
Adaptive Scheduling for Real-Time Control
Sanjoy Baruah

Washington University
United States

baruah@wustl.edu

Mehdi Hosseinzadeh
Washington State University

USA
mehdi.hosseinzadeh@wsu.edu

Ilya Kolmanovsky
The University of Michigan

USA
ilya@umich.edu

Bruno Sinopoli
Washington University

USA
bsinopoli@wustl.edu

Abstract
Controllers can be designed to adapt to dynamic changes in the com-
putational capacity that is available for their execution by adjusting
their control computations. The concurrent development of such
controllers, and the algorithms for run-time scheduling of these
controllers, is investigated. It is shown how a mitigative controller,
that can compensate for small errors that are made in computing
the control signal during one iteration of the control loop by taking
corrective action during the subsequent iteration, can be scheduled
by a server-based real-time scheduling algorithm to provide both
e!cient resource-usage and acceptable control performance. This
illustrates that concurrent and reciprocal consideration of mutual
adaptivity can yield more resource-e!cient implementations as
well as better controller performance, than would be possible if
scheduling and control were each considered separately.

Keywords
Server-based scheduling; preemptive uniprocessors; scheduling-
adaptive mitigative control; recurrent real-time task systems.
ACM Reference Format:
Sanjoy Baruah, Mehdi Hosseinzadeh, Ilya Kolmanovsky, and Bruno Sinopoli.
2024. Adaptive Scheduling for Real-Time Control. In The 32nd International
Conference on Real-Time Networks and Systems (RTNS 2024), November 06–08,
2024, Porto, Portugal. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3696355.3696357

1 Introduction
As safety-critical cyber-physical systems are increasingly imple-
mented using resource-constrained embedded platforms, there is
widespread recognition of the need to co-design control and sched-
uling for such systems: control strategies should be designed in
a manner that facilitates resource-e!cient implementation, and
resource-allocation strategies (and corresponding schedulability
analyses) should be devised that enable e"ective control. Although
e"orts at such co-design have been made over the years by the real-
time scheduling theory community (e.g., [3–5, 8, 10, 13, 14, 17, 19,

This work is licensed under a Creative Commons Attribution International
4.0 License.

RTNS 2024, November 06–08, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1724-6/24/11
https://doi.org/10.1145/3696355.3696357

29, 31]), these have primarily tended to emphasize the scheduling
aspects while making some signi#cant simplifying assumptions
regarding control aspects. In a similar vein, papers in the control
literature that address scheduling and schedulability tend to make
many simplifying assumptions regarding implementation issues —
see, e.g., [2, 11, 12, 20, 24, 25, 30, 34]. However some recent papers
have appeared in the real-time scheduling literature (see, e.g., [26–
28, 32]) that, while primarily focused upon issues of scheduling and
schedulability analysis, are more sophisticated in regards to their
assumptions about the capabilities, needs, and characteristics of
control algorithms. This manuscript represents a further contribu-
tion to this recent trend: the authors comprise a team of control
researchers who have had little prior exposure to real-time schedul-
ing research collaborating with scheduling-theory researchers that
have limited knowledge of control, to jointly obtain a comprehen-
sive understanding of both the control and the scheduling aspects
of this co-design problem. Our collaborative e"orts thus far have
primarily focused on mutual adaptivity: how control strategies can
be devised that can adapt to the time-varying availability of com-
puting capacity, and how to design scheduling strategies that are
best able to exploit such adaptivity.

Contributions and Organization. In Section 2 we (i) provide
a basic introduction to some essential concepts in control theory
in a manner intended to be comprehensible to scheduling-theory
researchers with no prior exposure to control theory; (ii) discuss
some forms of control adaptivity with a particular focus on mitiga-
tive control strategies; and (iii) brie$y survey1 some closely-related
prior work on integrating control and schedulability considerations.
In Section 3 we apply principles from real-time scheduling theory
to develop a server-based framework for the resource-e!cient im-
plementation of a given collection of mitigative controllers upon
a shared preemptive processor with limited computing capacity
(of the kind that may, e.g., be found on an embedded resource-
constrained CPS). In Section 4 we discuss some of the design choices
that arise in developing a mitigative controller, the resolution of
which have considerable impact upon schedulability, and suggest
an heuristic approach to making these choices in a manner that
balances considerations of both schedulability and control perfor-
mance. We evaluate, via simulation experiments, our proposed
framework in Section 5; we conclude in Section 6 by placing this
work within a larger context of the co-design of controllers, and the
1This survey is integrated into the text in this section rather than being collected into
a distinct sub-section, with particular related works being cited at the point where
they are most relevant to the discussion.

https://orcid.org/0000-0002-4541-3445
https://orcid.org/0000-0001-8318-7947
https://orcid.org/0000-0002-7225-4160
https://orcid.org/0000-0001-5778-4879
https://doi.org/10.1145/3696355.3696357
https://doi.org/10.1145/3696355.3696357
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3696355.3696357

RTNS 2024, November 06–08, 2024, Porto, Portugal Sanjoy Baruah, Mehdi Hosseinzadeh, Ilya Kolmanovsky, and Bruno Sinopoli

scheduling framework needed to ensure e"ective execution of these
controllers upon resource-constrained implementation platforms.

2 Background & Context
The central theme that we explore in this paper is one of mutual
adaptivity: designing controllers to be able to adapt to implemen-
tation constraints (in particular, limited computing capabilities),
and developing scheduling strategies for implementing multiple
such controllers upon a shared platform that both exploits such
adaptivity, and does dynamic resource allocation that adapts as
computational requirements change. We start out in Section 2.1 de-
scribing some basics of control theory, framed in terms that should
be comprehensible to real-time systems researchers with no prior
exposure to control theory. In Section 2.2 we discuss some simple
ways in which control schemes can be designed to be adaptive in
order to facilitate e!cient implementation, and the corresponding
scheduling problems that arise. In Section 2.3 we focus upon a
particular form of such adaptivity based upon mitigation.

2.1 S!"# B$%&’% !(C!)*+!, T-#!+.
A controller controls a plant by repeatedly (i) sensing the output of
the plant; (ii) computing an appropriate control signal; and (iii) ap-
plying this control signal to the plant. The following time-varying
signals are relevant to a basic discussion on implementing con-
trollers:

• 𝐿 (𝑀): plant output as observed by sensors
• 𝑁 (𝑀): the expected (“reference") value of 𝐿 (𝑀)
• 𝑂 (𝑀) def= (𝐿 (𝑀) → 𝑁 (𝑀)) (the “error")
• 𝑃 (𝑀): controller state (its internal variables)
• 𝑄 (𝑀): the control signal that the controller applies to the plant

(Note that 𝑁 (𝑀),𝐿 (𝑀), 𝑂 (𝑀), 𝑃 (𝑀) and 𝑄 (𝑀) may each be a vector com-
prising multiple individual signals.) For historical reasons, many
controllers are designed by control engineers assuming they op-
erate in the continuous-time domain. E.g., Linear Time-Invariant
(LTI) systems may be described in the continuous time domain by
the following equations which characterize both the control signal
that is applied to the plant, and the manner in which the plant’s
internal state changes:

↑𝑃 (𝑀) = 𝑅1𝑃 (𝑀) +𝑅2𝑂 (𝑀)
𝑄 (𝑀) = 𝑅3𝑃 (𝑀) +𝑅4𝑂 (𝑀)

(1)

Here, ↑𝑃 (𝑀) denotes the time-derivative –the rate of change– of the
state variables 𝑃 (𝑀);𝑅1,𝑅2,𝑅3 and𝑅4 are (constant) matrices of
the appropriate dimensions.2

Although designed in the continuous-time domain, computer
implementation of such controllers usually happens in the discrete-
time domain: the controller task is invoked (“releases jobs") at
discrete time-instants 𝑆1,𝑆2, . . . ,𝑆𝐿 , . . ., (𝑇 ↓ N). Under the Logi-
cal Execution Time (LET) paradigm [21] that is widely adopted in
CPS,’s the control signal that is computed based on the sensing
that happens at time-instant 𝑆𝐿 is communicated to the plant at

2Although system dynamics may require the use of time-varying matrices upon “mode
change" – e.g., if a car were moving from a wet to a dry surface – in this paper we
restrict consideration to constant matrices only.

Figure 1: A generic control loop

time-instant 𝑆𝐿+1 and forms the basis of the control signal that is
applied to the plant over the duration [𝑆𝐿+1,𝑆𝐿+2]:3

In other words, it is the responsibility of the job released at time-
instant 𝑆𝐿 to compute 𝑄 (𝑆𝐿+1), the control signal that is to be ap-
plied to the plant at time-instant 𝑆𝐿+1, and to update the controller
state to 𝑃 (𝑆𝐿+1). This is represented using the following notation:

𝑃 [𝑇 + 1] = 𝑈𝑃 [𝑇] + 𝑉𝑂 [𝑇]
𝑄 [𝑇 + 1] = 𝑊𝑃 [𝑇] + 𝑋𝑂 [𝑇] (2)

Note that although the system (plant + controller) state evolves con-
tinuously over time, the control signal 𝑄 [𝑇] will be applied, and
controller state 𝑃 [𝑇] updated, only at discrete time instants. As
a consequence, the values of the individual entries in the matri-
ces 𝑈,𝑉,𝑊 , and 𝑋 above depend upon the duration of the interval
[𝑆𝐿 ,𝑆𝐿+1]; informally speaking, based upon having sensed the plant
state at time-instant 𝑆𝐿 the appropriate control signal to apply at
time-instant 𝑆𝐿+1 and the controller state at that instant, are obvi-
ously di"erent for di"erent values of 𝑆𝐿+1. We will henceforth use
the notation𝑈(𝑌𝐿),𝑉(𝑌𝐿),𝑊 (𝑌𝐿), and 𝑋 (𝑌𝐿) to indicate this depen-
dence of the matrices on the duration 𝑌𝐿

def= (𝑆𝐿+1 → 𝑆𝐿) between
the release of the current and next jobs.

It is a common practice to associate a period parameter 𝑍 with a
controller, which speci#es the duration between every successive
pair of invocations (i.e., 𝑌𝐿 ↔ 𝑍 for all 𝑇 ↓ N). When a controller is
designed in the continuous-time domain to optimize for a certain
control performance index and then discretized as in Expression 2,
the value assigned to 𝑍 has an impact upon controller stability
and performance. As 𝑍 decreases, the performance index with the
discrete-time controller tends to that of the designed continuous-
time controller while as 𝑍 increases, the di"erence between the
performance indices obtained by continuous-time and discrete-
time controllers will increase, and eventually the system with the
discrete-time controller may become unstable. Determining the
precise value to assign to the period parameter in order to balance
control performance with schedulability concerns is a challenging
problem that has been widely studied, and various algorithms pro-
posed (see, e.g., [6], and the references cited there) for assigning
period values.

3Zero-order hold policies apply the computed value throughout, while !rst-order hold
policies (in either basic form or the delayed or predictive variants) apply some recon-
structed piecewise linear approximation.

Adaptive Scheduling for Real-Time Control RTNS 2024, November 06–08, 2024, Porto, Portugal

2.2 A/$0*&)1 C!)*+!, *! F$’&,&*$*# S’-#/2,&)1
When multiple controllers are implemented upon a shared comput-
ing platform, the period parameters –frequencies of invocation–
of the di"erent controllers must be selected to ensure that all the
controllers together are schedulable upon the platform. As a #rst
step to control-scheduler co-design, one needs to be cognizant of
the tradeo" inherent in the choice of the controller period parame-
ters between controller performance and the computational load it
imposes upon the shared platform. This tradeo" was considered
in the elastic task model [8, 9, 15, 16] by associating an elastic pa-
rameter with a controller that characterizes how resilient controller
performance is to increases in its period parameter. The elastic
task model assumes a linear relationship between the frequency at
which a controller is invoked and its performance. Roy et al. [28] ob-
served that this is an over-simpli#cation for many controllers, and
developed a search-based method of exponential time-complexity
that characterizes each controller’s performance as a function of its
period via extensive simulation, and uses these characterizations
to search for values for the period parameters of the controllers to
optimize overall performance while ensuring schedulability.

Scheduling-adaptive control. The elastic scheduling approach,
in both its original [8] and modi#ed [28] forms, is inherently static
in the sense that the periods of individual controllers, once selected,
are #xed so long as the mix of controller tasks sharing the comput-
ing platform is unchanged. Scheduling-adaptive control represents a
more nuanced approach to the design of controllers and to their run-
time scheduling. The idea is that rather than associating a constant
period 𝑍 with a controller so that 𝑆𝐿+1 = 𝑆𝐿 +𝑍 for all 𝑇 ↓ N, the
value to be assigned to 𝑆𝐿+1 is determined at time-instant 𝑆𝐿 based
upon the current scheduling load on the shared computing plat-
form, in a manner that ensures that the platform does not become
overloaded.

The advantage of such an adaptive approach is clear: it can
provide superior control performance upon the same platform.
However, it is in general computationally too expensive to compute
the 𝑈(𝑌𝐿),𝑉(𝑌𝐿),𝑊 (𝑌𝐿), and 𝑋 (𝑌𝐿) matrices during run-time, af-
ter deciding upon a value for 𝑆𝐿+1 (and thus the value of 𝑌𝐿 ↔
𝑆𝐿+1 → 𝑆𝐿). So the practice is to pre-compute these matrices for a
few selected values of 𝑌𝐿 , and during run-time choose 𝑆𝐿+1 such
that (𝑆𝐿+1 → 𝑆𝐿) is one of these values for which the matrices have
been pre-computed. Once this value of 𝑌𝐿 is chosen, the 𝑇’th job
then simply performs the matrix computations

𝑃 [𝑇 + 1] = 𝑈(𝑌𝐿)𝑃 [𝑇] + 𝑉(𝑌𝐿)𝑂 [𝑇]
𝑄 [𝑇 + 1] = 𝑊 (𝑌𝐿)𝑃 [𝑇] + 𝑋 (𝑌𝐿)𝑂 [𝑇]

(3)

using the appropriate precomputed (and stored) matrices. In prior
work, Cervin et al. [13] have explored the issue of how to change pe-
riod parameters dynamically during run-time, and [14, 19] present
algorithms for computing multiple period parameters per task and
cycling through these pre-computed periods in a pattern that opti-
mizes control performance without compromising schedulability.

2.3 M&*&1$*&3# C!)*+!,
Pazzaglia et al. [26] propose an alternative form of scheduling-
adaptivity in control whereby the value of the period is set to
a constant 𝑍 (as with the approaches [8, 9, 15, 16, 28] based on

the elastic tasks model), and the controller invocation at time 𝑆𝐿
computes a control signal that is intended for application to the
plant at time-instant 𝑆𝐿+1 = 𝑆𝐿 + 𝑍 . However, mitigative control
allows for the possibility that the control signal that was intended
for use at time-instant 𝑆𝐿+1 will not have been computed by then.
In that case, the previously-assigned value of 𝑆𝐿+1 (at which instant
the control signal was intended to be applied to the plant) is delayed
until after the completion of this computation. Let 𝑆↗𝐿+1 denote the
actual time-instant at which the computation of this control signal
#nally completes and is applied to the plant. The next invocation
of the control task occurs at time-instant 𝑆↗𝐿+1: this invocation
computes a control signal that is intended to be applied to the plant
at time-instant 𝑆𝐿+2

def= (𝑆↗𝐿+1 +𝑍):

This next control signal is computed so as to account for, and
mitigate the e"ect of, the delay: “the control strategy of each job is
adjusted to compensate the amount of the [. . .] overrun experienced
by the previous job" [26].

This form of mitigative control allows us to be less conservative
from a scheduling perspective: rather than needing to guarantee, as
#xed-period or scheduling-adaptive control must, that the compu-
tation that commenced at time-instant 𝑆𝐿 completes by time 𝑆𝐿+1
under all processor load conditions including ones that are highly
unlikely to occur in practice, under mitigative control we only need
to deal with exceptionally poor processor-load conditions if they
actually occur. (An alternative way of looking at this is that since
the deadlines for individual jobs are no longer hard deadlines that
can never be missed, we can consider scheduling for such mitiga-
tive control to be a soft-real-time scheduling problem rather than a
hard-real-time one.)

Since under mitigative control the control signal computed by
each invocation of the controller is designed to compensate for
the overrun, if any, of the previous invocation of the controller, it
depends upon the degree of such overrun — i.e., the duration of
the delay. Allowing this duration to take on arbitrary values would
require that the controller doing so be designed at run-time rather
than beforehand; as previously, the workaround is to only allow
for a few permitted values for this delay, and at run-time to simply
round up the actual delay to the next-higher permitted one.

3 Scheduling for Mitigative Control
In this section we present an algorithm for implementing multiple
mitigative controllers upon a shared platform. We assume that a
given collection 𝑎 = {𝑎𝑀 , 𝑎2, . . . , 𝑎𝑁} of mitigative controller tasks are
to be implemented upon a single preemptive processor. Each task
𝑎𝑀 is characterized by a positive integer worst-case execution time
𝑊𝑀 ; each invocation of the controller takes an execution duration
that is guaranteed to not exceed 𝑊𝑀 .

The WCET Problem. It is widely known that the execution du-
rations of pieces of code (such as the code implementing our con-
troller tasks) tend to exhibit a good deal of variation and unpre-
dictability, particularly upon modern processors – see Figure 2. The
WCET problem [33], the problem of determining a safe upper bound

RTNS 2024, November 06–08, 2024, Porto, Portugal Sanjoy Baruah, Mehdi Hosseinzadeh, Ilya Kolmanovsky, and Bruno Sinopoli

Figure 2: This !gure, from [33], illustrates how the execu-
tion time of a single piece of code may vary when executed
repeatedly upon a modern processor.

upon the worst-case execution time (WCET) of pieces of code, is a
widely-studied problem in real-time computing. It is known that
safe upper bounds on WCET tend to be extremely conservative in
the sense that pieces of code very rarely, if ever, actually execute
for a duration as large as their WCET values as determined by a
WCET-analysis tool that is certi#ed for use in validating highly
safety-critical systems.4 Hence provisioning computing capacity
to allow each controller task invocation to execute for a duration
up to its WCET 𝑊𝑀 , is likely to result in considerable computing
resource under-utilization during runtime. So rather than doing so,
we instead leverage the mitigative capabilities of our controllers in
order to be more aggressive in provisioning computing resources
by making more optimistic assumptions about the actual execution
duration of the task invocations. We are able to do this because
under mitigative control the consequences of being incorrect about
the execution duration (and thereby being unable to apply the con-
trol signal at the expected instant) can be mitigated by the next
control signal that will be applied. This allows for more aggressive
scheduling decision-making since negative consequences of being
incorrect can be remedied.

3.1 T-# T$%4M!/#,
As stated above, we assume that we are given a collection 𝑎 =
{𝑎𝑀 , 𝑎2, . . . , 𝑎𝑁} of mitigative controller tasks that are to be imple-
mented upon a single shared preemptive processor. Each task 𝑎𝑀
is characterized by a single5 positive integer worst-case execution
time (WCET) 𝑊𝑀 and multiple positive integer period parameters
→↘
𝑍𝑀 = [𝑍 (1)

𝑀 ,𝑍 (2)
𝑀 , . . . ,𝑍 (𝑁𝐿)

𝑀]; we assume without loss of generality
that these are indexed in increasing order: 𝑍 (𝑂)

𝑀 < 𝑍 (𝑂+1)
𝑀 for all 𝑏 .

(Sec. 4 discusses how these parameter values are assigned.) The
interpretation of these parameters is as follows:
• The controller is #rst invoked at time-instant zero. Successive
invocations happen at the instant that a computed control signal
is applied to the plant.

4In Figure 2, the value that would be determined by such a tool is the one labeled
“worst-case guarantee". It represents the best upper bound that can be authoritatively
established on the maximum duration the code will take to execute over all circum-
stances under which the system is required to behave correctly. (Please see [33] for
additional details.)
5For simplicity, we assume here that the computational cost of the mitigative actions
are substantially smaller than that of computing the control signal, and hence𝑃𝐿 is
the same regardless of which version of the controller is executed. This assumption is
easily removed at some slight increase in the complexity of our proposed algorithm.

Figure 3: The control computation initiated at time-instant
𝑆𝐿 completes at some instant between 𝑆𝐿 +𝑍 (𝑄→1)

𝑀 and 𝑆𝐿 +𝑍 (𝑄)
𝑀 ,

and so is applied to the plant at time-instant 𝑆𝐿 +𝑍 (𝑄)
𝑀 .

• Each invocation of the controller takes an execution duration
that is guaranteed to not exceed 𝑊𝑀 . It is expected that most
invocations of 𝑎𝑀 will have an execution duration far smaller than
𝑊𝑀 .

• Suppose that the controller is invoked at some instant 𝑆𝐿 . The
control signal that is computed by this invocation is intended
to be applied at time-instant (𝑆𝐿 +𝑍 (1)

𝑀). However in the event
that the job has not completed execution by then, controller
implementations are provided that can compensate for the e"ects
of being tardy by amounts

(
𝑍 (𝑄)
𝑀 →𝑍 (1)

𝑀

)
for each 𝑐, 1 < 𝑐 ≃ 𝑑𝑀 ,

in the next control signal that will be computed –see Figure 3.
Hence the control signal may be applied at time-instant 𝑆𝐿 +𝑍 (𝑄)

𝑀
for any 𝑐, 1 < 𝑐 ≃ 𝑑𝑀 – the sooner it is applied, the better the
performance (since control is then applied more frequently: as
stated above, the next invocation of the controller occurs the
instant the current control signal is applied to the plant).

• The invocation must complete its execution by time-instant
𝑆𝐿 +𝑍 (𝑁𝐿)

𝑀 : not doing so represents a failure since controller imple-
mentations are not provided that can compensate for tardiness
exceeding

(
𝑍 (𝑁𝐿)
𝑀 →𝑍 (1)

𝑀

)
.

Observe that the control designer has some freedom in choosing
both the number𝑑𝑀 and the values𝑍

(1)
𝑀 ,𝑍 (2)

𝑀 , . . . ,𝑍 (𝑁𝐿)
𝑀 of the period

parameters; we will address the issue of making these choices in
Section 4 below, where we will see that this is again a co-design
problem where considerations of control are scheduling should
both be taken into account.

3.2 T-# S’-#/2,&)1 A,1!+&*-"
We #rst de#ne a utilization parameter 𝑒𝑀 for each mitigative con-
troller task 𝑎𝑀 , as follows:

𝑒𝑀
def=

(
𝑊𝑀/𝑍 (𝑁𝐿)

𝑀

)
(4)

Since each invocation of 𝑎𝑀 may require up to 𝑊𝑀 time units to com-
plete execution and successive invocations must occur no further
than 𝑍 (𝑁𝐿)

𝑀 time apart, 𝑒𝑀 denotes a lower bound on the fraction of
the processor computing capacity that must be guaranteed for exe-
cuting task 𝑎𝑀 in the worst case (i.e., in the unlikely circumstance
that every one of its invocations actually takes 𝑊𝑀 time units to
complete execution).

Adaptive Scheduling for Real-Time Control RTNS 2024, November 06–08, 2024, Porto, Portugal

Given a collection {𝑎1, 𝑎2, . . . , 𝑎𝑁} of mitigative controller tasks
that satisfy the schedulability condition (or admission control prop-
erty)

𝑁∑
𝑀=1

𝑒𝑀 ≃ 1 (5)

that are to be implemented upon a shared preemptive processor,
we associate a server6 𝑓𝑀 with each task 𝑎𝑀 . Each server 𝑓𝑀 is char-
acterized by a scheduling deadline 𝑋𝑀 and an execution budget 𝑉𝑀 .
During run-time, some of the servers are designated as being active
(the events that cause a server to be so designated are described
below); at each instant in time, the active server with the earliest
scheduling deadline is selected for execution upon the processor. (In
other words, these servers are prioritized for execution according to
preemptive earliest deadline !rst (EDF) [18, 23].) Let us explain the
workings of these servers by stepping through a simple example
scenario. At each instant in time each server is in one of the three
states depicted in Figure 4 (with &)$’*&3# being the initial state).
• Suppose that the controller 𝑎𝑀 is invoked at some time-instant 𝑆𝐿
while server 𝑓𝑀 is in the &)$’*&3# state. This causes server 𝑓𝑀 to
be designated as being active, and to transition to the ’!)*#)/
state. Values are associated to scheduling deadline 𝑋𝑀 and budget
𝑉𝑀 as follows:

𝑋𝑀 ⇐ (𝑆𝐿 +𝑍 (1)
𝑀), 𝑉𝑀 ⇐ (𝑍 (1)

𝑀 ⇒𝑒𝑀) .
In so doing, we are making the optimistic assumption that the
actual execution time of this invocation of the server will not
exceed (𝑍 (1)

𝑀 ⇒ 𝑒𝑀), in which case (as we will see below) our
server can guarantee to complete its execution by time-instant
(𝑆𝐿 +𝑍 (1)

𝑀).
• As stated above, the active server with the earliest scheduling
deadline is selected for execution, where executing server 𝑓𝑀 cor-
responds to executing the invocation of controller 𝑎𝑀 . Therefore
at each instant in time while there is some controller task need-
ing execution exactly one of the active servers – the one with
the smallest value of its scheduling deadline parameter – is in
the #5#’2*# state, while the other active servers are in their re-
spective ’!)*#)/ states. While server 𝑓𝑀 is executing (i.e., while
it is in its #5#’2*# state), its budget 𝑉𝑀 gets depleted at a unit
rate. The transition between the ’!)*#)/ and #5#’2*# states is
determined entirely by the scheduler.

• It follows from Lemma 1 (below) that one of the following two
events is guaranteed to occur prior to 𝑋𝑀 : either (i) the controller
invocation completes execution; or (ii) the budget 𝑉𝑀 is depleted
to zero.

(1) If the controller invocation of 𝑎𝑀 completes execution before the
budget has been entirely depleted (i.e., before 𝑉𝑀 has become
equal to zero), then (i) server 𝑓𝑀 transitions from the #5#’2*#
state to the &)$’*&3# state; (ii) the control signal that was
computed by the just-completed controller invocation will be
applied to the plant at time-instant (𝑆𝐿 + 𝑍 (1)

𝑀); and (iii) the
next invocation of 𝑎𝑀 is scheduled for time-instant (𝑆𝐿 +𝑍 (1)

𝑀) —

6See, e.g., [7, Ch 5–6] for a textbook introduction to servers. We are not the #rst to
consider the use of servers to service control tasks – see, e.g., [4] and some of the
references cited therein. However, to our knowledge we are the #rst to propose their
use for servicing mitigative control tasks.

at that instant, it will once again transition from the &)$’*&3#
to the ’!)*#)/ state.

(2) If however the budget 𝑉𝑀 becomes equal to zero prior to the
controller invocation completing its execution then its sched-
uling deadline 𝑋𝑀 is increased to (𝑆𝐿 +𝑍 (2)

𝑀), and its execution
budget replenished to (𝑍 (2)

𝑀 →𝑍 (1)
𝑀) ⇒𝑒𝑀 .

The rationale for this is as follows. The budget 𝑉𝑀 becoming
equal to zero indicates that our optimism that the execution du-
ration of the task invocation would not exceed (𝑍 (1)

𝑀 ⇒𝑒𝑀) was
unwarranted – it executed for this duration without complet-
ing. We therefore make another (still optimistic) assumption
that the actual execution time of this invocation of the server
will not exceed (𝑍 (2)

𝑀 ⇒𝑒𝑀) – this is achieved by setting 𝑉𝑀 to
(𝑍 (2)
𝑀 →𝑍 (1)

𝑀) ⇒𝑒𝑀 — in which case our server can guarantee
to complete its execution by time-instant (𝑆𝐿 +𝑍 (2)

𝑀).
Increasing the value of 𝑋𝑀 in this manner may cause 𝑓𝑀 to
no longer be the earliest-deadline server, in which case the
scheduler would cause it to transition to its ’!)*#)/ state
and some other active server (the one with the current earliest
scheduling deadline) would enter its own #5#’2*# state.

• Suppose the latter of the two possibilities above had occurred: the
budget became equal to zero prior to the controller invocation
completing execution. It again follows from Lemma 1 that one of
the following two events is guaranteed to occur prior to𝑋𝑀 : either
the controller invocation completes execution, or the budget 𝑉𝑀
is depleted to zero.
If the controller invocation completes execution before the bud-
get has been depleted then server 𝑓𝑀 transitions to its &)$’*&3#
state and the next invocation of 𝑎𝑀 is scheduled for time-instant
(𝑆𝐿 +𝑍 (2)

𝑀), while if the budget 𝑉𝑀 becomes equal to zero before
completion then 𝑋𝑀 is increased to (𝑆𝐿 + 𝑍 (3)

𝑀) and budget 𝑉𝑀
replenished to (𝑍 (3)

𝑀 →𝑍 (2)
𝑀) ⇒𝑒𝑀

• In general, assume that server 𝑓𝑀 ’s scheduling deadline 𝑋𝑀 was
last set to be equal to (𝑆𝐿 +𝑍 (𝑄)

𝑀). It follows from Lemma 1 that
one of the following two events is guaranteed to occur prior to
𝑋𝑀 : either the controller invocation completes execution, or the
budget 𝑉𝑀 is depleted to zero.
(1) If the controller invocation completes execution #rst, then

(i) server 𝑓𝑀 transitions from its #5#’2*# state to its &)$’*&3#
state, and (ii) the next invocation of 𝑎𝑀 is scheduled for time-
instant (𝑆𝐿 +𝑍 (𝑄)

𝑀).
(2) If however the budget becomes equal to zero prior to the con-

troller invocation completing, then the scheduling deadline
𝑋𝑀 is increased to (𝑆𝐿 +𝑍 (𝑄+1)

𝑀), and the budget replenished
to (𝑍 (𝑄+1)

𝑀 →𝑍 (𝑄)
𝑀) ⇒𝑒𝑀 .

And what if the budget becomes equal to zero but 𝑋𝑀 is already
equal to (𝑆𝐿 + 𝑍 (𝑁𝐿)

𝑀)? Lemma 2 below will show that in this
case the invocation of 𝑎𝑀 has executed for a duration greater
than𝑊𝑀 without completing — i.e., the WCET estimate for 𝑎𝑀 was
incorrect. We assume that this corresponds to an error condition
that must be handled outside the framework of this run-time
scheduling algorithm: hence the scheduler $ags an error and
places the server 𝑓𝑀 in its &)$’*&3# state.

RTNS 2024, November 06–08, 2024, Porto, Portugal Sanjoy Baruah, Mehdi Hosseinzadeh, Ilya Kolmanovsky, and Bruno Sinopoli

Figure 4: Server States: an inactive server in the states des-
ignated “ &)$’*&3#", 6-&,# $) $’*&3# %#+3#+ &% &) !)# !(*-#
6! %$*#% /#%&1)$*#/ “ ’!)*#)/" $)/ “ #5#’2*#".

Figure 5: Pseudo-code representation of the server 𝑓𝑀 run-
time algorithm

The algorithm discussed above is represented in pseudo-code form
in Figure 5. All the controllers are invoked at time-instant zero (i.e.,
&)3!4#C!)*+!,,#+(𝑎𝑀 , 0) is called for each 𝑔, 1 ≃ 𝑔 ≃ 𝑑), and each
𝑎𝑀 is subsequently invoked at the instants speci#ed in Line 7 of the
pseudocode of procedure &)3!4#C!)*+!,,#+(𝑎𝑀 ,𝑆𝐿). Upon each
such invocation, initializing the budget and the server deadline is

done by the call to +#0,#)&%-S#+3#+(𝑎𝑀 ,𝑆𝐿 , 1) in Line 3; subsequent
budget replenishments and the corresponding deadline postpone-
ments are done in subsequent calls to +#0,#)&%-S#+3#+(𝑎𝑀 ,𝑆𝐿 , 𝑐)
in Line 12.

P+!!(!(’!++#’*)#%%
We will now show that the algorithm described above is correct
in the following sense (see Theorem 1): if

(∑𝑁
𝑀=1𝑒𝑀 ≃ 1

)
and the

WCET estimates are correct in the sense that no invocation of any
task 𝑎𝑀 needs more than 𝑊𝑀 time units to complete execution, then
each invocation of each 𝑎𝑀 completes within a duration 𝑍 (𝑁𝐿)

𝑀 of
its invocation. In the remainder of this section let us assume that(∑𝑁

𝑀=1𝑒𝑀 ≃ 1
)
, i.e., Condition 5 is satis#ed.

L#""$ 1. Suppose that the server 𝑓𝑀 transits out of its &)$’*&3#
state at time-instant 𝑆𝐿 , and has not since returned to &)$’*&3#
at some time-instant 𝑀cur > 𝑆𝐿 . It must be the case that 𝑀cur is no
larger than the current value of 𝑋𝑀 at time 𝑀cur.

Proof. Let the value of 𝑋𝑀 at time-instant 𝑀cur equal (𝑆𝐿 +𝑍 (𝑄)
𝑀).

Since the budget 𝑉𝑀 is initially assigned the value 𝑒𝑀 ⇒ 𝑍 (1)
𝑀 and

replenished by an amount𝑒𝑀⇒ (𝑍 (𝑂)
𝑀 →𝑍 (𝑂→1)

𝑀) when𝑋𝑀 is increased
from 𝑆𝐿 +𝑍 (𝑂→1)

𝑀 to 𝑆𝐿 +𝑍 (𝑂)
𝑀 for each 𝑏 , the cumulative budget that

has been assigned to 𝑓𝑀 over the interval [𝑆𝐿 ,𝑆𝐿 +𝑍 (𝑄)
𝑀) is given by

𝑅𝐿 ⇒ 𝑆 (1)
𝐿 +𝑅𝐿 ⇒

(
𝑆 (2)
𝐿 → 𝑆 (1)

𝐿

)
+ · · · +𝑅𝐿 ⇒

(
𝑆 (𝑀)
𝐿 → 𝑆 (𝑀→1)

𝐿

)

= 𝑅𝐿 ⇒ 𝑆 (𝑀)
𝐿

Hence, server 𝑓𝑀 ’s budget request could be satis#ed in its entirety
by its deadline, if a fraction𝑒𝑀 of the processor were to be reserved
for 𝑓𝑀 ’s use.

Repeating the above argument for all the servers, it follows from
Condition 5 that there always exists a processor-sharing schedule
in which each server 𝑓 𝑂 is assigned a dedicated fraction𝑒 𝑂 of the
processor capacity, such that each budget request of each server is
satis#ed in its entirety by its deadline.

It therefore follows from the optimality property of preemptive
uniprocessor EDF [18, 23] that if Condition 5 is satis#ed then each
budget request of each server is satis#ed in its entirety by its dead-
line if the servers are prioritized according to their deadlines (as
indeed they are in our framework). ↭

L#""$ 2. Each invocation of 𝑎𝑀 is guaranteed to have either
completed or received at least 𝑊𝑀 units of execution within an
interval of duration 𝑍 (𝑁𝐿)

𝑀 since its invocation.

Proof.Aswe saw in the proof of Lemma 1, the cumulative budget
that has been assigned to server 𝑓𝑀 when the value of 𝑋𝑀 is equal to
𝑆𝐿 +𝑍 (𝑁𝐿)

𝑀 equals𝑒𝑀 ⇒𝑍 (𝑁𝐿)
𝑀 ; by de#nition of𝑒𝑀 (Expression 4), this

equals𝑊𝑀 . It therefore follows that the invocation of 𝑎𝑀 that triggered
the transition of 𝑓𝑀 out of its &)$’*&3# state at some time-instant
𝑆𝐿 will de#nitely have completed execution or received at least 𝑊𝑀
units of execution when the value of 𝑋𝑀 is equal to 𝑆𝐿 +𝑍 (𝑁𝐿)

𝑀 . ↭

Theorem 1 immediately follows.

T-#!+#" 1. If the WCET parameters are correct — i.e., each
invocation of each task 𝑎𝑀 completes upon receiving no more than

Adaptive Scheduling for Real-Time Control RTNS 2024, November 06–08, 2024, Porto, Portugal

𝑊𝑀 units of execution — and

𝑁∑
𝑀=1

𝑒𝑀 ≃ 1 (6)

then each invocation of 𝑎𝑀 is guaranteed to complete within an
interval of duration ≃ 𝑍 (𝑁𝐿) since its invocation. ↭

It is worth pointing out another consequence of Lemma 2: the e"ect
of a mis-parametrized control task —some task for which the 𝑊𝑀
parameter value turns out to in fact not be an upper bound on
its WCET— is limited to that task only. That is, while such a mis-
parametrized task may report an error (line 3 of the
+#0,#)&%-S#+3#+(𝑎𝑀 ,𝑆𝐿 , 𝑐) procedure in Figure 5), this will not im-
pact the correct execution of servers for which the parameter values
are correct. In other words, our scheduling algorithm is robust to
WCET errors in the sense that underestimating the WCET of some
control tasks does not compromise the correct execution of the
remaining (correctly characterized) tasks. It is hence perfectly ac-
ceptable to be somewhat more optimistic in characterizing the
WCETs of less safety-critical tasks: while they may fail to perform
correctly if the optimism turns out to be unwarranted, correctness
of the safety-critical tasks is not compromised.

As a pragmatic improvement to the design of our scheduling al-
gorithm, we may also wish to incorporate the idea behind the GRUB
(for “Greedy Reclamation of Unused Bandwidth") server [1, 22] that
is available as part of the Linux OS.7 Under GRUB, excess processor
capacity (e.g., an amount (1 →∑

𝑀 𝑒𝑀), if this exceeds zero, plus the
budget that is left over if some invocation completes without ex-
hausting its budget) is allocated to the currently-executing server.
It has been shown that such a greedy reclamation strategy tends to
hasten completion time on average.

4 Choosing 𝑑𝑀 and the 𝑍 (𝑄)
𝑀 values

In Section 3 above, we characterized each mitigative control task
by its WCET and multiple period parameters. We observed that the
value to be assigned to the WCET parameter is determined using
a WCET-analysis tool, but what determines the values assigned
to the period parameters? This of course depends upon the par-
ticulars of the controller that is being modeled. For instance, in
the situation considered by Pazzaglia et al. [26] the plant output
(the “𝐿 (𝑀)" is available only at particular periodic time-instants and
hence the 𝑍 (𝑄)

𝑀 values must all be synchronized to coincide with
these time-instants. In a more general setting, though, one can
envision controllers that are able to sense the plant output at any
time, in which case the choice of 𝑑𝑀 is likely to be determined by the
design e"ort (how many di"erent controllers, each mitigating for a
di"erent degree of error, do we want to design?) and, when imple-
mented upon memory-limited embedded platforms, perhaps upon
considerations of how much storage we wish to devote to storing
multiple di"erent controller implementations. We now propose an
heuristic approach for assigning values to the 𝑍 (𝑄)

𝑀 parameters for
such controllers and for a chosen value of 𝑑𝑀 .

7See, e.g., https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html; ac-
cessed October 29, 2021.

(1) We set the longest period, 𝑍 (𝑁𝐿)
𝑀 , to the largest value that guar-

antees stability and the minimum acceptable level of perfor-
mance.8 The utilization parameter𝑒𝑀 of 𝑎𝑀 is then set equal to
𝑊𝑀/𝑍 (𝑁𝐿)

𝑀 , where 𝑊𝑀 denotes the WCET as determined by some
high-integrity WCET-analysis tool. Hence each invocation of 𝑎𝑀
is guaranteed to complete within an interval of duration 𝑍 (𝑁𝐿)

𝑀
of its invocation (provided it executes for no more than the
WCET).

(2) We conduct extensive simulation experiments by executing the
controller under a wide range of conditions (i.e., by having it
execute concurrently with di"erent mixes of other workloads)
and measuring its execution duration in order to obtain a pro#le,
similar to the one depicted in Figure 2, of its actual execution-
time.
Based on this observed pro#le, let us de#ne a function
𝑕 : R⇑0 ↘ R[0,1] to denote the cumulative distribution func-
tion (CDF) of the observed execution duration:

𝑕 (𝑀) def= Probability
[
Execution duration ≃ 𝑒𝑀 ⇒ 𝑀

]
(7)

Here the scaling down by 𝑒𝑀 re$ects the fact that server 𝑓𝑀
is only guaranteed a fraction 𝑒𝑀 of the processor capacity. In
essence, 𝑕 (𝑀) seeks to represent the probability that a random
invocation of 𝑎𝑀 will complete within an interval of duration 𝑀
upon a dedicated speed-𝑒𝑀 processor.

(3) We determine, by extensive simulation, a quantitative measure
of the controller’s performance, including its mitigation actions,
when it is executed at di"erent frequencies (i.e., with di"er-
ent inter-invocation periods) —this process is illustrated on an
example in Section 5 below. Let 𝑖𝑇 (𝑀) denote the performance
obtained when the selected period is 𝑀 ; without loss of general-
ity let us assume smaller values of 𝑖𝑇 (𝑀) correspond to better
performance.

(4) Under the scheduling algorithm described in Section 3 above, a
job of the task that completes execution 𝑀 time units after its
invocation where 𝑍 (𝑄→1)

𝑀 < 𝑀 ≃ 𝑍 (𝑄)
𝑀 , will be next invoked 𝑍 (𝑄)

𝑀
time units after the previous one and thereby achieve a per-
formance of 𝑖𝑇 (𝑍 (𝑄)

𝑀). De#ning 𝑍 (0)
𝑀

def= 0 for notational conve-
nience, we should therefore choose values for𝑍 (1)

𝑀 , . . . ,𝑍 (𝑁𝐿→1)
𝑀

tominimize the following objective:
𝑁𝐿∑
𝑄=1

(
𝑖𝑇 (𝑍 (𝑄)

𝑀) ⇒
(
𝑕 (𝑍 (𝑄)

𝑀) → 𝑕 (𝑍 (𝑄→1)
𝑀)

))
(8)

since for each 𝑐, 1 ≃ 𝑐 ≃ 𝑑𝑀 , a performance of 𝑖𝑇 (𝑍 (𝑄)
𝑀) is ob-

tained with probability 𝑕 (𝑍 (𝑄)
𝑀) → 𝑕 (𝑍 (𝑄→1)

𝑀).
The precise manner in which this optimization problem is to be
solved depends upon various factors, primarily the properties of
the functions 𝑕 (·) and 𝑖𝑇 (·). Speci#c solution techniques can be
developed for various speci#c forms of the 𝑕 (·) and 𝑖𝑇 (·) functions.
For instance if the function 𝑖𝑇 (𝑀) is only de#ned for a (relatively
small) discrete set of values of 𝑀 , then the optimization problem of
#nding values for the 𝑍 (𝑄)

𝑀 ’s that minimizes Expression 8 can be
solved by exhaustive search – this is illustrated in Section 5 below.
8Note that we are assuming that each task represents an independent control task. We
leave consideration of stability and performance in systems in which the di"erent
control tasks interact with each other to future work..

https://www.kernel.org/doc/html/latest/scheduler/sched-deadline.html

RTNS 2024, November 06–08, 2024, Porto, Portugal Sanjoy Baruah, Mehdi Hosseinzadeh, Ilya Kolmanovsky, and Bruno Sinopoli

𝑌𝐿 10 15 20 25 30 35 40 45 50
𝑖𝑇 5.847 5.913 6.307 6.496 7.162 7.761 9.174 11.57 19.51

Table 1: Performance index 𝑖𝑇 (smaller is better) as a function of period 𝑌𝐿

5 Experimental Evaluation
In Section 3 above, we showed that our scheduling framework es-
sentially guarantees each individual mitigative controller task 𝑎𝑀 a
fraction𝑒𝑀 of the processor capacity – it guarantees to provide 𝑎𝑀
at least as much execution as 𝑎𝑀 would receive if it were executing
upon a dedicated slower processor of speed𝑒𝑀 . Hence to understand
the controller performance versus schedulability tradeo" that is
inherent in our proposed co-design approach, it su!ces to consider
the performance of a single controller task when scheduled ac-
cording to our framework. Hence we experimentally evaluated the
algorithm and the period-selection heuristic described in Sections 3
and 4 above upon an example controller that had previously been
introduced by Roy et al. [28] earlier this year. This is a second-order
DCmotor speed-control systemwith the following continuous-time
dynamics:

↑𝑗 (𝑀) =
[
→10 1
→0.02 →2

]
𝑗 (𝑀) +

[
0
2

]
𝑄 (𝑀)

and output

𝐿 (𝑀) =
[
1
0

]
𝑗 (𝑀)

We model this system as a discrete-time system with sampling
time 10ms (millisecond) and a one-sample delay:

𝑘 [𝑇 + 1] = ω𝑘 [𝑇] + ε𝑄 [𝑇], 𝑘 [0] =
[
1, 0, 0

]𝑆
where𝑘 [𝑇] =

[
𝑗 [𝑇]

𝑄 [𝑇 → 1]

]
and 𝑄 [𝑇] = →𝑙𝑘 [𝑇] with

𝑙 = [157.9898, 17.07916, 0.0850342]
(please see [28] for additional details), to place the closed-loop
poles for the system at 0.6, and use as performance index 𝑖𝑇 the
quadratic cost over a #nite horizon of 100 iterations:

𝑖𝑇
def=

100∑
𝐿=1

𝑘 [𝑇]𝑆𝑚𝑘 [𝑇], where 𝑚 = diag{1, 10→2, 10→5}

Methodology.We now describe our experimental methodology.
We #rst simulated the behaviour of the controller at various dif-
ferent (#xed) periods in multiples of 5ms in order to determine
the largest period at which it could be invoked periodically and
retain stability – see Figure 6. These experiments reveal that our
controller exhibits stable behavior for periods up to 50ms, but not
beyond that.

We then determined, again via simulation experiments, the per-
formance index values when the controller is invoked periodically
at several di"erent periods9 in the range [10ms, 50ms]. These per-
formance index values are listed in Table 1.

We modeled the actual distribution of execution times as follow-
ing a Weibull distribution with parameters shape = 2.0, location =
9In this experiment we assume for simplicity that the control signal to the plant
𝑈 [𝐿 + 1] is unchanged by such mitigation actions, which only modify the controller
state 𝑉 [𝐿 + 1] – see Expression. 3.

Figure 6: Observations from simulations for determining
the range of frequencies over which the controller is stable.
The curves plot system state 𝐿 (𝑀) as a function of time 𝑀 for
di"erent choices of controller invocation periods: the curve
for invocation period 55ms oscillates without converging.

4.0, and scale = 15; the probability density function (pdf) and cumu-
lative distribution function (cdf) (𝑕 (𝑀) as de#ned in Expression 7)
of the consequent time to completion are depicted by the red lines
in Figure 8.

Choosing the 𝑍 (𝑄)
𝑀 values.We used the simulated performance

index values of Table 1, and theWeibull(2.0, 4.0, 15) execution-time
distribution model, to assign values to the 𝑍 (𝑄)

𝑀 parameters. Note
that we have nine values of 𝑌𝐿 listed in Table 1 – these are all
potential𝑍 (𝑄)

𝑀 values. Suppose that we are restricted to #ve distinct
periods (𝑑𝑀 = 5). As stated in Section 4,𝑍 (𝑁𝐿) should be set equal to
the largest value for which stability and a minimum level of per-
formance is guaranteed; in our example, therefore, 𝑍 (5)

𝑀 ⇐ 50. It is
reasonable to set𝑍 (1)

𝑀 to 10 (since the controller was designed with
an intended period of 10); this leaves us to choose an additional three
periods from the seven remaining values {15, 20, 25, 30, 35, 40, 45}.
By exhaustive enumeration — i.e., computing the objective function
of Expression 8 for all

(7
3
)
= 35 choices of the three intermediate

periods — we determined that the expected value of the perfor-
mance index takes of its minimum value of 6.584 when the selected
periods are 15, 25, and 35:

→↘
𝑍𝑀 = [10, 15, 25, 35, 50] (9)

Experiments and Observations.We performed two sets of exper-
iments, one assuming controller execution times are indeed drawn
from the Weibull(2, 4, 15) distribution as was assumed in choosing
the periods, and another when they are not.

§1. For the #rst set of experiments, we considered three di"erent
choices of controller periods

→↘
𝑍𝑀 : one (Expression 9) determined as

described in Section 4, a second (
→↘
𝑍𝑀 = [10, 20, 30, 40, 50]) obtained

Adaptive Scheduling for Real-Time Control RTNS 2024, November 06–08, 2024, Porto, Portugal

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

6.4

6.6

6.8

7.0

7.2

7.4

Weibull shape parameter value

𝑖 𝑇
Periods chosen as per Section 4

All periods

Figure 7: Robustness to error in modeling execution times:
the impact of the shape parameter in Weibull distribution
on performance index.

by choosing the intermediate periods uniformly, and a third that
includes all the stable periods:

→↘
𝑍𝑀 = [10, 15, 20, 25, 30, 35, 40, 45, 50] —

this third choice, which is not a viable design option for implemen-
tation since it violates our constraint that we only have #ve distinct
periods (𝑑𝑀 = 5), serves as a proxy for optimality. We measured the
performance of the controller over simulated runs of one hundred
invocations. Averaged over #ve thousand runs, the performance
indices obtained for the three choices of periods are as follows:

Periods: As in Expression 9 [10, 20, 30, 40, 50] All
𝑊𝑁 6.5942 6.6199 6.3859

This indicates that choosing periods as in Section 4, which yields the
periods in Expression 9 for our running example, does not su"er
too large a performance penalty in comparison to using all the
available periods. This performance penalty may be a reasonable
one to pay, particularly when noting that choosing all the periods
almost doubles the value of𝑑𝑀 in our example (from #ve to nine). We
also note that there is a slight performance bene#t (about 10%) to
choosing the periods according to the heuristic of Section 4 rather
than just having them spaced uniformly apart.

§2. Our second set of experiments evaluate the robustness of our
period-selection approach in the event that our modeling of the
distribution of execution times (step 2 of the heuristic in Section 4)
turns out to be inaccurate. To do so we determined controller per-
formance when its actual execution duration is drawn from distribu-
tions that differ from the Weibull(2, 4, 15) model that was assumed
when determining the choice of periods. An an illustrative example,
Figure 8 depicts the modeledWeibull(2, 4, 15) probability density
function (pdf) and cumulative distribution function (cdf) in red;
the blue lines depict pdf and cdf for theWeibull(3, 4, 15) distribu-
tion from which the assumed execution durations were chosen. We
obtained the following performance indices upon performing the
same simulations as above but with execution durations drawn
from theWeibull(3.0, 4, 15) distribution:

Periods: As in Expression 9 [10, 20, 30, 40, 50] All
𝑊𝑁 6.4422 6.5017 6.3073

We repeated this experiment for the Weibull(𝑗, 4, 15) distribu-
tions for various values of 𝑗 ; some of the results are depicted in

Figure 7. These observations o"er some evidence that our period-
determination method may be quite robust to inaccuracies in the
modeling of controller execution duration.

6 Context and Conclusions
Control systems have long been one of the most important motivat-
ing use-cases for the development of new models and algorithms
in real-time scheduling theory (for instance, the seminal work of
Liu & Layland [23] begins with the words “The use of computers
for control and monitoring of industrial processes has expanded
greatly in recent years. . . "). It is coming to be increasingly widely
recognized (see, e.g., [26–28, 32]) that the real-time scheduling the-
ory community needs to collaborate closely with control engineers
to jointly develop models and algorithms that are more faithful to
control considerations. The research reported in this manuscript
was developed in this spirit. We looked at models of control that
(i) need not be invoked in a rigidly periodic manner – rather, they
are capable of dynamically adapting their frequency of invocation
in response to constraints upon the availability of computational
resources; and (ii) may make optimistic assumptions regarding
execution duration since they are able to compensate for errors
that are made in computing the control signal during one iteration
of the control loop by taking corrective action during subsequent
iterations. We applied principles from real-time scheduling theory
to design and show correct a server-based scheduling framework
for implementing such mitigative controllers in a manner that bal-
ances the need for e"ective control with the need for e!cient and
e"ective stewardship of computing resources, and experimentally
demonstrated the e"ectiveness of this framework upon a simple
control application.

Acknowledgments
This research was supported in part by the US National Science
Foundation (Grants CPS-1932530, CNS-2141256, and CPS-2229290).

References
[1] L. Abeni, J. Lelli, C. Scordino, and L. Palopolii. 2014. Greedy CPU reclaiming for

SCHED DEADLINE. In Proceedings of the Real-Time Linux Workshop.
[2] Mohammad Al Khatib, Antoine Girard, and Thao Dang. 2017. Scheduling

of Embedded Controllers Under Timing Contracts. In Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control (HSCC
’17). Association for Computing Machinery, New York, NY, USA, 131–140.
https://doi.org/10.1145/3049797.3049816

[3] Amir Aminifar and Enrico Bini. 2017. Anomalies in scheduling control applica-
tions and design complexity. In Design, Automation & Test in Europe Conference &
Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017, David Atienza
and Giorgio Di Natale (Eds.). IEEE, 1607–1610. https://doi.org/10.23919/DATE.
2017.7927247

[4] Amir Aminifar, Enrico Bini, Petru Eles, and Zebo Peng. 2016. Analysis and Design
of Real-Time Servers for Control Applications. IEEE Trans. Computers 65, 3 (2016),
834–846. https://doi.org/10.1109/TC.2015.2435789

[5] Enrico Bini and Anton Cervin. 2008. Delay-Aware Period Assignment in Control
Systems. In Proceedings of the 29th IEEE Real-Time Systems Symposium, RTSS
2008, Barcelona, Spain, 30 November - 3 December 2008. IEEE Computer Society,
291–300. https://doi.org/10.1109/RTSS.2008.45

[6] Enrico Bini and Anton Cervin. 2008. Delay-Aware Period Assignment in Control
Systems. In 2008 Real-Time Systems Symposium. 291–300. https://doi.org/10.1109/
RTSS.2008.45

[7] Giorgio C. Buttazzo. 2005. Hard Real-Time Computing Systems: Predictable Sched-
uling Algorithms and Applications (second ed.).

[8] Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. 1998. Elastic Task Model
for Adaptive Rate Control. In IEEE Real-Time Systems Symposium.

https://doi.org/10.1145/3049797.3049816
https://doi.org/10.23919/DATE.2017.7927247
https://doi.org/10.23919/DATE.2017.7927247
https://doi.org/10.1109/TC.2015.2435789
https://doi.org/10.1109/RTSS.2008.45
https://doi.org/10.1109/RTSS.2008.45
https://doi.org/10.1109/RTSS.2008.45

RTNS 2024, November 06–08, 2024, Porto, Portugal Sanjoy Baruah, Mehdi Hosseinzadeh, Ilya Kolmanovsky, and Bruno Sinopoli

0 5 10 15 20 25 30 35 40 45 50

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

·10→2

𝑑

ru
nn

ing
tim

e(
s)

pdf-model
pdf-actual

0 5 10 15 20 25 30 35 40 45 50

0.0

0.2

0.4

0.6

0.8

1.0

𝑑

ru
nn

ing
tim

e(
s)

cdf-model
cdf-actual

Figure 8: Modeled (in red) and actual (in blue) probability density function (pdf) and cumulative distribution function (cdf) of
the duration a controller invocation takes to complete upon a speed-𝑒𝑀 processor in our experiments.

[9] Giorgio C. Buttazzo, Giuseppe Lipari, Marco Caccamo, and Luca Abeni. 2002.
Elastic Scheduling for Flexible Workload Management. IEEE Trans. Comput. 51,
3 (March 2002), 289–302. https://doi.org/10.1109/12.990127

[10] M. Caccamo, G. Buttazzo, and Lui Sha. 2002. Handling execution overruns
in hard real-time control systems. IEEE Trans. Comput. 51, 7 (2002), 835–849.
https://doi.org/10.1109/TC.2002.1017703

[11] Anton Cervin. 2005. ANALYSIS OF OVERRUN STRATEGIES IN PERIODIC
CONTROL TASKS. IFAC Proceedings Volumes 38, 1 (2005), 219–224. https://doi.
org/10.3182/20050703-6-CZ-1902.01076 16th IFAC World Congress.

[12] Anton Cervin and Johan Eker. 2005. Control-Scheduling Codesign of Real-Time
Systems: The Control Server Approach. J. Embedded Comput. 1, 2 (April 2005),
209–224.

[13] Anton Cervin, Manel Velasco, Pau Marti, and Antonio Camacho. 2011. Optimal
Online Sampling Period Assignment: Theory and Experiments. IEEE Transactions
on Control Systems Technology 19, 4 (2011), 902–910. https://doi.org/10.1109/
TCST.2010.2053205

[14] Wanli Chang, Dip Goswami, Samarjit Chakraborty, and Arne Hamann. 2018.
OS-Aware Automotive Controller Design Using Non-Uniform Sampling. ACM
Trans. Cyber-Phys. Syst. 2, 4, Article 26 (July 2018), 22 pages. https://doi.org/10.
1145/3121427

[15] T. Chantem, X. S. Hu, and M. D. Lemmon. 2006. Generalized Elastic Scheduling.
In IEEE International Real-Time Systems Symposium.

[16] T. Chantem, X. S. Hu, and M. D. Lemmon. 2009. Generalized Elastic Scheduling
for Real-Time Tasks. IEEE Trans. Comput. 58, 4 (April 2009), 480–495. https:
//doi.org/10.1109/TC.2008.175

[17] Xiaotian Dai and Alan Burns. 2020. Period adaptation of real-time control tasks
with #xed-priority scheduling in cyber-physical systems. Journal of Systems
Architecture 103 (2020), 101691. https://doi.org/10.1016/j.sysarc.2019.101691

[18] Michael Dertouzos. 1974. Control Robotics : the Procedural Control of Physical
Processors. In Proceedings of the IFIP Congress. 807–813.

[19] Sumana Ghosh, Souradeep Dutta, Soumyajit Dey, and Pallab Dasgupta. 2017. A
Structured Methodology for Pattern Based Adaptive Scheduling in Embedded
Control. ACMTrans. Embed. Comput. Syst. 16, 5s, Article 189 (Sept. 2017), 22 pages.
https://doi.org/10.1145/3126514

[20] Dip Goswami, Reinhard Schneider, and Samarjit Chakraborty. 2011. Co-design
of cyber-physical systems via controllers with $exible delay constraints. In 16th
Asia and South Paci!c Design Automation Conference (ASP-DAC 2011). 225–230.
https://doi.org/10.1109/ASPDAC.2011.5722188

[21] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. 2001.
Giotto: A Time-Triggered Language for Embedded Programming. In Proceedings
of the ACM International Conference on Embedded Software (EMSOFT), Thomas A.
Henzinger and Christoph M. Kirsch (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 166–184.

[22] Giuseppe Lipari and Sanjoy Baruah. 2000. Greedy reclaimation of unused band-
width in constant-bandwidth servers. In Proceedings of the EuroMicro Conference
on Real-Time Systems. IEEE Computer Society Press, Stockholm, Sweden, 193–
200.

[23] C. Liu and J. Layland. 1973. Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

[24] AlejandroMasrur, Sebastian Drossler, Thomas Pfeu"er, and Samarjit Chakraborty.
2010. VM-Based Real-Time Services for Automotive Control Applications. In
2010 IEEE 16th International Conference on Embedded and Real-Time Computing
Systems and Applications. 218–223. https://doi.org/10.1109/RTCSA.2010.38

[25] Truong Nghiem, George J. Pappas, Rajeev Alur, and Antoine Girard. 2012. Time-
Triggered Implementations of Dynamic Controllers. ACM Trans. Embed. Comput.
Syst. 11, S2, Article 58 (Aug. 2012), 24 pages. https://doi.org/10.1145/2331147.
2331168

[26] Paolo Pazzaglia, Arne Hamann, Dirk Ziegenbein, and Martina Maggio. 2021.
Adaptive Design of Real-Time Control Systems Subject to Sporadic Overruns. In
Proceedings of DATE: Design, Automation and Test in Europe.

[27] Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin. 2019.
DMAC: Deadline-Miss-Aware Control. In 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019) (Leibniz International Proceedings in Informatics (LIPIcs)), So-
phie Quinton (Ed.), Vol. 133. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 1:1–1:24. https://doi.org/10.4230/LIPIcs.ECRTS.2019.1

[28] Debayan Roy, Clara Hobbs, James H. Anderson, Marco Caccamo, and Samarjit
Chakraborty. 2021. Timing Debugging for Cyber-Physical Systems. In Proceedings
of DATE: Design, Automation and Test in Europe.

[29] Danbing Seto, John P. Lehoczky, Lui Sha, and Kang G. Shin. 1996. On task
schedulability in real-time control systems. In Proceedings of the 17th IEEE Real-
Time Systems Symposium (RTSS ’96), December 4-6, 1996, Washington, DC, USA.
IEEE Computer Society, 13–21. https://doi.org/10.1109/REAL.1996.563693

[30] Damoon Soudbakhsh, Linh Thi Xuan Phan, Anuradha M. Annaswamy, and Oleg
Sokolsky. 2018. Co-Design of Arbitrated Network Control SystemsWith Overrun
Strategies. IEEE Transactions on Control of Network Systems 5, 1 (2018), 128–141.
https://doi.org/10.1109/TCNS.2016.2583064

[31] Manel Velasco, Pau Martí, and Enrico Bini. 2008. Control-Driven Tasks: Modeling
and Analysis. In Proceedings of the 29th IEEE Real-Time Systems Symposium, RTSS
2008, Barcelona, Spain, 30 November - 3 December 2008. IEEE Computer Society,
280–290. https://doi.org/10.1109/RTSS.2008.29

[32] Nils Vreman, Anton Cervin, andMartina Maggio. 2021. Stability and Performance
Analysis of Control Systems Subject to Bursts of Deadline Misses. In 2021 33rd
Euromicro Conference on Real-Time Systems. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

[33] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat,
and Per Stenström. 2008. The worst-case execution-time problem – overview of
methods and survey of tools. ACM Transactions on Embedded Computing Systems
7, 3, Article 36 (May 2008), 36:1–36:53 pages.

[34] Yang Xu, Anton Cervin, and Karl-Erik Årzén. 2018. Jitter-Robust LQGControl and
Real-Time Scheduling Co-Design. In 2018 Annual American Control Conference
(ACC). 3189–3196. https://doi.org/10.23919/ACC.2018.8430953

https://doi.org/10.1109/12.990127
https://doi.org/10.1109/TC.2002.1017703
https://doi.org/10.3182/20050703-6-CZ-1902.01076
https://doi.org/10.3182/20050703-6-CZ-1902.01076
https://doi.org/10.1109/TCST.2010.2053205
https://doi.org/10.1109/TCST.2010.2053205
https://doi.org/10.1145/3121427
https://doi.org/10.1145/3121427
https://doi.org/10.1109/TC.2008.175
https://doi.org/10.1109/TC.2008.175
https://doi.org/10.1016/j.sysarc.2019.101691
https://doi.org/10.1145/3126514
https://doi.org/10.1109/ASPDAC.2011.5722188
https://doi.org/10.1109/RTCSA.2010.38
https://doi.org/10.1145/2331147.2331168
https://doi.org/10.1145/2331147.2331168
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
https://doi.org/10.1109/REAL.1996.563693
https://doi.org/10.1109/TCNS.2016.2583064
https://doi.org/10.1109/RTSS.2008.29
https://doi.org/10.23919/ACC.2018.8430953

	Abstract
	1 Introduction
	2 Background & Context
	2.1 Some Basics of Control Theory
	2.2 Adapting Control to Facilitate Scheduling
	2.3 Mitigative Control

	3 Scheduling for Mitigative Control
	3.1 The Task Model
	3.2 The Scheduling Algorithm

	4 Choosing ni and the T() i values
	5 Experimental Evaluation
	6 Context and Conclusions
	Acknowledgments
	References

