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Abstract

A fundamental aspect of statistics is the integration of data from di↵erent sources.

Classically, Fisher and others were focused on how to integrate homogeneous (or only

mildly heterogeneous) sets of data. More recently, as data are becoming more accessi-

ble, the question of if data sets from di↵erent sources should be integrated is becoming

more relevant. The current literature treats this as a question with only two answers:

integrate or don’t. Here we take a di↵erent approach, motivated by information-sharing

principles coming from the shrinkage estimation literature. In particular, we deviate

from the do/don’t perspective and propose a dial parameter that controls the extent to
which two data sources are integrated. How far this dial parameter should be turned is

shown to depend, for example, on the informativeness of the di↵erent data sources as

measured by Fisher information. In the context of generalized linear models, this more

nuanced data integration framework leads to relatively simple parameter estimates

and valid tests/confidence intervals. Moreover, we demonstrate both theoretically and

empirically that setting the dial parameter according to our recommendation leads to

more e�cient estimation compared to other binary data integration schemes.

Keywords: Data enrichment, generalized linear models, Kullback–Leibler divergence, ridge
regression, transfer learning.

1



1 Introduction

Statistics aims to glean insights about a population by aggregating samples of individual
observations, so data integration is at the core of the subject. In recent years, a keen interest
in combining data—or statistical inferences—from multiple studies has emerged in both
statistical and domain science research (Chatterjee et al., 2016; Jordan et al., 2018; Yang
and Ding, 2019; Michael et al., 2019; Lin and Lu, 2019; Chen et al., 2019; Tang et al., 2020;
Cahoon and Martin, 2020). While each sample is typically believed to be a collection of
observations from one population, there is no reason to believe another sample would also
come from the same population. This di�culty has given rise to a large body of literature for
performing data integration in the presence of heterogeneity; see Claggett et al. (2014); Wang
et al. (2018); Duan et al. (2019); Cai et al. (2019); Hector and Song (2020) and references
therein for examples. These methods take an all-or-nothing approach to data integration:
either the two sources of data can be integrated or not. This binary view of what can, or even
should, be integrated is at best impractical and at worst useless when confronted with the
messy realities of real data. Indeed, two samples are often similar enough that inferences can
be improved with a joint analysis despite di↵erences in the underlying populations. It does
us statistical harm to think in these binary terms when data sets come from similar but not
identical populations: assuming data integration is wholly invalid leads to reduced e�ciency
whereas assuming it is wholly valid can unknowingly produce biased estimates (Higgins and
Thompson, 2002). It is thus not practical to think of two data sets as being either entirely
from the same population or not. This begs the obvious but non-trivial (multi-part) question:
What and how much can be learned from a sample given additional samples from similar

populations, and how to carry out this learning process?
Towards answering this question, we consider a simple setup with two data sets: one for

which a generalized linear model has already been fit, and another for which we wish to fit
the same generalized linear model. (The case with more than two data sets is discussed in
Section 2.1 below.) The natural question is if inference based on the second data set can
be improved in some sense by incorporating results from the analysis of the first data set.
This problem has been known under many di↵erent names, of which “transfer learning” is
the most recently popular (Pan and Yang, 2010; Zhuang et al., 2021). The predominant
transfer learning approach uses freezing and unfreezing of layers in a neural network to
improve prediction in a target data set given a single source data set (Tan et al., 2018;
Weiss et al., 2016). The prevailing insight into why deep transfer learning performs well
in practice is that neural networks learn general data set features in the first few layers
that are not specific to any task, while deeper layers are task specific (Yosinski et al., 2014;
Dube et al., 2020; Raghu et al., 2019). This insight, however, does not give any intuition
into or quantification of the similarity of the source and target data sets, primarily because
of a lack of model interpretability. More importantly, this approach fails to provide the
uncertainty quantification required for statistical inference. Similarly, transfer learning for
high-dimensional regression in generalized linear models aims to improve predictions and
often does not provide valid inference (Li et al., 2020, 2022; Tian and Feng, 2022). Another
viewpoint casts this problem in an online inference framework (Schifano et al., 2016; Toulis
and Airoldi, 2017; Luo and Song, 2021) that assumes the true value of the parameter of
interest in two sequentially considered data sets is the same.
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In contrast, we aim to tailor the inference in one data set according to the amount of
relevant information in the other data set. Our goal is to provide a nuanced approach to data
integration, one in which the integration tunes itself according to the amount of information
available. In this sense, we do not view data sets as being from the same population or not,
nor data integration as being valid or invalid, and we especially do not aim to provide a
final inference that binarizes data integration into a valid or invalid approach. Rather, our
perspective is that there is a continuum of more to less useful integration of information
from which to choose, where we use the term “useful” to mean that we are minimizing bias
and variance of model parameter estimates.

This new and unusual perspective motivates our definition of information-driven regu-
larization based on a certain Kullback–Leibler divergence penalty. This penalty term allows
us to precisely quantify what and how much information is borrowed from the first data set
when inferring parameters in the second data set. We introduce a so-called “dial” parameter
that controls how much information is borrowed from the first data set to improve inference
in the second data set. We prove that there exists a range of values of the dial parameter
such that our proposed estimator has reduced mean squared error over the maximum likeli-
hood estimator that only considers the second data set. This striking result indicates that
there is always a benefit to integrating the data sets, but that the amount of information
integrated depends entirely on the similarity between the source and target. Based on this
result, we propose a choice of the dial parameter that calibrates the bias-variance trade-o↵
to minimize the mean squared error, and show how to construct confidence intervals with
our biased parameter estimator. Finally, we demonstrate empirically the superiority of our
approach over alternative approaches, and show empirically that our estimator is robust to
di↵erences between the source and target data sets. Due to its disjointed nature, relevant
literature is discussed throughout.

We describe the problem set-up and proposed information-driven shrinkage approach
in Section 2. Section 3 gives the specific form of our estimator in the linear and logis-
tic regression models. Theoretical properties of our estimator are established in Section
4, demonstrating its e�ciency compared to the maximum likelihood estimator. We inves-
tigate the empirical performance of our estimator through simulations in Section 5 and
a data analysis in Section 6. An R package implementing our methods is available at
github.com/ehector/ISEDI.

2 A continuum of information integration

2.1 Problem setup

Consider two populations, which we will denote as Populations 1 and 2. Units are randomly
sampled from the two populations and the features X ij 2 Rp and yij 2 R are measured on
unit i from Population j, with i = 1, . . . , nj and j = 1, 2. Note that, while the values of
these measurements will vary across i and j, the features being measured are the same across
the two populations. Write Dj = {(X ij, yij) : i = 1, . . . , nj} for the data set sampled from
Population j, for j = 1, 2. Note that we have not assumed any relationship between the two
populations, only that we have access to independent samples consisting of measurements
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of the same features in the two populations. The reader can keep in mind the prototypical
example where a well designed observational study or clinical trial has collected a set of high
quality target data D2 and the investigator has at his/her disposal a set of source data D1

of unknown source and quality to use for improved inference.
While our focus is on the case of one source data set, our information-sharing method

described below can be applied more generally. Indeed, if an investigator has M -many source
data sets from M populations measuring the same outcome and features, as in Section 6
below, then they might consider creating a single source data set by concatenating these M
data sets. The proposed information-sharing method can then be applied to the concatenated
source data set. This of course has advantages and disadvantages. On the one hand, if all
the data sets—source and target—are mostly homogeneous, then our proposed information-
sharing leads to a substantial e�ciency gain through concatenation; similarly, if the data sets
are mostly heterogeneous, then there is e↵ectively no risk since our proposed information-
sharing procedure will down-weight the source data set and inference will rely mostly on the
target. On the other hand, if there are groups of source data sets that are homogeneous
within and heterogeneous across, then the picture is far less clear: the concatenated source
data set lacks some of the nuance of the individual source data sets which, depending on the
circumstances, could improve or worsen the e�ciency of the inference in the target data. We
investigate this potential mix of homogeneous and heterogeneous source data sets and make
general recommendations in Appendix B.2, but leave it up to the individual investigator
to determine if concatenation is justified in their particular application. Alternatives to
concatenation include data-driven methods for detecting heterogeneous source data sets (Li
et al., 2022; Tian and Feng, 2022), which are discussed in Section 4.3 in the context of
“negative transfer.”

Since the features measured in data sets D1 and D2 are the same, it makes sense to
consider fitting identical generalized linear models to the two data sets. These models assume
the conditional probability density/mass function for yij, given X ij, is of the form

fj(yij;�j, �j) = c(yij; �j) exp
⇥
d(�j)

�1{yijX>
ij�j � b(X>

ij�j)}
⇤
, (1)

i = 1, . . . , nj, j = 1, 2, where b, c, and d are known functions, �j is the quantity of primary
interest, and �j is a nuisance parameter that will not receive much attention in what follows.
Since inference of �j is not of interest and we can appropriately estimate �j based on Dj, we
do not concern ourselves with how integration a↵ects estimates of �j and we assume �1 6= �2.
The conditional distribution’s dependence on X ij is implicit in the “j” subscript on fj. We
will not be concerned with the marginal distribution of X ij so, as is customary, we assume
throughout that this marginal distribution does not depend on (�j, �j), and there is no need
for notation to express this marginal. We assume that Xj = (X1j, . . . ,Xnjj) 2 Rp⇥nj ,
j = 1, 2, is full rank.

Of course, the two data sets can be treated separately and, for example, the standard
likelihood-based inference can be carried out. In particular, the maximum likelihood esti-
mator (MLE) can be obtained as

(b�j, b�j) = argmax
�j ,�j

f
(nj)
j (yj;�j, �j), j = 1, 2,

where f
(nj)
j (yj;�j, �j) =

Qnj

i=1 fj(yij;�j, �j) is the joint density/likelihood function based
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on data set Dj, j = 1, 2. The MLEs, together with the corresponding observed Fisher
information matrices, can be used to construct approximately valid tests and confidence
regions for the respective �j parameters. This would be an appropriate course of action if
the two data sets in question had nothing in common.

Here, however, with lots in common between the two data sets, we have a di↵erent
situation in mind. We imagine that the analysis of data set D1 has been carried out first,
resulting in the MLE b�1, among other things. Then the question of interest is whether the
analysis of data set D2 ought to depend in some way on the results of D1’s analysis and, if
so, how. While the problem setup is similar to the domain adaptation problem frequently
seen in binary classification (Cai and Wei, 2021; Reeve et al., 2021), we emphasize that our
interest lies in improving e�ciency of inference of �2. More specifically, can the inference of
�2 based on D2 be improved through the incorporation of the results from D1’s analysis?

2.2 Information-driven regularization

Our stated goal is to improve inference of �2 in D2 given the analysis of D1. Further
inspection of equation (1) reveals that the primary di↵erence between f1 and f2 is in the
di↵erence between b�1 and �2. Thus, at first glance, the similarity between D1 and D2 is
primarily driven by the closeness of b�1 and �2. Intuitively, if b�1 and �2 are close, say
kb�1 � �2k22 is small, then some gain in the inference of �2 can be expected if the inference
in D1 is taken into account. This rationale motivates a potential objective to maximize
f
(n2)
2 (y2;�2, �j) under the constraint k�2 � b�1k2 < c for some constant c. The choice of c
then reflects one’s belief in the similarity or dissimilarity between D1 and D2, and data-driven
selection of c relies on the distance k�2 � b�1k2.

We must ask ourselves, however, if closeness between �2 and b�1 is su�cient for us to
integrate information from D2 into estimation of �2. For example, would we choose to
constrain �2 to be close to b�1 if n1 were small? How about if X1X

>
1 is small, reflecting

uninformative features and resulting in a large variance of b�1? These intuitive notions of
what we consider to be informative highlight a gap in our argument so far: elements that are
“close” in the parameter space may not be close in an information-theoretic sense, and vice-
versa. This is best visualized by Figure 1, which plots two negative log-likelihood functions
for �1, one being based on a more informative data set than the other. The true �2 is also
displayed there and, as expected, is di↵erent from the MLE b�1 based on D1; for visualization
purposes, we have arranged for b�1 to be the same for both the more and less informative
data sets. The plot reveals that the more informative data can better distinguish the two
points �2 and b�1, in terms of quality of fit, than can the less informative data—so it is
not just the distance between �2 and b�1 that matters! Intuitively, estimation of �2 should
account not only for its distance to b�1 but also the “sharpness” of the likelihood, or the
amount of information in D1.

This motivates our proposal of a distance-driven regularization that takes both the ambi-
ent geometry of the parameter space and aspects of the statistical model into consideration.
That is, we propose a regularization based on a sort of “statistical distance.” The most
common such distance, closely related to the Fisher information and the associated infor-
mation geometry (Amari and Nagaoka, 2000; Nielsen, 2020), is the Kullback–Leibler (KL)
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Figure 1: An illustration of the likelihoods for more (red) and less (blue) informative data.

divergence which, in our case, is given by

kln1(�; b�1, �1) =

Z
log

f
(n1)
1 (y; b�1, �1)

f
(n1)
1 (y;�, �1)

f
(n1)
1 (y; b�1, �1) dy

=
1

d(�1)

n1X

i=1

�
b
0(X>

i1
b�1)(X

>
i1
b�1 �X>

i1�) + b(X>
i1�)� b(X>

i1
b�1)

 
,

where b
0(X>

i1�) = E�,�1(yi1 | X i1), a standard property satisfied by all natural exponential
families. Our proposal, then, is to use the aforementioned KL divergence to tie the estimates
based on the two data sets together, i.e., to produce an estimator that solves the following
constrained optimization problem:

maximize n
�1
2 log f (n2)

2 (y2;�, �2) subject to n
�1
1 kln1(�; b�1, �1)  ✏, (2)

where ✏ � 0 is a constant to be specified by the user. The KL divergence measures the
entropy of f (n1)

1 (y;�, �1) relative to f
(n1)
1 (y; b�1, �1). As the Hessian of the KL divergence,

the Fisher information describes the local shape of the KL divergence and quantifies its
ability to discriminate between f

(n1)
1 (y;�, �1) and f

(n1)
1 (y; b�1, �1).

A key di↵erence between what is being proposed here and other regularization strategies
in the literature is that our penalty term is “data-dependent” or, perhaps more precisely,
relative to D1. That is, it takes the information in D1 into account when estimating �2, hence
the name information-driven regularization. Of course, the extent of the information-driven
regularization, i.e., how much information is shared between D1 and D2, is determined by
✏, so this choice is crucial. We will address this, and the desired properties of the proposed
estimator, in Section 4 below.
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To solve the optimization problem in equation (2), we propose the estimator

e�2(�) = argmax
�

O(�;�),

where the objective function is

O(�;�) = n
�1
2 log f (n2)

2 (y2;�, �2)� �n
�1
1 kln1(�; b�1, �1)

=
1

n2

n2X

i=1

�
yi2X

>
i2� � b(X>

i2�)
 

(3)

� �

n1

n1X

i=1

{b0(X>
i1
b�1)(X

>
i1
b�1 �X>

i1�) + b(X>
i1�)� b(X>

i1
b�1)},

for a dial parameter � � 0. Thanks to the general niceties of natural exponential families,
this objective function is convex and, therefore, is straightforward to optimize. The addition
of the KL penalty term in equation (3) essentially introduces �-discounted units of infor-
mation from D1 into the inference based on D2. Note that we specifically avoid use of the
term “tuning parameter” to make a clear distinction between our approach and the classi-
cal penalized regression approach. The addition of the KL divergence penalty intentionally
introduces a bias in the estimator e�2(�) for �2 which we hope—and later show—will be
o↵set by a reduction in variance. This is the same basic bias–variance trade-o↵ that mo-
tivates other shrinkage estimation strategies, such as ridge regression and lasso, but with
one key di↵erence: our motivation is information-sharing, so we propose to shrink toward
a D1-dependent target whereas existing methods’ motivation is structural constraints (e.g.,
sparsity), so they propose to shrink toward a fixed target. With this alternative perspective
comes new questions: does adding a small amount of D1-dependent bias lead to e�ciency
gains? Below we will identify a range of the dial parameter such that the use of the external
information in D1 reduces the variance of e�2(�) enough so that we gain e�ciency even with
the small amount of added bias. The parameter � thus acts as a dial to calibrate the trade-o↵
between bias and variance in e�2(�).

The maximum of O(�;�) coincides with the root of the estimating function

 (�;�) =
1

n2

n2X

i=1

X i2{yi2 � b
0(X>

i2�)}�
�

n1

n1X

i=1

X i1{b0(X>
i1�)� b

0(X>
i1
b�1)}

= n
�1
2 X2{y2 � µ2(�)}� �n

�1
1 X1{µ1(�)� µ1(b�1)},

where µj(�) is the nj-vector of (conditional) mean responses, given Xj, for j = 1, 2. The
root is the value of � that satisfies

n
�1
2 X2y2 + �n

�1
1 X1µ1(b�1) = n

�1
2 X2µ2(�) + �n

�1
1 X1µ1(�).

From this equation, we see that a solution � must be such that a certain linear combination
of µ1(�) and µ2(�) agrees with the same linear combination of µ1(b�1) and y2, two natural
estimators of the mean responses in D1 and D2, respectively. In Section 3, we give the
specific form of the estimating function for two common generalized linear models: linear
and logistic regression.
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2.3 Remarks

2.3.1 Comparison to Wasserstein distance

The Wasserstein distance has enjoyed recent popularity in the transfer learning literature; see
for example Shen et al. (2018); Yoon et al. (2020); Cheng et al. (2020); Zhu et al. (2021). An
example illustrates why we prefer the KL divergence to the Wasserstein distance. Suppose
f1(yi1;�, �1) is the Gaussian density with mean X>

i1� and variance �1 = �
2
1. The KL

divergence defined above is

kln1(�; b�1, �1) = (2�2
1)

�1(b�1 � �)>X1X
>
1 (b�1 � �). (4)

Clearly, this takes into consideration not only the distance between � and b�1, but also
other relevant information-related aspects of the data set D1. By contrast, following Olkin
and Pukelsheim (1982), the 2-Wasserstein distance between the two Gaussian joint densities

f
(n1)
1 (·; b�1, �

2
1) and f

(n1)
1 (·;�, �2

1) is

W{f (n1)
1 (·; b�1, �

2
1), f

(n1)
1 (·;�, �2

1)}
= kb�1 � �k22 + trace{�2

1In1 + �
2
1In1 � 2�1�1In1}

= kb�1 � �k22.

In this example, the Wasserstein distance is only a function of the distance between the
means, and fails to take into account any other aspects of D1, in particular, it does not
depend on the observed Fisher information in D1. Replacing the KL divergence in our
proposal above with the 2-Wasserstein distance would, therefore, reduce to a simple ridge
regression formulated with D1-dependent shrinkage target b�1. As discussed above, such an
approach would not satisfactorily achieve our objectives.

2.3.2 Connection to data-dependent penalties

The dependence of the constraint in equation (2) on the data D1 is unusual in contrast to
more common constraints on parameters. Our formulation leads to a penalty term in O(�;�)
that depends on data. This approach allows an appealing connection to the empirical Bayes
estimation framework, which allows us to treat information gained from analyzing D1 as
prior knowledge when analyzing D2. Through this lens, �2 7! exp{��kln1(�2; b�1, �1)} acts
like a prior density and maximizing O(�2;�) is equivalent to maximizing the corresponding
posterior density for �2, i.e., b�2(�) is the maximum a posteriori estimator of �2. The dial
parameter � adjusts the impact of the prior and reflects the experimenter’s belief in the
similarity of D1 and D2.

The prior term kln1(�; b�1, �1) is itself a measure of the excess surprise (Baldi and Itti,

2010) between the prior information f
(n1)
1 (y1; b�1, �1) and the likelihood f

(n1)
1 (y1;�, �1) in

D1. This observation leads to an intuitive understanding of our KL prior: if the prior
f
(n1)
1 (y1; b�1, �1) and the likelihood f

(n1)
1 (y1;�, �1) are close for all values of �, then the prior

probabilities are small for all values of � and the prior is weakly informative.
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2.3.3 Distinction from data fusion

Apart from the literature that considers (a subset of) e↵ects to be a priori heterogeneous (e.g.
Liu et al., 2015; Tang and Song, 2020), homogeneous (e.g. Xie et al., 2011) or somewhere in
between (e.g. Shen et al., 2020), some methods consider fusion of individual feature e↵ects.
Broadly, fusion approaches jointly estimate �1 and �2 by shrinking them towards each other.
At first blush, these methods may appear similar to our approach, so we take the time to
highlight two key di↵erences.

Primarily, these methods di↵er in that they do not consider estimation in D1 to be fixed
to b�1, and can jointly re-estimate both parameters for improved e�ciency. This is quite
di↵erent from our goal, which is to quantify the utility of a first, already analyzed data set
D1 in improving inference in a second data set D2. Our approach has the advantage that
we do not require the model to be correctly specified in D1, which endows our method with
substantial robustness properties which are lacking for fusion approaches.

Moreover, data fusion’s underlying premise is to exploit feature clustering structure across
data sources, thereby determining which features should be combined (Bondell and Reich,
2009; Shen and Huang, 2010; Tibshirani and Taylor, 2011; Ke et al., 2015; Tang and Song,
2016). In particular, this leads to the integration of some feature e↵ects but not others.
Di↵erent sets of feature e↵ects are estimated from di↵erent sets of data, which does not
provide the desired quantification of the similarity between data sets.

3 Examples

3.1 Gaussian linear regression

For the Gaussian linear model, the KL divergence is given in (4). In this case, the objective
function in (3) is given by

O(�;�) = n
�1
2 �

>X2y2 � (2n2)
�1�>X2X

>
2 �

� �(2n1)
�1(b�1 � �)>X1X

>
1 (b�1 � �).

Optimizing O corresponds to finding the root of the estimating function

 (�;�) = n
�1
2 (X2y2 �X2X

>
2 �)� �n

�1
1 (X1X

>
1 � �X1X

>
1
b�1).

Let Gj = n
�1
j XjX

>
j , j = 1, 2, denote the scaled Gram matrices. Then the solution to the

estimating equation  (�;�) = 0 is

e�2(�) =
�
G2 + �G1

��1�
n
�1
2 X2y2 + �G1

b�1

�

=
�
G2 + �G1

��1�
G2

b�2 + �G1
b�1

�
,

(5)

where b�2 = (X2X2)�1X2y2 is the MLE based on D2 only. The estimator e�2(�) in equation
(5) progressively grows closer to b�1 as more weight (through �) is given to D1. This is
desirable behavior: � acts as a “dial” allowing us to tune our preference towards D1 or D2.
When �1 = �2, we recognize e�2(�) as a generalization of the best linear unbiased estimator.
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The estimator e�2(�) does not rely on individual level data from the first data set, D1; all
that is needed is the sample size, the estimate, and the observed Fisher information. Thus,
our proposed procedure is privacy preserving and can be implemented in a meta-analytic
setting where only summaries of D1 and D2 are available.

This estimator also takes the familiar form of a generalized ridge estimator (Hoerl and
Kennard, 1970; Hemmerle, 1975) and benefits from many well-known properties; see the
excellent review of van Wieringen (2021). The estimator e�2(�) is a convex combination of
the MLEs from D1 and D2, with weights determined by the corresponding observed Fisher
information matrices. This formulation allows us to identify the crucial role that � plays in
balancing not only the bias but the variance of b�2, a role reminiscent of that played by the
tuning parameter for ridge regression (Theobald, 1974; Farebrother, 1976).

Our estimator e�2(�) can be rewritten as e�2(�) = fW �
b�2 + (Ip � fW �)b�1 with

fW � = n
�1
2

�
n
�1
2 X2X

>
2 + �n

�1
1 X1X

>
1

��1
X2X

>
2

In contrast, Chen et al. (2015) consider pooling D1 and D2 to jointly estimate �2 and
�1 = �2 + �2 with some penalty kX2�2k22, where �2 = �1 � �2. Their estimator is given by
b�2(W �) = W �

b�2 + (Ip �W �)b�1, where

W � =
�
X1X

>
1 + �X2X

>
2 + �X1X

>
1

��1�
X1X

>
1 + �X2X

>
2

�
.

When n1 = n2, fW � � W � if and only if (1 � �)Ip � (X2X
>
2 )

�1X1X
>
1 . This is clearly

always true when � � 1. When � < 1, fW � � W � if D1 is informative relative to D2,
and fW � ⌫ W � if D1 is uninformative relative to D2. Therefore, our estimator assigns more
weight to D1 than Chen et al. (2015)’s estimator when D1 is more informative, and less when
it is uninformative, as desired.

3.2 Bernoulli logistic regression

For the standard logistic regression model, the KL divergence is given by

kln1(�; b�1) =
n1X

i=1

"
exp(X>

i1
b�1)

1 + exp(X>
i1
b�1)

(X>
i1
b�1 �X>

i1�) + log
n 1 + exp(X>

i1�)

1 + exp(X>
i1
b�1)

o#
.

Then the objective function in (3) can be written as

O(�;�) =
1

n2

n2X

i=1

⇥
yi2X

>
i2� � log{1 + exp(X>

i2�)}
⇤

� �

n1

n1X

i=1

"
exp(X>

i1
b�1)

1 + exp(X>
i1
b�1)

(X>
i1
b�1 �X>

i1�) + log
n 1 + exp(X>

i1�)

1 + exp(X>
i1
b�1)

o#
.

To optimize O, we find the root of the estimating function given by

 (�;�) = n
�1
2 X2

�
y2 � expit(X>

2 �)
 
� �n

�1
1 X1

�
expit(X>

1 �)� expit(X>
1
b�1)

 
,

where expit(z) is the vector obtained by applying z 7! e
z
/(1 + e

z) to each component of
the vector z. The estimator e�2(�) is the solution to  (�;�) = 0. Of course, there is no
closed-form solution, but the solution can be obtained numerically.
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4 Theoretical support

4.1 Objectives

A distinguishing feature of our perspective here is that we treat D1 as fixed. In particular,
we treat b�1 as a known constant. A relevant feature in the analysis below is the di↵erence
� = �2 � b�1, which is just one measure of the similarity/dissimilarity between D1 and D2.
Of course, � is unknown because �2 is unknown, but � can be estimated if necessary. Note
also that we do not assume k�k2 to be small.

Thanks to well-known properties of KL divergence, � 7! E{O(�;�)} is concave, so it
has a unique maximum, denoted by �?

2(�). If the true value of � in D2 is �2, then clearly
�?

2(�) 6= �2 when � 6= 0 and � 6= 0. On the other hand, it is easy to verify that, as � ! 0+,
the objective function satisfies E{O(�;�)} ! E{O(�; 0)} uniformly on compact subsets of
the parameter space of �, so, as expected, lim�!0+ �

?
2(�) = �2. As stated in Section 2.2,

our objective is to find a range of the dial parameter � — depending on �, etc. — such that
the use of the external information in D1 su�ciently reduces the variance of e�2(�) so as to
overcome the addition of a small amount of bias to e�2(�).

We first consider the Gaussian linear model for its simplicity, which allows for exact
(non-asymptotic) results. The ideas extend to generalized linear models, but there we will
need asymptotic approximations as n2 ! 1. Throughout, we use the notational convention
M 2 = M>M for a matrix M .

Proofs of all the results are given in Appendix A.

4.2 Exact results in the Gaussian linear model

In the Gaussian case, the expected estimating function evaluated at �?
2(�) is

0 = E�2

�
 (�?

2(�);�)
 

= n
�1
2 X2

�
E�2

(y2)�X>
2 �

?
2(�)

 
� �n

�1
1 X1

�
X1�

?
2(�)�X1

b�1

 

= G2{�2 � �?
2(�)}� �G1{�?

2(�)� b�1}.

Denote S(�) = G2 + �G1. Rearranging, we obtain

�?
2(�) = S�1(�)

�
G2�2 + �G1

b�1

�
= �2 � �S�1(�)G1�.

Thus, �?
2(�) = �2 when � = 0 or � = 0. In general, however, our proposed estimator

e�2(�) is estimating �?
2(�) 6= �2, so a practically important question is, if we already have an

unbiased estimator, b�2, of �2, then why would we introduce a biased estimator? Theorem 1
below establishes that there exists a range of � > 0 for which the mean squared error (MSE)
of e�2(�) is strictly less than that of b�2. Details on the � range over which the e�ciency gain
is achieved are given in the third paragraph following the theorem statement.

Theorem 1. There exists a range of � > 0 on which the mean squared error of e�2(�) is

strictly less than the mean squared error of b�2.

11



This result is striking when considered in the context of data integration: we have shown
that it is always “better” to integrate two sources of data than to use only one, even when
the two are substantially di↵erent. We also claim that our estimator’s gain in e�ciency is
robust to heterogeneity between the two data sets; we will return to this point in Section 4.3
to make general remarks in the context of transfer learning.

Of course, the reader familiar with Stein shrinkage (Stein, 1956; James and Stein, 1960)
may not be surprised by our Theorem 1. Our result has a similar flavor to Stein’s paradox
(Efron and Morris, 1977), i.e., that some amount of shrinkage always leads to a more e�cient
estimator compared to a (weighted) sample average, here b�2. In their presciently titled paper,
“Combining possibly related estimation problems,” Efron and Morris (1973) anticipated the
ubiquity of results like our Theorem 1 that show estimation e�ciency gains when combining
di↵erent but related data sets.

The proof of Theorem 1 shows that MSE{e�2(�)} < MSE(b�2) for all � > 0 when � = 0;
when � 6= 0, it proves that MSE{e�2(�)} is monotonically decreasing over the range [0,�?]
and monotonically increasing over the range [�?

,1) for some �
?
> 0 that does not have a

closed-form. The proof does, however, provide a bound for �?:

�
?
>

�
2
2

n2

minr=1,...,p rg
�1
r2

maxr=1,...,p �
2
r

, (6)

where gr2 > 0, r = 1, . . . , p, the eigenvalues of G2 in increasing order and r, r = 1, . . . , p,
the eigenvalues of G1/2

2 G�1
1 G1/2

2 in decreasing order. That is, the MSE of e�2(�) will be less
than that of b�2 if � is no more than the right-hand side of (6). From the above expression,
we see that if elements of � are large in absolute value, then the improvement in MSE only
occurs for a small range of �. Moreover, if n�1

2 , r or g
�1
r2 are small then the range of �

such that MSE{e�2(�)} < MSE(b�2) is small: in other words, if D2 is highly informative
then very little weight should be given to D1, regardless of how informative D1 is. This is
intuitively appealing and practically useful because it provides a loose guideline based on
the informativeness of D2 for how much improvement can be obtained using D1.

In practice, we propose to find a data-driven version of the minimizer, �?, of the MSE.
For this, we minimize an empirical version of the MSE based on plug-in estimators, i.e.,

�̃ = argmin
�>0

⇥
n
�1
2 b�2

2 trace{S�2(�)G2}+ �
2trace{G1S

�2(�)G1
b�2}

⇤
,

the minimizer of the estimated mean squared error of e�2(�), where

b�2
2 =

1

n2 � p

n2X

i=1

(yi2 �X>
i2
b�2)

2
,

is the usual estimate of the error variance �
2
2, and

b�2 is a bias-adjusted estimate of ��>

computed as follows. If we define b�p = b�2 � b�1, then the equality E�2
(b�pb�

>
p ) = ��> +

�
2
2n

�1
2 G�1

2 implies that b�pb�
>
p is a positively biased estimator of ��>. Similar to Vinod

(1987) and Chen et al. (2015), we estimate ��> with

b�2 =
�b�pb�

>
p � b�2

2n
�1
2 G�1

2

�
+
,
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where (A)+ = Pdiag{max(�i, 0)}pi=1P
> for a symmetric matrix A 2 Rp⇥p with eigende-

composition P diag(�i)
p
i=1 P

>. If all eigenvalues are negative, we use b�2 = b�pb�
>
p . This bias-

adjusted approach to estimating MSE is related to Stein’s unbiased risk estimator (SURE,
Stein, 1981); see also Vinod (1987) for a discussion in the ridge regression setting. The min-

imizer �̃ (almost) always exists since b�2 is non-zero with probability 1. That the minimizer
is strictly positive, even if D1 is minimally- or non-informative, might be counter-intuitive;
but this is a consequence of Theorem 1, which shows that we need only consider the set
of strictly positive � values to improve inference in D2. Finally, we show that constructing
exact confidence intervals for �2 using a debiased version of e�2(�) reduces to the traditional
inference using the MLE. It follows from the proof of Theorem 1 that,

e�2(�) + �S�1(�)G1(�2 � b�1) ⇠ N{�2, n
�1
2 �

2
2S

�1(�)G2S
�1(�)}, (7)

� � 0, and therefore, using the definition of e�2(�) in equation (5),

{Ip � �S�1(�)G1}�1S�1(�)G2
b�2 ⇠ N{�2, (�

2
2/n2)D(�)},

with
D(�) = {Ip � �S�1(�)G1}�1S�1(�)G2S

�1(�){Ip � �G1S
�1(�)}�1

.

Algebra reveals that {Ip � �S�1(�)G1}�1S�1(�)G2 = Ip, which finally yields the familiar

result: b�2 ⇠ N{0, n�1
2 �

2
2G

�1
2 }. Therefore, confidence intervals based on equation (7) reduce

to confidence intervals obtained from the MLE b�2 and familiar Gaussian sampling distri-
bution. That is, the debiasing that ensures the confidence interval is centered (on average)
at �2 e↵ectively negates the gain in e�ciency of our estimator. As remarked by Obenchain
(1977) in ridge regression, our shrinkage does not produce “shifted” confidence regions, and
the MLE is the most suitable choice if one desires valid confidence intervals. Nonetheless,
we will consider in Sections 4.3 and 5 if the biased estimator e�2(�) can be used to derive
confidence intervals with asymptotic nominal coverage as n2 ! 1.

4.3 Asymptotic results in generalized linear models

Next we investigate the asymptotic properties of e�2(�) in generalized linear models as n2 !
1. For j = 1, 2, let

A(X>
j �) = diag

�
h
0(X>

ij�)
 nj

i=1
= diag

�
b
00(X>

ij�)
 nj

i=1
2 Rnj⇥nj ,

where h(X>
i1�) = b

0(X>
ij�) is the inverse of the link function. Define �(�) = {h(X>

i1�) �
h(X>

i1
b�1)}n1

i=1 and S(�;�) = �@ (�;�)/(@�). Then

S(�;�) =
1

n2

n2X

i=1

X i2X
>
i2h

0(X>
i2�) +

�

n1

n1X

i=1

X i1X
>
i1h

0(X>
i1�)

= n
�1
2 X2A(X>

2 �)X
>
2 + �n

�1
1 X1A(X>

1 �)X
>
1 .

We assume the following conditions.
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(C1) limn2!1 n
�1
2

Pn2

i=1{h(X
>
i2�2)X

>
i2� � b(X>

i2�)} exists and is finite.

(C2) For any � between �2 and �?
2(�) inclusive, the two matrices defined below exist and

are positive definite:

v1(�) = n
�1
1 X1A(X>

1 �)X
>
1 and v2(�) = lim

n2!1
n
�1
2 X2A(X>

2 �)X
>
2 .

Denote by s(�;�) = limn2!1 E�2
{S(�;�)} = limn2!1 S(�;�) = v2(�) + �v1(�). Recall

that the asymptotic variance of the MLE b�2 is d(�2)v
�1
2 (�2).

Lemma 1 is a standard result stating that the minimizer of our objective function con-
verges to the minimizer of its expectation.

Lemma 1. If Condition (C1) holds, then e�2(�)� �?
2(�) = Op(n

�1/2
2 ), for each � � 0.

Since we already have that lim�!0+ �
?
2(�) = �2 as n2 ! 1, an immediate consequence

of Lemma 1 is that e�2(�)
p! �2 as n2 ! 1 and � ! 0+. More can be said, however, about

the local behavior of e�2(�) depending on how quickly � vanishes with n2.

Lemma 2. If Conditions (C1)–(C2) hold, and � = O(n�1/2
2 ), then as n2 ! 1,

n
1/2
2 J1/2(�2;�)

�e�2(�)� �2 + �n
�1
1 S�1(�2;�)X1�(�2)

 d! N (0, Ip),

where J(�;�) = d(�2)S
>(�;�)v�1

2 (�)S(�;�) is the observed Godambe information matrix

(Godambe, 1991). Moreover, if � = o(n�1/2
2 ), then

n
1/2
2 J1/2(�2;�){e�2(�)� �2}

d! N (0, Ip) , n2 ! 1.

To summarize, if � vanishes not too rapidly, then there is a bias e↵ect in the first-order
asymptotic distribution approximation of e�2; if � vanishes rapidly, then there is no bias
e↵ect in the first-order approximation. In either case, however, there is a reduction in the
variance due to the combining of information in D1 and D2. This gain in e�ciency can be
seen, at least intuitively, by looking at the Godambe information matrix J(�2;�). Indeed,
since limn2!1 S(�;�) = v2(�) + �v1(�) has eigenvalues strictly larger than those of v2(�),
it follows that J(�2;�) has eigenvalues strictly smaller than those of d(�2)v

�1
2 (�2). The

following theorem, our main result, confirms the above intuition.

Theorem 2. If Conditions (C1)–(C2) hold, then there exists a range of � > 0 values, with

upper limit O(n�1/2
2 ), on which the asymptotic mean squared error (aMSE) of e�2(�) is strictly

less than that of b�2.

The proof of Theorem 2 shows that aMSE{e�2(�)} < aMSE(b�2) for all � > 0 when � = 0;
when � 6= 0, it proves that the aMSE of e�2(�) is monotonically decreasing over the range
[0,�?] and monotonically increasing over the range [�?

,1), for some �
?
> 0 that does not

have a closed-form. But the proof of Theorem 2 does provide a bound:

�
?
>

d(�2)

n2

minr=1,...,p{r(�2)g
�1
r2 (�2)}

maxdiag{v�1
1 (�2)X1�(�2)�

>(�2)X
>
1 v

�1
1 (�2)}/n2

1

, (8)
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where gr2(�) > 0, r = 1, . . . , p, are the eigenvalues in increasing order of v2(�) and r(�),

r = 1, . . . , p, are the eigenvalues in decreasing order of v1/2
2 (�)v�1

1 (�)v1/2
2 (�). This implies

that the aMSE of e�2(�) is less than that of b�2 for � no more than the expression on the
right-hand side of (8). The denominator of (8) is the nonlinear analogue of maxr=1,...,p �

2
r .

To see this, by the mean value theorem we can write X1�(�2) = n1v1(c2)� for some vector
c2 between b�1 and �2. Then the denominator can be rewritten as the maximum entry of

diag{v�1
1 (�2)v1(c2)��

>v1(c2)v
�1
1 (�2)}.

Recall that v1(�) is the derivative of n
�1
1 µ1(�). Thus, the denominator divides the distance

� by the rate of change of the link function. When � is small, v�1
1 (�2)v1(c2) ⇡ Ip and we

recover the denominator in (6). From this, we draw the same conclusion as in the Gaussian
linear model: if D2 is highly informative, then little weight should be given to D1, regardless
of how informative D1 is.

For a data-driven choice of �?, we propose

�̃ = argmin
�>0

⇥
d(b�2)trace{S�2(b�2;�)V 2(b�2)}

+ n2n
�2
1 �

2
�

>(b�2)X
>
1 S

�2(b�2;�)X1�(b�2)
⇤
, (9)

the minimizer of the estimated aMSE of e�2(�), where b�j the maximum likelihood estimator
of �j in Dj, j = 1, 2, and V 2(�) = n

�1
2 X2A(X>

2 �)X
>
2 . Since we are assuming n2 is large,

we do not adjust for finite sample bias in �(b�2)�
>(b�2) as we did in the Gaussian linear

model setting. Again, the minimizer always exists since �(b�2) 6= 0 with probability 1.
As suggested in Section 4.2, Theorem 2 endows our approach with robustness to model

misspecification or lack of information in D1 by guaranteeing (under conditions) that our
approach always improves e�ciency. This is far superior to traditional transfer learning which
can su↵er from degraded performance in D2, or “negative transfer” (Torrey and Shavlik,
2009). As a remedy, Li et al. (2022) and Tian and Feng (2022) develop methods that detect
informative data sets D1 to avoid the pitfalls of negative transfer. Their approaches can
handle settings with multiple candidate data sets D1: they find those most “similar” to D2

and use these for transferring. Unfortunately, their approaches can still result in degraded
performance, as illustrated in Section 5.

Interestingly, the bound in equation (8) is O(n�1
2 ), implying that the choice of � that

maximizes the asymptotic e�ciency of e�2(�) is a �
? strictly between O(n�1/2

2 ) and O(n�1
2 );

numerical results that help to confirm this are given in Section 5 below. This suggests the
bias introduced by �

? should be ignorable, while still a↵ording us a small gain in e�ciency.
In conjunction with Lemma 2, this suggests a path to inference using the biased estimator
e�2(�̃). We propose to construct large-sample 100(1� ↵)% confidence intervals for �2 using

e�2(�̃)± z↵/2n
�1/2
2 j�1/2{b�2; �̃}, (10)

with z↵/2 the 1� ↵
2 quantile of the standard normal distribution and j�1/2(�;�) the square

root of the diagonal elements in {d(b�2)S>(�;�)V �1
2 (�)S(�;�)}�1. Since S(�;�) ⌫ V 2(�)

in Loewner order, it follows that the confidence interval based on e�2(�̃) in equation (10)
is statistically more e�cient than the classical confidence interval based on the sampling
distribution of the MLE b�2.
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5 Empirical investigation

5.1 Objectives, setup, and take-aways

We examine the empirical performance of our proposed information-based shrinkage estima-
tor (ISE) e�2(�) through simulations in linear and logistic regression models. For all settings,
we compute e�2(�) for a range of � values, and compute �̃ and e�2(�̃). We construct large
sample 95% confidence intervals using equation (10). Finally, we investigate the robustness
of our proposed approach to model misspecification in the assumed model for analyzing D1.
Throughout, true values �1 and � are randomly sampled from suitable uniform distributions.

In addition to comparison with the MLE b�2, we show that the behavior of our esti-
mator e�2(�) more closely aligns with the intuition developed in Section 2 than competitor
approaches, and that it is more e�cient. In both the linear and logistic models, we compare

our approach to the Trans-GLM estimator b�
TG

2 in Algorithm 2 of Tian and Feng (2022)
with L1 regularization (their default) using the R package and function glmtrans, and the

pooled MLE b�
p

2 that estimates �2 with D1 and D2 by assuming �2 = �1. In the linear
model, we compare our approach to the estimator b�2(W �) of Chen et al. (2015) described
in Section 3.1 over the same range of � values as our estimator, and to b�2(W b�) with

b� se-

lected by minimizing the predictive mean squared error of b�2(W �) using their bias-adjusted
plug-in estimate (their version of our �̃). We also compare our approach to the Trans-Lasso

estimator b�
TL

2 of Li et al. (2022) (using their software defaults): their approach assumes
all covariates are Gaussian with mean zero, and so we center our outcome and estimate �2

without its intercept. In the logistic model, we compare our approach to that of Zheng et al.
(2019), who propose the estimator b�2(W ) = W b�2 + (Ip �W )b�1 with the matrix W given
by

⇥
(b�1 � b�2)(b�1 � b�2)

> +
�
X1A(X>

1
b�1)X

>
1

 �1
+
�
X2A(X>

2
b�2)X

>
2

 �1⇤�1

⇥
(b�1 � b�2)(b�1 � b�2)

> +
�
X1A(X>

1
b�1)X

>
1

 �1⇤
.

Across all simulations, we report 95% confidence interval empirical coverage (CP) of
e�2(�̃), mean �̃ and its standard error, and empirical MSE (eMSE). Li et al. (2022); Chen et al.
(2015); Zheng et al. (2019) do not provide a method for constructing confidence intervals,
prohibiting comparison of inferential properties of these methods to ours. While Tian and
Feng (2022) o↵er an alternative approach to construct confidence intervals for each element
of �2, their proposal is not designed to yield a point estimator.

We show that the mean squared error of e�2(�̃) is smaller than that of b�2 and various
competitors when n2 is not too small. As expected, �̃ is larger when n2 or � are smaller. We
show that, when n2 is large, D1 is informative or � is small, the bias of our estimator e�2(�̃) is
negligible and empirical coverage reaches nominal levels. This phenomenon is unique to our
approach: our choice of �̃, in contrast to competitors, guarantees that the bias is negligible
across a range of practical settings.

Finally, an additional simulation in Appendix B.2 investigates the trade-o↵s of concate-
nation versus single-source transfer learning when more than one source data set is available.
We summarize the key take-aways from this investigation in the discussion of Section 7.
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5.2 Setting I: Varying sample size

We study the performance of e�2(�) in the linear model with varying degrees of likelihood
information in D1 relative to D2. We vary n1 2 {50, 100, 500}, n2 2 {50, 100, 500}: for
each (n1, n2) pair, we simulate one data set D1 = {yi1,X i1}n1

i=1. For each simulated D1,
we generate 1000 data sets D2 = {yi2,X i2}n2

i=1. Features X ij 2 R11 consist of an intercept
and ten continuous features independently generated from a standard Gaussian distribution.
Outcomes are simulated from the Gaussian distribution with E(Yi2) = X>

ij�j and V(Yij) = 1.
True parameter values are set to �1 = (1,�1.8, 2.6, 1.4,�3.6, 3.5, 2.4,�3.3, 1.8,�3.4, 2.8),
� = (0.2, 0.1, 0.2,�0.1, 0.1,�0.1, 0.2, 0.2, 0.2,�0.1, 0.1) and �2 = b�1 + �. MLEs b�1 and
corresponding values �2 are reported in Appendix B.1. For each D2, we compute e�2(�) and
b�2(W �) for � a sequence of 500 evenly spaced values in [0, 5] for n2 = 50, 100 and [0, 0.2] for
n2 = 500.

Empirical mean squared errors (eMSE) of e�2(�), b�2(W �) and b�2 are depicted in Figure 2.
Both e�2(�) and b�2(W �) have smaller eMSE than b�2 across all (n1, n2) pairs. For fixed n2,
the eMSEs of e�2(�) and b�2(W �) decrease modestly as n1 increases. For fixed n1, the
eMSEs of e�2(�) and b�2(W �) decrease much more drastically as n2 increases. For fixed n1,
the minimum of eMSE{e�2(�)} is achieved at smaller � for larger n2, with eMSE{e�2(�)} <

eMSE(b�2) for shrinking ranges of � values as n2 increases. This is consistent with the
intuition developed in Sections 2 and 4: little weight should be placed on D1, regardless of
how informative it is, when D2 is highly informative. In contrast, b�2(W �) continues to place
a large weight on D1 even when n2 is large. Theoretically, this results in substantial bias of
the most e�cient b�2(W �), while the bias of the most e�cient e�2(�) will become negligible,
allowing us to construct confidence intervals that reach nominal levels (discussed below).
Practically, this suggests b�2(W �) struggles with predicting how much e�ciency gain can be
expected from incorporating inference in D1 when n2 is large. Our approach is advantageous
when proposing practical guidelines for improving inference in data integration.

A relevant question that the theory in Section 4 is unable to answer is how large �
? is

as a function of n2. That is, we have an upper bound that is O(n�1/2
2 ) and a lower bound

that is O(n�1
2 ), but what about �? itself? For an empirical check, this simulation provides

realizations of �̃ for a range of n2 values, so if we regress log �̃ against log n2, then the
estimated slope coe�cient would provide some information about how fast �? vanishes with
n2. Based on the results summarized in Table 1, the estimated slope is �0.77, with a 95%
confidence interval (�0.78,�0.76), which is well within the range [�1.0,�0.5] that we were
looking in. This provides empirical support of the claim that �? is strictly between our lower
and upper bounds, which are O(n�1

2 ) and O(n�1/2
2 ), respectively.

We show in Table 1 that our proposed �̃ results in a reduced eMSE by reporting eMSE

of e�2(�̃), b�2(W b�),
b�
TG

2 , b�
TL

2 , b�
p

2 and b�2 (Monte Carlo standard errors, MCse, of eMSE are
reported in Table 11 of the Appendix). Aside from the pooled MLE, our estimator achieves
the smallest eMSE when n2  n1. The Trans-GLM approach of Tian and Feng (2022)
apparently gives too much weight to D1 and su↵ers from negative transfer in most settings.
We report the mean value of �̃ and the median (over the 11 features) CP of e�2(�̃), b�

p

2 and b�2

over the 1000 simulated D2 in Table 2. Coverage of e�2(�̃) reaches the nominal 95% coverage
when n2 = 500. As discussed above, this is a consequence of the negligible bias when n2 is
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Figure 2: eMSE of e�2(�), b�2(W �) and b�2 over 1000 simulated D2 in Setting I.

large or one of �̃, � is su�ciently small. The bias incurred by assuming �1 = �2 leads to
inflated eMSE of the pooled MLE and severe under-coverage when n2 > n1 > 50. Of course,
the value of � is not known in practice and the use of the pooled analysis runs the substantial
risk of introducing a large bias that is not o↵set by a reduction in variance.

5.3 Setting II: Varying feature information

We study the performance of e�2(�) in the logistic model with varying degrees of likelihood
information in D1 relative to D2 when � = 0 and when � 6= 0. We fix (n1, n2) = (500, 500)
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n1 n2 eMSE·102
e�2(�̃) b�2(W b�)

b�
TG

2
b�
TL

2
b�
p

2
b�2

50
50 17.1 17.2 32.4 27.7 13.5 28.5
100 9.69 9.56 20.8 12.6 8.80 12.5
500 2.16 2.11 2.23 2.21 2.13 2.22

100
50 16.5 16.8 27.3 24.2 14.5 28.5
100 9.34 9.33 15.8 11.0 9.74 12.5
500 2.12 2.09 2.26 2.10 2.33 2.22

500
50 16.0 16.6 23.6 24.2 21.6 28.5
100 9.06 9.24 12.7 11.0 18.2 12.5
500 2.10 2.10 2.38 2.12 6.93 2.22

Table 1: Setting I: eMSE of e�2(�̃), b�2(W b�),
b�
TG

2 , b�
TL

2 , b�
p

2, b�2.

n1 n2 �̃ (s.e.) CP
e�2(�̃) b�

p

2
b�2

50
50 4.87 · 10�1 (3.81 · 10�1) 88.4 94.9 94.5
100 3.05 · 10�1 (1.93 · 10�1) 90.8 93.5 94.4
500 6.16 · 10�2 (1.90 · 10�2) 94.5 95.4 94.9

100
50 4.97 · 10�1 (3.45 · 10�1) 88.1 93.3 94.5
100 3.31 · 10�1 (1.74 · 10�1) 88.7 90.3 94.4
500 7.62 · 10�2 (1.92 · 10�2) 93.5 93.2 94.9

500
50 4.89 · 10�1 (3.07 · 10�1) 89.7 24.7 94.5
100 3.37 · 10�1 (1.62 · 10�1) 91.7 39.6 94.4
500 8.50 · 10�2 (1.87 · 10�2) 93.9 69.1 94.9

Table 2: Setting I: mean �̃ (s.e.), %CP of e�2(�̃), b�
TL

2 , b�
p

2, b�2.

and vary X1X
>
1 by simulating two data sets D1: one with large X1X

>
1 and one with small

X1X
>
1 . For each simulated D1, we generate 1000 data sets D2 = {yi2,X i2}n2

i=1. Features
X ij 2 R5 consist of an intercept and four continuous features independently generated from
N (0, 0.752) and N (0, 32) distributions for X1X

>
1 small and large respectively. Outcomes are

simulated with mean E(Yi2) = expit(X>
ij�j) from the Bernoulli distribution. True parameter

values are set to �1 = (1,�1.8,�1.2, 1.6, 0.2) and �2 = b�1 + �. We let � take two values:
� = (0, 0.25, 0,�0.25, 0.25) (� 6= 0) and � = 0. MLEs b�1 and corresponding values �2 are
reported in Appendix B.1. For each D2, we compute e�2(�) for � a sequence of 100 evenly
spaced values in [0, 7].

Empirical mean squared error (eMSE) of e�2(�) is depicted in Figure 3. When � = 0, the
smallest eMSE{e�2(�)} is achieved for � only marginally smaller when D1 is less informative
(X1X

>
1 is small): our estimator uses more or less the same amount of information from D1
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Figure 3: eMSE of e�2(�) and b�2 over 1000 simulated D2 in Setting II.

when � = 0. When � 6= 0, however, the smallest eMSE{e�2(�)} is achieved for smaller
� when D1 is informative: when the two data sets are di↵erent and D1 provides su�cient
information to discriminate between the two, our approach does not use as much information
from D1.

We show in Table 3 that �̃ results in a reduced eMSE by reporting eMSE of e�2(�̃),
b�2(W ), b�

TG

2 , b�
p

2 and b�2 (MCse of eMSE are reported in Table 12 of the Appendix). Aside
from the pooled MLE, our estimator achieves the smallest eMSE across all settings. As a
sample mean, the eMSE is approximately normally distributed given the large number of
simulations (1000 Monte Carlo replicates). An approximate 95% confidence interval for the
MSE can be constructed following the formula eMSE ± 1.96 MCse and two-sample z-tests

show that, for example, the MSEs for b�
TG

2 and b�2 are not statistically significantly di↵erent
at level 0.05 when � = 0. When X1X

>
1 is large, D1 provides a substantial amount of

information on �2. When � = 0, this information is used by turning the dial parameter � to
a large value, whereas when � 6= 0, the dial should not be turned very far. In other words, the
likelihood in D1 is “sharp”, and the distance between f

(n1)
1 (y1; b�1, �1) and f

(n1)
1 (y1;�2, �1)

is either small (when � = 0) or large (when � 6= 0). On the other hand, when X1X
>
1 is

small, there is insu�cient information in D1 to distinguish �2 and b�1, and more weight can
be placed on D1 with little loss of e�ciency when � 6= 0. Our estimator uses the abundance
of information in D1 di↵erently based on the value of �. In Table 4, we also report the
mean value of �̃ and the median (over the 5 features) CP of e�2(�), b�

p

2 and b�2 over the 1000
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� X1X
>
1 eMSE·10

e�2(�̃) b�2(W ) b�
TG

2
b�
p

2
b�2

= 0
large 0.310 0.751 0.971 0.202 0.964
small 0.464 1.11 1.32 0.381 1.38

6= 0
large 0.773 0.805 0.930 0.989 0.864
small 0.849 1.06 1.20 0.714 1.20

Table 3: Setting II: eMSE of e�2(�̃), b�2(W ), b�
TG

2 , b�
p

2, b�2.

� X1X
>
1 �̃ (s.e.) CP

e�2(�̃) b�
p

2
b�2

= 0
large 2.83 (6.42) 95.1 99.7 95.3
small 2.27 (3.20) 95.3 99.0 95.5

6= 0
large 0.120 (0.266) 93.1 77.1 94.7
small 0.720 (0.476) 80.5 93.8 94.9

Table 4: Setting II: mean �̃ (s.e.), %CP of e�2(�̃), b�
p

2, b�2.

simulated D2. Empirical coverage of e�2(�̃) reaches the nominal level in all but the most
di�cult setting, when D1 and D2 are dissimilar and D1 is less informative. The CP and
eMSE of the pooled MLE reveals over- and under-coverage when � = 0 (�2 = b�1) and � 6= 0

(�2 6= b�1), respectively.

5.4 Setting III: Varying parameter distance

In Setting III, we study the performance of e�2(�) in the logistic model as a function of �
with both independent and correlated features. With independent features, we fix (n1, n2) =
(500, 500) and generate one data set D1 = {yi1,X i1}n1

i=1 with �1 = (1,�0.5, 0.5), yielding
b�1 = (0.966,�0.563, 0.551). Source features X i1 2 R3 consist of an intercept and two
continuous features independently generated from a normal distribution with mean 0 and
variance 4. Target features X i2 2 R3 consist of an intercept and two continuous features
independently generated from a standard normal distribution. The correlation between
features in source and target data sets is ⇢ = 0. With correlated features, we fix (n1, n2) =
(500, 100) and generate one data set D1 = {yi1,X i1}n1

i=1 with �1 = (1,�0.5, 0.5), yielding
b�1 = (0.881,�0.516, 0.571). Source and target features X ij 2 R3 consist of an intercept
and two continuous features generated from a multivariate Gaussian distribution with mean
0, correlation ⇢ = 0.4 and variance 1. With independent and correlated features, we set
�2 = b�1 + � and let � take values �1 = (0, 0, 0), �2 = (0, 1, 0) and �3 = (0, 2, 0). For
each value �j, we generate 1000 data sets D2 = {yi2,X i2}n2

i=1. Outcomes are simulated
with E(Yij) = expit(X>

ij�j) from the Bernoulli distribution, with features generated as in
the source data set for independent and correlated features, respectively. For each D2, we
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compute e�2(�) for � a sequence of 100 evenly spaced values in [0, 10], [0, 0.02] and [0, 0.01]
for �1, �2, �3 respectively with independent features, and � a sequence of 100 evenly spaced
values in [0, 10], [0, 0.6] and [0, 0.2] for �1, �2, �3 respectively with correlated features.

Empirical mean squared error (eMSE) of e�2(�) is depicted in Figure 4. The smallest
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Figure 4: eMSE of e�2(�) and b�2 over 1000 simulated D2 in Setting III.

eMSE{e�2(�) is achieved for smaller values of � when � is larger. We show in Table 5

that �̃ results in a reduced eMSE by reporting eMSE of e�2(�̃), b�2(W ), b�
TG

2 , b�
p

2 and b�2

(Monte Carlo standard errors of eMSE are reported in Table 13 of the Appendix). Our
estimator’s e�ciency gain remains robust to substantial di↵erences between D1 and D2, and
our proposed �̃ consistently minimizes eMSE over competitors. In Table 6, we report mean
value of �̃ and the median (over the 2 features) CP of e�2(�̃), b�

p

2 and b�2 over the 1000
simulated D2. Empirical coverage of e�2(�̃) reaches the nominal level in all settings. The
pooled MLE shows inflated eMSE when � 6= 0. With independent features, �2 is over- and
under-covered when � = 0 and � 6= 0, respectively, whereas it is over-covered for all values
of � with correlated features.

5.5 Setting IV: Robustness to model misspecification

In Setting IV, we study the robustness of the gain in MSE of e�2(�) in the linear model
under model misspecification. We fix (n1, n2) = (500, 500) and generate three data sets
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� eMSE·102
e�2(�̃) b�2(W ) b�

TG

2
b�
p

2
b�2

(i) independent features, ⇢ = 0
(0, 0, 0) 1.45 2.55 4.21 0.572 3.73
(0, 1, 0) 3.53 3.84 3.64 58.3 3.56
(0, 2, 0) 5.21 30.2 5.22 259 5.37

(ii) correlated features, ⇢ = 0.4
(0, 0, 0) 8.34 16.9 28.1 0.546 22.8
(0, 1, 0) 18.9 29.5 21.0 67.1 22.5
(0, 2, 0) 31.6 146 31.0 287 39.2

Table 5: Setting III: eMSE of e�2(�̃), b�2(W ), b�
TG

2 , b�
p

2, b�2.

� �̃ (s.e.) CP
e�2(�̃) b�

p

2
b�2

(i) independent features, ⇢ = 0
(0, 0, 0) 3.43 (26.2) 94.3 100 94.8
(0, 1, 0) 5.56 · 10�3 (1.18 · 10�3) 94.7 89.4 95.5
(0, 2, 0) 2.05 · 10�3 (1.93 · 10�4) 94.9 7.20 95.0

(ii) correlated features, ⇢ = 0.4
(0, 0, 0) 3.22 (9.96) 94.9 100 95.1
(0, 1, 0) 0.197 (0.162) 95.2 99.9 95.6
(0, 2, 0) 0.0483 (0.0183) 95.2 99.3 95.5

Table 6: Setting III: mean �̃ (s.e.), %CP of e�2(�̃), b�
p

2, b�2.

D1 = {yi1,X i1}n1
i=1 constructed as follows:

(i) (Cauchy) outcomes are generated as yi1 = X i1�1 + ✏ij with ✏ij independent standard
Cauchy random variables;

(ii) (dropped Z) outcomes yi1 are generated from a Gaussian distribution with mean
X i1�1+Zi1 and variance V(Yi1) = 1, where Zi1 is generated from a standard Gaussian
distribution and acts as an unmeasured confounder;

(iii) (X2) outcomes are generated as yi1 = diag(X i1X
>
i1)�1 + ✏ij, i.e., the relationship be-

tween outcome and squared features is linear, with ✏ij independent standard Gaussian
random variables.

True parameter values are set to �1 = (1,�1.8, 2.6, 1.4,�3.6, 3.5, 2.4,�3.3, 1.8,�3.4, 2.8, 1)
and �2 = �1+(0, 0.1, 0,�0.1, 0.1,�0.1, 0, 0, 0,�0.1, 0.1), which di↵ers from previous settings;
we prefer to use �1 to define �2 since b�1 will be substantially biased in these misspecified
settings. MLEs b�1 and corresponding values � are reported in Appendix B.1. For each
simulated D1, we generate 1000 data sets D2 = {yi2,X i2}n2

i=1 as in Setting I. For each D2, we
compute e�2(�) and b�2(W �) for � a sequence of 100 evenly spaced values in [0, 0.02], [0, 0.4]
and [0, 5⇥ 10�4] for misspecifications (i), (ii) and (iii) respectively.
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Empirical mean squared errors (eMSE) of e�2(�), b�2(W �) and b�2 are depicted in Figure 5.
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Figure 5: eMSE of e�2(�), b�2(W �) and b�2 over 1000 simulated D2 in Setting IV.

The estimator proposed by Chen et al. (2015) appears slightly more e�cient than our ap-
proach when the mean model is misspecified (dropped Z and X

2). We show in Table 7 that

�̃ results in a reduced eMSE by reporting eMSE of e�2(�̃), b�2(W b�),
b�
TG

2 , b�
TL

2 , b�
p

2 and b�2

(Monte Carlo standard errors of eMSE are reported in Table 11 of the Appendix). Our esti-

mator’s gain in e�ciency is robust when f
(n1)
1 is misspecified (Cauchy misspecification): as

with Stein shrinkage, our use of the KL divergence in the shrinkage is robust to the misspec-
ification of the density f

(n1)
1 . Moreover, our approach is robust to unmeasured confounders

in D1 (dropped Z misspecification), encouraging the use of e�2(�̃) when D2 only measures a
subset of the features measured in D1. Finally, when mean models in D1 and D2 are sizeably
di↵erent (X2 misspecification), our approach reverts to the MLE in D2 with a very small
amount of shrinkage. In Table 8, we also report mean value of �̃ and the median (over the

11 features) CP of e�2(�̃), b�
p

2 and b�2 over the 1000 simulated D2. Empirical coverage of
e�2(�̃) reaches the nominal level in all settings. The Trans-Lasso estimator occasionally has
smaller eMSE than our estimator; it does not, however, suggest a path to inference, so that
the reduction in the MSE may give false confidence in the strength of a result that may not
in fact replicate. The CP and eMSE of the pooled MLE show inflated eMSE in all settings,
with over-coverage, nominal coverage and under-coverage in the Cauchy, dropped Z, and X

2

cases, respectively.

6 Real data analysis

We present a real-data illustration of our information-based shrinkage estimator e�2(�) in
an analysis of data from the multi-center eICU Collaborative Research Database (Pollard
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Case eMSE·102
e�2(�̃) b�2(W b�)

b�
TG

2
b�
TL

2
b�
p

2
b�2

Cauchy 2.20 2.20 2.22 2.15 60.0 2.22
dropped Z 1.99 1.96 2.37 1.93 3.68 2.22

X
2 2.22 2.22 2.22 2.29 230 · 10 2.22

Table 7: Setting IV: eMSE of e�2(�̃), b�2(W b�),
b�
TG

2 , b�
TL

2 , b�
p

2, b�2.

Case �̃ (s.e.) CP
e�2(�̃) b�

p

2
b�2

Cauchy 9.49 · 10�3 (1.44 · 10�3) 94.7 100 94.7
dropped Z 1.58 · 10�1 (4.66 · 10�2) 93.6 95.3 93.6

X
2 2.44 · 10�4 (3.45 · 10�5) 95.1 0 95.1

Table 8: Setting IV: mean �̃ (s.e.), %CP of e�2(�̃), b�
p

2, b�2.

et al., 2018) maintained by the Philips eICU Research Institute. The database consists of
data from patients admitted to one of several intensive care units (ICUs) throughout the
continental United States in 2014 and 2015. Information on data access and pre-processing
is provided in Appendix C.

Our analysis focuses on estimating the association between death and baseline features
for patients su↵ering from cardiac arrest upon admission to the ICU. Inclusion criteria are
described in Appendix C. Our first population consists of ICU admissions at hospitals located
in the western United States, and the data set D1 consists of cardiac arrest ICU admissions
at these 34 hospitals, n1 = 575. (The source data set D1 is a concatenation of source data
from 34 hospitals, as discussed in Section 2.1; our justification for this concatenation is that
these records are from hospitals in the same geographic region, so substantial heterogeneity
between hospitals would not be expected.) The data set D2 consists of cardiac arrest ICU
admissions at one hospital in the southern United States, n2 = 145. The probability of death
µij for participant i in data set Dj is modeled by

log
µij

1� µij
= �0j + �1j sexij + �2j ageij + �3j ethnicityij + �4j BMIij,

with sexij, ageij, ethnicityij and BMIij the sex (1 for male, 0 for female), age (in years),
ethnicity (1 for African American, 0 for Caucasian) and body mass index (in kg/m2) of
participant i in data set Dj, respectively.

Maximum likelihood estimation based on D1 reveals that sex and age are significantly
associated with death following cardiac arrest at hospitals in the west at level 0.05, with
estimated e↵ects b�1j = �0.39 (standard error, se = 0.18) and b�2j = 0.022 (se = 0.0073).
The MLEs and approximate standard errors for D1 and D2 are displayed in Table 9. While
associations between the outcome and age and sex are in the same direction in D1 and D2,
the estimates in the latter are not significant.
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Covariate West hospitals D1 South hospital D2

intercept �1.3 (0.65) �1.1 (1.3)
sex �0.39 (0.18) �0.17 (0.36)
age 0.022 (0.0073) 0.017 (0.015)

ethnicity �0.29 (0.39) 0.27 (0.36)
BMI �0.00069 (0.011) 0.019 (0.024)

Table 9: Maximum likelihood estimates (standard errors) of feature e↵ects in the data sets
D1 and D2 of cardiac arrest ICU admissions at the hospitals in the west and the hospital in
the south, respectively. Bolded estimates are significant at level 0.05.

Our proposed information-shrinkage approach can be used to borrow information from
D1 to improve the e�ciency of estimates in D2. Trace plots of the ISE e�2(�) with shaded
95% (pointwise) confidence bands are plotted in Figure 6 for a sequence of � 2 [0, 10]. The
minimizer �̃ of the estimated aMSE is also depicted there and shows that our proposed
estimator e�2(�̃) leads to statistically significant estimates of the sex and age e↵ects in D2, at
level 0.05. The 95% confidence intervals based on equation (10) for the sex and age e↵ects
are (�0.44,�0.28) and (0.017, 0.024) respectively.
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Figure 6: ISE e�2(�) of the sex, age, ethnicity and BMI e↵ects in D2, the data set of cardiac
arrest ICU admissions at the southern U.S. hospital. The dotted vertical line gives the value
of the minimizer of the estimated aMSE, �̃.

We also report estimates of the intercept, sex, age, ethnicity and BMI e↵ects for the

estimators e�2(�̃), b�2(W ), b�
TG

2 , b�
p

2 and b�2 in Table 10. The estimator b�
TG

2 uses the source
detection algorithm in Tian and Feng (2022) and finds that data from all 34 hospitals in
the west are transferable. Our proposed ISE appears close to the pooled and target-only
estimates. In contrast, b�2(W ) exhibits substantial bias in the age and BMI e↵ects, whereas

the debiasing step in b�
TG

2 appears to fail and returns e↵ect estimates that are zero for the

ethnicity and BMI covariates. In fairness, b�
TG

2 is designed for a di↵erent setting than ours,
as discussed in Section 4.3. Specifically, the estimator is designed to improve target data
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e�2(�̃) b�2(W ) b�
TG

2
b�
p

2
b�2

intercept �1.3 �0.94 0.15 �1.2 �1.1
sex �0.36 �0.17 �0.085 �0.35 �0.17
age 0.021 19 0.0070 0.020 0.017

ethnicity 0.23 0.063 0 0.36 0.27
BMI 0.0025 9.1 0 0.0038 0.019

Table 10: Estimates of feature e↵ects in the target data set D2 of cardiac arrest ICU admis-
sions at the hospital in the south.

set predictions in high-dimensional transfer learning problems with multiple heterogeneous
sources, and so the algorithm may be over-designed for our setting. We can nonetheless
compare predictive metrics of the estimators. Area under the receiver operating charac-
teristic curve (AUC) (standard error) are 57.6% (4.79%), 58.6% (4.74%), 56.7% (4.81%),

57.4% (4.81%) and 59.6% (4.77%) using estimates e�2(�̃), b�2(W ), b�
TG

2 , b�
p

2 and b�2, re-
spectively. While not designed for prediction, our approach does not give worse predictive

performance—as measured by AUC—in comparison to b�2(W ), b�
p

2, and b�
TG

2 , despite the
latter being designed specifically to improve prediction. Further, our information shrink-

age estimate e�2(�̃) appears less biased than b�2(W ) and b�
TG

2 , facilitating estimation and
inference.

7 Conclusion

This paper proposes a new approach to data integration, focusing not on if two data sets
should be integrated, but on the extent to which inference based on the second data set
could be made more e�cient by leveraging information in the first. This extent is controlled
by a dial parameter �. We proposed a �-dependent estimator in generalized linear models,
o↵ered a data-driven choice of �, and established theoretical support for our claims that
this new estimator is more e�cient than that which ignores the first data set, even when
the underlying populations di↵er. Our new, more nuanced data integration framework not
only matches statistical intuition on notions of informativeness but empirically out-performs
the state-of-the-art techniques. Our proposed approach yields relatively simple parameter
estimates, yet performs powerfully in practice and is intuitively related to a broad scope of
inferential frameworks.

A unique feature of our approach is the ability to essentially ignore D1 when n2 is large.
This is important. We have already discussed that our approach is protected from negative
transfer. Almost equally important, our approach says something useful about when to
expect e�ciency gains by incorporating inference from another data set. Intuition tells us
that the contribution from another data set should vanish as the sample size n2 grows when
� 6= 0, which is typical in practice; this intuition underpins the foundations of e�ciency
results for maximum likelihood estimation. This is borne out by our information-shrinkage
approach because we are accounting for the relative information in D1 with respect to D2.
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It is somewhat surprising, however, that this is not the case for all shrinkage estimators, as
evidenced in Section 5. While the estimator in Chen et al. (2015) has a smaller asymptotic
variance than our proposed estimator when n2 is large, theirs is asymptotically biased and
does not o↵er a path to inference. In contrast, we guarantee that, asymptotically, the bias is
vanishing and approximately valid confidence intervals are available and can be computed.

Another key point is that the bias is controlled by choosing �
?
at the right rate, namely

between O(n�1
2 ) and O(n�1/2

2 ). This rate guarantees a gain in e�ciency, even when the bias
is negligible. The need for data integration is driven by the high cost of data collection, and
a gain in e�ciency, however small, can make the di↵erence between a null finding and a new
discovery.

In contrast to data fusion discussed in Section 2.3.3, our approach limits its consideration
to data sets D1 and D2 as the units of integration, rather than features. While elements
of e�2(�) will shrink unevenly depending on feature information, we do not allow the user
to di↵erentially shrink estimates using feature-specific dial parameters. It is unclear how to
incorporate feature-specific dial parameters because the penalty in (3) is data-dependent,
i.e. a summation over independent units i = 1, . . . , n1 rather than parameters.

Our focus on generalized linear models is motivated by a desire to balance practical utility
and the insights we can obtain into the e�ciency gains expected from integrating data sets.
Our approach can surely be applied in problems that fall outside the generalized linear model
framework, but the theory may be substantially complicated by, e.g., the lack of a closed
form for the KL divergence. The substantial and practically useful intuition developed in
the present paper, for example on the rate of �?, should be helpful in guiding extensions to
more general models in future work.

We envision that our proposed method can be extended to the setting with high-dimensional
predictors (p > n2). A special case of interest considers the setting where the correctly spec-
ified model in the source D1 depends on a set of q > n1 features, but the correctly specified
model in the target D2 depends only on a subset of p < n2 of these features. Then, our
information-based shrinkage estimation can be carried out using only these p features with-
out modification. This is due to the fact that the model in D1 need not be correctly specified
for us to borrow information from D1. Theorems 1 and 2 and the simulation results in
Setting IV of Section 5 support this solution, although further investigation is required to
determine how much e�ciency can be gained when more than one feature di↵ers between
D2 and D1. More generally, extensions to our work may consider the setting where the
correctly specified models in both data sets D1,D2 depend on p features, p > n2 _ n1. We
envision that our approach can be extended by regularizing the estimator e�2(�) of �2. It
is doubtful that the bias introduced by this regularization decreases quickly enough to yield
valid inference, and so we expect to lose many of the appealing properties we derived for our
estimator e�2(�̃). Additional theoretical study is required to investigate the implementation
of debiasing strategies in our data integrative setting.

As seen in Section 6, the multiple source setting is very realistic. When the number of
source data sets is small, an investigator may compare our proposed source concatenation
approach to, for example, one that uses each source individually, one at a time. Appendix B.2
shows that our suggested concatenation strategy is safe in the sense that it is theoretically
guaranteed to protect against negative transfer, and e�cient in that it generally outperforms
the integration of a single source data set. We also argue that concatenation is a reasonable
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de facto approach in all but the most extreme cases, e.g., where one source data set obviously
matches the target data much better than the other source data sets. A further question
centers around the optimal source configuration to minimize the MSE of the estimator. In
Appendix B.2, we consider the idea of choosing a source data configuration by minimizing
our estimated MSE. That is, in the linear model case, define the function

S 7! n
�1
T b�2

T trace{S�2(�̃)GT }+ �̃
2trace{GSS

�2(�̃)GS
b�2},

where the input S could be the full concatenation of source data sets, any one of the in-
dividual source data sets, or some intermediate configuration consisting of a concatenation
of only some of the source data sets, and the right-hand side is the minimized estimated
MSE for this source configuration. The same idea can be applied in the generalized linear
model case, with an expression slightly more complicated than that above. Then the idea
is to choose bS as the minimizer of the above objective function. We show in Appendix B.2
that this strategy reliably selects the most e�cient source configuration. The minimized
estimated MSE can form the basis for this comparison by quantifying the e↵ectiveness of
the data integration: a smaller value signals that a large amount of information can be
safely borrowed and should therefore be preferred. As with all model selection approaches,
the downstream inference does not account for the model selection and so an investigator
should be wary of over-interpreting confidence intervals/standard errors. A natural exten-
sion of our concatenation proposal would incorporate features of data-driven heterogeneous
source detection methods (Li et al., 2022; Tian and Feng, 2022) to perform inference in the
multi-source setting.
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A Proofs

A.1 Proof of Theorem 1

We start with the mean squared error of e�2(�). First,

{e�2(�)� �2}>{e�2(�)� �2} = {G2(b�2 � �2) + �G1(b�1 � �2)}>(G2 + �G1)
�2

{G2(b�2 � �2) + �G1(b�1 � �2)}.
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Define M = G�1/2
2 G1G

�1/2
2 and R = G�1

1 G2. Then

MSE{e�2(�)} = E�2
[{e�2(�)� �2}>{e�2(�)� �2}]

= n
�1
2 �

2
2trace{S�2(�)G2}+ �

2�>G1S
�2(�)G1�

= n
�1
2 �

2
2trace{(Ip + �M )�2G�1

2 }+ �
2trace{(R+ �Ip)

�2��>}
= v(�) + b(�).

(11)

The term v(�) is the sum of the variances of the (weighted) least squares estimates from
D1 and D2. On the other hand, b(�) is the squared distance from b�1 to �2 and will be 0

when � = 0 or b�1 = �2. Clearly, v(�) is monotonically decreasing and b(�) is monotonically
increasing. Note that, as expected,

v(0) + b(0) = n
�1
2 �

2
2trace(G

�1
2 ) = MSE(b�2).

When � = 0, we therefore have MSE{e�2(�)} < MSE(b�2) for all � > 0. Throughout the rest
of the proof, we consider the case when � 6= 0.

Since G2 is symmetric positive definite, it has an invertible and symmetric square root
denoted by G1/2

2 . From

G1/2
2 RG�1/2

2 = G1/2
2 G�1

1 G1/2
2 = M�1

,

we have that R and M�1 are similar matrices. By symmetry and, therefore, orthogonal
diagonalizability of the latter, the former is diagonalizable, and R and M�1 share eigenval-
ues. Let r > 0, r = 1, . . . , p, the eigenvalues of M�1 and R in decreasing order. Denote
by K = diag{r}pr=1 and P the matrices of eigenvalues and eigenvectors of M�1, with
P> = P�1 such that M�1 = P>KP . Then the mean squared error of e�2(�) can be
rewritten as

MSE{e�2(�)} = n
�1
2 �

2
2trace{(Ip + �K�1)�2PG�1

2 P>}+ trace{(��1R+ Ip)
�2��>}.

We see that MSE{e�2(�)} is monotonically decreasing on an interval [0,�?] and monotonically
increasing on an interval [�?

,1) for some �?
> 0. Our aim is to find a bound on �

?, so that
MSE{e�2(�)} < MSE(b�2) for all � less than that bound.

Denote by (�2r)
p
r=1 the values of diag(��

>) sorted in increasing order, i.e. 0  �
2
1  . . . 

�
2
p. Let gr2 > 0, r = 1, . . . , p, the eigenvalues of G2 in increasing order. Then the bias and
variance functions satisfy

b(�)  �
2

pX

r=1

�
2
r

(r + �)2

v(�)  �
2
2

n2

pX

r=1

g
�1
r2

(1 + ��1
r )2

=
�
2
2

n2

pX

r=1

g
�1
r2 

2
r

(r + �)2
,

using Von Neumann’s trace inequality and the fact that the eigenvalues of A>A are the
squared eigenvalues of A for a positive definite matrix A. Therefore

MSE{e�2(�)} = v(�) + b(�) 
pX

r=1

�
2
2g

�1
r2 

2
r + �

2
n2�

2
r

n2(r + �)2
.
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Denote the upper bound on the right-hand side by U(�). We proceed to show that there
exists a � > 0 such that MSE{e�2(�)}  U(�) < MSE(b�2).

Towards this, we examine the monotonicity of U(�). First,

@

@�
U(�) = 2

pX

r=1

r(�n2�
2
r � �

2
2g

�1
r2 r)

n2(r + �)3
.

From

lim
�!0+

@

@�
U(�) = �2�2

2

n2

pX

r=1

g
�1
r2

r
< 0,

the upper bound U(�) immediately decreases as � moves away from 0. To find a range of �
such that MSE{e�2(�)}  U(�) < MSE(b�2), it is therefore su�cient to find the range of �
over which U(�) is decreasing, due to the fact that, at � = 0,

MSE{e�2(0)} = U(0) = MSE(b�2).

The range of � such that U(�) is decreasing corresponds to the range of � values for which
the derivative of U(�) is negative. This, in turn, corresponds to the range of � satisfying

�

pX

r=1

r�
2
r

(r + �)3
<

�
2
2

n2

pX

r=1

g
�1
r2 

2
r

(r + �)3
.

This is satisfied by

� <
�
2
2

n2

minr=1,...,p(rg
�1
r2 )

maxr=1,...,p(�2r )
. (12)

Equation (12) gives a range of � values such that MSE{e�2(�)} < MSE(b�2).

A.2 Proof of Lemma 1

First, observe that �O(�;�) is a convex function of � 2 ⇥, where ⇥ 2 Rp is an open convex
set. Define

oi(�;�) = yi2X
>
i2� � b(X>

i2�)

� �

n1

n1X

i=1

n
b
0(X>

i1
b�1)(X

>
i1
b�1 �X>

i1�) + b(X>
i1�)� b(X>

i1
b�1)

o
,

so that �O(�;�) = n
�1
2

Pn2

i=1 �oi(�;�). By the law of large numbers, for each fixed � 2 ⇥,
O(�;�) converges in probability to

lim
n2!1

1

n2

n2X

i=1

E�2
oi(�;�) = lim

n2!1

1

n2

n2X

i=1

�
h(X>

i2�2)X
>
i2� � b(X>

i2�)
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� �

n1

n1X

i=1

n
b
0(X>

i1
b�1)(X

>
i1
b�1 �X>

i1�) + b(X>
i1�)� b(X>

i1
b�1)

o
.

By convexity, it follows from Lemma 1 in Hjort and Pollard (1993) that the above convergence
is uniform in � over compact subsets K ⇢ ⇥. Proofs are given in Andersen and Gill (1982)

or Pollard (1991). Consistency of e�2(�) and the rate e�2(�) � �?
2(�) = Op(n

�1/2
2 ) follow

directly from the conditions and Theorem 2.2 in Hjort and Pollard (1993).

A.3 Proof of Lemma 2

By a Taylor’s expansion of 0 =  {e�2(�);�} around �2, we obtain

0 =  (�2;�)� S(�2;�){e�2(�)� �2}+Op{ke�2(�)� �2k2}
=  (�2;�)� S(�2;�){e�2(�)� �2}+Op{ke�2(�)� �?

2(�)k2 + k�?
2(�)� �2k2

+ 2ke�2(�)� �?
2(�)kk�?

2(�)� �2k}. (13)

We bound the higher-order terms in the above expansion. By continuity of  (�;�), there
exists a vector c� 2 Rp between �2 and �?

2(�) such that

�2 � �?
2(�) = �S�1(c�;�){ (�2;�)� (�?

2(�);�)}.

Recall that �?
2(�) is the unique solution to E�2

{ (�?
2(�);�)} = 0. Taking expectations,

�2 � �?
2(�) = �S�1(c�;�)E�2

{ (�2;�)}. (14)

We decompose  (�;�) = U 2(�) � �P 1(�) into the di↵erence of the score function U 2(�)
in D2 and a (non-random) penalty term P 1(�):

U 2(�) = n
�1
2 X2{y2 � µ2(�)}, P 1(�) = n

�1
1 X1{µ1(�)� µ1(b�1)}.

Since �2 is the true value of � inD2, i.e., E�2
(Y 2) = X>

2 �2 = µ2(�2), clearly E�2
{U 2(�2)} =

0. This implies

E�2
{ (�2;�)} = ��n

�1
1 X1{h(X>

i1�2)� h(X>
i1
b�1)}n1

i=1

= ��n
�1
1 X1�(�2)

= ��n
�1
1 X1A(X>

1 c2)X
>
1 �

= ��v1(c2)�,

(15)

where the third line is by the mean value theorem with c2 2 Rp a vector between �2 and b�1.
Plugging (15) into (14) gives �2��?

2(�) = �S�1(c�;�)v1(c2)�. Taking the limit as n2 ! 1
on both sides yields

�2 � �?
2(�) = � {v2(c�) + �v1(c�)}�1 v1(c2)�.
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By condition (C2), the eigenvalues of vj(c�) are bounded away from 0, j = 1, 2. If � =

O(n�1/2
2 ), then we obtain �?

2(�)� �2 = O(n�1/2
2 ). Plugging this rate into equation (13) and

using Lemma 1,

0 =  (�2;�)� S(�2;�){e�2(�)� �2}+Op(n
�1
2 ) +O(n�1

2 ) +Op(n
�1/2
2 )O(n�1/2

2 )

=  (�2;�)� S(�2;�){e�2(�)� �2}+Op(n
�1
2 ) +O(n�1

2 ).

Rearranging gives

n
1/2
2 {e�2(�)� �2} = S�1(�2;�)n

1/2
2  (�2;�) +Op(n

�1/2
2 ) +O(n�1/2

2 ). (16)

We examine the asymptotic behavior of n1/2
2  (�2;�). For i = 1, . . . , n2, define

 i(�;�) = X i2

�
yi2 � h(X>

i2�)
 
� �

n1

n1X

j=1

Xj1

�
h(X>

j1�)� h(X>
j1
b�1)

 
,

such that  (�;�) = n
�1
2

Pn2

i=1 i(�;�). Since

lim
n2!1

1

n2

n2X

i=1

V�2
{ i(�;�)} = lim

n2!1

1

n2

n2X

i=1

X i2V�2

�
Yi2 � h

�
X>

i2�
� 

X>
i2

= lim
n2!1

1

n2
d(�2)X2A(X>

2 �2)X
>
2

= d(�2)v2(�2),

by equation (15) and conditions (C1)–(C2),

n
1/2
2 { (�2;�) + �n

�1
1 X1�(�2)}

d! N{0, d(�2)v2(�2)}.

In other words,

n
1/2
2  (�2;�) = ��n

�1
1 n

1/2
2 X1�(�2) + d(�2)

1/2v1/2
2 (�2)Z + op(1),

where Z ⇠ N (0, Ip). By equation (16),

n
1/2
2 {e�2(�)� �2} = S�1(�2;�)d(�2)

1/2v1/2
2 (�2)Z

� �n
�1
1 n

1/2
2 S�1(�2;�)X1�(�2) + op(1) +Op(n

�1/2
2 ) +O(n�1/2

2 ).
(17)

As n2 ! 1, using symmetry of S(�;�), it follows that

n
1/2
2 d(�2)

�1/2S>(�2;�)v
�1/2
2 (�2)

�e�2(�)� �2 + �n
�1
1 S�1(�2;�)X1�(�2)

 

converges in distribution to N (0, Ip), which proves the first claim. When � = o(n�1/2
2 ), the

above display can be re-expressed as

n
1/2
2 d(�2)

�1/2S>(�2;�)v
�1/2
2 (�2)

�e�2(�)� �2

 
+ o(1).

Then the second claim follows from the first together with Slutsky’s theorem.
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A.4 Proof of Theorem 2

We start with the asymptotic mean squared error of e�2(�). By (17) in the proof of Lemma 2,

aMSE{e�2(�)} = d(�2)trace{s�2(�2;�)v2(�2)}+ n2�
2�>v1(c2)s

�2(�2;�)v1(c2)�,

where c2 2 Rp is a vector between �2 and b�1 such that v1(c2)� = n
�1
1 X1�(�2). Notice

that s(�2;�) = v2(�2) + �v1(�2). Analogous to the Gaussian linear model case, define

M (�) = v�1/2
2 (�)v1(�)v

�1/2
2 (�), R(�) = v�1

1 (�)v2(�), and C = v�1
1 (�2)v1(c2). Then the

aMSE can be rewritten as

aMSE{e�2(�)} = v(�) + b(�),

where

v(�) = d(�2)trace[{Ip + �M (�2)}�2v�1
2 (�2)]

b(�) = n2�
2�>C>{R(�2) + �Ip}�2C�.

The v(�) term is the sum of the variances of the (weighted) least squares estimates from D1

and D2, whereas b(�) is the squared distance from b�1 to �2 and will be 0 when � = 0 or
� = 0. Clearly, v(�) is monotonically decreasing, b(�) is monotonically increasing, and

v(0) + b(0) = d(�2)trace{v�1
2 (�2)} = aMSE(b�2).

When � = 0, we therefore have aMSE{e�2(�)} < aMSE(b�2) for all � > 0. Throughout the
rest of the proof, we consider the case when � 6= 0.

Since v2(�) is symmetric positive definite, it has an invertible and symmetric square root

denoted by v1/2
2 (�). From

v1/2
2 (�)R(�)v�1/2

2 (�) = v1/2
2 (�)v�1

1 (�)v1/2
2 (�) = M�1(�),

we have that R(�) and M�1(�) are similar matrices. By symmetry, and therefore orthog-
onal diagonalizability, of the latter, the former is diagonalizable, and R(�) and M�1(�)
share eigenvalues. Let r(�) > 0, r = 1, . . . , p the (common) eigenvalues of M�1(�) and
R(�) in decreasing order. Denote by K(�) = diag{r(�)}pr=1 and P (�) the matrices
of eigenvalues and eigenvectors of M�1(�), with P>(�) = P�1(�) such that M�1(�) =
P>(�)K(�)P (�). Then

v(�) = d(�2)trace[{Ip + �K�1(�2)}�2P (�2)v
�1
2 (�2)P

>(�2)]

b(�) = n2�
>C>{��1R(�2) + Ip}�2C�.

Recall that v1(c2)� = n
�1
1 X1�(�2). Denote by {�2r(�2)}

p
r=1 the values of

diag(C��>C>) = diag{v�1
1 (�2)v1(c2)��

>v1(c2)v
�1
1 (�2)}

= n
�2
1 diag{v�1

1 (�2)X1�(�2)�
>(�2)X

>
1 v

�1
1 (�2)},
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sorted in increasing order, i.e. 0  �
2
1(�)  . . .  �

2
p(�). Let gr2(�), r = 1, . . . , p, the

eigenvalues of v2(�) in increasing order. Then the bias and variance functions satisfy

n2�
2

pX

r=1

�
2
p�r+1(�2)

{r(�2) + �}2  b(�)  n2�
2
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2
r (�2)

{r(�2) + �}2

d(�2)
pX
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g
�1
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2
p�r+1(�2)

{r(�2) + �}2  v(�)  d(�2)
pX

r=1

g
�1
r2 (�2)

2
r(�2)

{r(�2) + �}2 ,

using Von Neumann’s trace inequality and the fact that the eigenvalues ofA2 are the squared
eigenvalues of A for a positive definite matrix A. Then we have a bound on the aMSE,

L(�)  aMSE{e�2(�)}  U(�),

where

L(�) =
pX

r=1

d(�2)g
�1
p�r+1 2(�2)

2
p�r+1(�2) + n2�

2
�
2
p�r+1(�2)

{r(�2) + �}2

U(�) =
pX

r=1

d(�2)g
�1
r2 (�2)

2
r(�2) + n2�

2
�
2
r(�2)

{r(�2) + �}2 ,

are the sums of the lower and upper bounds on v(�) and b(�) above, respectively. We
calculate the derivatives:

@

@�
L(�) = 2

pX

r=1

2�p�r+1(�2){�p�r+1(�2)r(�2)n2�� g
�1
p�r+1 2

2
p�r+1(�2)}

{r(�2) + �}3

@

@�
U(�) = 2

pX

r=1

r(�2){�n2�
2
r (�2)� d(�2)g

�1
r2 (�2)r(�2)}

{r(�2) + �}3 .

Since the derivative of the lower bound L(�) is positive for large enough �, L(�) is increasing
for large enough �. From

lim
�!0+

@

@�
U(�) = �2d(�2)

pX

r=1

g
�1
r2 (�2)

r(�2)
< 0,

we find that U(�) is decreasing in a neighborhood of the origin. All together, we find that
aMSE{e�2(�)} is monotonically decreasing on an interval [0,�?] and monotonically increasing
on an interval [�?

,1) for some �
?
> 0.

Next we show that the upper limit on the range of � on which there is an e�ciency gain
is O(n�1/2

2 ). Let � > 0 be such that aMSE{e�2(�)} = aMSE(b�2). Then

0 = v(�) + b(�)� {v(0) + b(0)}
= d(�2)trace[{Ip + �M (�2)}�2v�1

2 (�2)� v�1
2 (�2)]

+ n2�
>C>{��1R(�2) + Ip}�2C�
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Recall that C� is a constant with respect to �. Rearranging, � satisfies

0 = d(�2)trace
�
[{Ip + �M (�2)}�2 � Ip]v

�1
2 (�2)

�

+ n2�
>C>{��1R(�2) + Ip}�2C�

The first term on the right-hand side is a decreasing function of � with limit 0 as � ! 0+ and
limit �aMSE(b�2) as � ! 1; the first term is, therefore, e↵ectively (a negative) constant
in �. The second term is a strictly positive increasing function of � for all � > 0. For this,
too, to be a constant, so that the above equality is satisfied, we need n2�

2 to be e↵ectively
a constant. Therefore, the � at which equality of aMSEs is achieved is O(n�1/2

2 ).
Finally, we can get a lower bound on �

?, so that aMSE{e�2(�)} < aMSE(b�2) for all � less
than that bound. Since U(�) is decreasing in a neighborhood of the origin, it is su�cient to
find the � values for which this derivative is negative, i.e., it is su�cient to find � such that

�n2

pX

r=1

r(�2)�
2
r(�2)

{r(�2) + �}3 < d(�2)
pX

r=1

g
�1
r2 (�2)

2
r(�2)

{r(�2) + �}3 .

This is satisfied by

� <
d(�2)

n2

minr=1,...,p{r(�2)g
�1
r2 (�2)}

maxr=1,...,p{�2r (�2)}
. (18)

Equation (18) gives a range of � values such that aMSE{e�2(�)} < aMSE(b�2), so the right-
hand side is a lower bound on �

?.

B Additional numerical results

B.1 Further results from Sections 5.2-5.5

Figures 7–8 plot b�1 and �2 in Settings I and II, respectively. Figure 9 plots b�1 and the
corresponding value of � in Setting IV.
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Figure 7: MLE b�1 (left) with corresponding value of �2 (right) for each D1 in Setting I.
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Figure 8: MLE b�1 (left) with corresponding value of �2 (right) for each D1 in Setting II.
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Figure 9: MLE b�1 (left) with corresponding value of � (right) for each D1 in Setting IV.

Tables 11–14 give the Monte Carlo standard error of the empirical mean squared error
for e�2(�̃) and comparison estimators in Settings I–IV respectively.
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n1 n2 MCse ·103 of eMSE
e�2(�̃) b�2(W b�)

b�
TG

2
b�
TL

2
b�
p

2
b�2

50
50 2.73 2.73 3.80 4.48 1.49 4.38
100 1.31 1.35 2.94 1.87 1.06 1.81
500 0.295 0.289 0.316 0.321 0.284 0.31

100
50 2.64 2.63 3.48 3.98 1.15 4.38
100 1.27 1.31 2.68 1.60 0.945 1.81
500 0.289 0.286 0.327 0.304 0.291 0.310

500
50 2.60 2.57 3.11 3.98 0.438 4.38
100 1.25 1.28 2.15 1.58 0.526 1.81
500 0.284 0.285 0.313 0.304 0.384 0.310

Table 11: Setting I: Monte Carlo standard error (MCse) of eMSE of e�2(�̃), b�2(W b�),
b�
TG

2 ,
b�
TL

2 , b�
p

2, b�2.

� X1X
>
1 MCse ·103 of eMSE

e�2(�̃) b�2(W ) b�
TG

2
b�
p

2
b�2

= 0
large 1.37 2.24 2.54 0.586 2.35
small 2.29 3.66 3.82 0.865 3.78

6= 0
large 1.68 1.62 2.37 1.03 1.98
small 1.89 2.30 3.28 1.44 3.05

Table 12: Setting II: Monte Carlo standard error (MCse) of eMSE of e�2(�̃), b�2(W ), b�
TG

2 ,
b�
p

2, b�2.

� MCse ·103 of eMSE
e�2(�̃) b�2(W ) b�

TG

2
b�
p

2
b�2

(i) independent features, ⇢ = 0
(0, 0, 0) 0.679 0.894 1.23 0.190 1.03
(0, 1, 0) 0.950 0.980 1.03 1.13 0.978
(0, 2, 0) 1.50 4.30 1.48 1.87 1.58

(ii) correlated features, ⇢ = 0.4
(0, 0, 0) 5.16 8.94 6.60 0.166 8.59
(0, 1, 0) 5.77 8.64 6.07 2.48 7.76
(0, 2, 0) 11.6 58.1 9.82 5.07 18.1

Table 13: Setting III: Monte Carlo standard error (MCse) of eMSE of e�2(�̃), b�2(W ), b�
TG

2 ,
b�
p

2, b�2.
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Case MCse ·103 of eMSE
e�2(�̃) b�2(W b�)

b�
TG

2
b�
TL

2
b�
p

2
b�2

Cauchy 0.308 0.308 0.310 0.315 1.70 0.310
dropped Z 0.272 0.269 0.362 0.285 0.264 0.310

X
2 0.310 0.310 0.310 0.334 47.0 0.310

Table 14: Setting IV: Monte Carlo standard error (MCse) of eMSE of e�2(�̃), b�2(W b�),
b�
TG

2 ,
b�
TL

2 , b�
p

2, b�2.

B.2 Multi-source simulation

For the purposes of this section, we denote by DS
1 , . . . ,DS

M M source data sets and DT

the target data set. Each data set DS
j is composed of features XS

ij and outcomes y
S
ij, i =

1, . . . , nS
j , j = 1, . . . ,M , and the target data setDT is composed of featuresXT

i and outcomes
y
T
i , i = 1, . . . , nT .
In the notation of the main manuscript, the concatenation approach considers X1 =

(XS
1 , . . . ,X

S
M), y1 = (yS >

1 , . . . ,yS >
M )>, D1 = {X1,y1} and D2 = DT , with n1 = n

S
1 +

. . . + n
S
M and n2 = n

T , �2 = �T . We have suggested that this concatenation approach will
work well when the source data sets are mostly homogeneous or mostly heterogeneous. It
is possible, as described in Section 2.1, that there are groups of source data sets that are
homogeneous within and heterogeneous across. When the number of source data sets is
small, as is the case below, it may be possible to consider integrating the target data set
with only one of the source data sets, and to compare performance across these separate
integrative estimates in order to select the best approach. In this section, we investigate this
question by examining the trade-o↵s of concatenation versus single-source transfer learning
when M = 3 source data sets are available.

In both source and target data sets, features consist of an intercept and three continuous
variables independently generated from a standard Gaussian distribution. Source outcomes
y
S
ij are simulated from the Gaussian distribution with E(Y S

ij ) = (XS
ij)

>�S
j and V(Y S

ij ) = 1,
j = 1, . . . ,M , and target outcomes y

T
i are simulated from the Gaussian distribution with

E(Y T
i ) = (XT

i )
>�T and V(Y T

i ) = 1. We fix n
S
1 = n

S
2 = n

S
3 = 100, nT = 50. We simulate

three source data sets DS
j = {ySij,XS

ij}
nS
j

i=1. We consider three settings of values for �S
j and

�T that characterize the heterogeneity/homogeneity of the sources relative to the target.
Specifically, defining c = (1,�1.8, 2.6, 1.4):

• In Setting I, �S
1 = c + (1/4, 0, 0, 0), �S

2 = c + (0, 1/4, 0, 0), �S
3 = c + (0, 0, 1, 0) and

�T = c + (0, 0, 5/4, 0). Here, the first and second source data sets are closer to each
other than to the third source data set, which is itself closer to the target data set.

• In Setting II, �S
1 and �S

2 are as in Setting I, �S
3 = c + (0, 0, 1/4, 0) and �T = c +

(0, 0, 0, 1/4). All source data sets are close to each other and to the target data set.

• In Setting III, �S
1 = c + (1, 0, 0, 0), �S

2 = c + (0, 1, 0, 0), �S
3 = c + (0, 0, 1, 0) and

�T = c + (0, 0, 0, 1). All source data sets are far from each other and the target data

39



source data set Setting I Setting II Setting III

DS
1 8.68 (1.96) 6.17 (1.38) 8.53 (1.94)

DS
2 8.69 (1.96) 7.24 (1.50) 8.68 (1.99)

DS
3 6.73 (1.36) 7.17 (1.55) 8.60 (1.94)

{DS
1 ,DS

2 ,DS
3 } 8.63 (1.93) 5.90 (1.28) 8.48 (1.94)
? 8.65 (1.98) 8.65 (1.98) 8.65 (1.98)

Table 15: Multi-source simulation: eMSE ⇥102 (Monte Carlo standard error ⇥103) of e�T (�̃).
Minimum eMSE in each Setting is bolded.

set.

The MLEs b�
S
j are reported in Figure 10. For each setting, we generate 1000 data sets

DT = {yTi ,XT
i }n

T
i=1.

For each DT , we compute e�2(�̃) using each source separately and using the concatenation
of the sources. We also compute the target-only MLE b�2, which corresponds to setting the
source data set to be ?. Empirical mean squared error (eMSE) of e�2(�̃) averaged across the
1000 target data sets in each setting are reported in Table 15. In all cases, our information-
shrinkage estimator is more e�cient than the target-only MLE. In Setting I, the estimator
with the smallest eMSE uses DS

3 only, which is to be expected given that DS
3 is objectively

closer to the target data than the others. In Setting II, the estimator with the smallest
eMSE uses the concatenation {DS

1 ,DS
2 ,DS

3 }. Again, this makes intuitive sense given that
the three source data sets are similar and similar to the target—no reason not to concatenate.
In Setting III, the estimator with the smallest eMSE uses the concatenation {DS

1 ,DS
2 ,DS

3 }.
This, too, is not unexpected, since the concatenation of three source data sets that di↵er
from each other and the target can be no worse than a single source data set that di↵ers
from the target.

The concatenation approach appears to be the optimal choice in most settings. Setting
I is a somewhat pathological example, in that it is rare that a single source out of many is
much more similar to the target than any other source. Usually, such as setting is easy to
identify a priori based on external information such as study characteristics. Nonetheless,
it is reassuring that, even in this extreme setting, the concatenation approach remains a
reasonable choice. This is in fact very much by design: the selection of �̃ theoretically
guarantees that the concatenation outperforms the target-only estimation (in terms of MSE).
In other words, regardless of the heterogeneity/homogeneity structure of the sources, the
concatenation guarantees protection against negative transfer and is a safe approach.

Beyond guaranteeing robustness to heterogeneity/homogeneity of multiple sources, an
investigator may wish to select the approach that is “best” in the sense of minimizing MSE.
Specifically, treating [MSE(�̃) as a function of the source data set configuration

S 7! n
�1
T b�2

T trace{S�2(�̃)GT }+ �̃
2trace{GSS

�2(�̃)GS
b�2}| {z }

\MSE(�̃)

,
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Figure 10: MLEs b�
S
1 , b�

S
2 , b�

S
3 and b�

T
in Settings I, II and III.

one may select the source data set configuration bS to minimize the right-hand side. As
[MSE(�̃) balances bias and variance to evaluate the most e�cient estimator’s inferential
performance, an investigator may choose the single source or concatenated source that gives
the most e�cient estimator. Across the 1000 simulations, we compare the value of [MSE(�̃)
across the five source configurations in each setting. In Setting I, the estimator that uses
DS

3 has smaller [MSE(�̃) in 100%, 100% and 99.7% of simulations compared to the estimator
that uses DS

1 , DS
2 and {DS

1 ,DS
2 ,DS

3 }, respectively. In Setting II, the estimator that uses

{DS
1 ,DS

2 ,DS
3 } has smaller [MSE(�̃) in 61.4%, 83.0% and 83.5% of simulations compared to

the estimator that uses DS
1 , DS

2 and DS
3 , respectively. In Setting III, the estimator that uses

{DS
1 ,DS

2 ,DS
3 } has smaller [MSE(�̃) in 67.8%, 98.4% and 89.4% of simulations compared to

the estimators that use DS
1 , DS

2 and DS
3 , respectively. In other words, across all settings,

the criterion [MSE(�̃) does reasonably well in helping an investigator select the most useful
source configuration in terms of minimizing MSE, showing less certainty in settings for which
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the source configurations perform similarly. We therefore suggest that an investigator rely
on [MSE(�̃) to decide among several multi-source integrative estimators and a concatenation
approach.

C eICU Database information

The eICU Collaborative Research Database (Pollard et al., 2018) data are publicly available
upon completion of training and authentication. Users may begin their data access request
at https://eicu-crd.mit.edu/gettingstarted/access/.

Our analysis focuses on African American and Caucasian patients between the ages of
40 and 89 with body mass index (BMI) between 14 and 60 that were admitted through any
means other than another intensive care unit (ICU).
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