
Understanding Performance Implications of

LLM Inference on CPUs

Seonjin Na
1
Geonhwa Jeong

1
Byung Hoon Ahn

2
Jeffrey Young

1
Tushar Krishna

1
Hyesoon Kim

1

1Georgia Institute of Technology 2University of California, San Diego

Abstract—The remarkable performance of LLMs has led to
their application in a wide range of fields, with data centers
utilizing expensive accelerators such as GPUs and TPUs to
support LLM inference and training. However, these costly
accelerators face challenges with memory capacity due to
the large size of LLMs and Key-Value (KV) cache during
inference. To address memory capacity issues of accelerators
such as GPUs/TPUs, offloading-based LLM inference has been
proposed to store model weights, activations, and KV cache in
CPU memory. This approach, however, often incurs significant
performance degradation in LLM inference in terms of latency
and throughput as the offloaded data must be transferred back
and forth over the PCIe bus, which has a lower bandwidth
compared to memory.

This study explores new opportunities for leveraging
CPUs in LLM inference. Recent CPUs are equipped with
dedicated accelerators for efficient matrix computations and
have extended ISAs to support training and inference of new
AI models. They support larger memory sizes than most
GPUs, allowing for the direct computation of large models
and KV caches without offloading. Additionally, recent CPUs
are often equipped with DDR and HBM memory, which
provides options for optimizing for either memory capacity
or bandwidth. This study provides a detailed analysis of
LLM inference performance on the latest CPUs equipped
with these advanced features. Based on our experimental
results, we propose potential optimization strategies tailored
to enhance the performance of LLM inference on CPUs.

Index Terms—Large Language Model (LLM), Offloading-
based LLM Inference, LLM Inference on CPU, Intel AMX

I. Introduction

Transformer-based Large Language Models (LLMs) demon-

strate exceptional performance on a wide range of tasks

and have initiated a new era in the field of generative

AI. These advanced models are now broadly applied in

numerous areas, including text generation [5], [50], [57],

machine translation [4], etc. To meet the substantial compute

demands of LLMs, companies are introducing specialized

units in their existing processors, such as NVIDIA’s Tensor

Cores [33] in GPUs, Intel’s TMUL unit [38] in CPUs, or even

custom offload accelerators tailored for their LLMs, such as

Meta’s MTIA [13] or Google’s TPU [24]. Many modern data

centers are increasingly equipped with these accelerators to

execute LLM training and inference efficiently [17].

Despite these advancements, serving LLMs remains expen-

sive, primarily due to their high memory requirements [28],

[45], [49]. The remarkable performance of LLMs is driven

by their large model sizes, as dictated by scaling laws,

enabling them to understand complex and lengthy contexts.

32 64 128 256 512 1024 2048 4096 8192

Dimension size of M for GEMM [MxM] x [MxM]

10−2

10−1

100

101

102

103

T
F
lo

p
s
 (

B
F
1

6
)

8352Y CPU

Max9468 CPU

A100-40GB GPU

H100-80GB GPU

Fig. 1: General Matrix Multiplication (GEMM) throughput comparison
across CPUs and GPUs with varying matrix dimensions.

For instance, one of the most recent LLMs, such as OPT-

175B [57], requires 350GB of memory to load the weights with

the FP16 data type, or the equivalent of at least five NVIDIA

80GB H100 GPUs. Furthermore, models used in industry, such

as ChatGPT-4 [1] are known to be even larger [1], [7]. In

fact, a recent report from Google suggests that scaling the

sequence length to more than a million tokens may unlock

even more in-context learning possibilities [47].

In addition to large model sizes, a commonly used opti-

mization technique in LLM inference, KV caching, presents

significant memory challenges. KV caching enhances inference

performance by storing key and value vectors of previously

generated tokens, which avoids repetitive computations during

autoregressive generation. However, the size of the KV cache

increases linearly with both sequence length and batch size.

Recent studies have not only focused on supporting longer

sequence lengths to enable models to understand and generate

more complex outputs [12], [30], but have also explored

increasing batch sizes to efficiently handle multiple user

requests and maximize hardware utilization [28], [45], [56]. As

a result, the memory demands for KV caching are becoming

increasingly problematic. For example, OPT-66B [57] with

a sequence length of 4096 and a batch size of 32 requires

288GB of memory for KV caching. This growing memory

requirement for KV caching poses a significant challenge for

LLM inference systems.

To address the growing memory requirements of LLMs and

KV caching that exceed GPU capacity, prior studies have pro-

posed offloading-based LLM inference serving techniques [45],

[49], [58]. In offloading-based LLM inference serving sys-

tems, weights, activations, and KV caches are stored in the

larger CPU memory and loaded from it during computation.

Although offloading-based systems enable executing LLM

inference with a limited GPU memory capacity, they introduce

new performance problems. These systems need to transfer

offloaded model weights, activations, and KV caches from

CPU memory to the GPU on demand via the slow PCIe

bus during LLM inference, leading to significant performance

degradation as shown in several previous studies [37], [49].

To circumvent these issues, this study explores the new

opportunity of leveraging CPUs as compute units for LLM

inference based on the following insights. First, CPU vendors

are incorporating dedicated matrix multiplication accelerators
along with the necessary ISA support such as Intel Advanced

Matrix Extensions (AMX) [38]. Figure 1 shows the general

matrix multiplication (GEMM) throughput comparison results

across different matrix dimensions on 4th generation Intel

CPUs (Max 9468) that support Intel AMX, 3rd generation

CPUs (8352Y) that do not, and GPUs (A100 and H100). The

graph shows that although the overall throughput is still

lower compared to GPUs due to their specialized hardware

and instruction capabilities, the CPU with dedicated matrix

units (MAX 9468) has significant potential when considering

the hardware cost
1
.

Additionally, CPU memory typically offers greater capacity

than GPU memory and can be further expanded using memory

extension technologies such as CXL [34], unlike GPUs with

fixed memory sizes. Moreover, some of the latest Intel CPUs

are equipped with both DDR memory and HBM memory,

enabling CPUs to exploit larger memory capacity and higher

memory bandwidth. In order to address the memory capacity

challenges posed by large model sizes and KV caches in LLM

inference, the large memory capacity of CPUs and the high

bandwidth of HBM provides an opportunity to exploit CPUs

for LLM inference.

The contributions of this paper are as follows:

• The identification of challenges for LLM inference and

opportunities for acceleration using new CPU-based

platforms.

• The first extensive performance characterization of LLM

inference on the latest Intel CPUs.

• A comprehensive performance comparison of the latest

CPUs with state-of-the-art GPUs for LLM inference with

various LLMs and configurations.

• Discussion of potential optimizations to better support

LLM inference on CPUs based on characterization

insights across platforms.

II. Background

A. Large Language Model Architecture
Recent large language models (LLMs) [5], [36], [50], [57]

are decoder-only transformer models trained to generate subse-

quent tokens for a given input sequence in an auto-regressive

manner. As shown in Figure 2, the decoder-only transformer

model includes multiple decoder blocks, and each of these

decoder blocks comprises several components that work

1
Although calculating the exact cost for each machine is not straightfor-

ward due to the various factors affecting the overall cost, using the listing

price of each processor as a proxy shows that Intel MAX 9468 [21] is 3x

cheaper than NVIDIA H100-80GB [41]

Feed Forward
Networks

Masked
Multi-Head
Attention

Layer Norm

Layer Norm

Decoder
Block 1

Decoder
Block 2

Decoder
Block n

Output token

Input sequence

Fig. 2: Overview of Transformer-based LLM architecture.

Prefill Phase Decode Phase

Is IISWC a premier
conference?

YesKV Cache

LLM Iteration 1 LLM Iteration 2

itKV Cache

LLM Iteration 3

isKV Cache

LLM Iteration 4

EOS

Fig. 3: Overview of the Prefill and Decode phases in LLM inference.

together to process the input data. The Multi-Head Attention
is a critical layer that captures the relationships among the

input tokens through the attention mechanism. Each head

within the multi-head attention focuses on various aspects of

the input sequence, enabling the model to better grasp the

context and dependencies between tokens. The Feed-Forward
Network (FFN) after the self-attention layer applies non-linear

transformations to refine the sequence representations. The

FFN consists of two linear transformations separated by a

non-linear activation function which helps capture complex

patterns in the data. The outputs from these subsequent

transformer layers are then projected through a linear layer

and a softmax function to generate the final token predictions.

B. LLM Inference

LLM inference typically consists of two phases: the Prefill
Phase and the Decode Phase, as shown in Figure 3. During

the prefill phase, the model processes all input prompts from

the user and produces a new token used for initial input for

the decode phase. This phase involves computing the hidden

representations for the entire input sequence simultaneously,

which is usually computationally intensive, especially for large

models and long sequences. The prefill phase typically makes

the system compute-bound due to the high volume of parallel

processing required. In contrast, the decode phase generates

one token at a time, using the previously generated token as

input for the next step. This phase continues iteratively until a

predefined sequence length is reached or an end-of-sequence

(EOS) token is produced. Despite processing only one token

per step, the decode phase demands substantial I/O operations
making it memory-bound. Importantly, the KV cache, which
has become a de-facto optimization for the decode phase

to avoid recalculating key/value vectors in every iteration,

requires a large memory space of 2B (BF16) ∗ 2 (Key/Value) ∗
nlayers ∗ dmodel ∗ nseq ∗ nbatch, where nlayers is the number of

layers, dmodel is the hidden dimension of the model, nseq
is the sequence length, nbatch is the batch size. Therefore,

efficient memory management is crucial to handle these KV

caches and the LLM weights. Understanding these phases and

their computational demands is essential for optimizing LLM

inference performance.

IA Host
Tiles and

Accelerator
Commands

Accelerator 1 (TMUL)

tmmN

16
 ro

w
s

64 bytes

Accelerator 2 (TMUL)

Commands and status delivered synchronously Dataflow

tmm0
tmm1
tmm2
tmm3
tmm4
tmm5
tmm6
tmm7

TILECFG
Tile A Tile B

M

K

K

N

M

N
Tile C

TMUL
C += A * B

Fig. 4: Overview of Intel AMX architecture [9].

Cores,Caches

HBM DDRHBM

HBM-only
Mode

Flat
Mode

HBM DDR

Cache
Mode

Cores,Caches Cores,Caches

DRAM cache

Cores, Caches

Mem Mem

Memory
modes

Clustering
modes

Cores Cores

Quad
Mode

SNC4
Mode

Mem Mem

Mem Mem

Cores Cores

Mem Mem

Fig. 5: Different memory and clustering modes in SPR Max CPU
servers [38].

C. LLM Inference Key Metrics

There are various metrics used to compare the LLM

inference performance [28], [49], [58] such as the time to

first token (TTFT), the time per output token (TPOT), end-

to-end (E2E) latency, and system throughput in terms of the

number of generated tokens per second. The importance of

each metric varies depending on the use case. For a real-

time chatbot service, TTFT is crucial, as users expect quick

responses for a seamless experience. In real-time translation

service used in live media broadcasts, a slight delay at the

start might be acceptable, but TPOT must be low to keep up

with the natural pace of speech. If one is conducting research

that requires batch processing of text data for sentiment

analysis, the priority is to complete the entire job as quickly

as possible, meaning higher system throughput is preferred

over faster processing of individual texts. Therefore, in this

work, instead of focusing on a specific metric, we characterize

various workloads and evaluate different HWs using these

three metrics as further explained in Section IV-A.

D. Matrix Multiplication Accelerators on CPUs

To improve the performance of machine learning ap-

plications on CPUs, hardware vendors have incorporated

dedicated accelerators into their processors and introduced

instruction set architecture to support it. Examples include

Intel Advanced Matrix Extensions (AMX) [38], IBM Power

CPU Matrix Multiply Assist (MMA) [10], and ARM Matrix

Extension (ME) [18]. These extensions are designed to enable

efficient matrix multiplication, one of the key operations in

machine learning. In this paper, we conduct performance

characterization of LLM inference on the latest Intel CPUs.

Intel AMX is supported by Intel Xeon processors based on the

Sapphire Rapids (SPR) architecture [38] and introduces two

main components: Tile and Tile Matrix Multiply Unit (TMUL).

As shown in Figure 4, Tile is defined as a 2-dimensional

register with a size of 1KB, consisting of 16 rows of size of

64 bytes. Therefore, each tile can store 32 elements for the

16-bit brain floating point (BF16) data type and 64 elements

for the 8-bit integer (INT8) data type. TMUL is a hardware

unit that accelerates matrix-multiply computation on tiles and

supports both BF16 and INT8 data types [22], [23], [38].

E. NUMA Architecture

Non-Uniform Memory Access (NUMA) architecture is a

design widely used in modern data centers to improve

performance and scalability by denoting lower-bandwidth

remote memory regions across sockets. In recent Intel CPUs,

NUMA accesses can refer either to inter-socket memory

accesses that use Intel’s UPI (Ultra Path Interconnect) or

a remote domain within a socket (usually denoting levels

of cache sharing). Intel’s Sapphire Rapids Max Series CPUs

support multiple NUMA options via different memory and

clustering modes as described in Figure 5.

HBM can operate in three different memory modes: (1)

HBM-only, (2) Flat, and (3) Cache, each with distinct benefits.

HBM-only mode offers maximum bandwidth and lowest latency

for workloads that fit within the HBM capacity, but is limited

by the HBM size. Flat mode combines HBM and DDR as

separate NUMA nodes, providing greater memory capacity

and flexibility but requiring software to manage memory

allocation. Cache mode uses HBM as a cache for DDR,

simplifying implementation without software changes but

may lead to sub-optimal performance.

These SPR CPUs also support two different clustering

modes: (1) Quadrant (quad) and (2) Sub-NUMA Clustering-4
(snc). Quadrant mode presents a single address space (NUMA

node) to software, requiring no NUMA awareness, and is

ideal for applications sharing large data structures across all

cores. Sub-NUMA Clustering-4 mode, the default, divides each

CPU into four sub-NUMA clusters, seen as separate NUMA

nodes but offers higher bandwidth and lower latency. Used

together, these memory and clustering modes can provide

flexible options to optimize performance for various high-

demand computational tasks, including LLM inference.

III. Challenges and Opportunities in LLM

Despite LLM’s excellent performance across various do-

mains, serving LLMs for inference presents significant chal-

lenges, primarily due to the memory required to store the

models and the memory consumption to store KV cache.

High memory requirement in LLM inference: Figure 6

illustrates the memory footprint required to store the OPT [57]

and LLaMA [50] models based on their scale. As shown in

Figure 6, models with a large number of parameters, such as

LLaMA2-70B, have a substantial memory footprint for storing

model weights. Even the latest GPUs such as NVIDIA A100

O
PT

-1
.3

B

O
PT

-6
.7

B

O
PT

-1
3B

O
PT

-3
0B

O
PT

-6
6B

LL
aM

A2-7
B

LL
aM

A2-1
3B

LL
aM

A2-7
0B

0

50

100

150

M
o
d
e
l
S
iz

e
 (

G
B

)

A100 GPU (40GB)

H100 GPU (80GB)

Fig. 6: Memory footprint required to store the parameters of each
model using the FP16 data type.

with 40GB or NVIDIA H100 with 80GB memory cannot fit

these models into a single GPU. For example, loading the

LLaMA2-70B model onto GPUs requires at least two H100

GPUs. Practical industry LLMs such as GPT-3 175B [5] require

over 320GB to solely store the parameters, necessitating at

least five H100 GPUs.

128 256 512 102420484096

Sequence Length

0

10

20

30

40

50

K
V

 C
a
c
h
e
 S

iz
e
 (

G
B

)

LLaMA2-13B: 24.2 GB

(a) KV cache size for various sequence
length (batch size=16)

1 2 4 8 16 32 64

Batch Size

0

20

40

60

80

100

K
V

 C
a
c
h
e
 S

iz
e
 (

G
B

)

LLaMA2-13B: 24.2 GB

(b) KV cache size for various batch size
(seq. length=2048)

Fig. 7: KV cache memory footprint for different sequence lengths
and batch sizes in LLaMA2-13B. The dotted line represents the size
of LLaMA2-13B model.

Recent LLM inference serving systems exploit KV caching

to reduce computation during the decode phase. While KV

caching can make the output token generation faster, the

memory consumption by the KV cache becomes significant

when using larger batch sizes for throughput or generating

longer sequences. Figure 7 shows the memory footprint

required to store the KV cache for LLaMA2-13B with different

sequence lengths and batch sizes. The figure illustrates that

the memory capacity for the KV cache increases linearly

with both the sequence lengths and batch sizes, eventually

surpassing the model size when using large batch sizes and

sequence lengths. Recent inference serving systems including

TorchServe [8] and NVIDIA Triton Server [52] support

batched LLM inference to efficiently utilize hardware resources

and handle multiple user requests. Additionally, various prior

studies have been proposed to support longer contexts in the

latest LLMs and recent chatbot services; for instance, ChatGPT-

4.0 [1], and Gemini [47], now support longer sequence lengths,

such as 32K length. Hence, the memory required for the KV

cache often exceeds the model size, imposing a significant

burden on GPU or other accelerator memory.

Offloading-based LLM inference systems: To support

LLM inference when model sizes and KV caches exceed a

single GPU’s memory capacity, recent frameworks such as

FlexGen [49] and DeepSpeed [45] provide offloading-based

inference, storing model weights, activations, and KV caches

in CPU memory. However, these systems face performance

degradation since model weights, activations, and KV caches

stored on CPU must be transferred via slow PCIe interconnect

during computation.

Opportunities of CPUs for LLM inference: As explained

in Section II-D, the latest CPUs can provide advanced

accelerators that create new opportunities to leverage CPUs

for LLM inference serving. The latest CPUs include dedicated

matrix multiplication accelerators, similar to NVIDIA’s Tensor

core [33], as well as fast access to large DDR5 DRAM

memory capacities and High Bandwidth Memory (HBM) on

recent Sapphire Rapids CPUs [38], [46]. DRAM capacity on

these platforms can also be further expanded using recent

technologies such as CXL [34], and CCIX [26]. Therefore, in

scenarios where larger models such as LLaMA2-70B shown

in Figure 6 or extensive KV cache sizes exceed the memory

capacity of a single GPU as shown in Figure 7, the large

memory capacity of the CPU offers an opportunity to utilize

CPUs for LLM inference.

IV. Characterizing LLM Inference on CPUs

A. Characterization Methodology

CPU 1 (ICL CPU) CPU 2 (SPR CPU)

Generation IceLake (ICL) Sapphire Rapids (SPR)

CPU Xeon 3rd 8352Y Xeon 4th Max 9468

Core Frequency 2.20 GHz 2.10 GHz

Compute Throughput (BF16) 18.0 TFLOPS (AVX-512) 25.6 (AVX-512) / 206.4 (AMX) TFLOPS

of cores (per socket) / sockets 32 / 2 48 / 2

L1D / L2 Cache (per core) 48 KB / 1.25 MB 48 KB / 2 MB

L3 Cache 48 MB 105 MB

CPU Memory DDR4 256 GB DDR5 512 GB, HBM 128 GB

Memory Bandwidth2 156.2 GB/s DDR5 233.8 GB/s, HBM 588 GB/s

TABLE I: Evaluation Setup for CPU Servers.

Experimental setup: In this section, we conducted our

experiments using two different CPUs, an Intel 3rd generation

and a 4th generation CPU, to analyze the performance of

common LLMs with recent advanced CPU features, including

Intel AMX. The detailed CPU server configurations are shown

in Table I. To measure the throughput and latency of LLM

inference on CPUs, we use Intel Extension for Pytorch

v2.3 [19] that provides optimizations for Intel CPUs.

Models: We use recent open-sourced representative LLM

families, OPT [57] and LLaMA-2 [50] with different model

sizes. We evaluate OPT models with 1.3B, 6.7B, 13B, 30B,

and 66B parameters and LLaMA-2 models with 7B, 13B, and

70B parameters. For all our experiments, we set an input

sequence length of 128 and an output sequence length of 32

with varying batch sizes, ranging from 1 to 32. In Section V,

we also explore the impact of longer input sequence lengths.

Metrics: To measure the latency and throughput of LLM

inference, we employed various metrics widely used in

previous studies [28], [49], [58] as different metrics are

prioritized based on the use cases as mentioned in Section

2
Measured on a single socket using the STREAM benchmark [35].

O
PT

-1
.3

B

O
PT

-6
.7

B

O
PT

-1
3B

O
PT

-3
0B

O
PT

-6
6B

LL
aM

A
2-

7B

LL
aM

A
2-

13
B

LL
aM

A
2-

70
B

G
m

ea
n

0.0

0.2

0.4

0.6

0.8

1.0
N

o
rm

.
E
2

E
 L

a
te

n
c
y

bs1 bs2 bs4 bs8 bs16 bs32

(a) End-to-End latency comparison

O
P
T-
1
.3

B

O
P
T-
6
.7

B

O
P
T-
1
3
B

O
P
T-
3
0
B

O
P
T-
6
6
B

LL
a
M
A
2
-7

B

LL
a
M
A
2
-1

3
B

LL
a
M
A
2
-7

0
B

G
m

e
a
n

0

2

4

6

8

N
o
rm

.
T
o
k
e
n
s
/s

bs1 bs2 bs4 bs8 bs16 bs32

(b) End-to-End throughput comparison

Fig. 8: Latency and throughput comparison
of Intel ICL and SPR CPUs in LLM inference.

O
P
T-
1
.3

B

O
P
T-
6
.7

B

O
P
T-
1
3
B

O
P
T-
3
0
B

O
P
T-
6
6
B

L
L
a
M
A
2
-7

B

L
L
a
M
A
2
-1

3
B

L
L
a
M
A
2
-7

0
B

G
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

N
o
r
m

.
T
T
F
T

bs1 bs2 bs4 bs8 bs16 bs32

(a) Prefill phase latency comparison

O
P
T-
1
.3

B

O
P
T-
6
.7

B

O
P
T-
1
3
B

O
P
T-
3
0
B

O
P
T-
6
6
B

L
L
a
M
A
2
-7

B

L
L
a
M
A
2
-1

3
B

L
L
a
M
A
2
-7

0
B

G
m

e
a
n

0.0

0.2

0.4

0.6

0.8

1.0

N
o
r
m

.
T
P
O

T

bs1 bs2 bs4 bs8 bs16 bs32

(b) Decode phase latency comparison

Fig. 9: Latency comparison of Intel ICL and
SPR CPUs for prefill and decode phases.

O
P
T-
1
.3

B

O
P
T-
6
.7

B

O
P
T-
1
3
B

O
P
T-
3
0
B

O
P
T-
6
6
B

LL
a
M
A
2
-7

B

LL
a
M
A
2
-1

3
B

LL
a
M
A
2
-7

0
B

G
m

e
a
n

0

2

4

6

8

10

N
o
rm

.
T
o
k
e
n
s
/s

bs1 bs2 bs4 bs8 bs16 bs32

(a) Prefill phase throughput comparison

O
P
T-
1
.3

B

O
P
T-
6
.7

B

O
P
T-
1
3
B

O
P
T-
3
0
B

O
P
T-
6
6
B

LL
a
M
A
2
-7

B

LL
a
M
A
2
-1

3
B

LL
a
M
A
2
-7

0
B

G
m

e
a
n

0

2

4

6

N
o
rm

.
T
o
k
e
n
s
/s

bs1 bs2 bs4 bs8 bs16 bs32

(b) Decode phase throughput comparison

Fig. 10: Throughput comparison of Intel ICL
and SPR CPUs for prefill and decode phases.

1 2 4 8 16 32
0

10

20

L
L
C

 M
P
K

I

1 2 4 8 16 32
0

25

50

75

C
o
re

 U
ti

l.
 (

%
)

1 2 4 8 16 32
0

2

4

N
o
rm

.
#

 o
f

ld
/s

t

Fig. 11: Comparison of various hardware performance counters,
including LLC misses per kilo instruction (MPKI), for LLaMA2-13B
model inference on SPR CPU with different batch sizes. The number
of load/store instructions is normalized to that of batch size 1.

1 2 4 8 16 32
0

20

40

L
L
C

 M
P
K

I

1 2 4 8 16 32
0

25

50

75

C
o
re

 U
ti

l.
 (

%
)

1 2 4 8 16 32
0

2

4

N
o
rm

.
#

 o
f

ld
/s

t

Fig. 12: Comparison of various hardware performance counters,
including LLC misses per kilo instruction (MPKI), for OPT-66B model
inference on SPR CPU with different batch sizes. The number of
load/store instructions is normalized to that of batch size 1.

II-C. We use three metrics to measure LLM inference latency:

(1) end-to-end latency (E2E latency), which is the total time

taken to generate the entire output sequence. (2) the time to

first token (TTFT), which indicates the time to generate the

first token during the prefill phase, and (3) the time per output

token (TPOT), which is the average time taken to generate

subsequent tokens during the decode phase. To measure the

overall LLM inference throughput, we use tokens generated

per second, defined as the total number of generated tokens

divided by the end-to-end latency. Similarly, the throughput

for both the prefill phase and the decode phase is also

measured in terms of tokens generated per second. We also

report hardware performance counters, such as cache miss

rates and UPI utilization, using Linux perf [11] and Intel

VTune profiler [20] to better understand the results.

B. Performance of LLM Inference on CPUs

To understand the performance of LLM inference on CPUs,

we first perform empirical studies using two different CPU

servers and analyze the performance impact of recently

introduced features in recent Intel Sapphire Rapids CPUs

such as AMX.

Performance comparison between Xeon IceLake And
Sapphire Rapids CPUs: In this experiment, the Xeon 3rd

generation ICL 8352Y CPU (referred to as ICL CPU) was

configured with 32 cores, while the Xeon 4th generation SPR

Max 9468 CPU (referred to as SPR CPU) was configured with

48 cores. The SPR CPU was set to Quadrant, Flat memory

mode to achieve optimal performance in this context. Figure 8

shows the end-to-end latency and throughput comparison

results for LLM inference on the ICL and SPR CPUs with

varying batch sizes from 1 to 32. Each bar is normalized to
the results of the ICL CPU. As seen in Figure 8, the SPR CPU

consistently shows reduced latency and improved throughput

compared to the ICL CPU across all LLMs and batch sizes.

On average, the SPR CPU achieves an end-to-end latency

reduction in the range of 68.4% to 84.1% compared to the ICL

CPU. Additionally, the token generation throughput of the

SPR CPU is improved by 3.2 to 6.3×. These normalized results

highlight the performance benefits gained from the use of

both the matrix multiplication accelerator and high-bandwidth

memory on the SPR Max CPU.

Figures 9 and Figure 10 show the comparison of latency

and throughput during the prefill and decode phases of LLM

inference on the ICL and SPR CPUs, respectively. As shown

in Figure 9, TTFT during the prefill phase decreased by

an average of 84.1% to 89%. In the decode phase, TPOT is

reduced from 62.3% to 81.7% on average. The SPR CPU shows

throughput improvement ranging from 6.3 to 9.1× in the

prefill phase and an increase in the range of 2.7 to 5.5× in

the decode phase compared to the ICL CPU. The significant

reduction in latency and improvement in throughput during

the prefill phase is due to AMX support on the SPR Max

CPU, while the throughput improvement in the memory-

bound decode phase is made possible by the higher memory

bandwidth provided by HBM.

Figure 11 and Figure 12 compare various hardware per-

formance counters during the inference of LLaMA2-13B and

OPT-66B models as the batch size increases. With larger

batch sizes, both models exhibit a decrease in LLC MPKI and

an increase in core utilization, indicating a shift towards a

more compute-bound execution. This trend highlights the

significant performance gap between ICL and SPR CPUs at

larger batch sizes, driven by Intel AMX support and the high

memory bandwidth of HBM.

When using a batch size of 32, end-to-end latency is reduced

by 84.1%, and throughput increases by 6.3× compared to the

ICL CPU.

Key Finding#1: With AMX support, larger cores and cache,

and HBM integration, the SPR Max CPU significantly reduces

latency and increases throughput for BF16 LLM inference

compared to the ICL CPU.

Performance impact of SPR CPU server configurations:
As discussed in Section II-E, when using the SPR CPU series

servers, different settings can be configured for memory and

clustering modes, which could change the performance a lot.

Since we employ DDR5 memory in our server setup, excluding

the HBM-only mode, there are four possible combinations of

memory and cluster modes: (1) quad_cache, (2) quad_flat, (3)
snc_cache, and (4) snc_flat.

To evaluate the impact of these different server configura-

tions on LLM inference latency and throughput, we conducted

experiments using each configuration. We utilized a single

socket with 48 cores to avoid performance degradation due

to inter-socket communication. Linux numactl [25] was used
to appropriately bind the memory nodes and cores of the

NUMA node. In flat mode, memory allocation prioritized

HBM memory, with DDR memory being used only when

the allocation exceeded 64GB, as each socket has 64GB of

HBM. For snc mode, each of the four NUMA nodes within

the socket was bound to 12 physical cores.

Figure 13 presents the comparison of various LLM inference

metrics, averaged across all workloads and batch sizes,

normalized to the quad_cache configuration. As shown in

Figure 13, overall, quad clustering mode showed better latency

and throughput compared to snc mode. Although snc mode

theoretically provides better performance by localizing data

within each NUMA domain, our results suggest that when data

allocation is not properly managed, performance can degrade

due to inefficient memory access and increased inter-core

communication. This indicates potential for further software

optimization to fully exploit snc mode.

Additionally, explicitly leveraging the HBM (flat mode)

resulted in better performance. This improvement can be

attributed to the decode phase being more memory-bound

compared to the prefill phase, making the utilization of higher

memory bandwidth crucial for enhancing performance. In this

context, effectively utilizing HBM’s memory bandwidth can

significantly contribute to improved performance. Figure 15

shows the results of various hardware performance counters

when running LLaMA2-13B LLM inference with a batch size

of 8 across different server configurations. LLaMA2-13B is

selected for this analysis as it effectively demonstrates the per-

formance trends observed across different configurations. The

figure shows snc mode suffered from performance degradation

due to frequent remote cache accesses to other NUMA nodes.

In terms of memory mode, flat mode slightly outperformed

cache mode by leveraging HBM’s higher bandwidth more

effectively.

In conclusion, considering all the metrics, we found that the

quad_flat mode configuration delivered the best performance.

Key Finding#2: Proper memory and clustering configurations

are essential for optimizing performance. The Flat memory

mode with Quadrant clustering offers the best latency and

throughput for LLM inference.

Performance impact of the number of cores: Figure 14

shows the comparison results in terms of various metrics for

LLM inference when varying the number of cores. Each metric

result is averaged across all evaluated LLMs and different batch

sizes from 1 to 32, normalized to the results using 12 cores.

As shown in Figure 14, using a larger number of cores does

not consistently demonstrate the best results for all metrics.

For instance, the end-to-end latency was lowest with 48 cores,

achieving a 59.8% reduction compared to using 12 cores. 1.8×
improvement over 12 cores. When analyzing each phase of

LLM inference, i.e. the prefill and decode phases, we observe

the following: In the prefill phase, using 48 cores reduced

latency by 65.9% compared to using 12 cores, showing the best

performance. In the decode phase, using 48 cores achieved a

54.6% reduction in latency, which was the best result. For the

overall throughput considering both the prefill and decode

phases, using 48 cores improved performance by 2.2× and

1.7×, respectively, compared to using 12 cores.

Figure 16 shows the comparison of various metrics such

as physical core utilization, UPI utilization, etc. with varying

numbers of cores during LLaMA2-7B model inference. Overall,

increasing the number of cores resulted in better performance

in terms of latency and throughput compared to using fewer

cores. However, as shown in Figure 16, using 96 cores

led to poor performance due to the need for inter-socket

communication via Intel UPI, negatively impacting both

latency and throughput. In summary, we found that using 48

cores is the best configuration when considering all latency

and throughput-related metrics, resulting in a 59.8% reduction

in latency and a 1.8× improvement in overall throughput

compared to using 12 cores.

Considering the performance impact of the SPR CPU NUMA

configurations and the number of CPU cores, we use the

quad_flat configuration with 48 cores for the Intel SPR CPU

results in the subsequent sections.

Key Finding#3: Using 48 SPR cores with HBM maximizes

core utilization and minimizes inter-socket communication,

resulting in the best performance across models.

V. Performance Comparison with GPUs

In this section, we compare the performance result of CPUs

with that of GPUs for various LLMs.

E2E Latency
0.0

0.5

1.0

1.5
N

o
rm

.
V
a
lu

e

Lower is better
2.3 1.8

TTFT
0.0

0.5

1.0

1.5

Lower is better
2.3 2.2

TPOT
0.0

0.5

1.0

1.5

Lower is better
2.4 1.6

Tokens/s
0.0

0.5

1.0

1.5

Higher is better

Tokens/s (Prefill)
0.0

0.5

1.0

1.5

Higher is better

Tokens/s (Decode)
0.0

0.5

1.0

1.5

Higher is better

quad_cache quad_flat snc_cache snc_flat

Fig. 13: Normalized latency and throughput metrics for different SPR CPU server configurations. Each result is normalized to quad_cache
configuration. Each metric is averaged across all evaluated LLMs and batch sizes from 1 to 32.

E2E Latency
0.0

0.5

1.0

1.5

N
o
rm

.
V
a
lu

e

Lower is better

TTFT
0.0

0.5

1.0

1.5

Lower is better
1.6

TPOT
0.0

0.5

1.0

1.5

Lower is better

Tokens/s
0.0

0.5

1.0

1.5

Higher is better
1.8

Tokens/s (Prefill)
0.0

0.5

1.0

1.5

Higher is better
1.5 2.2

Tokens/s (Decode)
0.0

0.5

1.0

1.5

Higher is better
1.7

12 24 48 96

Fig. 14: Normalized latency and throughput metrics for different core configurations. Each result is normalized to 12 core configuration.
Each metric is averaged across all evaluated LLMs and batch sizes from 1 to 32.

quad
_c

ac
he

quad
_f

la
t

sn
c_

ca
ch

e

sn
c_

fla
t

0

10

20

L
L
C

 M
P
K

I

quad
_c

ac
he

quad
_f

la
t

sn
c_

ca
ch

e

sn
c_

fla
t

0

25

50

C
o
re

 U
ti

l.
 (

%
)

quad
_c

ac
he

quad
_f

la
t

sn
c_

ca
ch

e

sn
c_

fla
t

0

1

2

#
 o

f
re

m
o
te

 L

L
C

 a
c
c
e
s
s
e
s

1e8

Fig. 15: Comparison of LLC misses per kilo instruction (MPKI), core
utilization, and the number of remote LLC accesses for LLaMA2-13B
model with batch size 8 with different server configurations.

12 24 48 96
0

10

20

L
L
C

 M
P
K

I

12 24 48 96
0

20

40

60

C
o
re

 U
ti

l.
 (

%
)

12 24 48 96
0

5

10

15

U
P
I
U

ti
l.
 (

%
)

Fig. 16: Comparison of LLC misses per kilo instruction (MPKI), core
utilization, UPI utilization for LLaMA2-7B model with batch size 8
as core count increases.

A. Evaluation Methodology

Experimental setup: To compare the LLM inference perfor-

mance on CPUs and GPUs with various compute capabilities

and memory sizes, we use two distinct server-class GPUs: the

NVIDIA A100 GPU with 40GB memory and the NVIDIA H100

GPU with 80GB memory. Table II shows the detailed GPU

server configurations. To measure the performance of LLM

inference on GPUs, we employ FlexGen [49], a state-of-the-art

offloading-based LLM inference engine designed to achieve

high throughput even with limited GPU memory. FlexGen

enables GPU to offload model weights, activations, and KV

cache to CPU memory. In these experiments, we set the input

sequence length to 128 and the output sequence length to 32.

B. End-to-End Performance

Figure 17 illustrates the end-to-end latency and token

generation throughput comparison of LLM inference with

3
TFLOPS values are for dense operations without sparsity.

4
Measured using the STREAM benchmark [35].

GPU 1 GPU 2

GPU NVIDIA A100 NVIDIA H100

Number of SMs 108 132

Compute Throughput (BF16)3 312 TFLOPS 756 TFLOPS

L1 / L2 Cache 192 KB / 40 MB 256 KB / 50MB

GPU Memory 40 GB 80 GB

Memory Bandwidth4
1299.9 GB/s 1754.4 GB/s

CPU-GPU Interconnect PCIe 4.0, 64 GB/s PCIe 5.0, 128 GB/s

TABLE II: Evaluation Setup for GPU Servers.

a batch size of 1 on both CPUs and GPUs for OPT, and

LLaMA-2 models. Each result is normalized to the result of

the SPR Max CPU. As shown in the Figure 17, for smaller

models that fit into GPU memory such as OPT-1.3B, OPT-6.7B,

LLaMA2-7B, OPT-13B, LLaMA2-13B, GPUs outperform the

SPR Max CPU in terms of both latency and throughput. For

example, with the A100 GPU, the OPT-13B model showed a

reduction in end-to-end latency by 65.5% compared to the

CPU, while the H100 GPU showed a reduction of 72.8% for

the OPT-13B model. In terms of throughput, the A100 GPU

demonstrated an improvement of 2.9×, and the H100 GPU

showed an improvement of 3.7× over the CPU.

However, for models that exceed GPU memory, such as

OPT-30B (in the case of the A100), OPT-66B, and LLaMA2-70B,

the CPU outperforms GPUs in both latency and throughput.

For instance, while the H100 GPU could accommodate the

entire OPT-30B model and perform better than the CPU, the

A100 GPU needs to offload model weights and activations on

CPU memory, which must then be loaded on demand over

the PCIe bus. In this scenario, the CPU reduced latency by

92.1% and improved throughput by 12.7× compared to the

A100 GPU. Furthermore, compared to the H100 for OPT-66B,

the SPR CPU showed an 80.1% reduction in latency and 5×
improvement in throughput.

To analyze how much time GPUs spend on data loading

over the PCIe bus when using offloading-based LLM inference

methods, we break down the execution time for large models.

Figure 18 (a) shows the execution time breakdown for the

A100 GPU running the OPT-30B model, and Figure 18 (b)

OPT-1.3B
0

1

2

3

0.7 0.7

OPT-6.7B
0

1

2

3

0.4 0.3

LLaMA2-7B
0

1

2

3

0.7 0.7

OPT-13B
0

1

2

3

0.3 0.3

LLaMA2-13B
0

1

2

3

0.6 0.5

OPT-30B
0

1

2

3
12.7

0.2

OPT-66B
0

1

2

3
11.1 5.0

LLaMA2-70B
0

1

2

3
11.3 5.1

N
o
rm

 E
2
E
 L

a
te

n
c
y

Max9468 A100-40GB H100-80GB

(a) End-to-End latency comparison

OPT-1.3B
0

1

2

3

OPT-6.7B
0

1

2

3

LLaMA2-7B
0

1

2

3

OPT-13B
0

1

2

3
3.7

LLaMA2-13B
0

1

2

3

OPT-30B
0

1

2

3

0.1

4.3

OPT-66B
0

1

2

3

0.1 0.2

LLaMA2-70B
0

1

2

3

0.1 0.2

N
o
rm

 T
o
k
e
n
s
/s

Max9468 A100-40GB H100-80GB

(b) Throughput comparison

Fig. 17: LLM end-to-end inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=1. Each result is
normalized to SPR Max 9468 CPU.

1 2 4 8 16 32

Batch Size

0

50

100

R
a
ti

o
 (

%
)

Data Load (PCIe) GPU Compute

(a) OPT-30B on A100 GPU

1 2 4 8 16 32

Batch Size

0

50

100

R
a
ti

o
 (

%
)

Data Load (PCIe) GPU Compute

(b) OPT-66B on H100 GPU

Fig. 18: GPU execution time breakdown during LLM inference for
larger models (OPT-30B and OPT-66B) on A100 and H100 GPUs.

presents the same breakdown for the H100 GPU running the

OPT-66B model, both using offloading-based LLM inference

with batch sizes ranging from 1 to 32. As shown in Figure 18,

the A100 GPU spends between 67% and 95% of its total

execution time on data loading over the PCIe bus, while the

H100 GPU spends between 59% and 92% of its execution time

on data loading when running the OPT-66B model. However,

FlexGen’s zig-zag block scheduling technique [49], which

overlaps data transfer with computation, reduces the time

spent on data loading via the PCIe bus as the batch size

increases. Consequently, for smaller models that do not require

offloading, the high compute throughput of GPUs leads to

a wider performance gap between the CPU and GPU, as

illustrated in Figure 19. In contrast, for larger models that

require offloading, although the CPU still outperforms the

GPU, the performance gap narrows due to the efficiency of

the scheduling technique.

We also note that new Grace-Hopper Superchip would see

lower overheads for offloading from DRAM to the integrated

H100 due to its higher NVLink bandwidth (900 GB/s versus

PCIe 5.0’s 128 GB/s), albeit at a cost of ∼4x of the SPR CPU

and DDR5 [40].

Key Finding#4: Overall, GPUs outperform CPUs in LLM

inference, but AMX-enabled CPUs can achieve lower latency

and higher throughput for larger models requiring offloading.

C. Sensitivity to Sequence Length

Figure 20 shows the comparison of LLM inference latency

and throughput between CPUs and GPUs across varying

sequence lengths. The x-axis represents the number of input

tokens. In all experiments, we set the number of output tokens

to 32 and increased the input prompt sizes from 128 to 1024.

As the number of input tokens increases, GPU latency and

throughput remain stable, while the SPR Max 9468 CPU shows

more variability. This is due to the CPU’s lower compute

throughput and memory bandwidth, resulting in less favorable

performance scalability. Interestingly, for larger models such

as LLaMA2-70B, the CPU outperforms the GPU in both latency

and throughput across all sequence lengths. This is primarily

due to the significant time spent on data loading via the PCIe

bus when the batch size is set to 1, as shown in Figure 18.

Similarly, Figure 21 compares the performance of CPUs

and GPUs at different sequence lengths with a batch size of

16. As the batch size increases to 16, the performance gap

between CPUs and GPUs widens, particularly for smaller

models. For larger models such as LLaMA2-70B, we observed

that at sequence lengths of 256 or more, the H100 GPU—

even when using offloading-based LLM inference—achieves

lower latency compared to the CPU. This is because, at these

longer sequence lengths, the CPU’s LLM inference throughput

continues to decline, resulting in lower performance than

the H100. However, in the case of the A100 GPU, the

CPU outperforms the GPU across all sequence lengths.

This demonstrates that lower PCIe bandwidth significantly

degrades the performance of offloading-based LLM serving

systems.

Key Finding#5: For larger batch sizes, GPUs outperform CPUs

in small models. Even in larger models that require offloading,

CPUs may underperform at longer sequence lengths due to

lower compute throughput.

VI. Potential Optimizations for LLM Inference on CPUs

NUMA-aware designs: In Section IV, we compared LLM

inference performance on SPR CPU with various NUMA

configurations based on memory and clustering modes. Our

results indicate that exposing a single NUMA node per socket

and using HBM explicitly showed the best performance. For

large models, even with both DDR and HBM memory on

OPT-1.3B
0

1

2

3

0.2 0.2

OPT-6.7B
0

1

2

3

0.1 0.1

LLaMA2-7B
0

1

2

3

0.2 0.2

OPT-13B
0

1

2

3

0.1 0.1

LLaMA2-13B
0

1

2

3

0.2 0.2

OPT-30B
0

1

2

3
4.2

0.1

OPT-66B
0

1

2

3
3.9

LLaMA2-70B
0

1

2

3
4.1

N
o
rm

 E
2
E
 L

a
te

n
c
y

Max9468 A100-40GB H100-80GB

(a) End-to-End latency comparison

OPT-1.3B
0

1

2

3
4.7 4.9

OPT-6.7B
0

1

2

3
7.0 8.3

LLaMA2-7B
0

1

2

3
4.4 4.8

OPT-13B
0

1

2

3
8.1 9.6

LLaMA2-13B
0

1

2

3
4.6 5.6

OPT-30B
0

1

2

3

0.2

11.1

OPT-66B
0

1

2

3

0.3
0.6

LLaMA2-70B
0

1

2

3

0.2
0.5

N
o
rm

 T
o
k
e
n
s
/s

Max9468 A100-40GB H100-80GB

(b) Throughput comparison

Fig. 19: LLM inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=16. Each result is normalized
to SPR Max 9468 CPU.

128 256 512 1024

OPT-1.3B

0.3

0.5

0.6

0.8

128 256 512 1024

OPT-6.7B

0.5

1.5

2.4

3.4

128 256 512 1024

LLaMA2-7B

0.9

1.7

2.5

3.2

128 256 512 1024

OPT-13B

0.7

2.5

4.2

6.0

128 256 512 1024

LLaMA2-13B

1.3

2.8

4.3

5.8

128 256 512 1024

OPT-30B

1.4

27.4

53.4

79.4

128 256 512 1024

OPT-66B

15.3

67.6

120.0

172.4

128 256 512 1024

LLaMA2-70B

15.6

70.4

125.1

179.9

N
o
rm

 E
2
E
 L

a
te

n
c
y

Max9468 A100-40GB H100-80GB

(a) End-to-End latency comparison

128 256 512 1024

OPT-1.3B

39.5

60.6

81.7

102.8

128 256 512 1024

OPT-6.7B

9.5

27.4

45.4

63.4

128 256 512 1024

LLaMA2-7B

9.8

18.3

26.7

35.2

128 256 512 1024

OPT-13B

5.3

18.3

31.2

44.2

128 256 512 1024

LLaMA2-13B

5.5

12.1

18.7

25.3

128 256 512 1024

OPT-30B

0.4

7.8

15.2

22.7

128 256 512 1024

OPT-66B

0.2

0.8

1.5

2.1

128 256 512 1024

LLaMA2-70B

0.2

0.8

1.4

2.1

N
o
rm

 T
o
k
e
n
s
/s

Max9468 A100-40GB H100-80GB

(b) Throughput comparison

Fig. 20: LLM inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=1.

a single socket, memory capacity can become insufficient,

necessitating the use of memory from other sockets.

Recent studies [27], [32], [54] found that not all activations

in LLMs are equally important; certain activations are more

critical. Leveraging this insight can significantly aid NUMA

node data placement. By placing the important activations

(hot data) in HBM and local DDR memory and storing less

critical activations (cold data) in remote DDR memory in other

sockets, a NUMA-aware data placement can enhance LLM

inference performance on CPUs while reducing the negative

impacts of remote memory accesses.

CPU-GPU Hybrid Execution: Our performance comparison

results with GPUs in Section V demonstrated that SPR

Max CPU can outperform GPUs for models larger than the

GPU memory size, particularly when the batch size and

sequence length are not too large. FlexGen [49] typically

underutilizes CPU computation resources, using them only

for attention score calculations. However, our evaluation

suggests that exploiting CPU computation resources can

benefit large models that would require large amounts of

PCIe data transfer. Therefore, exploiting the CPU for layer

computations in such scenarios with small batch sizes or

designing a cooperative execution model that partitions layers

between the CPU and GPU can significantly improve LLM

inference latency and throughput. For smaller models, while

CPU performance may not surpass that of the GPU, leveraging

CPU computation resources can enhance overall hardware

utilization in data centers where GPU resources are fully

occupied. This approach can also reduce time-to-first-token

(TTFT), thereby improving user experience.

VII. Related Work

A. Performance Characterization of Deep Learning Workloads

Many recent research works have tried to characterize deep

learning workloads [17], [29], [43], [44], [51]. A significant

portion of the research is focused on GPUs, with several

studies concentrating on training [17], [44], [51] and others

extending the scope to inference while still emphasizing

GPUs [29], [43]. There have also been efforts to understand

deep learning inference on CPUs. DLsim [6] proposed a

simulation infrastructure for deep learning workloads. Recent

work [42] performed large-scale workload characterization on

Facebook cloud for both CPUs and GPUs, but its workloads are

limited to recommendation, computer vision, and GRU/LSTMs

based models which have different characteristics compared

to the transformer-based LLMs. This work aims to better

understand LLM inference on CPUs equipped with specialized

128 256 512 1024

OPT-1.3B

0.4

4.1

7.8

11.5

128 256 512 1024

OPT-6.7B

0.7

10.0

19.3

28.6

128 256 512 1024

LLaMA2-7B

1.0

12.2

23.3

34.5

128 256 512 1024

OPT-13B

1.0

19.1

37.2

55.3

128 256 512 1024

LLaMA2-13B

1.4

24.9

48.3

71.8

128 256 512 1024

OPT-30B

1.8

42.7

83.6

124.4

128 256 512 1024

OPT-66B

46.4

158.6

270.8

383.0

128 256 512 1024

LLaMA2-70B

45.9

115.1

184.3

253.6

N
o
rm

 E
2
E
 L

a
te

n
c
y

Max9468 A100-40GB H100-80GB

(a) End-to-End latency comparison

128 256 512 1024

OPT-1.3B

44.7

513.5

982.4

1451.3

128 256 512 1024

OPT-6.7B

17.9

274.5

531.2

787.8

128 256 512 1024

LLaMA2-7B

14.9

175.0

335.1

495.2

128 256 512 1024

OPT-13B

9.3

174.9

340.6

506.3

128 256 512 1024

LLaMA2-13B

7.1

123.0

238.8

354.6

128 256 512 1024

OPT-30B

4.1

97.5

190.9

284.3

128 256 512 1024

OPT-66B

1.3

4.6

7.8

11.0

128 256 512 1024

LLaMA2-70B

2.0

5.1

8.1

11.2

N
o
rm

 T
o
k
e
n
s
/s

Max9468 A100-40GB H100-80GB

(b) Throughput comparison

Fig. 21: LLM inference and throughput comparison of Max9468 CPU and GPUs (A100 and H100) for batch size=16.

hardware accelerators and instructions for efficient matrix

multiplications.

B. Deep Learning Acceleration on CPUs

There have been previous studies to optimize the perfor-

mance of deep learning workloads on CPUs [14]–[16], [31],

[48]. NeoCPU [31] proposes convolutional neural network

(CNN) inference acceleration techniques tailored for CPUs

using graph-level joint optimizations. Graphite [15] proposes

software-hardware co-design to optimize graph neural net-

work (GNN) training and inference on CPUs. To support the

key operations in deep learning such as matrix multiplication,

and convolution, LIBXSMM [14], [16] proposes Just-In-Time

(JIT) compilation-based kernels optimized for Intel Xeon

processors while RASA [23] and VEGETA [22] introduce

dense and sparse matrix multiplication support through matrix

engines. Recent work [48] proposes weight-only quantization

with negligible accuracy loss and provides optimized kernels

for the latest CPUs to enable efficient LLM inference on CPUs.

C. LLM Inference Optimizations

Efficient LLM Inference Batching: To improve the resource

utilization during LLM inference, recent serving systems

have devised various batching mechanisms [2], [28], [39],

[56]. FasterTransformer [39] processes a batch of requests

concurrently for better resource utilization. Orca [56] intro-

duced iteration-level scheduling which allows the scheduler

to dynamically create batches for better utilization. vLLM [28]

introduces paged attention that allows the system to batch

more sequences together. Sarathi-Serve [2] builds on chunked-

prefill in Sarathi [3] that enables dynamically batching without

stalling ongoing decode phase.

Offloading-based LLM Inference: Recent LLM serving

systems use offloading-based LLM inference serving to enable

resource-constrained GPUs to serve larger models exceeding

GPU memory size [45], [49], [53]. By storing model parameters

and activations in CPU memory, those systems can reduce the

peak GPU memory usage during LLM inference. Although

offloading methods provide an opportunity to support larger

models, it incurs high performance overhead due to the

frequent data transfer via PCIe bus as also shown in this

work. To reduce the performance overhead in offloading-based

LLM inference, FlexGen [49] proposes a zig-zag scheduling

mechanism to increase the system throughput and minimize

total execution time given resource constraints.

VIII. Conclusion

In this work, we provide a comprehensive characteriza-

tion of LLM inference on the latest CPUs equipped with

matrix multiplication accelerators and HBM. We demonstrate

the potential computational capabilities of the latest Intel

CPUs featuring AMX and HBM. Our findings highlight the

importance of various NUMA server configurations and the

appropriate number of cores for optimizing LLM inference

performance. Furthermore, by comparing the latest CPU with

server-class GPUs, we discover that CPU can outperform

GPUs when using larger models exceeding GPU memory

with all batch sizes when the sequence length is small. Based

on these extensive experimental results, we provide insights

and discuss potential optimizations for efficient CPU-based

LLM inference. We believe our work opens new opportunities

for exploiting CPUs as computation units for LLM inference,

rather than merely as offloading devices.

IX. Acknowledgement

This work was supported in part through research in-

frastructure and services provided by the Rogues Gallery

testbed [55] hosted by the Center for Research into Novel

Computing Hierarchies (CRNCH) at Georgia Tech and was

partially supported by NSF PPOSS 2119523 and Intel. The

Rogues Gallery testbed is primarily supported by the National

Science Foundation (NSF) under NSF Award Number #2016701.

We would like to thank Christopher J. Hughes at Intel

Labs for his valuable feedback, and Aaron Jezghani and

Sterling Peet at Georgia Tech for their help with the server

environment setup. We also thank the anonymous reviewers

for their feedback on improving the paper.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,

D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

[2] A. Agrawal, N. Kedia, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani,

A. Tumanov, and R. Ramjee, “Taming throughput-latency tradeoff in

llm inference with sarathi-serve,” arXiv preprint arXiv:2403.02310, 2024.
[3] A. Agrawal, A. Panwar, J. Mohan, N. Kwatra, B. S. Gulavani, and

R. Ramjee, “Sarathi: Efficient llm inference by piggybacking decodes

with chunked prefills,” arXiv preprint arXiv:2308.16369, 2023.
[4] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,

C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen et al., “Deep
Speech 2: End-to-end speech recognition in English and Mandarin,” in

International Conference on Machine Learning (ICML), 2016.
[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models

are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[6] Z. Chishti and B. Akin, “Memory system characterization of deep

learning workloads,” in Proceedings of the International Symposium on
Memory Systems, 2019, pp. 497–505.

[7] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm:

Scaling language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1–113, 2023.

[8] P. T. Contributors, “TorchServe,” https://pytorch.org/serve/, 2020.
[9] I. Cooperation, “Intel architecture instruction set extensions program-

ming reference,” Intel Corp., Mountain View, CA, USA, Tech. Rep, pp.
319 433–030, 2016.

[10] J. P. de Carvalho, J. E. Moreira, and J. N. Amaral, “Compiling for the

ibm matrix engine for enterprise workloads,” IEEE Micro, vol. 42, no. 5,
pp. 34–40, 2022.

[11] A. C. De Melo, “The new linux’perf’tools,” in Slides from Linux Kongress,
vol. 18, 2010, pp. 1–42.

[12] Y. Ding, L. L. Zhang, C. Zhang, Y. Xu, N. Shang, J. Xu, F. Yang, and

M. Yang, “Longrope: Extending llm context window beyond 2 million

tokens,” arXiv preprint arXiv:2402.13753, 2024.
[13] A. Firoozshahian, J. Coburn, R. Levenstein, R. Nattoji, A. Kamath, O. Wu,

G. Grewal, H. Aepala, B. Jakka, B. Dreyer et al., “Mtia: First generation

silicon targeting meta’s recommendation systems,” in Proceedings of the
50th Annual International Symposium on Computer Architecture, 2023,
pp. 1–13.

[14] E. Georganas, S. Avancha, K. Banerjee, D. Kalamkar, G. Henry,

H. Pabst, and A. Heinecke, “Anatomy of high-performance deep learning

convolutions on simd architectures,” in SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE,

2018, pp. 830–841.

[15] Z. Gong, H. Ji, Y. Yao, C. W. Fletcher, C. J. Hughes, and J. Torrellas,

“Graphite: optimizing graph neural networks on cpus through coopera-

tive software-hardware techniques,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 916–931.

[16] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm:

accelerating small matrix multiplications by runtime code generation,”

in SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2016, pp. 981–991.

[17] Q. Hu, Z. Ye, Z. Wang, G. Wang, M. Zhang, Q. Chen, P. Sun, D. Lin,

X. Wang, Y. Luo et al., “Characterization of large language model

development in the datacenter,” in 21st USENIX Symposium on Networked
Systems Design and Implementation (NSDI 24), 2024, pp. 709–729.

[18] D. A. Iliescu and F. Petrogalli, “Arm scalable vector extension and

application to machine learning,” Retrieved October, 2018.
[19] Intel, “Intel Extension for PyTorch,” https://github.com/intel/intel-

extension-for-pytorch, 2020.

[20] ——, “VTune Profiler,” https://www.intel.com/content/www/us/en/

developer/tools/oneapi/vtune-profiler.html, 2020.

[21] ——, “4th generation xeon cpu max 9468 processor,”

https://www.intel.com/content/www/us/en/products/sku/232596/intel-

xeon-cpu-max-9468-processor-105m-cache-2-10-ghz/specifications,

2023.

[22] G. Jeong, S. Damani, A. R. Bambhaniya, E. Qin, C. J. Hughes,

S. Subramoney, H. Kim, and T. Krishna, “Vegeta: Vertically-integrated

extensions for sparse/dense gemm tile acceleration on cpus,” in 2023 IEEE

International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 2023, pp. 259–272.

[23] G. Jeong, E. Qin, A. Samajdar, C. J. Hughes, S. Subramoney, H. Kim,

and T. Krishna, “Rasa: Efficient register-aware systolic array matrix

engine for cpu,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2021, pp. 253–258.

[24] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,

S. Subramanian, A. Swing, B. Towles et al., “Tpu v4: An optically

reconfigurable supercomputer for machine learning with hardware

support for embeddings,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, 2023, pp. 1–14.

[25] A. Kleen, “A numa api for linux,” Novel Inc, 2005.
[26] D. Koenen and J. Defilippi, “Ccix: a new coherent multichip interconnect

for accelerated use cases,” 2017.

[27] M. Kurtz, J. Kopinsky, R. Gelashvili, A. Matveev, J. Carr, M. Goin,

W. Leiserson, S. Moore, N. Shavit, and D. Alistarh, “Inducing and

exploiting activation sparsity for fast inference on deep neural networks,”

in International Conference on Machine Learning. PMLR, 2020, pp. 5533–

5543.

[28] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,

H. Zhang, and I. Stoica, “Efficient memory management for large

language model serving with pagedattention,” in Proceedings of the
29th Symposium on Operating Systems Principles, 2023, pp. 611–626.

[29] M. LeMay, S. Li, and T. Guo, “Perseus: Characterizing performance and

cost of multi-tenant serving for cnn models,” in 2020 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2020, pp. 66–72.

[30] B. Lin, T. Peng, C. Zhang, M. Sun, L. Li, H. Zhao, W. Xiao, Q. Xu, X. Qiu,

S. Li et al., “Infinite-llm: Efficient llm service for long context with

distattention and distributed kvcache,” arXiv preprint arXiv:2401.02669,
2024.

[31] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang, “Optimizing

{CNN} model inference on {CPUs},” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019, pp. 1025–1040.

[32] Z. Liu, J. Wang, T. Dao, T. Zhou, B. Yuan, Z. Song, A. Shrivastava,

C. Zhang, Y. Tian, C. Re et al., “Deja vu: Contextual sparsity for efficient

llms at inference time,” in International Conference on Machine Learning.
PMLR, 2023, pp. 22 137–22 176.

[33] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter, “Nvidia

tensor core programmability, performance & precision,” in 2018 IEEE
international parallel and distributed processing symposium workshops
(IPDPSW). IEEE, 2018, pp. 522–531.

[34] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-

tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,

“Tpp: Transparent page placement for cxl-enabled tiered-memory,” in

Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2023, pp. 742–755.

[35] J. McCalpin, “Stream: Sustainable memory bandwidth in high perfor-

mance computers,” http://www. cs. virginia. edu/stream/, 2006.
[36] A. Meta, “Introducing meta llama 3: The most capable openly available

llm to date, 2024,” URL https://ai. meta. com/blog/meta-llama-3/. Accessed
on April, vol. 26, 2024.

[37] X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, Z. Zhang, R. Y. Y. Wong,

A. Zhu, L. Yang, X. Shi et al., “Specinfer: Accelerating large language

model serving with tree-based speculative inference and verification,”

in Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3,
2024, pp. 932–949.

[38] N. Nassif, A. O. Munch, C. L. Molnar, G. Pasdast, S. V. Lyer, Z. Yang,

O. Mendoza, M. Huddart, S. Venkataraman, S. Kandula et al., “Sapphire
rapids: The next-generation intel xeon scalable processor,” in 2022 IEEE
International Solid-State Circuits Conference (ISSCC), vol. 65. IEEE, 2022,

pp. 44–46.

[39] NVIDIA, “FasterTransformer,” https://github.com/NVIDIA/

FasterTransformer, 2021.

[40] ——, “Nvidia grace hopper superchip architecture in-depth,”

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-

architecture-in-depth/, 2022.

[41] ——, “Nvidia’s h100 ai gpus cost up to four times more than amd’s

competing mi300x,” https://www.tomshardware.com/tech-industry/

artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-

more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-

dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000, 2023.

https://pytorch.org/serve/
https://github.com/intel/intel-extension-for-pytorch
https://github.com/intel/intel-extension-for-pytorch
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/products/sku/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz/specifications
https://www.intel.com/content/www/us/en/products/sku/232596/intel-xeon-cpu-max-9468-processor-105m-cache-2-10-ghz/specifications
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000
https://www.tomshardware.com/tech-industry/artificial-intelligence/nvidias-h100-ai-gpus-cost-up-to-four-times-more-than-amds-competing-mi300x-amds-chips-cost-dollar10-to-dollar15k-apiece-nvidias-h100-has-peaked-beyond-dollar40000

[42] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law,

P. Malani, A. Malevich, S. Nadathur et al., “Deep learning inference in

facebook data centers: Characterization, performance optimizations and

hardware implications,” arXiv preprint arXiv:1811.09886, 2018.
[43] P. Patel, E. Choukse, C. Zhang, Í. Goiri, B. Warrier, N. Mahalingam,

and R. Bianchini, “Characterizing power management opportunities

for llms in the cloud,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, 2024, pp. 207–222.

[44] H. Qi, L. Dai, W. Chen, Z. Jia, and X. Lu, “Performance characterization

of large language models on high-speed interconnects,” in 2023 IEEE
Symposium on High-Performance Interconnects (HOTI). IEEE, 2023, pp.

53–60.

[45] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System

optimizations enable training deep learning models with over 100

billion parameters,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp. 3505–3506.

[46] I. Z. Reguly, “Comparative evaluation of bandwidth-bound applications

on the intel xeon cpu max series,” in Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1236–1244.

[47] M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b.

Alayrac, R. Soricut, A. Lazaridou, O. Firat, J. Schrittwieser et al., “Gemini

1.5: Unlocking multimodal understanding across millions of tokens of

context,” arXiv preprint arXiv:2403.05530, 2024.
[48] H. Shen, H. Chang, B. Dong, Y. Luo, and H. Meng, “Efficient llm

inference on cpus,” arXiv preprint arXiv:2311.00502, 2023.
[49] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang,

C. Ré, I. Stoica, and C. Zhang, “Flexgen: High-throughput generative

inference of large language models with a single gpu,” in International
Conference on Machine Learning. PMLR, 2023, pp. 31 094–31 116.

[50] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,

N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open

foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[51] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and Y. Jia,

“Characterizing deep learning training workloads on alibaba-pai,” in

2019 IEEE international symposium on workload characterization (IISWC).
IEEE, 2019, pp. 189–202.

[52] Z. Wang, Y. Wei, M. Lee, M. Langer, F. Yu, J. Liu, S. Liu, D. G. Abel,

X. Guo, J. Dong et al., “Merlin hugectr: Gpu-accelerated recommender

system training and inference,” in Proceedings of the 16th ACM Conference
on Recommender Systems, 2022, pp. 534–537.

[53] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s transformers: State-

of-the-art natural language processing,” arXiv preprint arXiv:1910.03771,
2019.

[54] H. Xia, Z. Zheng, Y. Li, D. Zhuang, Z. Zhou, X. Qiu, Y. Li, W. Lin, and

S. L. Song, “Flash-llm: Enabling cost-effective and highly-efficient large

generative model inference with unstructured sparsity,” arXiv preprint
arXiv:2309.10285, 2023.

[55] J. S. Young, J. Riedy, T. M. Conte, V. Sarkar, P. Chatarasi, and S. Srikanth,

“Experimental insights from the rogues gallery,” in 2019 IEEE International
Conference on Rebooting Computing (ICRC), Nov 2019, pp. 1–8.

[56] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca:

A distributed serving system for {Transformer-Based} generative

models,” in 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), 2022, pp. 521–538.

[57] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,

M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer

language models,” arXiv preprint arXiv:2205.01068, 2022.
[58] Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian,

C. Ré, C. Barrett et al., “H2o: Heavy-hitter oracle for efficient generative

inference of large language models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

