Understanding Performance Implications of
LLM Inference on CPUs

Seonjin Na! Geonhwa Jeong! Byung Hoon Ahn? Jeffrey Young! Tushar Krishna! Hyesoon Kim!

1Georgia Institute of Technology University of California, San Diego

Abstract—The remarkable performance of LLMs has led to
their application in a wide range of fields, with data centers
utilizing expensive accelerators such as GPUs and TPUs to
support LLM inference and training. However, these costly
accelerators face challenges with memory capacity due to
the large size of LLMs and Key-Value (KV) cache during
inference. To address memory capacity issues of accelerators
such as GPUs/TPUs, offloading-based LLM inference has been
proposed to store model weights, activations, and KV cache in
CPU memory. This approach, however, often incurs significant
performance degradation in LLM inference in terms of latency
and throughput as the offloaded data must be transferred back
and forth over the PCle bus, which has a lower bandwidth
compared to memory.

This study explores new opportunities for leveraging
CPUs in LLM inference. Recent CPUs are equipped with
dedicated accelerators for efficient matrix computations and
have extended ISAs to support training and inference of new
Al models. They support larger memory sizes than most
GPUs, allowing for the direct computation of large models
and KV caches without offloading. Additionally, recent CPUs
are often equipped with DDR and HBM memory, which
provides options for optimizing for either memory capacity
or bandwidth. This study provides a detailed analysis of
LLM inference performance on the latest CPUs equipped
with these advanced features. Based on our experimental
results, we propose potential optimization strategies tailored
to enhance the performance of LLM inference on CPUs.

Index Terms—Large Language Model (LLM), Offloading-
based LLM Inference, LLM Inference on CPU, Intel AMX

I. INTRODUCTION

Transformer-based Large Language Models (LLMs) demon-
strate exceptional performance on a wide range of tasks
and have initiated a new era in the field of generative
Al These advanced models are now broadly applied in
numerous areas, including text generation [5], [50], [57],
machine translation [4], etc. To meet the substantial compute
demands of LLMs, companies are introducing specialized
units in their existing processors, such as NVIDIA’s Tensor
Cores [33] in GPUs, Intel’s TMUL unit [38] in CPUs, or even
custom offload accelerators tailored for their LLMs, such as
Meta’s MTIA [13] or Google’s TPU [24]. Many modern data
centers are increasingly equipped with these accelerators to
execute LLM training and inference efficiently [17].

Despite these advancements, serving LLMs remains expen-
sive, primarily due to their high memory requirements [28],
[45], [49]. The remarkable performance of LLMs is driven
by their large model sizes, as dictated by scaling laws,
enabling them to understand complex and lengthy contexts.

103

B 8352Y CPU
102 1 EEE Max9468 CPU
1ot | I A100-40GB GPU

=31 H100-80GB GPU
10°

i 107!

TFlops (BF16)

1072

32 64 128 256 512 1024 2048 4096 8192

Dimension size of M for GEMM [MxM] x [MxM]

Fig. 1: General Matrix Multiplication (GEMM) throughput comparison
across CPUs and GPUs with varying matrix dimensions.

For instance, one of the most recent LLMs, such as OPT-
175B [57], requires 350GB of memory to load the weights with
the FP16 data type, or the equivalent of at least five NVIDIA
80GB H100 GPUs. Furthermore, models used in industry, such
as ChatGPT-4 [1] are known to be even larger [1], [7]. In
fact, a recent report from Google suggests that scaling the
sequence length to more than a million tokens may unlock
even more in-context learning possibilities [47].

In addition to large model sizes, a commonly used opti-
mization technique in LLM inference, KV caching, presents
significant memory challenges. KV caching enhances inference
performance by storing key and value vectors of previously
generated tokens, which avoids repetitive computations during
autoregressive generation. However, the size of the KV cache
increases linearly with both sequence length and batch size.
Recent studies have not only focused on supporting longer
sequence lengths to enable models to understand and generate
more complex outputs [12], [30], but have also explored
increasing batch sizes to efficiently handle multiple user
requests and maximize hardware utilization [28], [45], [56]. As
a result, the memory demands for KV caching are becoming
increasingly problematic. For example, OPT-66B [57] with
a sequence length of 4096 and a batch size of 32 requires
288GB of memory for KV caching. This growing memory
requirement for KV caching poses a significant challenge for
LLM inference systems.

To address the growing memory requirements of LLMs and
KV caching that exceed GPU capacity, prior studies have pro-
posed offloading-based LLM inference serving techniques [45],
[49], [58]. In offloading-based LLM inference serving sys-
tems, weights, activations, and KV caches are stored in the
larger CPU memory and loaded from it during computation.
Although offloading-based systems enable executing LLM
inference with a limited GPU memory capacity, they introduce

new performance problems. These systems need to transfer
offloaded model weights, activations, and KV caches from
CPU memory to the GPU on demand via the slow PCle
bus during LLM inference, leading to significant performance
degradation as shown in several previous studies [37], [49].

To circumvent these issues, this study explores the new
opportunity of leveraging CPUs as compute units for LLM
inference based on the following insights. First, CPU vendors
are incorporating dedicated matrix multiplication accelerators
along with the necessary ISA support such as Intel Advanced
Matrix Extensions (AMX) [38]. Figure 1 shows the general
matrix multiplication (GEMM) throughput comparison results
across different matrix dimensions on 4th generation Intel
CPUs (Max 9468) that support Intel AMX, 3rd generation
CPUs (8352Y) that do not, and GPUs (A100 and H100). The
graph shows that although the overall throughput is still
lower compared to GPUs due to their specialized hardware
and instruction capabilities, the CPU with dedicated matrix
units (MAX 9468) has significant potential when considering
the hardware cost!.

Additionally, CPU memory typically offers greater capacity
than GPU memory and can be further expanded using memory
extension technologies such as CXL [34], unlike GPUs with
fixed memory sizes. Moreover, some of the latest Intel CPUs
are equipped with both DDR memory and HBM memory,
enabling CPUs to exploit larger memory capacity and higher
memory bandwidth. In order to address the memory capacity
challenges posed by large model sizes and KV caches in LLM
inference, the large memory capacity of CPUs and the high
bandwidth of HBM provides an opportunity to exploit CPUs
for LLM inference.

The contributions of this paper are as follows:

o The identification of challenges for LLM inference and
opportunities for acceleration using new CPU-based
platforms.

o The first extensive performance characterization of LLM
inference on the latest Intel CPUs.

e A comprehensive performance comparison of the latest
CPUs with state-of-the-art GPUs for LLM inference with
various LLMs and configurations.

o Discussion of potential optimizations to better support
LLM inference on CPUs based on characterization
insights across platforms.

II. BACKGROUND
A. Large Language Model Architecture

Recent large language models (LLMs) [5], [36], [50], [57]
are decoder-only transformer models trained to generate subse-
quent tokens for a given input sequence in an auto-regressive
manner. As shown in Figure 2, the decoder-only transformer
model includes multiple decoder blocks, and each of these
decoder blocks comprises several components that work

!Although calculating the exact cost for each machine is not straightfor-
ward due to the various factors affecting the overall cost, using the listing
price of each processor as a proxy shows that Intel MAX 9468 [21] is 3x
cheaper than NVIDIA H100-80GB [41]

Output token

Decoder
Block n

Il h

1

1

1

|

3 i

! 1

! Layer Norm |
|

3 i

Decoder
Block 2

Decoder
Block 1

! 1

H '

H 1

1

| e —

! Layer Norm

! — Input sequence

Fig. 2: Overview of Transformer-based LLM architecture.

Prefill Phase Decode Phase

LLM Iteration 1 LLM lIteration 2 LLM Iteration 3 LLM Iteration 4

Is ISWC a premier
conference?

a
Fig. 3: Overview of the Prefill and Decode phases in LLM inference.

together to process the input data. The Multi-Head Attention
is a critical layer that captures the relationships among the
input tokens through the attention mechanism. Each head
within the multi-head attention focuses on various aspects of
the input sequence, enabling the model to better grasp the
context and dependencies between tokens. The Feed-Forward
Network (FFN) after the self-attention layer applies non-linear
transformations to refine the sequence representations. The
FFN consists of two linear transformations separated by a
non-linear activation function which helps capture complex
patterns in the data. The outputs from these subsequent
transformer layers are then projected through a linear layer
and a softmax function to generate the final token predictions.

B. LLM Inference

LLM inference typically consists of two phases: the Prefill
Phase and the Decode Phase, as shown in Figure 3. During
the prefill phase, the model processes all input prompts from
the user and produces a new token used for initial input for
the decode phase. This phase involves computing the hidden
representations for the entire input sequence simultaneously,
which is usually computationally intensive, especially for large
models and long sequences. The prefill phase typically makes
the system compute-bound due to the high volume of parallel
processing required. In contrast, the decode phase generates
one token at a time, using the previously generated token as
input for the next step. This phase continues iteratively until a
predefined sequence length is reached or an end-of-sequence
(EOS) token is produced. Despite processing only one token
per step, the decode phase demands substantial I/O operations
making it memory-bound. Importantly, the KV cache, which
has become a de-facto optimization for the decode phase
to avoid recalculating key/value vectors in every iteration,
requires a large memory space of 2B (BF16) %2 (Key/Value) x
Niayers * Amodel * Nseq * Nparch, Where Njgyerg is the number of
layers, dpo40; is the hidden dimension of the model, ngey
is the sequence length, np,., is the batch size. Therefore,
efficient memory management is crucial to handle these KV
caches and the LLM weights. Understanding these phases and
their computational demands is essential for optimizing LLM
inference performance.

‘ <= Commands and status delivered synchronously

Dataflow ‘
Tiles and

Accelerator Accelerator 1 (TMUL)
Commands
I Accelerator 2 (TMUL)

TILECFG
tmm0
tmm1

Sl i

IA Host

G

16 rows

tmm5
tmmé
tmm7.

64 bytes

Fig. 4: Overview of Intel AMX architecture [9].

HBM-only Flat Cache
Mode Mode Mode
‘modve, | Coreacactes | [coresactes | [Corescaches |
modes
{ b4
|HBM| |HBM||DDR‘ }HBM}
DléiiAir\illﬂcgche
Quad SNC4
Mode Mode
| Mem | | Mem |
Clustering
modes

Fig. 5: Different memory and clustering modes in SPR Max CPU
servers [38].

C. LLM Inference Key Metrics

There are various metrics used to compare the LLM
inference performance [28], [49], [58] such as the time to
first token (TTFT), the time per output token (TPOT), end-
to-end (E2E) latency, and system throughput in terms of the
number of generated tokens per second. The importance of
each metric varies depending on the use case. For a real-
time chatbot service, TTFT is crucial, as users expect quick
responses for a seamless experience. In real-time translation
service used in live media broadcasts, a slight delay at the
start might be acceptable, but TPOT must be low to keep up
with the natural pace of speech. If one is conducting research
that requires batch processing of text data for sentiment
analysis, the priority is to complete the entire job as quickly
as possible, meaning higher system throughput is preferred
over faster processing of individual texts. Therefore, in this
work, instead of focusing on a specific metric, we characterize
various workloads and evaluate different HWs using these
three metrics as further explained in Section IV-A.

D. Matrix Multiplication Accelerators on CPUs

To improve the performance of machine learning ap-
plications on CPUs, hardware vendors have incorporated
dedicated accelerators into their processors and introduced
instruction set architecture to support it. Examples include
Intel Advanced Matrix Extensions (AMX) [38], IBM Power
CPU Matrix Multiply Assist (MMA) [10], and ARM Matrix
Extension (ME) [18]. These extensions are designed to enable
efficient matrix multiplication, one of the key operations in
machine learning. In this paper, we conduct performance

characterization of LLM inference on the latest Intel CPUs.
Intel AMX is supported by Intel Xeon processors based on the
Sapphire Rapids (SPR) architecture [38] and introduces two
main components: Tile and Tile Matrix Multiply Unit (TMUL).
As shown in Figure 4, Tile is defined as a 2-dimensional
register with a size of 1KB, consisting of 16 rows of size of
64 bytes. Therefore, each tile can store 32 elements for the
16-bit brain floating point (BF16) data type and 64 elements
for the 8-bit integer (INT8) data type. TMUL is a hardware
unit that accelerates matrix-multiply computation on tiles and
supports both BF16 and INT8 data types [22], [23], [38].

E. NUMA Architecture

Non-Uniform Memory Access (NUMA) architecture is a
design widely used in modern data centers to improve
performance and scalability by denoting lower-bandwidth
remote memory regions across sockets. In recent Intel CPUs,
NUMA accesses can refer either to inter-socket memory
accesses that use Intel’s UPI (Ultra Path Interconnect) or
a remote domain within a socket (usually denoting levels
of cache sharing). Intel’s Sapphire Rapids Max Series CPUs
support multiple NUMA options via different memory and
clustering modes as described in Figure 5.

HBM can operate in three different memory modes: (1)
HBM-only, (2) Flat, and (3) Cache, each with distinct benefits.
HBM-only mode offers maximum bandwidth and lowest latency
for workloads that fit within the HBM capacity, but is limited
by the HBM size. Flat mode combines HBM and DDR as
separate NUMA nodes, providing greater memory capacity
and flexibility but requiring software to manage memory
allocation. Cache mode uses HBM as a cache for DDR,
simplifying implementation without software changes but
may lead to sub-optimal performance.

These SPR CPUs also support two different clustering
modes: (1) Quadrant (quad) and (2) Sub-NUMA Clustering-4
(snc). Quadrant mode presents a single address space (NUMA
node) to software, requiring no NUMA awareness, and is
ideal for applications sharing large data structures across all
cores. Sub-NUMA Clustering-4 mode, the default, divides each
CPU into four sub-NUMA clusters, seen as separate NUMA
nodes but offers higher bandwidth and lower latency. Used
together, these memory and clustering modes can provide
flexible options to optimize performance for various high-
demand computational tasks, including LLM inference.

III. CHALLENGES AND OPPORTUNITIES IN LLM

Despite LLM’s excellent performance across various do-
mains, serving LLMs for inference presents significant chal-
lenges, primarily due to the memory required to store the
models and the memory consumption to store KV cache.

High memory requirement in LLM inference: Figure 6
illustrates the memory footprint required to store the OPT [57]
and LLaMA [50] models based on their scale. As shown in
Figure 6, models with a large number of parameters, such as
LLaMA2-70B, have a substantial memory footprint for storing
model weights. Even the latest GPUs such as NVIDIA A100

150
o
e
§ 1007 " HicoGPU(s0GE) (NN |
8
T 501 __AL00.GPU (40GB) - mmmm] feend - o]
o
=
04
o) Q > Q 2 Q> > Q
NS SO - AN
Q’\’ Q'(’ Q’Q Q’\ Q« g\v & ?rj’
o o S S o B NN
% O N

Fig. 6: Memory footprint required to store the parameters of each
model using the FP16 data type.

with 40GB or NVIDIA H100 with 80GB memory cannot fit
these models into a single GPU. For example, loading the
LLaMA2-70B model onto GPUs requires at least two H100
GPUs. Practical industry LLMs such as GPT-3 175B [5] require
over 320GB to solely store the parameters, necessitating at
least five H100 GPUs.

@ 50 g 100
o 40 o 801
N 3
0 301 | [gMAZ-13B: 242G » 601
o _ oot LAT o
i S 41 Liamarise: 24268
810 & g0 f-talAz1E: 24
< ol z ol
128 256 512 102420484096 1 2 4 8 16 32 64
Sequence Length Batch Size

(a) KV cache si?e for various sequence (b) KV cache size for various batch size
length (batch size=16) (seq. length=2048)

Fig. 7: KV cache memory footprint for different sequence lengths
and batch sizes in LLaMA2-13B. The dotted line represents the size
of LLaMA2-13B model.

Recent LLM inference serving systems exploit KV caching
to reduce computation during the decode phase. While KV
caching can make the output token generation faster, the
memory consumption by the KV cache becomes significant
when using larger batch sizes for throughput or generating
longer sequences. Figure 7 shows the memory footprint
required to store the KV cache for LLaMA2-13B with different
sequence lengths and batch sizes. The figure illustrates that
the memory capacity for the KV cache increases linearly
with both the sequence lengths and batch sizes, eventually
surpassing the model size when using large batch sizes and
sequence lengths. Recent inference serving systems including
TorchServe [8] and NVIDIA Triton Server [52] support
batched LLM inference to efficiently utilize hardware resources
and handle multiple user requests. Additionally, various prior
studies have been proposed to support longer contexts in the
latest LLMs and recent chatbot services; for instance, ChatGPT-
4.0 [1], and Gemini [47], now support longer sequence lengths,
such as 32K length. Hence, the memory required for the KV
cache often exceeds the model size, imposing a significant
burden on GPU or other accelerator memory.

Offloading-based LLM inference systems: To support
LLM inference when model sizes and KV caches exceed a
single GPU’s memory capacity, recent frameworks such as
FlexGen [49] and DeepSpeed [45] provide offloading-based
inference, storing model weights, activations, and KV caches
in CPU memory. However, these systems face performance

degradation since model weights, activations, and KV caches
stored on CPU must be transferred via slow PCle interconnect
during computation.

Opportunities of CPUs for LLM inference: As explained
in Section II-D, the latest CPUs can provide advanced
accelerators that create new opportunities to leverage CPUs
for LLM inference serving. The latest CPUs include dedicated
matrix multiplication accelerators, similar to NVIDIA’s Tensor
core [33], as well as fast access to large DDR5 DRAM
memory capacities and High Bandwidth Memory (HBM) on
recent Sapphire Rapids CPUs [38], [46]. DRAM capacity on
these platforms can also be further expanded using recent
technologies such as CXL [34], and CCIX [26]. Therefore, in
scenarios where larger models such as LLaMA2-70B shown
in Figure 6 or extensive KV cache sizes exceed the memory
capacity of a single GPU as shown in Figure 7, the large
memory capacity of the CPU offers an opportunity to utilize
CPUs for LLM inference.

IV. CHARACTERIZING LLM INFERENCE ON CPUs

A. Characterization Methodology

CPU 1 (ICL CPU)
IceLake (ICL)
Xeon 3rd 8352Y

CPU 2 (SPR CPU)
Sapphire Rapids (SPR)
Xeon 4th Max 9468

Generation

CPU

2.20 GHz
18.0 TFLOPS (AVX-512)
32/2

Core Frequency 2.10 GHz

Compute Throughput (BF16) 25.6 (AVX-512) / 206.4 (AMX) TFLOPS

48/2

of cores (per socket) / sockets

L1D / L2 Cache (per core) 48 KB/ 1.25 MB 48 KB /2 MB

L3 Cache 48 MB 105 MB

CPU Memory DDR4 256 GB DDR5 512 GB, HBM 128 GB
Memory Bandwidth? 156.2 GB/s DDR5 233.8 GB/s, HBM 588 GB/s

TABLE I: Evaluation Setup for CPU Servers.

Experimental setup: In this section, we conducted our
experiments using two different CPUs, an Intel 3rd generation
and a 4th generation CPU, to analyze the performance of
common LLMs with recent advanced CPU features, including
Inte] AMX. The detailed CPU server configurations are shown
in Table I. To measure the throughput and latency of LLM
inference on CPUs, we use Intel Extension for Pytorch
v2.3 [19] that provides optimizations for Intel CPUs.

Models: We use recent open-sourced representative LLM
families, OPT [57] and LLaMA-2 [50] with different model
sizes. We evaluate OPT models with 1.3B, 6.7B, 13B, 30B,
and 66B parameters and LLaMA-2 models with 7B, 13B, and
70B parameters. For all our experiments, we set an input
sequence length of 128 and an output sequence length of 32
with varying batch sizes, ranging from 1 to 32. In Section V,
we also explore the impact of longer input sequence lengths.

Metrics: To measure the latency and throughput of LLM
inference, we employed various metrics widely used in
previous studies [28], [49], [58] as different metrics are
prioritized based on the use cases as mentioned in Section

2Measured on a single socket using the STREAM benchmark [35].

N bsl EEE bs2 BN bs4 EEE bs8 B bs16 O bs32

N bsl BN bs2 BN bs4 EEE bs8 EE bs16 O bs32

.10
z
§038
]
—0.6
I

(a) End-to-End latency comparison
EEN bsl BN bs2 EEE bs4 EEE] bs8 BN bs16 =1 bs32

(a) Prefill phase latency comparison
BN bsl NN bs2 NN bs4 EEEI bsg NN bs16 = bs32

8

o

2

Norm. Tokens/s
IS

OA
O/O
”7

(b) End-to-End throughput comparison

Q Q QX
OO ST I Y
< % Q& Q& Q& C
X X o o o

(b) Decode phase latency comparison

1.0
0.8
o
=06
Eo04
S
=02
0.0

N bs]l EEE bs2 BN bs4 EEE bs8 B bsl6 O bs32

1

9
@
2
[

g
°
13
]
=4

X X R R R
SR A T i R g

©
PP O
S & & & N©

(a) Prefill phase throughput comparison
EEN bsl EEN bs2 BN bs4 EEE bsg I bsl6 I bs32

o

2

Norm. Tokens/s
IS

o

&
PSP
<0 &
& o

QL L Q
N o A

K © ; &
< < 2V 7

s & &

(b) Decode phase throughput comparison

Fig. 8: Latency and throughput comparison
of Intel ICL and SPR CPUs in LLM inference.

o
< g
4 g’ o4
20 = u
= 5 0 .
O .2
=10 gzs E
© 2
0

1 2 4 81632 1 2 4 81632 1 2 4 81632

Fig. 11: Comparison of various hardware performance counters,
including LLC misses per Kkilo instruction (MPKI), for LLaMA2-13B
model inference on SPR CPU with different batch sizes. The number
of load/store instructions is normalized to that of batch size 1.

Dt 1l ol

1 2 4 81632

LLC MPKI

25

Core Ut|| (%)
Norm. # of |d/st

1 2 4 81632

1 2 4 81632

Fig. 12: Comparison of various hardware performance counters,
including LLC misses per kilo instruction (MPKI), for OPT-66B model
inference on SPR CPU with different batch sizes. The number of
load/store instructions is normalized to that of batch size 1.

II-C. We use three metrics to measure LLM inference latency:
(1) end-to-end latency (E2E latency), which is the total time
taken to generate the entire output sequence. (2) the time to
first token (TTFT), which indicates the time to generate the
first token during the prefill phase, and (3) the time per output
token (TPOT), which is the average time taken to generate
subsequent tokens during the decode phase. To measure the
overall LLM inference throughput, we use tokens generated
per second, defined as the total number of generated tokens
divided by the end-to-end latency. Similarly, the throughput
for both the prefill phase and the decode phase is also
measured in terms of tokens generated per second. We also
report hardware performance counters, such as cache miss
rates and UPI utilization, using Linux perf [11] and Intel
VTune profiler [20] to better understand the results.

B. Performance of LLM Inference on CPUs

To understand the performance of LLM inference on CPUs,
we first perform empirical studies using two different CPU
servers and analyze the performance impact of recently

Fig. 9: Latency comparison of Intel ICL and Fig. 10: Throughput comparison of Intel ICL
SPR CPUs for prefill and decode phases.

and SPR CPUs for prefill and decode phases.

introduced features in recent Intel Sapphire Rapids CPUs
such as AMX.

Performance comparison between Xeon IceLake And
Sapphire Rapids CPUs: In this experiment, the Xeon 3rd
generation ICL 8352Y CPU (referred to as ICL CPU) was
configured with 32 cores, while the Xeon 4th generation SPR
Max 9468 CPU (referred to as SPR CPU) was configured with
48 cores. The SPR CPU was set to Quadrant, Flat memory
mode to achieve optimal performance in this context. Figure 8
shows the end-to-end latency and throughput comparison
results for LLM inference on the ICL and SPR CPUs with
varying batch sizes from 1 to 32. Each bar is normalized to
the results of the ICL CPU. As seen in Figure 8, the SPR CPU
consistently shows reduced latency and improved throughput
compared to the ICL CPU across all LLMs and batch sizes.
On average, the SPR CPU achieves an end-to-end latency
reduction in the range of 68.4% to 84.1% compared to the ICL
CPU. Additionally, the token generation throughput of the
SPR CPU is improved by 3.2 to 6.3x. These normalized results
highlight the performance benefits gained from the use of
both the matrix multiplication accelerator and high-bandwidth
memory on the SPR Max CPU.

Figures 9 and Figure 10 show the comparison of latency
and throughput during the prefill and decode phases of LLM
inference on the ICL and SPR CPUs, respectively. As shown
in Figure 9, TTFT during the prefill phase decreased by
an average of 84.1% to 89%. In the decode phase, TPOT is
reduced from 62.3% to 81.7% on average. The SPR CPU shows
throughput improvement ranging from 6.3 to 9.1x in the
prefill phase and an increase in the range of 2.7 to 5.5x in
the decode phase compared to the ICL CPU. The significant
reduction in latency and improvement in throughput during
the prefill phase is due to AMX support on the SPR Max
CPU, while the throughput improvement in the memory-
bound decode phase is made possible by the higher memory
bandwidth provided by HBM.

Figure 11 and Figure 12 compare various hardware per-
formance counters during the inference of LLaMA2-13B and
OPT-66B models as the batch size increases. With larger

batch sizes, both models exhibit a decrease in LLC MPKI and
an increase in core utilization, indicating a shift towards a
more compute-bound execution. This trend highlights the
significant performance gap between ICL and SPR CPUs at
larger batch sizes, driven by Intel AMX support and the high
memory bandwidth of HBM.

When using a batch size of 32, end-to-end latency is reduced
by 84.1%, and throughput increases by 6.3x compared to the
ICL CPU.

Key Finding#1: With AMX support, larger cores and cache,
and HBM integration, the SPR Max CPU significantly reduces

latency and increases throughput for BF16 LLM inference
compared to the ICL CPU.

Performance impact of SPR CPU server configurations:
As discussed in Section II-E, when using the SPR CPU series
servers, different settings can be configured for memory and
clustering modes, which could change the performance a lot.
Since we employ DDR5 memory in our server setup, excluding
the HBM-only mode, there are four possible combinations of
memory and cluster modes: (1) quad_cache, (2) quad_flat, (3)
snc_cache, and (4) snc_flat.

To evaluate the impact of these different server configura-
tions on LLM inference latency and throughput, we conducted
experiments using each configuration. We utilized a single
socket with 48 cores to avoid performance degradation due
to inter-socket communication. Linux numactl [25] was used
to appropriately bind the memory nodes and cores of the
NUMA node. In flat mode, memory allocation prioritized
HBM memory, with DDR memory being used only when
the allocation exceeded 64GB, as each socket has 64GB of
HBM. For snc mode, each of the four NUMA nodes within
the socket was bound to 12 physical cores.

Figure 13 presents the comparison of various LLM inference
metrics, averaged across all workloads and batch sizes,
normalized to the quad_cache configuration. As shown in
Figure 13, overall, quad clustering mode showed better latency
and throughput compared to snc mode. Although snc mode
theoretically provides better performance by localizing data
within each NUMA domain, our results suggest that when data
allocation is not properly managed, performance can degrade
due to inefficient memory access and increased inter-core
communication. This indicates potential for further software
optimization to fully exploit snc mode.

Additionally, explicitly leveraging the HBM (flat mode)
resulted in better performance. This improvement can be
attributed to the decode phase being more memory-bound
compared to the prefill phase, making the utilization of higher
memory bandwidth crucial for enhancing performance. In this
context, effectively utilizing HBM’s memory bandwidth can
significantly contribute to improved performance. Figure 15
shows the results of various hardware performance counters
when running LLaMA2-13B LLM inference with a batch size
of 8 across different server configurations. LLaMA2-13B is
selected for this analysis as it effectively demonstrates the per-

formance trends observed across different configurations. The
figure shows snc mode suffered from performance degradation
due to frequent remote cache accesses to other NUMA nodes.
In terms of memory mode, flat mode slightly outperformed
cache mode by leveraging HBM’s higher bandwidth more
effectively.

In conclusion, considering all the metrics, we found that the
quad_flat mode configuration delivered the best performance.

Key Finding#2: Proper memory and clustering configurations
are essential for optimizing performance. The Flat memory
mode with Quadrant clustering offers the best latency and
throughput for LLM inference.

Performance impact of the number of cores: Figure 14
shows the comparison results in terms of various metrics for
LLM inference when varying the number of cores. Each metric
result is averaged across all evaluated LLMs and different batch
sizes from 1 to 32, normalized to the results using 12 cores.
As shown in Figure 14, using a larger number of cores does
not consistently demonstrate the best results for all metrics.
For instance, the end-to-end latency was lowest with 48 cores,
achieving a 59.8% reduction compared to using 12 cores. 1.8X
improvement over 12 cores. When analyzing each phase of
LLM inference, i.e. the prefill and decode phases, we observe
the following: In the prefill phase, using 48 cores reduced
latency by 65.9% compared to using 12 cores, showing the best
performance. In the decode phase, using 48 cores achieved a
54.6% reduction in latency, which was the best result. For the
overall throughput considering both the prefill and decode
phases, using 48 cores improved performance by 2.2x and
1.7X, respectively, compared to using 12 cores.

Figure 16 shows the comparison of various metrics such
as physical core utilization, UPI utilization, etc. with varying
numbers of cores during LLaMA2-7B model inference. Overall,
increasing the number of cores resulted in better performance
in terms of latency and throughput compared to using fewer
cores. However, as shown in Figure 16, using 96 cores
led to poor performance due to the need for inter-socket
communication via Intel UPI, negatively impacting both
latency and throughput. In summary, we found that using 48
cores is the best configuration when considering all latency
and throughput-related metrics, resulting in a 59.8% reduction
in latency and a 1.8x improvement in overall throughput
compared to using 12 cores.

Considering the performance impact of the SPR CPU NUMA
configurations and the number of CPU cores, we use the
quad_flat configuration with 48 cores for the Intel SPR CPU
results in the subsequent sections.

Key Finding#3: Using 48 SPR cores with HBM maximizes
core utilization and minimizes inter-socket communication,
resulting in the best performance across models.

V. PERFORMANCE COMPARISON WITH GPUs

In this section, we compare the performance result of CPUs
with that of GPUs for various LLMs.

Bl quad_cache B quad_flat BB snc_cache EE3 snc_flat

Lower is better, Lower is better, Lower is better.

Higher is better Higher is better Higher is better

o 15 2318 2322 g 2416)5 15 15
=3
310 1.0 1.0 1.0 1.0 1.0
Eos 05 05 05 05 05
o
Z0.0 0.0 0.0 0.0 -
E2E Latency TTFT TPOT Tokens/s Tokens/s (Prefill) Tokens/s (Decode)

Fig. 13: Normalized latency and throughput metrics for different SPR CPU server configurations. Each result is normalized to quad_cache
configuration. Each metric is averaged across all evaluated LLMs and batch sizes from 1 to 32.

I 12 I 24 I 48 @ 9%

Lower is better Lower is better Lower is better

1.6

Higher is bettejli 3 Higher is better

Higher is better
15 2.2 1.7

015 1.5 1.5 15 15

=3

T 1.0 1.0 1.0 1.0 1.0

Eos5 0.5 0.5 0.5 0.5 l
(=]

Z0.0 0.0 0.0

E2E Latency

TTFT

Tokens/s Tokens/s (Prefill) Tokens/s (Decode)

Fig. 14: Normalized latency and throughput metrics for different core configurations. Each result is normalized to 12 core configuration.
Each metric is averaged across all evaluated LLMs and batch sizes from 1 to 32.

le8

20 S 03
¥ <50 572
o — =R
=] [v]
=1 Lo

%) - se
= et 3]
8 #*3

0

X X

X% Q@ ¥ @
SRS O

7 &7

&) 2

Fig. 15: Comparison of LLC misses per kilo instruction (MPKI), core
utilization, and the number of remote LLC accesses for LLaMA2-13B
model with batch size 8 with different server configurations.

20 _
o X 60 Skl
o = .
10 540 1o
= gzo T 51
O =)
0 0

12 24 48 96

12 24 48 96

12 24 48 96

Fig. 16: Comparison of LLC misses per kilo instruction (MPKI), core
utilization, UPI utilization for LLaMA2-7B model with batch size 8
as core count increases.

A. Evaluation Methodology

Experimental setup: To compare the LLM inference perfor-
mance on CPUs and GPUs with various compute capabilities
and memory sizes, we use two distinct server-class GPUs: the
NVIDIA A100 GPU with 40GB memory and the NVIDIA H100
GPU with 80GB memory. Table II shows the detailed GPU
server configurations. To measure the performance of LLM
inference on GPUs, we employ FlexGen [49], a state-of-the-art
offloading-based LLM inference engine designed to achieve
high throughput even with limited GPU memory. FlexGen
enables GPU to offload model weights, activations, and KV
cache to CPU memory. In these experiments, we set the input
sequence length to 128 and the output sequence length to 32.

B. End-to-End Performance
Figure 17 illustrates the end-to-end latency and token

generation throughput comparison of LLM inference with

3TFLOPS values are for dense operations without sparsity.
4Measured using the STREAM benchmark [35].

GPU 1 GPU 2
GPU NVIDIA A100 NVIDIA H100
Number of SMs 108 132
Compute Throughput (BF16)* 312 TFLOPS 756 TFLOPS
L1/ L2 Cache 192 KB / 40 MB 256 KB / 50MB
GPU Memory 40 GB 80 GB
Memory Bandwidth? 1299.9 GB/s 1754.4 GB/s

CPU-GPU Interconnect PCle 4.0, 64 GB/s PCle 5.0, 128 GB/s

TABLE II: Evaluation Setup for GPU Servers.

a batch size of 1 on both CPUs and GPUs for OPT, and
LLaMA-2 models. Each result is normalized to the result of
the SPR Max CPU. As shown in the Figure 17, for smaller
models that fit into GPU memory such as OPT-1.3B, OPT-6.7B,
LLaMA2-7B, OPT-13B, LLaMA2-13B, GPUs outperform the
SPR Max CPU in terms of both latency and throughput. For
example, with the A100 GPU, the OPT-13B model showed a
reduction in end-to-end latency by 65.5% compared to the
CPU, while the H100 GPU showed a reduction of 72.8% for
the OPT-13B model. In terms of throughput, the A100 GPU
demonstrated an improvement of 2.9%, and the H100 GPU
showed an improvement of 3.7x over the CPU.

However, for models that exceed GPU memory, such as
OPT-30B (in the case of the A100), OPT-66B, and LLaMA2-70B,
the CPU outperforms GPUs in both latency and throughput.
For instance, while the H100 GPU could accommodate the
entire OPT-30B model and perform better than the CPU, the
A100 GPU needs to offload model weights and activations on
CPU memory, which must then be loaded on demand over
the PCle bus. In this scenario, the CPU reduced latency by
92.1% and improved throughput by 12.7x compared to the
A100 GPU. Furthermore, compared to the H100 for OPT-66B,
the SPR CPU showed an 80.1% reduction in latency and 5x
improvement in throughput.

To analyze how much time GPUs spend on data loading
over the PCle bus when using offloading-based LLM inference
methods, we break down the execution time for large models.
Figure 18 (a) shows the execution time breakdown for the
A100 GPU running the OPT-30B model, and Figure 18 (b)

I Max9468 HEE A100-40GB X H100-80GB

Norm E2E Latency

OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B

3 3 3 3 3 3 3

2 2 2 2 2 2 2 2

1 0.7 07 |1 1 0707 |1 1 1 1 1
0.4 0.3 0.3 0.3 0.6 0.5 02

0 0 0 0 0 0 —L1 0 0

(a) End-to-End latency comparison

I Max9468 I A100-40GB X H100-80GB

N

Norm Tokens/s
-

o

OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B

3 3 3 3 3.7
2 2 2
1 1 1
0 0 0

12.7 11150 11.35.1
LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B

3 3 43 3 3

2 2 2 2

1 1 1 1

0 0 0.1 0 0.1,0.2 0 0.1,02
LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B

(b) Throughput comparison

Fig. 17: LLM end-to-end inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=1. Each result is

normalized to SPR Max 9468 CPU.

I Data Load (PCle) EEE GPU Compute I Data Load (PCle) EEE GPU Compute
100 100

50 50

Ratio (%)
Ratio (%)

0 0
1 2 4 8 16 32 1 2 4 8

Batch Size Batch Size

16 32

(a) OPT-30B on A100 GPU (b) OPT-66B on H100 GPU

Fig. 18: GPU execution time breakdown during LLM inference for
larger models (OPT-30B and OPT-66B) on A100 and H100 GPUs.

presents the same breakdown for the H100 GPU running the
OPT-66B model, both using offloading-based LLM inference
with batch sizes ranging from 1 to 32. As shown in Figure 18,
the A100 GPU spends between 67% and 95% of its total
execution time on data loading over the PCle bus, while the
H100 GPU spends between 59% and 92% of its execution time
on data loading when running the OPT-66B model. However,
FlexGen’s zig-zag block scheduling technique [49], which
overlaps data transfer with computation, reduces the time
spent on data loading via the PCle bus as the batch size
increases. Consequently, for smaller models that do not require
offloading, the high compute throughput of GPUs leads to
a wider performance gap between the CPU and GPU, as
illustrated in Figure 19. In contrast, for larger models that
require offloading, although the CPU still outperforms the
GPU, the performance gap narrows due to the efficiency of
the scheduling technique.

We also note that new Grace-Hopper Superchip would see
lower overheads for offloading from DRAM to the integrated
H100 due to its higher NVLink bandwidth (900 GB/s versus
PCle 5.0’s 128 GB/s), albeit at a cost of ~4x of the SPR CPU
and DDR5 [40].

Key Finding#4: Overall, GPUs outperform CPUs in LLM
inference, but AMX-enabled CPUs can achieve lower latency
and higher throughput for larger models requiring offloading.

C. Sensitivity to Sequence Length

Figure 20 shows the comparison of LLM inference latency
and throughput between CPUs and GPUs across varying

sequence lengths. The x-axis represents the number of input
tokens. In all experiments, we set the number of output tokens
to 32 and increased the input prompt sizes from 128 to 1024.
As the number of input tokens increases, GPU latency and
throughput remain stable, while the SPR Max 9468 CPU shows
more variability. This is due to the CPU’s lower compute
throughput and memory bandwidth, resulting in less favorable
performance scalability. Interestingly, for larger models such
as LLaMA2-70B, the CPU outperforms the GPU in both latency
and throughput across all sequence lengths. This is primarily
due to the significant time spent on data loading via the PCle
bus when the batch size is set to 1, as shown in Figure 18.

Similarly, Figure 21 compares the performance of CPUs
and GPUs at different sequence lengths with a batch size of
16. As the batch size increases to 16, the performance gap
between CPUs and GPUs widens, particularly for smaller
models. For larger models such as LLaMA2-70B, we observed
that at sequence lengths of 256 or more, the H100 GPU—
even when using offloading-based LLM inference—achieves
lower latency compared to the CPU. This is because, at these
longer sequence lengths, the CPU’s LLM inference throughput
continues to decline, resulting in lower performance than
the H100. However, in the case of the A100 GPU, the
CPU outperforms the GPU across all sequence lengths.
This demonstrates that lower PCle bandwidth significantly
degrades the performance of offloading-based LLM serving
systems.

Key Finding#5: For larger batch sizes, GPUs outperform CPUs
in small models. Even in larger models that require offloading,
CPUs may underperform at longer sequence lengths due to
lower compute throughput.

VI. POTENTIAL OPTIMIZATIONS FOR LLM INFERENCE ON CPUs

NUMA-aware designs: In Section IV, we compared LLM
inference performance on SPR CPU with various NUMA
configurations based on memory and clustering modes. Our
results indicate that exposing a single NUMA node per socket
and using HBM explicitly showed the best performance. For
large models, even with both DDR and HBM memory on

I Max9468 HEE A100-40GB X H100-80GB

>
g3 3 3 3 3 3 4.2 3 3.9 3 4.1
I
5 2 2 2 2 2 2 2
w
o~
w 1 1 1 1 1 1 1
g 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1
= OPT-1.3B OPT-6.7B 0 LLaMA2-7B 0 OPT-13B 0 LLaMA2-13B 0 OPT-30B 0 OPT-66B 0 LLaMA2-70B
(a) End-to-End latency comparison
I Max9468 I A100-40GB X H100-80GB
© 3 4.4 4.8 3 8.1 9.6 3 4.6 5.6 3 11.1 3 3
w
c
9 2 2 2 2 2 2
©
€ 1 1 1 1 1 1
5 0.2 0.37%2 0.2;%2
0 0 0 0 0 0
OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B
(b) Throughput comparison
Fig. 19: LLM inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=16. Each result is normalized

to SPR Max 9468 CPU.

- —— Max9468 —— A100-40GB H100-80GB
o
c 08 e 3.4 o 3.2 e 6.0 e 5.8 5 79.4 172.4 179.9
g v v v pd g
- 0.6 / 2.4 / 2.5 / 4.2 / 4.3 / 53.4 120.0 125.1
w
o~
woo5{—" 154 7] 4 250" 2.84,—¢ 27.4 67.6 70.4
IS * o—0] —
S 0.3f=t=% f— 0.5 fi===4==1) 0.9 fim=s==e==r4 0.7 & 1.3 5=—13 Laf== 153de—=e—""" 156 f—e—"""
= 128 256 512 1024 128 256 512 1024 128 256 5121024 128 256 512 1024 128 256 5121024 128 256 512 1024 128 256 512 1024 128 256 512 1024

OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B

(a) End-to-End latency comparison
—— Max9468 —— A100-40GB H100-80GB
L 1028 63.4 35.2 == 44.2 25.3 22.7 217 217
é oo~ | — o \‘\. - o .\'\. \. \.
£ 817 45.4 | 267 31.2 e 187 15.2 1.5 \ 1.4 \
.. —

IS b ~. A — Yo—s]
E 606 . 27.4 18.3 \ 18.3 12.1 "~ 7.8 0.8 0.8
5 \.\ 0\.\ . e \ I ——]
Z 395 o 95 = 98 s 53 =—e 55 —e 04 0.2 0.2

128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024 128 256 512 1024

OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B

(b) Throughput comparison

Fig. 20: LLM inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=1.

a single socket, memory capacity can become insufficient,
necessitating the use of memory from other sockets.

Recent studies [27], [32], [54] found that not all activations
in LLMs are equally important; certain activations are more
critical. Leveraging this insight can significantly aid NUMA
node data placement. By placing the important activations
(hot data) in HBM and local DDR memory and storing less
critical activations (cold data) in remote DDR memory in other
sockets, a NUMA-aware data placement can enhance LLM
inference performance on CPUs while reducing the negative
impacts of remote memory accesses.

CPU-GPU Hybrid Execution: Our performance comparison
results with GPUs in Section V demonstrated that SPR
Max CPU can outperform GPUs for models larger than the
GPU memory size, particularly when the batch size and
sequence length are not too large. FlexGen [49] typically
underutilizes CPU computation resources, using them only
for attention score calculations. However, our evaluation
suggests that exploiting CPU computation resources can
benefit large models that would require large amounts of
PCle data transfer. Therefore, exploiting the CPU for layer
computations in such scenarios with small batch sizes or
designing a cooperative execution model that partitions layers
between the CPU and GPU can significantly improve LLM

inference latency and throughput. For smaller models, while
CPU performance may not surpass that of the GPU, leveraging
CPU computation resources can enhance overall hardware
utilization in data centers where GPU resources are fully
occupied. This approach can also reduce time-to-first-token
(TTFT), thereby improving user experience.

VII. RELATED WORK

A. Performance Characterization of Deep Learning Workloads

Many recent research works have tried to characterize deep
learning workloads [17], [29], [43], [44], [51]. A significant
portion of the research is focused on GPUs, with several
studies concentrating on training [17], [44], [51] and others
extending the scope to inference while still emphasizing
GPUs [29], [43]. There have also been efforts to understand
deep learning inference on CPUs. DLsim [6] proposed a
simulation infrastructure for deep learning workloads. Recent
work [42] performed large-scale workload characterization on
Facebook cloud for both CPUs and GPUs, but its workloads are
limited to recommendation, computer vision, and GRU/LSTMs
based models which have different characteristics compared
to the transformer-based LLMs. This work aims to better
understand LLM inference on CPUs equipped with specialized

- —— Max9468 —— A100-40GB H100-80GB
[}
€ 115 7 286 9 345 9 553 7 718 q 1244 s 383.0 7 2536 7
% / / /- 0/. /‘/'
: 7.8 19.3 Val 233 Ay 37.2 y 48.3 y 83.6 —"" ¢ 270.8 J 1843 " /
D o4 /. 10.0 /. 12.2 / 19.1 /'/ 24.9 e 427 '/ 158.6 ""76/ 115.1 .
£ |— . | ’ | : e s
S 0.4em—sm—e—1 0.7 {smmommpmm= 1.0 {ommpmmsm= 1.0 fo——e= 1.4 fom—e 1.8 46.4 1" 45.9 ¢
= 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024
OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B
(a) End-to-End latency comparison
—— Max9468 —— A100-40GB H100-80GB
2 14513 787.8 495.2 506.3 354.6 284.3 1108 1128
c .. o\ '\. le. I~
9 o824 . 531.2{ e 335.1 AN 3406 N\, 2388 190.9 7.8 8.1
© \. \. o\ \. \.
E 5135 2745 Ny 1750 o 1749 \ 123.0 \ 97.5 46 \ 5.1{ s
S o, o. le. oo, *
=RV i RSP (o U [P [WIS R L ALY R [S R 13 B BPYS it
128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024 128 256 5121024
OPT-1.3B OPT-6.7B LLaMA2-7B OPT-13B LLaMA2-13B OPT-30B OPT-66B LLaMA2-70B

(b) Throughput comparison

Fig. 21: LLM inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=16.

hardware accelerators and instructions for efficient matrix
multiplications.

B. Deep Learning Acceleration on CPUs

There have been previous studies to optimize the perfor-
mance of deep learning workloads on CPUs [14]-[16], [31],
[48]. NeoCPU [31] proposes convolutional neural network
(CNN) inference acceleration techniques tailored for CPUs
using graph-level joint optimizations. Graphite [15] proposes
software-hardware co-design to optimize graph neural net-
work (GNN) training and inference on CPUs. To support the
key operations in deep learning such as matrix multiplication,
and convolution, LIBXSMM [14], [16] proposes Just-In-Time
(JIT) compilation-based kernels optimized for Intel Xeon
processors while RASA [23] and VEGETA [22] introduce
dense and sparse matrix multiplication support through matrix
engines. Recent work [48] proposes weight-only quantization
with negligible accuracy loss and provides optimized kernels
for the latest CPUs to enable efficient LLM inference on CPUs.

C. LLM Inference Optimizations

Efficient LLM Inference Batching: To improve the resource
utilization during LLM inference, recent serving systems
have devised various batching mechanisms [2], [28], [39],
[56]. FasterTransformer [39] processes a batch of requests
concurrently for better resource utilization. Orca [56] intro-
duced iteration-level scheduling which allows the scheduler
to dynamically create batches for better utilization. vLLM [28]
introduces paged attention that allows the system to batch
more sequences together. Sarathi-Serve [2] builds on chunked-
prefill in Sarathi [3] that enables dynamically batching without
stalling ongoing decode phase.

Offloading-based LLM Inference: Recent LLM serving
systems use offloading-based LLM inference serving to enable
resource-constrained GPUs to serve larger models exceeding
GPU memory size [45], [49], [53]. By storing model parameters
and activations in CPU memory, those systems can reduce the
peak GPU memory usage during LLM inference. Although
offloading methods provide an opportunity to support larger

models, it incurs high performance overhead due to the
frequent data transfer via PCle bus as also shown in this
work. To reduce the performance overhead in offloading-based
LLM inference, FlexGen [49] proposes a zig-zag scheduling
mechanism to increase the system throughput and minimize
total execution time given resource constraints.

VIII. CONCLUSION

In this work, we provide a comprehensive characteriza-
tion of LLM inference on the latest CPUs equipped with
matrix multiplication accelerators and HBM. We demonstrate
the potential computational capabilities of the latest Intel
CPUs featuring AMX and HBM. Our findings highlight the
importance of various NUMA server configurations and the
appropriate number of cores for optimizing LLM inference
performance. Furthermore, by comparing the latest CPU with
server-class GPUs, we discover that CPU can outperform
GPUs when using larger models exceeding GPU memory
with all batch sizes when the sequence length is small. Based
on these extensive experimental results, we provide insights
and discuss potential optimizations for efficient CPU-based
LLM inference. We believe our work opens new opportunities
for exploiting CPUs as computation units for LLM inference,
rather than merely as offloading devices.

IX. ACKNOWLEDGEMENT

This work was supported in part through research in-
frastructure and services provided by the Rogues Gallery
testbed [55] hosted by the Center for Research into Novel
Computing Hierarchies (CRNCH) at Georgia Tech and was
partially supported by NSF PPOSS 2119523 and Intel. The
Rogues Gallery testbed is primarily supported by the National
Science Foundation (NSF) under NSF Award Number #2016701.

We would like to thank Christopher J. Hughes at Intel
Labs for his valuable feedback, and Aaron Jezghani and
Sterling Peet at Georgia Tech for their help with the server
environment setup. We also thank the anonymous reviewers
for their feedback on improving the paper.

(1]

(2]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

REFERENCES

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al, “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani,
A. Tumanov, and R. Ramjee, “Taming throughput-latency tradeoff in
llm inference with sarathi-serve,” arXiv preprint arXiv:2403.02310, 2024.
A. Agrawal, A. Panwar,]J. Mohan, N. Kwatra, B. S. Gulavani, and
R. Ramjee, “Sarathi: Efficient llm inference by piggybacking decodes
with chunked prefills,” arXiv preprint arXiv:2308.16369, 2023.

D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case,]. Casper, B. Catanzaro, Q. Cheng, G. Chen,]J. Chen et al, “Deep
Speech 2: End-to-end speech recognition in English and Mandarin,” in
International Conference on Machine Learning (ICML), 2016.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell ef al., “Language models
are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877-1901, 2020.

Z. Chishti and B. Akin, “Memory system characterization of deep
learning workloads,” in Proceedings of the International Symposium on
Memory Systems, 2019, pp. 497-505.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al, “Palm:
Scaling language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1-113, 2023.

P. T. Contributors, “TorchServe,” https://pytorch.org/serve/, 2020.

L. Cooperation, “Intel architecture instruction set extensions program-
ming reference,” Intel Corp., Mountain View, CA, USA, Tech. Rep, pp.
319 433-030, 2016.

J. P. de Carvalho, J. E. Moreira, and J. N. Amaral, “Compiling for the
ibm matrix engine for enterprise workloads,” IEEE Micro, vol. 42, no. 5,
Pp. 34-40, 2022.

A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux Kongress,
vol. 18, 2010, pp. 1-42.

Y. Ding, L. L. Zhang, C. Zhang, Y. Xu, N. Shang, J. Xu, F. Yang, and
M. Yang, “Longrope: Extending llm context window beyond 2 million
tokens,” arXiv preprint arXiv:2402.13753, 2024.

A. Firoozshahian, J. Coburn, R. Levenstein, R. Nattoji, A. Kamath, O. Wu,
G. Grewal, H. Aepala, B. Jakka, B. Dreyer et al., “Mtia: First generation
silicon targeting meta’s recommendation systems,” in Proceedings of the
50th Annual International Symposium on Computer Architecture, 2023,
pp. 1-13.

E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry,
H. Pabst, and A. Heinecke, “Anatomy of high-performance deep learning
convolutions on simd architectures,” in SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,
2018, pp. 830-841.

Z. Gong, H. Ji, Y. Yao, C. W. Fletcher, C. J. Hughes, and J. Torrellas,
“Graphite: optimizing graph neural networks on cpus through coopera-
tive software-hardware techniques,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 916-931.
A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm:
accelerating small matrix multiplications by runtime code generation,”
in SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2016, pp. 981-991.
Q. Hu, Z. Ye, Z. Wang, G. Wang, M. Zhang, Q. Chen, P. Sun, D. Lin,
X. Wang, Y. Luo et al, “Characterization of large language model
development in the datacenter,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), 2024, pp. 709-729.

D. A. Iliescu and F. Petrogalli, “Arm scalable vector extension and
application to machine learning,” Retrieved October, 2018.

Intel, “Intel Extension for PyTorch,” https://github.com/intel/intel-
extension-for-pytorch, 2020.

——, “VTune Profiler,;” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, 2020.

——, “4th generation xeon cpu max 9468 processor,
https://www.intel.com/content/www/us/en/products/sku/232596/intel-
xeon-cpu-max-9468-processor-105m-cache-2-10-ghz/specifications,
2023.

G. Jeong, S. Damani, A. R. Bambhaniya, E. Qin, C. J. Hughes,
S. Subramoney, H. Kim, and T. Krishna, “Vegeta: Vertically-integrated
extensions for sparse/dense gemm tile acceleration on cpus,” in 2023 IEEE

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

International Symposium on High-Performance Computer Architecture
(HPCA). 1IEEE, 2023, pp. 259-272.

G. Jeong, E. Qin, A. Samajdar, C. J. Hughes, S. Subramoney, H. Kim,
and T. Krishna, “Rasa: Efficient register-aware systolic array matrix
engine for cpu,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 253-258.

N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles et al, “Tpu v4: An optically
reconfigurable supercomputer for machine learning with hardware
support for embeddings,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, 2023, pp. 1-14.

A. Kleen, “A numa api for linux,” Novel Inc, 2005.

D. Koenen and J. Defilippi, “Ccix: a new coherent multichip interconnect
for accelerated use cases,” 2017.

M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin,
W. Leiserson, S. Moore, N. Shavit, and D. Alistarh, “Inducing and
exploiting activation sparsity for fast inference on deep neural networks,”
in International Conference on Machine Learning. PMLR, 2020, pp. 5533—
5543.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and L Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the
29th Symposium on Operating Systems Principles, 2023, pp. 611-626.
M. LeMay, S. Li, and T. Guo, “Perseus: Characterizing performance and
cost of multi-tenant serving for cnn models,” in 2020 IEEE International
Conference on Cloud Engineering (IC2E). 1EEE, 2020, pp. 66-72.

B. Lin, T. Peng, C. Zhang, M. Sun, L. Li, H. Zhao, W. Xiao, Q. Xu, X. Qiu,
S. Li et al, “Infinite-llm: Efficient llm service for long context with
distattention and distributed kvcache,” arXiv preprint arXiv:2401.02669,
2024.

Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, “Optimizing
{CNN} model inference on {CPUs},” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019, pp. 1025-1040.

Z. Liu, J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, A. Shrivastava,
C. Zhang, Y. Tian, C. Re et al,, “Deja vu: Contextual sparsity for efficient
llms at inference time,” in International Conference on Machine Learning.
PMLR, 2023, pp. 22 137-22 176.

S. Markidis, S. W. Der Chien, E. Laure, L. B. Peng, and J. S. Vetter, “Nvidia
tensor core programmability, performance & precision,” in 2018 IEEE
international parallel and distributed processing symposium workshops
(IPDPSW). IEEE, 2018, pp. 522-531.

H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“Tpp: Transparent page placement for cxl-enabled tiered-memory,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2023, pp. 742-755.

J. McCalpin, “Stream: Sustainable memory bandwidth in high perfor-
mance computers,” http://www. cs. virginia. edu/stream/, 2006.

A. Meta, “Introducing meta llama 3: The most capable openly available
llm to date, 2024, URL https://ai. meta. com/blog/meta-llama-3/. Accessed
on April, vol. 26, 2024.

X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, Z. Zhang, R. Y. Y. Wong,
A. Zhu, L. Yang, X. Shi et al.,, “Specinfer: Accelerating large language
model serving with tree-based speculative inference and verification,”
in Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2024, pp. 932-949.

N. Nassif, A. O. Munch, C. L. Molnar, G. Pasdast, S. V. Lyer, Z. Yang,
O. Mendoza, M. Huddart, S. Venkataraman, S. Kandula et al, “Sapphire
rapids: The next-generation intel xeon scalable processor,” in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 65. IEEE, 2022,
pp. 44-46.

NVIDIA, “FasterTransformer,
FasterTransformer, 2021.

——, “Nvidia grace hopper superchip architecture in-depth,
https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-
architecture-in-depth/, 2022.

——, “Nvidia’s h100 ai gpus cost up to four times more than amd’s
competing mi300x,” https://www.tomshardware.com/tech-industry/
artificial-intelligence/nvidias-h100-ai- gpus- cost-up-to-four-times-
more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-
dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000, 2023.

https://github.com/NVIDIA/

https://pytorch.org/serve/
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/products/sku/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz/specifications
https://www.intel.com/content/www/us/en/products/sku/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz/specifications
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000

(42]

[43]

[44]

(45]

(46]

(47]

(48]

(49]

(50]

J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,
P. Malani, A. Malevich, S. Nadathur et al., “Deep learning inference in
facebook data centers: Characterization, performance optimizations and
hardware implications,” arXiv preprint arXiv:1811.09886, 2018.

P. Patel, E. Choukse, C. Zhang, 1. Goiri, B. Warrier, N. Mahalingam,
and R. Bianchini, “Characterizing power management opportunities
for llms in the cloud,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 2024, pp. 207-222.

H. Qi, L. Dai, W. Chen, Z. Jia, and X. Lu, “Performance characterization
of large language models on high-speed interconnects,” in 2023 IEEE
Symposium on High-Performance Interconnects (HOTI). IEEE, 2023, pp.
53-60.

J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100
billion parameters,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505-3506.
L. Z. Reguly, “Comparative evaluation of bandwidth-bound applications
on the intel xeon cpu max series,” in Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1236-1244.

M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b.
Alayrac, R. Soricut, A. Lazaridou, O. Firat, J. Schrittwieser et al, “Gemini
1.5: Unlocking multimodal understanding across millions of tokens of
context, arXiv preprint arXiv:2403.05530, 2024.

H. Shen, H. Chang, B. Dong, Y. Luo, and H. Meng, “Efficient llm
inference on cpus,” arXiv preprint arXiv:2311.00502, 2023.

Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang,
C. Ré, L Stoica, and C. Zhang, “Flexgen: High-throughput generative
inference of large language models with a single gpu,” in International
Conference on Machine Learning. PMLR, 2023, pp. 31094-31116.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia,
“Characterizing deep learning training workloads on alibaba-pai,” in
2019 IEEE international symposium on workload characterization (ISWC).
IEEE, 2019, pp. 189-202.

Z. Wang, Y. Wei, M. Lee, M. Langer, F. Yu, J. Liu, S. Liu, D. G. Abel,
X. Guo, J. Dong et al, “Merlin hugectr: Gpu-accelerated recommender
system training and inference,” in Proceedings of the 16th ACM Conference
on Recommender Systems, 2022, pp. 534-537.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s transformers: State-
of-the-art natural language processing,” arXiv preprint arXiv:1910.03771,
2019.

H. Xia, Z. Zheng, Y. Li, D. Zhuang, Z. Zhou, X. Qiu, Y. Li, W. Lin, and
S. L. Song, “Flash-llm: Enabling cost-effective and highly-efficient large
generative model inference with unstructured sparsity,” arXiv preprint
arXiv:2309.10285, 2023.

J. S. Young, J. Riedy, T. M. Conte, V. Sarkar, P. Chatarasi, and S. Srikanth,
“Experimental insights from the rogues gallery,” in 2019 IEEE International
Conference on Rebooting Computing (ICRC), Nov 2019, pp. 1-8.

G.-L Yu, J. S. Jeong, G-W. Kim, S. Kim, and B.-G. Chun, “Orca:
A distributed serving system for {Transformer-Based} generative
models,” in 16th USENLX Symposium on Operating Systems Design and
Implementation (OSDI 22), 2022, pp. 521-538.

S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al, “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian,
C. Ré, C. Barrett et al., “H20: Heavy-hitter oracle for efficient generative
inference of large language models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

