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Abstract

We study active learning methods for single index models of the form F(x) = f((w, x)), where
f:R — Randx,w € R% Inaddition to their theoretical interest as simple examples of non-linear
neural networks, single index models have received significant recent attention due to applications
in scientific machine learning like surrogate modeling for partial differential equations (PDEs).
Such applications require sample-efficient active learning methods that are robust to adversarial
noise. Le., that work even in the challenging agnostic learning setting.

We provide two main results on agnostic active learning of single index models. First, when f
is known and Lipschitz, we show that O(d) samples collected via statistical leverage score sampling
are sufficient to learn a near-optimal single index model. Leverage score sampling is simple to im-
plement, efficient, and already widely used for actively learning linear models. Our result requires
no assumptions on the data distribution, is optimal up to log factors, and improves quadratically
on a recent O(d?) bound of Gajjar et al. (2023). Second, we show that O(d) samples suffice
even in the more difficult setting when f is unknown. Our results leverage tools from high dimen-
sional probability, including Dudley’s inequality and dual Sudakov minoration, as well as a novel,
distribution-aware discretization of the class of Lipschitz functions.

Keywords: active learning, leverage scores, single index models, high dimensional probability

1. Introduction

The goal in active learning is to effectively fit a model based on a small amount of labeled data
selected from a vast pool of unlabeled data. Active learning finds applications in settings where
labeling data is expensive. For example, a common task in scientific machine learning is to learn
parameter-to-solution maps for a parametric partial differential equation (PDE) (Cohen and DeVore,
2015). Obtaining each label involves the high-cost numerical solution of the PDE, so learning based
on few labels is necessary for efficiency. In other settings, such as experimental science or sensor
placement, each label requires running a physical experiment or placing a physical device, so is
even more expensive (Alexanderian et al., 2016).
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In this paper, we study active learning algorithms that address the challenging agnostic setting,
aka the adversarial noise setting. Focusing on least squares error for concreteness, given a set of
examples x1, To, ..., x, € R?, query access to an arbitrary target vector y = (y1,...,%,) € R",

and some function class H, our goal is to use a small number of queries to find ~ € H such that:

n n

S () — yo)? < min > (h(@:) — y:)> + A,

i=1 her i3
for some error parameter A. This setting is agnostic because we make no assumptions on how y; is
related to x;. E.g., in contrast to most work on statistical experimental design (Pukelsheim, 2006),
contextual bandits (Xu et al., 2018), and other formulations of active learning (Balcan et al., 2006;
Kidridinen, 2006), we do not assume a “realizable” setting where y; = h*(x;) or y; = h*(x;) + n;
for some ground truth ~* € H and mean-zero random noise 7;. We want to compete with the best
approximation to y in H, even if that approximation is poor. The agnostic setting is important in
scientific applications where model misspecification is expected: a simple and efficient machine
learning model is being used to approximate a complex physical process or function.

Algorithms for agnostic active learning have received significant recent attention. Even for the
simplest possible setting of relative-error linear regression, where H contains linear functions of the
form h(z) = (z,w) and A = ¢ - minpey > iy (h(x;) — y;)? for ¢ € (0,1), the optimal active
sample complexity was only recently settled to be O(d/e) in the agnostic setting (Chen and Price,
2019). Other recent work establishes sample complexity bounds for £, linear regression (Chen and
Derezinski, 2021; Musco et al., 2022), logistic regression (Mai et al., 2021; Munteanu et al., 2018),
polynomial regression (Shimizu et al., 2024), and kernel learning (Erdélyi et al., 2020).

1.1. Single Index Models

In contrast to the majority of this prior work, and motivated by applications in scientific machine
learning, in this paper we study agnostic active learning methods for non-linear function families.
In particular, we are interested in the class of single index models of the form:

hz) = f((z, w)),

where f : R — R is either a known non-linearity (ReLU, sigmoid, etc.) or a learnable function.
Also known as “ridge functions” or “plane waves”, single index models play an important role in
many estimation problems and have been extensively studied in statistics (Hristache et al., 2001;
Hirdle et al., 2004; Dalalyan et al., 2008). They are effective at modeling physical phenomena, so
have also been applied e.g. to PDE surrogate modeling (Cohen et al., 2011; Hokanson and Constan-
tine, 2018; Bigoni et al., 2022). As discussed, agnostic learning is important in such applications
due to model misspecification, and agnostic active learning is already widely used for fitting simpler
functions classes like polynomials (Hampton and Doostan, 2015; Rauhut and Ward, 2012).

Moreover, single index model are a natural first step towards understanding active learning for
neural networks more broadly, an important goal given the increasing importance of neural networks
in approximating parameter-to-solution maps (Geist et al., 2021; Bhattacharya et al., 2021; Kutyniok
et al., 2022) and quantities of interest (Tripathy and Bilionis, 2018; Khoo et al., 2021; Zhang et al.,
2019; O’Leary-Roseberry et al., 2022; Cardenas et al., 2023) in scientific ML.

While there has been prior work in the realizable or i.i.d. mean zero noise setting (Cohen et al.,
2011; Fornasier et al., 2012; Tyagi and Cevher, 2012) the first result on actively learning single
index models under adversarial agnostic noise is due to Gajjar et al. (2023). That work shows:
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Theorem 1 (Theorem 1 from Gajjar et al. (2023)) Let f be a fixed L-Lipschitz function, let X €
R™"¥4 be a data matrix, and let w* = arg miny, || f(Xw) —y||3. There is an algorithm that, for any

e € (0,1), observes O (d2 . é—f) entries of y and returns W such that, for a fixed constant C' > 0,

If(Xw) —yll3 < Cf(Xw*) -yl + ]| Xw|3,
with high probability. Above, f(Xw) denotes the entrywise application of f to the vector X w.

The above guarantee is strong since it gives relative error with respect to the best approximation to
the target y, plus a small additive term depending on || X w* H% Gajjar et al. (2023) show that the
additive term is necessary: pure multiplicative error requires €2(2%) samples in the worst case.

1.2. Comparison to Non-active Supervised Learning

We highlight that, for the strong guarantee of Theorem 1, there is an inherent gap between active
and non-active supervised learning.

In particular, consider the uniform distribution over the rows of X. Theorem 1 ensures that
poly(d) actively collected labels are needed to nearly minimize the expected squared error over
all single index models. In contrast, consider an extreme case where X has d rows equal to the
standard basis, and all other rows are zero. Even when f is the identity function, we must observe
target values for those d rows if we want expected squared error competitive with w*. For large n,
a poly(d) sample algorithm that uniformly samples rows of X will only observe those d labels with
arbitrarily small probability, so will fail to obtain a bound as strong as Theorem 1.

As such, while there is a rich line of work on learning d-dimensional single index models in
the agnostic setting with poly(d) or even fewer samples (Gollakota et al., 2023; Goel et al., 2017,
Diakonikolas et al., 2020; Frei et al., 2020; Diakonikolas et al., 2022), that work inherently requires
strong assumptions on X or y, or provides a weaker notion of near optimal learning than Theo-
rem 1.! Such assumptions are reasonable in many settings. In others, however, experimental and
theoretical evidence shows that active learning can lead to significant improvements in sample com-
plexity (Derezinski et al., 2018; Shimizu et al., 2024). For example, even for polynomial regression
on one dimensional data drawn uniformly from an interval, where f in the identity and X’s columns
contain a basis for the degree d polynomials, there is a well-known gap of O(d?) vs. O(d) samples
for non-active vs. active methods (Cohen et al., 2013; Cohen and Migliorati, 2017). Notably, such
a basis will have widely varying row norms, as in the hard case discussed above.

Since our goal is to study theoretical guarantees that inspire and motivate better active learning
algorithms, in this work we are primarily interested in guarantees like Theorem 1 with no distribu-
tional assumptions on X or functional assumptions on y.

1.3. Our Results

In this paper, we significantly improve on the results of Gajjar et al. (2023) in two ways. First, when
f is aknown L-Lipschitz function, we obtain a sample complexity bound with a linear dependence
on d and a quadratically improved dependence on ¢ and L:

1. As a concrete example, Gollakota et al. (2023) assumes y is bounded by 1 and provides additive error € on the average
squared error. So, missing the d basis rows in our hard example is acceptable whenever n > d/e.

2. A paper accepted to ICLR 2024 (?) also claims a linear dependence on d. However, there was an unfixable flaw in
an earlier version of the paper’s proof, which has been communicated to the authors.
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Theorem 2 Let f be a fixed L-Lipschitz function with f(0) = 0, let X € R*™ be a data matrix,
and let w* = arg miny, || f(Xw) — yl||%. There is an algorithm that, for any € € (0,1), observes

O (d . g—;‘) entries of y and returns W such that, for a fixed constant C' > 0, with high probability,
If(Xw) —y|* < O fF(Xw") —yl* + ] Xw|%,

As noted in Gajjar et al. (2023), assuming that f(0) = 0 is without loss of generality, since we can
always shift y by a fixed constant before fitting. It is easy to check that our near-linear dependence
on d is optimal up to log factors, since 2(d) samples are required even when f(t) = t. Theorem 2
establishes that, in terms of dimension, there is no gap between the active agnostic single index
learning problem and linear regression. An interesting question for future work is if the dependence
on ¢ can be improved to linear, as is possible for linear regression (Chen and Price, 2019).

Leverage score sampling. As in Gajjar et al. (2023), Theorem 2 is based on collecting samples
via statistical leverage score sampling. A label for the i" row of X is selected with probability pro-
portional to the i leverage score 7 (X T X)~1z;. Also known as coherence motivated, Christoffel
function, or effective resistance sampling (Hampton and Doostan, 2015; Adcock et al., 2023; Spiel-
man and Srivastava, 2011), leverage score sampling yields near-optimal active learning bounds for
least squares regression, polynomial regression, kernel learning, and variety of other “linear” prob-
lems (Sarlos, 2006; Cohen and Migliorati, 2017; Avron et al., 2019) . Leverage score sampling has
two major advantages. First, it is computationally efficient: all leverage scores can be computed
exactly in O(nd?) time, or approximately using faster randomized methods (Mahoney et al., 2012).
Second, sampling is done in a completely non-adaptive way: the choice of which indices to label
does not depend on prior labels collected. This allows for fully parallel data collection.

Technical contributions in Theorem 2. Our improved analysis of leverage score sampling in
Theorem 2 requires two new contributions:

First, we provide an improved “subspace embedding” result for single index functions (Lemma 6),
which shows that leverage score sampling preserves the ¢ distance between any two vectors of the
form f(X w1 ) and f(Xws). When f is the identity function, an optimal subspace embedding result
for leverage score sampling follows from standard matrix Chernoff bounds (Tropp, 2015). However,
when f is non-linearity, an analysis from first principles is required. Gajjar et al. (2023) employs an
e-net argument, which we improve using more powerful tools from high-dimensional probability,
including Dudley’s inequality and dual Sudakov minoration. This improvement accounts for our
linear vs. quadratic dependence on the dimension d.

Second, to improve on the € and L dependence, we show a more efficient translation from our
subspace embedding result to the active learning problem by analyzing a natural regularized loss
minimization procedure for finding w. The full proof is discussed in detail in Section 4.

Our other improvement on Theorem 1 from Gajjar et al. (2023) is that we are able to extend
the result to the more challenging setting where f is an unknown Lipschitz function, and can be
optimized as part of the training procedure. This setting is well-motivated in computational science,
where f is typically parameterized as a piecewise constant or polynomial function, and has been
studied in the realizable or i.i.d. noise setting (Cohen et al., 2011; Tyagi and Cevher, 2012; Hemant
and Cevher, 2012). To the best of our knowledge, we provide the first result in the agnostic setting:
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Theorem 3 Let Lip;, denote the set of all L-Lipschitz, real-valued scalar functions f with f(0) =
0. Let X € RY™ be a data matrix, and let (f*, w*) = arg Min pep iy, weRdHf(Xw) - yHQ.

There is an algorithm that, for any € € (0,1), observes O (d . i—; -log? n) entries of y and returns
w such that, for a fixed constant C > 0, with high probability,

7o) | <l xw) o + el xw|

Theorem 3 nearly matches Theorem 2 for the case when f is known, except for a mild logarithmic
dependence on n.

Technical contributions in Theorem 3. Proving the result requires significant additional work
beyond Theorem 2. In particular, a natural approach would be to construct an e-net N over all
L-Lipschitz functions such that e.g. for all f € Lip;, there is some f € A such that || f(Xw) —
f(Xw)|l2 < e]| Xw]|2. The challenge in doing so is that f(Xw) is a length n vector, our net
would inherently requires a discretization of Lip; with coarseness depending on 1/n. This would
introduce undesirable polynomial dependencies on n into our sample complexity.

We avoid this issue by building a sampling-aware discretization, in such a way that | f ((x;, w))—
f({zj,w))| < e|(z;, w)| for most of the indices j sampled in y. Roughly speaking, our discretiza-
tion ensures a finer approximation to f for inputs close to 0, and is coarser for values further from
0. It takes significant effort to bound the size of discretization (and even to figure out what is the
proper measure of “size”), which requires leveraging a diverse set of techniques including generic
chaining for Bernoulli processes, dyadic decompositions, and a construction of an embedding to
simpler spaces to control the size of our discretization

1.4. Additional Discussion of Related Work

As discussed, actively learning single index models has been studied in prior literature, although not
in the agnostic setting (Cohen et al., 2011; Tyagi and Cevher, 2012). Prior work also considers more
challenging “multi-index” models of the form Zi.“:l fi({w;, x)) (Fornasier et al., 2012; Hemant
and Cevher, 2012). Understanding the multi-index problem in the agnostic setting is an interesting
direction for future work. In prior work, various assumptions on the non-linearity f have been
considered, including that f is a low-degree polynomial (Chen et al., 2020) and that f has bounded
derivatives of high order (Cohen et al., 2011; Hemant and Cevher, 2012). In line with recent work
(Gajjar et al., 2023; Gollakota et al., 2023), we make a Lipschitz assumption because it is simple, yet
captures most fixed non-linearities commonly used in neural networks, like ReLLUs and sigmoids.

A different but related line of work considers the setting where y is assumed to be generated by a
single index model, and the goal is to approximate the target with few (non-active) samples, and in a
computationally efficient way, by fitting it with a shallow neural network (Bietti et al., 2022; Kakade
etal., 2011; Mousavi-Hosseini et al., 2023; Abbe et al., 2022; Dudeja and Hsu, 2018; Damian et al.,
2022, 2023). Such results are motivated by an effort to understand the representation capability and
optimization properties of neural networks. One recent result in this setting considers an agnostic
guarantee, where the goal is to find an approximation to y competitive with the best single neuron
approximation (Gollakota et al., 2023). However, as detailed in Section 1.2, that work inherently
requires stronger assumptions than ours, since strong, distribution-independent guarantees of the
form provided by Theorems 1 to 3 are not possible without active learning.
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Remark on computational efficiency. In contrast to some of the work above, we do not analyze
computational efficiency, only sample complexity. However, our active sampling algorithm is com-
putationally efficient since it simply requires computing leverage scores. Moreover, in the fixed f
setting, after collecting samples, we prove that it suffice to simply fit a single index model to those
samples using a regularized ¢2 loss. As confirmed experimentally in Gajjar et al. (2023), this can
be done easily and efficiently in practice using gradient descent methods. Nevertheless, while be-
yond the scope of our work, we think formally analyzing the computation efficiency of single index
learning methods in the active, agnostic setting is a nice direction for future work.

Beyond research on single index models, we also note that there has been a significant recent
work on minimising objectives that can be expressed as ming, H f(Xw — y)| 5> Where f is a non
linearity (Jambulapati et al., 2023; Mai et al., 2021; Munteanu et al., 2018; Musco et al., 2022).
While this problem differs in important ways from ours, given that y is inside the non-linearity,
methods like leverage score sampling have also proven valuable in this setting. For example, Jam-
bulapati et al. (2023) employs tools similar to those used in the proof of Theorem 2 to obtain bounds
for functions f with a natural “auto-Lipschitz* property. However, we note that this property is in-
comparable to our L-Lipschitz assumption on f; for instance the 1-Lipschitz ReLLU function is not
L-auto-Lipschitz for any finite L.

2. Notation

For a natural number n, we let [n] denote the set {1,2,...,n}. For a vector « in R? with entries
x1,..., x4 ||| = (Z?Zl x?)1/2 denotes its £2 norm. We use Lip,, to represent the class of L-
Lipschitz functions on R vanishing at 0, i.e., Lip; = {f € C(R) : f(0) =0, |f(z1) — f(22)| <
Lixy — z9|,Vz1,22 € R}. We extend the notation of f(-) to n-dimensional vectors: for z € R",
denote f(z) € R" as the entrywise application of f to z, i.e. f(z) = (f(z1), f(22),..., f(zn)).
We denote the i-th standard basis vector as e;. The Euclidean ball of radius R centered at € R¢
is denoted by Bz (R). In the case where the ball is centered at the origin, we simply use B(R).

Throughout the paper, ¢ and C will denote positive universal constants that may vary upon each
occurrence. The notation O(m) denotes O(m log® m) for a fixed constant c. Moreover a < b means
that there exists a positive constant C' > 0 such that a < Cb.

3. Preliminaries

Our goal is to find a single index model that best fits a given set of data points, (x;,y;) for j € [n].
In particular, for some class of functions F, we wish to solve the problem

jeBin e EUF) here £(f, ) =3 |, ) - wil” = IF(Xw) —ylP. @

In this work, we consider the case when F = {f}, containting just a single known function f, as
well as the case when it is the set of all Lipschitz functions with f(0) = 0.
Suppose that (f*, w*) minimize the loss function £ over f € F,w € R%. We define
OPT(F):= min L(f,w)=L(f",w").
feF weRd
We measure the accuracy of an approximate solution to (1) by quantifying the difference between
its loss and the optimal loss. Specifically, for a given solution ( f, w), we define accuracy as follows:
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Definition 4 (¢-accurate solution) Fix some sufficiently large constant C > 0. Givene > 0, a
pair (f,w) with f € F, w € R? is said to be an s-accurate solution to the problem (1), if

L(f,w) < C-OPT(F) +¢|| Xw* |

This notion of accuracy was also used in Gajjar et al. (2023). Similar notions also appear in work
on agnostic active learning in other contexts (Avron et al., 2019).

3.1. Subsampled regression

As in Gajjar et al. (2023), we collect data in an active way via importance sampling. Every row of
X is assigned a score, and rows are sampled with probability proportional to those scores. Target
values in y only need to be observed for rows that get sampled. Concretely, we use statistical
leverage scores, which have been widely applied for active linear regression (see e.g. Chen and
Price (2019); Mahoney et al. (2011). Intuitively, leverage scores measure how influential a row is in
forming the column space of the data matrix, X. Formally, they are definied as follows:

Definition 5 (Statistical leverage score) The leverage score of the j-th row x; of a matrix X €

R™*4 js defined as 7j(X ) = :B;-l—(XTX)_ll‘j = SUPyyeRrd ﬁﬁéﬁg

Sampling process. We consider a sample-with-replacement variant of leverage score sampling.
Let p denote a probability distribution over [n] where j € [n] is assigned probability p; = %
i=1Ti

We generate m i.i.d. random indices j1, . .., jm, ~ p, each taking values in [n].

We next define a sampling-and-reweighting matrix S to succinctly represent a subsampled re-
gression problem, which will be used for active learning. Given indices ji1, j2, .. ., jm sampled from
p, we construct S € R™*" by setting the i-th row of .S to be \/WiTjieji. We let £(f, w) denote:

1 w1 2
Lf,w) = 1SF(Xw) = Syl = =3 —[f(w,25.) — v 2
i=1 171

One can verify that E[ST S] = I and hence £( f, w) is equal to £( f, w) in expectation. Importantly,
however, this subsampled loss can be evaluated using only those target values that appear in Sy,
i.e. using at most m entries from y. So, our approach is to minimize £ as a surrogate for L.

4. Main results

While it is tempting to try to obtain an e-accurate solution by returning any minimizer for the
subsampled loss L, and doing so works in the linear setting, it can be seen that such an approach
will fail when f is non-linear. In particular, consider the case when the rows of X contain all
2¢ binary vectors of length d, f is a ReLU non-linearity, and y contains a 1 in a single vector
in {0,1}. Any sampling strategy that takes 0(2¢) samples will only observe labels equal to 0.
Thus, since f(z) = max(x,0), any vector 1 with non-positive entries is a valid minimizer for L.
However, by choose w to have very large negative entries, we can make £( f, w) arbitrarily bad.
Gajjar et al. (2023) deal with this issue by imposing a hard constraint on the norm of w. We
instead consider minimizing a regularized version of £ that penalizes w with high norm. Ultimately,
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our regularization approach allows us to improve the O(¢~*L8) dependence in sample complexity
in Gajjar et al. (2023) to O(¢~2L*). Concretely, we define the regularized loss as:

Leeg(frw) == L(f,w) + || Xwl|* =||Sf(Xw) — Sy|* + || Xw]|*. 3)

Our first main result is that, for a fixed f, the weight w that minimizes (3), is an e-accurate
solution for £( f, w) with high probability.

Theorem 2 Let w solve the subsampled regularized least squares problem:

W = arg min ﬁreg(f, w). 4)
weR?

Then, for some universal constant ¢ > 0, as long as m > cL*¢2dlogd, (f,w) is an e-accurate
solution to of (1) with F = { f} with probability at least 99/100.

The main ingredient for proving this theorem is to show that || S f(Xw) — S f(Xw*)]||? is close to
| f(Xw) — f(Xw*)||? for all w with sufficiently bounded norm, which is formally characterized
by the following nonlinear subspace embedding lemma.

Lemma 6 (Non-linear subspace embedding with fixed non-linearity) Let S be a leverage score
subsampling matrix with m rows as defined in Section 3. Assume X € R™ % has orthonormal
columns.® There is some universal constant C' > 0 such that, for any f € Lip;, and any R > 0, as
long as m > C'L*2dlog?(d) - log(1/6), the following holds with probability > 1 — 6.

IS/ (Xwi) = S7(Xwn)|* ~[| f(Xw1) = F(Xws)|[*| <R, Vawr, ws € B(R).

This name “nonlinear subspace embedding” is a nod to the now standard subspace embedding
result for leverage score sampling (Sarlos, 2006; Drineas et al., 2006). We will use this result as
well, which is a special (and stronger) case of Lemma 6 when f is the identity function.

Lemma 7 (Subspace embedding) For any ¢,6 € (0,1), as long as m 2, w, then with
probability at least 1 — 6, for all wy, wy € RY,

(1—¢)||Xw; — Xws|? < ||SXw; — SXws|? < (1+ )| Xw; — Xwy|?. (3)

Lemma 7 can be proven using a matrix Chernoff bound (see, e.g., Woodruff (2014)). Our Lemma 6
requires more work due to the potential nonlinearity of f. Its proof is discussed in Section 5 and,
along with a generalization to unknown f in Lemma 8, is the major technical contribution of our
work. Before getting into the details, we show how Lemma 6 can be used to prove Theorem 2.
Proof of Theorem 2 We simplify the discussion by assuming that, without loss of generality, X
has orthonormal columns. This can be done because leverage score are invariant under column
transformations. If X = QR where Q € R™*? has orthonormal columns and R € R%*? ig
invertible, denoting by g; the j-th row of @), one has q; = RT:BJ' and may verify

Q) =¢/ (QTQ) g =z (X X)x; = 7;(X).

3. As we will discuss later, X can be assumed to be orthonormal without loss of generality.
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The conclusion then follows from observing that all the involved statements are not affected if we
substitute X with @ and w with Rw. The same approach was used in Gajjar et al. (2023).
When X is orthonormal, the leverage scores have a particularly simple form.

75(X) = ||z, ZT] 6)

Throughout the proof, we shall condition on the event that
L(f,w*) <1000 - L(f, w*) = 1000 - OPT, (7)
which happens with probability at least 0.999 by Markov’s inequality (since EL = L£). Now, since
f(Xw) —y = (f(Xw) — f(Xw")) + (f(Xw") —y),
from triangle inequality and the fact that (a + b)? < 2a? 4 2b2, we get the following
w) = f(Xw) —y||* < 2| f(Xw) - f(Xw*)|* + 20PT. 8)
Next, by optimality of w0, we have ﬁreg(f, w) < ﬁreg(f, w*), i.e.,
IS f(X ) — Syll* + el| X||* < L(f, w*) + ]| Xw*|*. ©)

In particular, we have (recalling that X is assumed to have orthonormal columns)

1, 1000
lw]|* = || Xwl|* < SL(fw”) + X w*|? < — OPT+ 1X w1

This implies that w € B(R) where R = \/ @OPT + || Xw*||2. Then, from Lemma 6, the
following holds with probability at least 0.999 given m > C'L*~2dlog3d:

If(Xw) — f(Xw")|* < |SF(Xw) — Sf(Xw")|? + eR?
SISf(Xw) — Sy|* + ||Sf(Xw*) - Sy|* + e R?

R A 1
< (L0t +elXw ) + 2070 +e (L0PT + xw?)
< OPT 42| Xw,

where the second line is triangle inequality, the third line used (9) and the definition of R, and the
last line used (7). Plugging the above inequality into (8) readily gives

L(f, ) S OPT + ]| Xw*|,
as desired (after replacing ¢ by ¢/C for some sufficiently large constant C' > 0). |

Our second main result is for the setting where f is an unknown L-Lipschitz function vanishing
at 0. Again, we show that an e-accurate solution to the problem of miny ., £( f, w) can be obtained
by minimizing the regularized subsampled loss, but this time over both f and w. Formally, we have:
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Theorem 3 Let f and W be the solution to the subsampled regularized least square problem:

(f,’lf)) = argmin/jreg(f,w). (10)
f€Lipy,
weR?

Then, for some universal constant C' > 0, as long as m > C'L2d(log? n + log3d), (f,w) is an
e-accurate solution to (1) with F = Lip;, probability at least 99/100.

Similar to Theorem 2, this result crucially depends on the following nonlinear concentration result,
which extends Lemma 6 to the case when Xw; and X w, are transformed by two potentially
different L-Lipschitz functions, f; and fo.

Lemma 8 (Non-linear subspace embedding with unknown non-linearity) Letr S be a leverage
score subsampling matrix with m rows as defined in Section 3. Assume X € R™ ¢ has orthonormal
columns. As long as m > CL*~2d(log®n + log3(d/d)) for some fixed constant C' > 0, the
following holds with probability > 1 — 0.

‘HSfl(X’wl) — SfQ(X’UJQ)HZ _Hfl(le) — f2(X’lU2)H2‘ S €R2,
forall f1, fo € Lipy, and for all wy,ws € B(R).

The proof of Theorem 3 is deferred to Appendix A and follows the same steps as that of Theo-
rem 2, with the distinction that we must compare £( f, w) with the optimal loss £( f*, w*).

5. Proof of the non-linear concentrations

The proofs of Lemma 6 and Lemma 8, especially the latter one, are the major challenges in this
work. We sketch the key ideas below.

Proof roadmap for Lemma 6 Our proof (given in Appendix C) is based on ideas from Rudelson
(1999). However, we employ a simplified version, using dual Sudakov minoration, deviating from
of the construction of chaining functionals therein. This simplification significantly streamlines the
explanation, although at the cost of losing a log? d factor. Similar approach also appeared in a recent
work Jambulapati et al. (2023) for a different problem.

Step 1: Symmetrization. We want to obtain a tail bound for the supremum of our random pro-
cess. For this, we apply a standard symmetrization technique (Lemma 18), where we introduce
i.i.d. Rademacher random variables &1, &2, . . ., &, Where each &; takes values in —1 and 1 with
probabilities 1/2 each. This reduces the problem to finding tail bounds of the following Bernoulli
process:

" i, W — L;. , W 2
Z(wl,'wg) — Z& (f((w]m 1>) pjvf(< Jir 2>)) ’ (wl,w2) c B(R) x B(R)
i=1 v

In particular, this allows us to prove Lemma 6 by showing -1 supy,, ¢ B(R) | Z (w1, w2)| < e with
overwhelming probability.

10
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Step 2: Applying sub-Gaussianity of symmetrized process. It turns out that, conditioned on
the samples {j1, j2, ..., Jm} (fixing S), the above random process is sub-Gaussian w.r.t. the index
(w1, we), endowed with the following metric on B(R) x B(R) (Appendix C.5).

Pf(('wl, w2)7 (wlla wé))

m

= S0 o (P wn)) — £ wa))? — (F(g,wl) — £((5, wh))

2
i=1 Dy,

1/2

Step 3: Bounding the sub-Gaussian norm by the dual norm of a polytope. The Lipschitz
continuity of f allows us to obtain an upper bound (Lemma 19) of p; in terms of the dual norm of
the polytope P formed by vertices {+x, /\/Pj; }ic|m):

pi((wi,w2), (wi, wh)) S L*Ry/m (||lwy — wh||pe + [lws — wh|lpe) , Vawr, wa, wh, wy € B(R)

with high probability, where P° is the polar of P and || - || po is its Minkowski norm. This bound gets
rid of any dependence on the non-linearity f and prepares us for the application of dual Sudakov
minoration (Lemma 15).

Step 4: Bound in expectation via Dudley’s integral and dual Sudakov minoration. The upper
bound of py, and the sub-Gaussianity of Z (w1, ws2) allows us to obtain upper bound for the expec-
tation of the random process using Dudley’s integral with respect to || - ||pe (Appendix C.3). This,
in turn, is controlled using dual Sudakov minoration, leading to

E sup |Z(wi,w2)| S L2R2\/mdlog2d~logm.

w1, w2

When m 2> e~ 2dlog® d, this implies LE SUDy, weeB(R) |Z (w1, w2)| S €, which is already close
to what we desire.

Step 5: Tail bound via concentration of measure. Finally, we deduce the desired tail bound
from the above bound in expectation using a concentration of measure argument in Appendix C.4.

Proof roadmap for Lemma 8. As discussed, a primary challenge in dealing with the unknown
f is that, to prove the bound, we must construct a discretization for the infinite class of functions
Lip;. We require an efficient discretization of Lip;, that avoids any polynomial dependencies on n.
We outline our approach below, and the complete proofs are provided in Appendix D.

Step 1: Symmetrization. Similar to Lemma 6, the problem can be reduced to obtaining tail
bounds for the supremum of the symmetrized process, but now considering two different functions
J1 and fa:

= o)) — T w 2
Zfl,fg(wl,UJQ) ::Z&(fl«mjw 1)) — fa((5,, 2>) |

i=1 Pji

where fi1, fa € Lipy, (w1, w2) € B(R) x B(R).

11
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Step 2: Applying generic chaining to find guidelines for discretization. The next step involves
discretizing Lip; for a “good” approximation, while maintaining a small “size”. Using generic
chaining for Bernoulli process, we construct (in Appendix D.1) two “sampling-aware” metrics D
and D3 (depending on S) on Lip;, x Lip; measuring respectively the “goodness” of approximation
and the size of the discretization. We show (in Lemma 21) that if Nao C Lipy, is such that Na X Na
is a A-net of Lip; x Lip;, in Dy, distance, then*

E  sup |Zp,p(wi, ws) §L2R2\/mdlog2d-logm+EA+E/0 V1og N (Na x Na, Do, €) de.

f1,f2€Lipy,
’wl,UIQGB(R)

Step 3: Net construction. The construction of the desired net, carried out in Appendix D.3, is the
major technical challenge in the proof. Our approach is guided by the following upper bound on
Do, proved in Lemma 22:

Doo((flaf2)7 (f{yfé)) 5 pOO(fhf{) +p00(f2afé)’

where p is some metric on Lip; obeying (with high probability)
1/2

1
poo(f1, f2) SLRYm | ) Wﬂfl = Pl (Rl 1. Rlles, 1)
=1 g

We then construct a net Na (details are in Appendix D.3.1) by imposing that for any f € Lip,
there is some f € Na, suchthat | f(x)— f(z)| < e|z| for larger values of |x|, while | f(z) — f(x)] <
¢ for smaller values of |z|. The former restriction ensures || f1 — f2| oo (1_ 110 o Se?

[E Lo ([=Rllzj, |l Rllj; 1) ~

if ||, || is large, but will require a net of infinite cardinality if demanded to hold for all . The latter
restriction is a careful relaxation of the former, which, as we shall show in the proof, does not hurt
the quality of approximation by the net (up to logarithmic factors).

Step 4: Bounding the size of the discretization via embedding to simple spaces. Subsequently,
to bound the Dudley’s integral of Na x Na in Dy distance (see Appendix D.3.3), we introduce
another technique derived from the proof of Lemma 22 and the explicit construction of AV/a. In
essence, we construct an embedding (a combination of Lemma 22, Lemma 25 and Lemma 26)
of (Na x Na, D2) into (Lipy, L=([—1,1]))? (within an additive error which is well controlled).
Since the Dudley’s integral of (Lip;, L>°([—1, 1]) has a well-known upper bound (Lemma 28), this
embedding would imply our desired bound easily.

6. Conclusion

This work provides the first sample complexity results for actively learning single index models in
the agnostic setting with a nearly linear dependence on the dimension d, and with no strong distri-
butional assumptions. We believe the results suggest a number of avenues for future exploration.
For example, while we obtain near optimal sample complexity results, we do not consider compu-
tational efficiency, which has been considered in work on fitting single index functions in related

4. Here A can be a random variable depending on S, as D is already a random distance depending on S. This
accounts for the expectation in EA.

12
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models. Additionally, to the best of our knowledge, the related (and harder) multi-index model has
not been addressed in the same setting that we consider. Finally, although our Theorems 2 and 3
provide a constant-factor multiplicative approximation, we believe it should be possible to obtain a
(1 + &) approximation using techniques from Musco et al. (2022).
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Appendix A. Proof of regression guarantee with unknown non-linearity

Proof (Proof of Theorem 3) We simplify the discussion by assuming that, without loss of generality,
X has orthonormal columns, just like Theorem 2. Throughout the proof, we shall condition on the
event that

L(f*, w*) <1000 - L(f*, w*) = 1000 - OPT, (11)
which happens with probability at least 0.999 by Markov’s inequality (since EL = L). Now, since
f(Xd) -y = (f(X) - [*(Xw")) + (f*(Xw*) - y),

from triangle inequality and the fact that (a + b)? < 2a? 4 2b2, we get the following

. . 2 . 2
£(f,w) = | f(xXw) — y| < 2 f(Xw) - ;(Xw)|” +20PT. (12)
Next, by optimality of f, w, we have ﬁreg(f, w) < ﬁreg(f*, w*), i.e.,
ISf(X1b) — Sy|* + & Xb||* < L(f*, w*) + ]| Xw*|*. (13)

In particular, we have (recalling that X is assumed to have orthonormal columns)

1, 1000
lw[* = [ Xw|?* < ZL(f* w*) + | Xw*||* < ——OPT + || Xw*|*.
£ 9

This implies that w € B(R) where R = \/@OPT + || Xw*||2. Then, from Lemma 8, the
following holds with probability at least 0.999 given m > C'L*~2dlog3d:

If (X)) = f*(Xw")|* < [|Sf(Xb) — Sf*(Xw")|? + eR?
SISf(Xw) - Syl + |Sf*(Xw") — Sy||* + <R?
SISf(Xw) - Syl + |Sf*(Xw") — Sy||* + eR?
A A 1
S (L0 w") + 2| X' |2) + £(f7,w") + 2 <EOPT + HXw*H2>
< OPT +¢f| Xw*|?,

where the second line is triangle inequality, the third line used (13) and the definition of R, and the
last line used (7). Plugging the above inequality into (12) readily gives

L(f,w) S OPT +e|| Xw*|?,

as desired (after replacing ¢ by £/C for some sufficiently large constant C' > 0). |

Appendix B. Tools from High Dimensional Probability

In this section, we introduce the tools which are used for our main results.
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B.1. Covering numbers

We shall need two slightly different definitions of covering numbers, which will coincide in most
useful cases.

Covering number with respect to a set. Let K, T be subsets in R". The covering number (with
respect to set 7)) N (K, T') is defined as

N(K,T)=min{n €Z,n>0:3xq,...,2, € K, suchthat K C Uj_;(z; + T)} .

The above can also be seen as the minimum number of translations over 7" required to cover K.
Covering number with respect to a metric. Let K C R". The covering number (with respect to
metric d) N (K, d, ¢) is defined as
N(K,d,e) = min{n €Z,n>0:3x,...,x, € K, such that Irgnd(x,xi) <egVx e K} .
1<n
When d is the Euclidean distance, we omit d and simply denote by N (K, ¢) the corresponding
covering number.

When two definitions agree. If 7" is the unit ball of some norm ||-||7 on R™, and d7 is the distance
induced by the norm || - ||7, then the above two definitions agree:

N(K,eT) = N(K,dr,e).

Volumetric estimate. The following result is standard (or follows from the well-known argument
based on packing number and volume), c.f. Lemma 9.5 in Ledoux and Talagrand (1991).

Lemma 9 Let T be a symmetric convex body in R™ with positive volume. We have, for all 0 < € <
1, that
log N (T,eT) < nlog(2/e).

Combined with the chain inequality N (K7, K3) < N'(K1, Ko)N(Ks, K3), this implies

Lemma 10 Ler K be a subset of R"™ and T' be a symmetric convex body in R™ with positive volume.
We have, for all 0 < £ < 1, that

log NV (K,eT) < nlog(2/e) +log N (K, T).

B.2. Dudley’s inequality

Let (T, d) be a (pseudo-)metric space. Let (X; )7 be a random process on 7" with zero mean, i.e.,
EX; =0forallt € T. The process X; is said to be subgaussian (with respect to d) if

t2
P(|Xs— Xy| > ) < 2exp | ————— |, Vs,teT.
(1Xs = Xl > 1) < eXp( 2d2(s,t)>’ Hre
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Lemma 11 (Subgaussianity of Bernoulli process, Vershynin (2018)) LetT' C R" and &1, ...,&,
be i.i.d. Rademacher random variables. Then the process

n
X :Zfzth t:(tlv"'>tn)eT
=1

is subgaussian on T’ with respect to the Euclidean distance.

Lemma 12 (Dudley’s inequality, Vershynin (2018)) If (X;)er is a subgaussian process with re-
spect to a metric d, then

Esup | X¢| < inf E| Xy +/ V0eg(N(T,d,e)) de.
teT teT 0

It is well-known that Dudley’s inequality can be refined to a tail bound.

Lemma 13 (Dudley’s inequality, tail bound, Talagrand (2021)) If (X;):er is a subgaussian pro-
cess with respect to a metric d, then the following holds for any t > 0 with probability at least
1 — 2exp(—t2/2):

sup | X¢| < inf E|Xy| + / V1og(N(T,d,e)) de + t - Diam(T, d).
teT teT 0

The following upper bound for subgaussian processes supported on a finite set is well-known
and is a simple corollary of Dudley’s inequality.

Corollary 14 If (X,)er is a subgaussian process on a finite set T with respect to a pseudo-metric
d. Then

sup | X¢| < inf E|X;| 4+ Diam(T, d)+/log |T.
teT teT
In particular, if T' C R™ and d is the Euclidean distance, then

sup [ X¢| S sup [[¢]| - /1og(|T'| +1).
teT teT

Proof For the first part, note that N' (T, d, ) < |T| for any € > 0, and moreover N (7', d,e) = 1 for
¢ > Diam(T, d). The conclusion the follows from Lemma 12.
For the second part, we apply the conclusion of the first part to the set 7" U {0} and note that

Diam(T U {0}) = sup it —tof| < sup  ([[ta]l + [lt2fl) < 2sup|f].
tl,tQETU{O} tl,tQETU{O} teT

Dudley’s inequality has a partial inverse, which can be viewed as a useful probabilistic estimate
of covering numbers.

Lemma 15 (Dual Sudakov minoration, Ledoux and Talagrand (1991)) Let B be the unit (Eu-
clidean) ball in of R", T be a symmetric convex body in R", and g be the standard n-dimensional
random normal vector. Denote by T° .= {z : (x,y) < 1,Yy € T} the polar of T. Then

supey/log N (B, eT°) < Esup(t, g).
teT

e>0
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Dudley’s integral is subadditive with respect to the metric d and tensorizes well, two basic
properties that will greatly simplify our proof.

Lemma 16 (Sublinearity) Let di, do be pseudo-metrics on some set T. Let a,b > 0 be real
numbers. Then

/ V1og N(T, ady + bds, €) dz—:<a/ Vieg N (T, dy,¢) dz—:+b/ Veg N (T, dy,¢) de.

0

Lemma 17 (Tensorization) Let (T1,dy), (T, ds) be pseudo-metric spaces. Then Ty x Ty can be
endowed with a natural pseudo-metric, defined by

d((t1,t2), (t1,15)) = di(t1,th) + da(t2, t5).

We then have

/ VIog N (T} x Ty, d, e d5</ Vieg N(Ty,dy, e ds+/ Viog N (Ty, dy, €) de.
0

Appendix C. Proof of subspace embedding with fixed nonlinearity, Lemma 6

The proof relies crucially on the idea developed in Rudelson (1999). We extend a simplified ver-
sion of their idea into the Lipschitz nonlinear setting. First, we apply a standard symmetrization
argument to the /th moment of the desired quantity, which is actually the supremum of deviation of
|Sf(Xw;) — Sf(Xws)||? over wy, wy € B(R). This reduces the problem to finding tail bounds
of a Bernoulli process. Then, we utilize the sub-Gaussian property of that Bernoulli process and give
an upper bound of its associated sub-Gaussian distances, which reduces the sub-Gaussian metric to
the dual norm of some polytope determined by the sampling process. This allows us to invoke dual
Sudakov minoration to bound the Dudley integral of the sub-Gaussian distance, ultimately leading
to a tail bound of the Bernoulli process as we desire.

C.1. Symmetrization

To simplify notations, for the rest of the proof we denote

vy (w1, w2) = f((x);, w1)) — f((zj;, w2)).

Lemma 18 (Symmetrization) Let &1,&9,...,&, be i.i.d. Rademacher random variables (inde-
pendent of S), i.e., each &; takes values —1 and 1 with probabilities 1/2 each independently. Then

E o osup [|SF(Xuw) — SF(Xws)|* || f(Xuwr) — f(Xuwo)| ||
wi,w2€B(R)

1

1 & . 2

<o B osp | LY glunw)S
wi,wa€B(R) | i

This result is standard. For sake of completeness, we provide a proof in Appendix C.5.
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C.2. Bounding the Bernoulli process: the sub-Gaussian distance

Lemma 18 leads us to study the following symmetrized random process.
2

m
Vj, w1, Wy
Z(wy, ws) = Zfi(](p))’ (w1, ws) € B(R) x B(R),
i=1 i
It is clear that the above random process conditioned on the samples {j1, jo, ..., jm} (fixing

S) is a sub-Gaussian process (Vershynin (2018)) with respect to index (w;, w2) endowed with the
metric ps (called the sub-Gaussian distance) on B(R) x B(R) defined as follows.

1/2
m

1 2
pr (w1, w2), (wi, wy)) = Z T(Uji (w1, w)? — vj, (wy, wh)?) : (14)
i=1 £Ji
Based on sub-Gaussianity of Z (w1, ws2), we shall derive a near-optimal tail bound of it using
Dudley’s inequality (Lemma 12). This would entail establishing an easier-to-manipulate upper
bound of the metric p;. Before doing so (in Lemma 19) we need to set up a few notations.
Recall that we are conditioning on {71, j2, -+ , jm } in this part of the proof. We define a sym-
metric convex body
le,:l:xj27...:|: xjm )
\/pjl V p]2 V pjm
We further denote P° as its polar given by
P° ={z e R? |(z,p)| < 1,vp € P},

P = conv (:t

and denote || - || po as the Minkowski norm associated with P°, defined for w € R? as
|wl||po ==1inf{t > 0:w € tP°} = sup ’<wh/\/ﬂ,w>‘ :
i€[m]

Using Lipschitz continuity of f, we can establish a useful upper bound of p in terms of || - || po,
reducing the study of the sub-Gaussian distance to the dual norm associated to a certain polytope.

Lemma 19 (Bounding the sub-Gaussian distance p;) With the above notations, one has for f €

Lip;, that
P =P,
where p is the metric on B(R) x B(R) defined by
m 1/2
p((w1, ws), (wh, wh)) = AL*R Z E%az; (Jlwy — w|lpe + |lwa — whl|pe) .  (15)
i=1 17

Proof The definition of p; and v;, leads to the following.
02 (w1, w2) — v (wh, wh)| = | (F((a,w1)) = f (g0 w2))) = (F((w0) = f (5,5 w5)))]
: ’(f(<x]z7 wl)) - f((wjiv w2>)) + (f<<xju w/1>) - f((ij’w/2>))‘

< L2 (‘<mji7w1 - w/1>‘ + ’<xji7w2 - wé>|)

: (‘(mjﬂle + ’<:Bji7w2>| + |<a7]z7wll>‘ + ‘(m]ww12>’)7
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where the inequality follows from f being L-Lipschitz. Next we observe that

|<$ji’w1 - w/1>‘ + ‘<mji7w2 - w/2>’ = \/pji( ‘<wji/\/pji7wl - w/1>‘ + ’<‘Tji/\/pji’w2 - wéw )
i ([lwr — wiflpe + [lwa — whpe),

where the inequality follows from the definition of || - [[p.. Combining the above two inequalities,

one has

p?‘ ((wla w2) (wllv w/2))

2
<Z 2' Lipj, (w1 — willpe + llwz — whlpe)? - (|(as,, wa)| + [{az,, wa)| + [{ag,, wh)] + [{a,, wh))

m
1 2
< LH(||lwr — willpo + llwz —whllpe)® Y — (I(aj, wi)l + (), wa)| + (@, wh)| + (5, w))])
i=1 57
1
< L4(||w1 - w,1||73° + Jlwsz — wé”’l’o 2 42 ( m]wwl 2 + <mji7w2>2 + <a:ji’wi>2 + <mjivwl2>2>
Ji

< 16L7(|[wy — wi||pe + [|wz — wh|lpe)*  sup Z (xj;, w (16)
weB(R p]z

where the third inequality follows from Cauchy—Schwarz. To simplify the last factor, we note that

m
T 1 T
sup (zj,w)”= sup w ——xjx; | w
weB(R) ; pi weB(R) P e
=1
=R @)
=1 Pji
Plugging this back into (16) and taking square roots yield the claimed result. |

The rest of the proof of Lemma 6 goes as follows. In Section C.3, we show how to derive
a bound in expectation of the supremum of Z (w1, ws) using Dudley’s inequality and duality of
metric entropy. Once this is done, we show how to turn the bound in expectation to a tail bound
using a standard argument by concentration of measure in Section C.4.

C.3. Bound in expectation via duality

We apply Dudley’s inequality to the process Z (w1, w2) over the set B(R)x B(R). Since Z (w, w) =
0 for any w, it follows that infy, ., ep(r) |Z (w1, w2)| = 0. Taking expectation with respect to the
Rademacher random variables &1, &a, . . . , &, we have

Be swp |Zlwnwo)| S [ \flosN(B(R) < B(R).py.2) de
0

wi,w2€B(R)
1/2
m /

1 [oe]
SRS —ayal| [ VoRNERLT ) de,
Ji

i=1

a7
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The second inequality can be verified using Lemma 19 along with standard properties of cover-
ing numbers (Lemma 16 and Lemma 17).

We move on to estimate the Dudley integral [ /log N'(B(R), || - [[po,£) de. Since this inte-
gral only involves the entropy in dual norm || - || po, we control it using duality of metric entropy. In
particular, one can invoke dual Sudakov minoration (Lemma 15) to prove

/ VIog N(B(R), || - ||pe, ) de < sup .l Ry/log?d - logm = Ry/dlog?®d - logm, (18)
VPis

' ~ . - on . = X)
where the last equality uses ,/pj, = ||z}, ||/v/d which follows from the definition p;, = ST X
and 6. Plugging this into (17), we obtain
1/2
1
Ee sup |Z(wi,ws)| S L*R? Z —:13]1:1:;Z \/ dlog?d - logm. (19)
w1, w2EB(R) i=1 p]i

Taking expectation w.r.t. .S and noticing that, by matrix Chernoff bound (Rudelson and Ver-
shynin, 2007),
m

1
E ZE% z] || <m+dlogd < m, (20)

(where the last inequality follows from the assumption m > dlog®d) we obtain

E sup |Z(wi,w2)| S L2R2\/mdlog2d -log m.
wi,w2€B(R)

Under the assumption m > L ~2dlog3d, we deduce that

1

—E  sup |Z(wi,wy)| < eR%. @21

m wy,w2EB(R)
This establishes the bound in expectation as desired. Once we can show that the above also holds
with high probability rather than in expectation, the proof of Lemma 6 will be completed. This will
be done in the next part.

C.4. Completing the proof: tail bound via concentration of measure

This part is more or less standard applications of chaining and concentration of measure arguments
(Ledoux, 2001; Talagrand, 2021). Since Z(w1,w2) conditioned on {ji, ..., jm} is sub-Gaussian
with respect to metric pr, we have (Talagrand, 2021)

1/¢
(Eg sup |Z('w1,w2)[> SEe  sup | Z(wy,ws)|+VE-Diam(B(R)x B(R), py).
wi,w2EB(R) wi,w2E€B(R)
(22)
To bound the diameter Diam(B(R) x B(R), ps), we invoke Lemma 19 and the simple observation
that for w1, we, w}, w) € B(R),

x;,
lwr — wi|pe + ||wa — wh|pe < 4R sup I = 4RV,
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where the first inequality follows from the definition of || - || po and Cauchy-Schwarz, and the second
inequality follows from | /p;; = ||z, |/ \/d aforementioned. Plug this into Lemma 19 to obtain

1/2
m
1
Diam(B(R) x B(R), pf) S L’R*Vd || ;mjia;;
i=1 171
Plug this and (19) into (22) to obtain
1/¢ m 1/2
Ee  sup  |Z(wy, ws)[* < L°R? <\/dlog2d -logm + \/[d) Z —a:ﬁa:;
w1, w2EB(R) i—1 Dy
Applying matrix Chernoff inequality again (but in its tail bound form this time), one has
1
E Z—mhm; < m+ y/fmdlogd.
—1 Pii
=1
Therefore
1/¢ 1/¢
¢ ¢
(E sup | Z(wy, wo)| ) = (ESEg sup | Z(wy, wo)| )
wl,’LUQGB(R) ’wl,UIQGB(R)
1/¢
. 1/2
1
< |Eg | L?R? (\/dlode -logm + \/fd) Z —azﬁm;:
—1 Pii
=1
0o\ /¢
[ o 1
< L2R? < dlog?d - logm + \/fd) | E Z —a:jzm;
—1 Pii
=1

1/2
< LR (\/dlog2d logm + @) (m + /fmdlog d)

For the last expression, using (a + b)l/ 2 < a2 4+ b2 for a,b > 0 and expanding the product, we
obtain

1/¢
(E sup ‘Z(wl, wg)V)

wi,w2€B(R)

< LPR? (\/md log?d - logm + (imdi logid - logam + (3vmd + timidi logid).

This gives the desired tail bound by a standard computation based on Markov’s inequality, which
is summarized in the following lemma.
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Lemma 20 Assume a random variable X satisfies
N K
(E\X\ ) < Ag+ > A, VO 1
k=1

where Ay, > 0, oy, € (0, 1] are constants. There is some constant C > 0 depending only on K, such
that for any § € (0,1/2) we have

K

P(|X|>CAo+C Y Aplog™ (7) <1-6.
k=1

C.5. Proof of Lemma 21
Throughout this proof, we denote
v(wi, we) = f(Xw) — f(Xws).

Let S’ be an independent copy of S. Recalling the definition of S, we denote by j; the indices
chosen by S and j! the indices chosen by S’. We want to estimate the following

2 2|
E=FE sup ‘HSv(wbwz)H _Hv(wth)H ‘ :
wl,’LUQEB(R)

Since EHS’v(wl,wg)H2 —Hv(wl, wg)H2 = 0, we have

L
E=Eg sup HSv(wl,wg)HQ—va(wl,'wg)HQ—]ES/ (’S’v(wl,wg)HQ—va('wl,'wg)”?>
wl,wgeB(R)
l
:ES sup “’Sv(wl,wg)HQ—Esx S'v(wl,wg)HQ‘ .
'w1,’w2€B(R)

From the convexity of|-|%, we get

E <Eg sup Eg

S'u('wl,wg)H2 —HS'U(wl,wg)HQ‘Z

wi,w2EB(R)
2 2(¢
<Ess  sup [|Sv(wr,ws)| — |8 v(ws,wy)||
wi,w2EB(R)
¢
—E  sup 1 i (vji (w1, w9))* 1 i (vj: (w1, w2))?
wi,we€B(R)| T i=1 Py, m =1 pjf

: (v (wi,w2))* . ’ 2 o .
Since Y ", JZT is an independent copy of » ", (Uh(iﬂ, their difference is a sym-
Ji 74
. m (vj, (wr )2 (v (w1w2))?
metric distribution and the same as ) )" | &; - - , where £1,&,...,&n
Ji 5!
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are 1.1.d. Rademacher random variables. Therefore

E<E sup Z& ( vji (w1, w2)* (vj;(wl,wz)ﬁ)

wi,wa€B(R)| M Dj; pj:
e L (v ) e
2 )
(vj, (w1, w 1 v (w1, wa
S 25—1 .E sup § 52 Ji 1, 2)) + 2f—1 .E sup E gl Ji ’
w1, w2€B(R) wi,we€B(R)| T 5 by

14

2
1) w1 w2
— 2f -E sup E é.l Ji ) )) 7
w1, w2EB R) i=1

where the second line is the triangle inequality |a + b|* < 2¢71(]a|® + [b]%), and the last line used
the observation that the two terms are identically distributed.

C.6. Proof of Lemma 20
By Markov’s inequality, we have, for all ¢ > 0 and ¢ > 1, that
K ¢
P(IX|>t) <t7F | Ag+ > Apl™
k=1

K
< CRt™ | AG+ D Apent

k=1
_ CrAp ¢ K Cr Ayl ¢
(o) o)
k=1
In particular, setting ¢ = 4(K + 1)Cg Ao + 4(K + 1) Zszl Al we obtain
K K
P | X[ > 4(K + 1)Cx Ao+ 4(K + 1)Cx > Apl™ | < (4(K+1)) 4> (4(K+1))F <47
k=1 k=1

The desired conclusion follows from plugging in ¢ = [log(1/9)].

Appendix D. Proof of main theorem with unknown nonlinearity, Theorem 3

Proof Similar to the proof of Lemma 6, we need to bound the supremum of the process

) ig (fl(<v’17j“'w1>)—f2(<ﬂ3ji,w2>)2

Zf1,fs (w1, we) =
i=1 Pji

; f1, fa € Lipy,, (w1, w2) € B(R)xB(R).

The crucial step is our proof is to construct an appropriate discretization of Lip;. The guide-
line for choosing such a net will be based on the seminal idea of chaining for Bernoulli process
(Talagrand, 2021). In our setting, it suffices to use a simplified version of chaining, which we shall
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present immediately after introducing the relevant notations. Define for f, fo € Lip; the following
two metrics:

Do ((f17f2)7 (f{?fé))
= s zpl [(Fullaswi)) = fal(g w2))” = (i (@ w1)) = F((yw2))

wthEB(R) i

and

Da( (o1, (5. £9)

1/2
1 2 912
= s NS (Al w) — ol w)” = (f (@ w) = f((@), )|
wi,w2€B(R) by,
Lemma 21 (Chaining for Bernoulli process) Let Na C Lip; be such that Na x Na is a A-
net of Lip; X Lip; w.rt metric Do, (Where A can be a random variable depending on S; more
precisely, it is measurable with respect to the o-algebra generated by S). Then
m 5 )
E sup Zi (f1(<wji7w1>) _f2(<xji7w2>))
fr.f2€lip, |27 P
wl,’IUQGB(R)
o
< LQRQ\/mdlode -logm + EA + ]E/ V1og N (Na x Na, Do, €) de.
0
The proof is postponed to Section D.1.
The metrics D, and Do, which are defined on Lip;, x Lip;,, are highly complicated to analyse.
So, we consider the following upper bounds of them, which decompose them into simpler metrics
defined on Lipy..
Lemma 22 (Decomposing the metric Do, and Dy) Let I, = [—R||x;, ||, R||x;,||]. Then
Do (101, F109) S o1 5) + e )
where
1/2 1/2
poo(f1, f2) == LR > —awjx] > —lfi = Fellieq,
i=1 Pii i=1 Pii B
On the other hand, for any p > 0, we have
Da( (£ 1. (1 £9)) 5 a5 + ol 1),
where the universal constant hidden by < is independent of i, and the metric ps is defined by
p2(f1, f2)
m P - nl m e
1 1= fallzes (1) ey, 20
=LR Z —.’L']Zw;; sup . J + L?R%d Z]_ijiH<:u ps(f1, f2).
— Pii i€[m] Dj; i=1
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Here p;s is the Dirac distance,
07 fl = f27

ps(fi, f2) = {1 Py

The proof can be found in Appendix D.2.
As an immediate application of the bounds in Lemma 22, we obtain the following simplified
version of the Lemma 21.

Corollary 23 (Chaining with simplified metrics) . Assume Na C Lip; is a A-net of Lip; w.r.t
metric poo (Where A can be a random variable depending on S). Then

m

& 2
E  sup = (fi({xj,, w1)) — fo{@j,, w2))
fi1,f2€Lipy, ;pji( ! ! )
’wl,’LUQEB(R)

< L2RQ\/mdlog2d ‘logm +EA + E/ V1og N(Na, p2, €) de.
0

We turn to construct a A-net for Lip; with respect to the metric po. In light of the definition
of ps, one may try to construct an A-net with respect to p., by piecewise linear functions, each of
which differs with its nearest neighbors on the interval I;, by an amount proportional to ,/p;;, say
1,/P;; for some n > 0 to be chosen later. As long as pj; is not too small, this is achievable. This
idea culminates to the following lemma.

Lemma 24 (Construction of N'a) Fix some p,n € (0,1/2). Let

1/2 1/2
m m 9

1
A(u,n) = nL?R? Z p—w]lw; md + Z u—
i=1 i i=1

Then there exists a A(u, n)-net of Lip;, with respect to the metric p~, such that

(i) The cardinality of Na is controlled:

1 1
log V| < gﬂ/“)

(ii) Assume m > Cdlogd. The expectation of the Dudley’s integral of Na with respect to ps is
also controlled:

B [ VBN Vs, pa) de € L2V tog(1/) + | 2
0

(iii) Assume m > Cdlogd. The expectation of A satisfies

2
EA(,n) < nL?R*mvVd-4/1 + %
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The proof of this lemma, which is a major technical challenge in this paper, is postponed to Ap-
pendix D.3.
Plug this into Lemma 21 to obtain

E  sup  |Zp p, (w1, ws)|

f1,f2€Lipy,

’UJ1,'LU2€B(R)
2 p2 2 2 p2 p*n 2 p2 nlog(1/p)
<L°R \/mdlog d-logm +nL?>R*mvd - 1+7—|—L R*vVmd | log(1/u) + p —

Setting 1 = % and n = 1/+/m, we obtain

E sSup ‘Zf17f2(w1aw2)|

f1,f2€Lipy,
w1, w2€B(R)
2 p2 2 2 p2 2 p2 nm
< L°R \/mdlog d-logm + L*R*vVmd + L*R*vVmdlog (d2)

From this, it can be seen that whenever m > L*c~2d(log? n + log3d), we have

E sup | Z 11,5, (w1, w2)| < eR?.

f1,f2€Lipy,
w1, w2 EB(R)

Similar to the proof of Lemma 6, this is close to what we desire, except that we need a tail bound.
The latter can be deduced from the above using the same concentration of measure argument as in
Lemma 6, which we omit here to avoid repetition. |

D.1. Proof of Lemma 21

We begin with an important property of D, that the following error bound is true deterministically:

thfz(wl?w?) - Zf{,fé(wlva)’ < Doo((flan)v (f{afé))

This follows easily from the fact that |;| < 1. Therefore, if Na X Na is a A-net of Lip; x Lip,
with respect to the metric D, one has

Sup |Zf1,f2 (wlv w2)| < sup |Zf1,f2 (’wla w2)| + A. (23)
f1,f2€Lipy, f1,f2ENA

Taking supremum with respect to wi, ws and then taking expectation, we obtain

E sup ]Zf11f2('w1,w2)| <E sup |Zf17f2('w1,'w2)| + EA. 24)
f1,f2€Lipy, f1,f2ENA
w1, w2€B(R) wi,w2EB(R)

To bound the expectation of the supremum appearing in the right hand side, we condition on
J1,---,Jm again and observe that Zy, g, (w1, w>) is sub-Gaussian over index (f1, f2, w1, w2) €
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Na x Na x B(R) x B(R), endowed with metric

D((flaf27w17w2)7 (f{?fé7w/1ﬂw,2))
1/2

= | 2 o | w) = faswa)? = (FiGwwh)) = Sl w0h)*]

Applying triangle inequality gives

D((f17f27w17'w2)7 (f{:févw/hwé))
< D((fhf?vw/hwé)v (f{vfévwllvwé)) +D(<f17f27w17w2)ﬂ (flvf%w&vwé))'

For the first term, by definition, it’s easy to see that

D((flanvawé)a (f{vféawllvwé))

< sup  D((f1, fo,wi,w2), (f1, f3, w1, w2))
wi,w2€B(R)

= Ds((f1. f2), (f1. 15)).

and, for the second term, it is easy to verify that

D((fla f27w1a w2)7 (fb f2aw/17wé)) = pfl*fQ((wwa)v (w/hwé)) < 2p((w17w2)7 (wllvwé))v

where p; was defined in (15), the last inequality follows from Lemma 19 (noticing that f; — fo €
Lip3y).
These inequalities together imply

D((flaf2awlvw2)a (f{’féawi’wé)) < D2((f17f2)’ (fi?fé)) + 2p(('w1,'w2), (’wllvwé))

Bearing the above inequality in mind, we now apply Dudley’s inequality (Lemma 12) to the
sub-Gaussian process Zy, s, (w1, wz) over fi, fa € Na, w1, wy € B(R) endowed with metric D
(which is sub-Gaussian with respect to the randomness of £) and invoke Lemma 17 to obtain

Ee  sup |Zf(w1,w2)|,§/ V1og N (Na x Na, Do, ) dz—:+/ V1og N(B(R) x B(R),
0 0

f1,f2€Lipy,
wi,w2EB(R)

m

o 1
5/ VIog N(Na x Na, Dy,e) de + L*R?y/dlog®d - logm || >
0 p

=1

where the last line uses (17) and (18). Put this and (24) together, and then take expectation with
respect to the randomness of ji, - - - , jm, the desired conclusion readily follows.
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D.2. Proof of Lemma 22
D.2.1. CONTROLLING D,

First note that the term inside the summation of D, (( f1, f2), (f1s fﬁ)) can be written as

‘(fl«wjmwl» — fol{mj, w2))” — (fi({aj, w1)) — fé(<$jmw2>)2’
= |f1l(zj, w1)) — fi((x),, wi)) — fa((j,, wa)) + fo((;, wa))]

The first factor 7 can be controlled in the following way. Recall that ||wy| < R for k = 1,2, we
have [(x;,, w)| < R||x;, ||, thus (x;,, wy) € I;,. Therefore

’fk((mjwwk» - fl/c(<x]z7wk>)| < ka - fI/cHL"O(Iji)? k=1,2.

therefore
71 < |lfv = fill oo,y + 112 = Fallzoe (s, -

The second factor T3 can be controlled using the Lipschitz assumption, which implies for exam-
ple | fi({(xj,, w1))| < |f1(0)| + L|{xj,, w1)| = L|{x;,,w1)| as fi € Lip;, and similar inequalities
for the other terms. Thus

Ty < 2L[(wj;, wi)| + 2L[(@;;, wa)l.

Combining these bounds, we obtain

(s w01)) = foly,swa))* = (fi (@ w1) = fo((a,,w2))°]
< (Hfl — filloo ;) + 1f2 = féHLw(Iji)> 2L ([, wi)| + [z, w2)]) (25)
hence

Dm((f17f2)7 (f{afé))

" 1 ) ) ! !
< 4Lw17£;1€pB(R) ; - ([0, w1)| + (@, wa)]) - (Hfl = fillzeor;) + 112 = f2HL°°(Iji))

1
< 8L su — (T, w — fillpoo(r. ) + — follpos(r.
wEB?R);pﬁM o) (L1 = Pl + 152 = Follz=qr,)

=8LE sup 2w )| —A = filleea,
wg; <\/17 > Vi VL= (2;)

m T, 1
+8LR sup L ,w> - ——|If2 = folleo(r, -
||w||§1; <\/17 VP "

The conclusion of the lemma then follows from Cauchy-Schwarz with similar procedures as in the
proof of Lemma 19.
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D.2.2. CONTROLLING Dy

We break the summation in the definition of D5 into two parts:

D3((f1, f2), (1, 13))

m 2
Soosup Y g e ig ‘(f1(<wjiaw1>) — fol{@j,w2))” = (fi((@j;, w1)) - fé((wjivw2>))2‘
wi,w2€B(R) ;. p]i
=T}
b e e | (g wn)) = s wn)) = (g wn) = Sl w)?|
wi,w2€B(R) ; pﬁ
=T

Using inequality (25), we obtain

ez, w2 + (g, w2 11 = Filliseqr, ) + 12 = Fillioer, )

m
2
TS sup D Ly gz

wthEB(R) i=1 p]z p]l
m 12 2 1
| (171 = Ay + 102 = 3 e(r,)) iz
S.; L2R2 Ziw]ﬁc; sup (Z5,) (Z5,) J
=1 Pj; i€[m)] pj;

On the other hand, by Lipschitz property of f;, we have
[F1((@ji, w) < Ll || - Jwi | < LR,

since w; € B(R). The same upper bound holds for | fo((z;,, w2))l, | f1 ({x;,, w1))|, and | f5((x;,, w2))|.
It is then easy to show

= 1
Ty $ ) Loy, li<n- pfgL‘lR“IlstgH4 (ps(f1, 11) + ps(f2; [2))

i=1 Ji

= L *RYq? Zl||mji||<“ (p5(f1,f{)+,06(f27fé))a

i=1

where the last equality uses p;, = ||z;,||>/d again. The conclusion follows immediately from
summing up the above inequalities for 77 and 75 and then taking square roots.

D.3. Proof of Lemma 24

We divide the proof into four steps. First, we give an explicit construction for a candidate of the net
NAa in Section D.3.1. Up to this point, we do not know whether A/a is a net, but we can already
bound the cardinality of it, thereby proving item (i) of Lemma 24. Then in Section D.3.2, we prove
that VA is indeed a A(u,7) net in po, distance. On the other hand, proving the bound of Dudley
integral in item (ii) turns out the trickiest part of the proof. In Section D.3.3, we will prove this item
by presenting a technique to embed A A to another space of Lipschitz functions (endowed with a
different metric than p..), which enables to draw connections to well-known bounds on the entropy
of class of Lipschitz functions. Finally, we prove item (iii) in Section D.3.4, which follows from
Cauchy-Schwarz inequality.
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D.3.1. CONSTRUCTION OF NA.

For convenience, set ' = n/4 and

i~ lmaeml =[]

2L = R(l—l_n/)i(KJrNik): k:N7N+177N+K7
"7 ) ka, k=01,--- N —1.

The construction of z; guarantees that z; is monotone increasing and
ziy1=(147)z, N<E<N4K-1 (26)

and ]

—uR < —
la 1+7
The basic idea is to construct at each point £z, a grid with spacing L7z, for [— Lz, Lz, and
connect these grid points by piecewise linear functions. However, for small z;, where k < N this
would be impossible without significantly enlarging the size of the net. To remedy this, for such &

the spacing of the grid will be Lnzy. The precise construction is as follows. Set

pR < zy < pR. 27

Yo = {U = (0_N-K,0—-N—K+1,---,0N+K) : 00 =0, o4, €Z, k € [N+K]}-

To each 0 = (0_N_-K,0-N—K+1,---,0N+K) € 2o, We associate a piecewise linear function
defined by
fo(£zr) = Ly opp max(2zx, 2n), 0<k <N+ K. (28)

The value of f, at a point which is not equal to any one of +z;, is given by linear interpolation. The
whole collection of { f, : o € 3¢} would be too large to work with. Fortunately, since our net is for
L-Lipschitz functions rather than arbitrary functions, we can restrict our attention to a much smaller
subset > C Y. Denote

Y= {a: (0_N—K, "+ yON+K) € Yo : 00 =0, |Ui(k+1) —04k| <2,0<k<N+K-1;.
(29)
We contend that
Na={fs:0€X} 30)
is a A(u,n)-net for Lip; w.r.t. metric p (note that f, is only O(L)-Lipschitz, thus A/A may not
be a subset of Lip;, but this is of no consequence to our proof). Proving this is the goal of the next
step.

We conclude this step of the proof by establishing the item (i) of Lemma 22. Suppose o € ..
For any fixed o4, there are at most five possible values of o (1 1) due to the constraint ]ai(kﬂ) —
0| < 2. But 0y is already fixed, thus the number of elements in ¥ cannot exceed 52(N+K) Since
Np is an image of X, we have

o log(1/p) 1 _log(1/p) _ 4log(1/p)
“log(l+n) w0 n

where we used 7' = 7/4 which implies ' < 1/8 and hence log(1 + n’) > n’/4. This proves the
item (i) of Lemma 22 as desired.

)

log |NA| < log B S N + K
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D.3.2. VERIFYING N IS A A(p,n)-NET.
For each f € Lip;, we can define o(f) € ¥ as

L’ max(zg,zN)

{ S CEzr) ] ke [N+ K],
0, k=

By definition, one has

f(E2)

<
Ly max(z, zny) — o(f)ak <
It suffices to verify that o (f) € ¥ and poo (f, fo(p)) < Ap, 7).

f(E2)

1, ke[N+K]. 31
Ln/max(zk,zN)Jr’ €V +K] D

Verifying o(f) € X. We need to show |o(f)+x| < N and |o(f)1t1) — 0(f)xk| < 2. The
former follows easily from the definition of o(f) and the fact that | f(£z2x)| < Lz (which in turn
follows from f € Lip; ). For the former, we distinguish three cases: (i) k =0, (i) 1 <k < N — 1,
(i) N <k<N+K.
For case (i), (31) implies
|f(£21)| Lz

<———4+1<——+4+1=
o)l S P 1S P =

+1<2,

where the equality follows from z; = %z N, and the last inequality follows from N = [1/n/] >
1/n'. Since o(f)o = 0, this implies |o(f)+1 — o(f)o] < 2 as claimed.
For case (ii), invoke (31) again to obtain

f(Ezrg1)  f(Ezk)
Ln'zn Ln'zn
_ f(Eze) — f(£20)]
Ln'zn

< L(zpy1 — 2x)

Ln'zn

+1§z

0(f) k1) — o(f)xx] < +1

+1

+1

where the third line follows from f being L- L1psch1tz and the last line follows from 21 = k;\; ZN»
2, = ]]f,zN.
For case (iii), (31) implies (31) implies

fEzy)  fE=)

lo(f) k1) — o(f)xx| < ‘Ln,max(2k+1,ZN) 7 max(zk’ZN)‘ +1
_ ‘ f(Ezer) (A +0)f(E=)
Ly (T+n)ze  Ly/(1+n)2
o fGaren) = FE2)l | f(E2)| 1
L' (1 + 1)z L1471z
L(zpq1 — 21) Lz, 41
“Ln(l+n)zm L(1+1)zk
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where we used z;11 = (1 + 1)z by (26) and the fourth line used Lipschitz continuity of f and
f(0) = 0. This implies |o(f)+k+1) — o(f)+k| < 2 since o(f)x’s are integers. In conclusion,
o(f) € %, as desired.

Verifying poo (f, f5(r)) < A(p,m). ByLemma?22, we need to bound || f — fo (4| Lo (7). We begin
by noting that for the maximum of the absolute value of an affine-linear function in an interval can

only be attained at the endpoints of the interval. Since f5 () is by definition affine-linear on the
interval [y, z;+1], we have

s 1f(2) = forn(2) £ sup max (1(2) = fopy(@)ls 1F(2) = S (zrs1)])

2€ (2, 2541] 2€ (2, 25+1]

From (31) and the construction of f,y), we have
|f(zk) = forr) ()] < Ly’ max(zy, 2y), 0<k<N+K.
On the other hand, Lipschitz continuity of f implies,

sup  max (|f(z) = f(z)], 1£(2) = f(zr41)]) < L2k — 21)-

2€[2K, 2k +1]

Combining the above three inequalities yields

sup | f(2) = fo(p)(2)] < Ly’ max(zy, 2n) + L(zpt1 — 21).

ZG[Zk,2k+1]

By an argument verbatim to the above, we also have

sup | f(2) = fop)(2)| < L max(z, 2n) + L(zkt1 — 21).-

2€[—2p41,—2k]

The above two inequalities hold for all 0 < k < N + K, therefore for any k € [N + K|, we have

1f = fopllLoe((—2p,2]) =  Max sup 1f(2) = fon) (2)]

le[k—1] z€[—z1+1,—21]U[z1,2141)

N

Ly , L(z41 —
zérﬁf_}i]( 1 max(2, 2v) + L2141 — 21))

2Ln 2, N+1<k<N+K,
L(U’Jr%)zN, 1<k<N,

(32)

where the last equality follows from straightforward computations by the construction of z;’s.

We are now ready to bound poo (f, fo(f)). Recall Lemma 22 and the notation I; = [—R||x; ||, R||x;]
there. Since we have assumed without loss of generality that X has orthonormal columns, x; being
one of its row has norm no more than 1. Therefore R||x;|| < R = zn4k. In virtue of (26), for
any j € [n] such that ||z;|| > zn/R, there is some k; > N such that %zkj < R||z;[| < 2;, hence
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I; C [~2k;, 2,]- Invoking (32), we obtain, for any j € [n] such that ||z;|| > 2x/R, that

1 2 1 2
ijf fenlz (I;) = ijf fonliz ([—2k;2,))

1
< —(2Ln ;)
Dj

1
< —(2Ln - 2R||z;])?
Dy

2 -n?L*R?||z;|* = n*L*R*d, (33)
J

where the penultimate equality follows from 7’ = /4 and p; = ||;|*/d. On the other hand, for
J € [n] such that ||z;|| < zy/R, one may invoke (32) again to obtain

1 1
f||f—fa(f)\|%oo- *Hf Jo(s HLoo( [—2n,2n])
by pj

1 1 2
< — L(?]/ + )ZN>
pj < N
1
< —(2Ln'uR)?
by

1 2
:fn2L2R2-M—,
4 pj

where the penultimate line follows from N = [1/5/] > 1/1/ and from (27), and the last line used
n’ = n/4. Summing up the above two inequalities, we have, for any j € [n], regardless of how
large ||x;]| is, that

fllf oo, <772L2R2d+ LR

P
Now we apply Lemma 22 to obtain
. 2 1/2
1 T
pOO(f?fU(f)) <LR Ziszmjl Zin fU(f)”Loo I;,)
1=1 Pji i=1 Pji
1/2 1/2
<LR|S —ajal|  gr | (d+ )
i=1 Pii i=1 4pj;
1/2 1/2
m 1 m ,UzQ
< nL*R? Z —xﬁx; md + Z —
i=1 p]z i=1 pjl
= A(M’U%

as claimed.
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D.3.3. BOUNDING THE DUDLEY INTEGRAL OF Na

Recall that we need to bound fooo \/ log N'(Na, p2,€) de, which amounts to bounding the en-
tropy of the metric space (Na, p2). This will be achieved by embedding this metric space into
(Lipy, L*°([—1,1])), which is again a space of Lipschitz functions yet with metric L>°([—1, 1]) in-
stead of po,. The entropy of this latter space has a well-known bound. The embedding is achieved
by the following two lemmas.

Lemma 25 With the notations f,,o € X as in Section D.3.1, we have, for all 0,0’ € %, that

1/2 1/2
m m
1
p2(faafa’) 5 77L2R2\/g ngﬁm; HO-_OJHOO'{'LQRQd Zl||mji||<u ,05(0’, U,)'
i=1 v =1

Here || - ||oo denotes the £°°-norm of vectors, and ps is, by abuse of notation, the Dirac metric on %,

defined as
1, o=o
o,0)=<" ’
ps(0,07) {0, 4o

Proof By the construction of f,, f,- in (28), we can verify in a similar way as we proved (33) that

1fo = forllLeo(1;,) L)ja;,
p o o' lIL (Ih) ||$31||2H SULR\/gHU_U,HOO

su
1€[m)] Pj;
The conclusion then follows from the definition of ps. |

Lemma 26 For o € Y, define a piecewise linear function g, on [—1, 1] by

+k B Otk
9o \N+K) 2N+ K)
At a point other than % the value of g, is determined by linear interpolation. We have g(0) = 0,
g is 1-Lipschitz, and

lo = 0'lloc = 2(N + K)llgo = go [l L0 ((-1,17), 0,0 € .

Proof The equality follows easily from the fact that the supremum of the absolute value of an affine-
linear function in an interval can only be attained at the endpoints of the interval. In particular, for
any k € Z, —(N + K) <k < N+ K — 1, we have

1

mmax (‘O’k+1 — U;€+1‘, |O'k- — O-;CD .

sup 195(2) — 9o (2)| =
Elwir nir)

Taking union over all such k£ completes the proof for the equality. It remains to check g is 1-
Lipschitz. As g is piecewise linear, it suffices to check the slope on each of the defining interval lies

in[—1,1], ie.,
+(k+1) +k
—_\r ) <
g”<N+K> g”<N+K>‘_1’
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which, by definition of g, is equivalent to

|04 (k1) — O] < 2.

But this is certainly true as o € X. This completes the proof. |

Using the embeddings given by Lemma 25 and Lemma 26, we can reduce the goal of bounding
the entropy of (Na, p2) to bounding the entropies of (Lip;, L°°([—1,1]) and of (X, ps).

Corollary 27 Assume m > Cdlogd. We have

1/2
" /

/0 VIog N(Na, pa, €) de < LER?Vdlog (i) . Z iazh:z:; /0 Vlog N (Lipy, L®([-1,1]),¢) de

i=1 17

1/2
+L2R2d Zlen”<“ /0 \/lOgN(E,p5,€) de.

i=1
Proof Combining Lemma 25 and Lemma 26, we have

. 1/2 1/2

1 m
p2(for for) SN + K)IPRPVd || ZT%%T 196 = 9o | oo =1,y + LPR%A [ D Vo, < | p3(0,0")
i=1 7 i=1
m 1/2 . 1/2
1 1
S LR*Vdlog <M> 12 g“’ﬁw; 190 = gollioeqa ) + LR | D Ljwyin | po(os0);
=1 o =1

where we used N < 1/npand K < %log i If we regard all three metrics pa2(fs, o), ||ge —
o'l oo (=1,1)> P5 (0, 0") as metrics on 3, the desired conclusion readily follows from Lemma 16. B

It remains to bound the entropies of (Lip;, L>°([—1,1]) and of (X, ps). The former is well-
known, presented in the next lemma, while the latter can be computed easily.

Lemma 28 (Entropy bound of Lipschitz function class, Talagrand (2021)) We have

1
IOgN(Llpl’Loo([_]-alD75) 5 gv e>0.
We have now collected all the ingredients to prove the item (ii) of Lemma 24.
Proof [Proof of the item (ii) of Lemma 24] Since the diameter of Lip; with respect to L>°([—1, 1])

is 1, we deduce immediately from the Lemma 28 that

o —— ! - L'
/0 Vlog N (Lipy, L ([—1,1]),5)d€—/0 Vlog N (Lipy, L ([—1,1]),5)d€,§/0 \/?df—:,ﬁl.

Turning to bound the entropy of (X, ps), we simply note that ps < 1, hence

Y e vt Y B eyt B rwarn log(1/p)
/ 10gN(27P675) d6:/ IOgN(Eapé’e) dESJ/ 10g|2|d5§ T?
0 0 0
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where the last inequality used the conclusion of item (i) in Lemma 24, proved in Section D.3.1.
Plug the above two inequalities into Corollary 27 to obtain

1/2
o0 1 U |
/ VIog N (Na, pa,e) de < L*R*Vdlog <> : Z —a:jlwl
0 /"L i=1 p]i
1/2
i log(1/p)
+ LR (> L, l1<u e
i=1

The desired conclusion follows taking expectations on both sides, using (20) and Cauchy-Schwarz
to bound the expectation of the first term on the right hand side, and using the following fact to
bound the expectation of the second term on the right hand side:

. 1/2 . 1/2 . 1/2
E (> Ve, < <{ED Ly, j<n = m>_Pilje,j<p
i=1 i=1 j=1
1/2
n
B ZH‘BJ‘HQl
=\ m2_ 7 Leil<u
j=1
. 2 1/2
my o
j=1

NI
_M d'

IN

D.3.4. BOUNDING EA.
Recall the Chernoff bound (20), we have by Cauchy-Schwarz inequality that

1/2
m. 9
EA S gL*R*m (md +EY
i=1 Pii
Note that
1 1
E—=> p—=n
pji ]G[TL] p]
thus
2 2 2 1/2 2 2 Mzn
EA < L°R \/E<md+mu n) SRV 14+ 2
as claimed.
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