
complexity analysis in Table I.

VII. DISCUSSIONS

Firstly, SIP offers a notable advancement in enhancing the
utility-privacy tradeoff compared to LDP. This implies that to
provide the same level of utility, SIP requires a much lower
privacy budget compared to LDP. Hence, SIP requires less

total budget compared with LDP for the same data sequence
length. As demonstrated in experiments using eye-tracking
data, the utility enhancement of SIP does not sacrifice its
privacy protection.

Secondly, SIP’s robustness merits discussion. In scenarios
where data distribution or correlations are inaccurate, the
estimated privacy protection might not be precise, potentially
leading to conservative privacy leakage under SIP with a risk
of higher actual data leakage. This discrepancy, however, can
be bounded by a factor dependent on the difference between
the actual and estimated data distributions as discussed in [18].
Additionally, adopting a ✏/2-SIP mechanism, which implies ✏-
LDP, ensures that the leakage under LDP is always bounded
by ✏. While ✏/2-SIP potentially provides better utility for high
privacy regime (✏ close to 0).

Lastly, we address the issue of privacy budget exhaustion.
Due to the linear composition property in SIP, the total privacy
budget might be exhausted rapidly, especially with a large data
sequence length. To mitigate this, we suggest three strategies:
1. Tighter composition analysis, such as formulating approxi-
mate SIP’s privacy loss distribution to derive a more accurate
privacy profile (✏ and � tradeoff). 2. Releasing sampled results,
with a random selection of sampled time steps to lower
sensitivity. 3. Implementing time windows for data sequences,
with SIP protecting data within each window. Then refresh the
budget after each time window. This setting is valid especially
when recent data are more sensitive than a long time ago,
and the window size can be tailored based on the data’s time
sensitivity or utility requirements. These approaches can be
potentially combined for practical applications.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we tackle the challenge of releasing stream-
ing data while preserving privacy. Initially, we introduce
Sequence Information Privacy (SIP), which is an exten-
sion of local information privacy to sequential data. SIP
inherently acknowledges data correlations within its defini-
tion. Subsequently, we study its relationships with existing
privacy concepts such as Local Differential Privacy and
Pufferfish Privacy. We demonstrate that our SIP can be sequen-
tially decomposed into individual local leakages, making the
optimization of global utility-privacy tradeoff equivalent to
independently solving each local instance. Based on two data
release settings, instantaneous and batched release, we pro-
pose perturbation mechanisms that optimize this utility-privacy
tradeoff. Our evaluation, using both synthetic and real data,
compares the utility-privacy tradeoffs provided by our pro-
posed mechanisms with those from existing works. Results
indicate that our mechanisms can significantly enhance data
utility without compromising data privacy.

In terms of future work, we are interested in the following
directions. One direction is to remove the assumptions that
the prior distribution and data correlation are known. We can
make the mechanism release the first several data points in a
context-free manner (for example, using LDP). As more obser-
vations are made, the data prior/correlation becomes more
certain, and the mechanism leverages the context to achieve
context-aware utility-privacy tradeoffs. Another direction to
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consider is that the batched release mechanism still involves
high computational complexity. We would like to investigate
further ways to reduce the computational complexity without
violating privacy constraints.
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