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Many terrestrial plant communities, especially forests, have been shown
tolaginresponse to rapid climate change. Grassland communities may
respond more quickly to novel climates, as they consist mostly of short-lived
species, which are directly exposed to macroclimate change. Here we

report the rapid response of grassland communities to climate change in
the California Floristic Province. We estimated 349 vascular plant species’
climatic niches from 829,337 occurrence records, compiled 15 long-term
community composition datasets from 12 observational studies and 3 global
change experiments, and analysed community compositional shiftsin the
climate niche space. We show that communities experienced significant
shifts towards species associated with warmer and drier locations at rates
0f0.0216 £ 0.00592 °C yr ! (mean * s.e.) and -3.04 + 0.742 mm yr, and
these changes occurred at a pace similar to that of climate warming and
drying. These directional shifts were consistent across observations and
experiments. Our findings contrast with the lagged responses observed
incommunities dominated by long-lived plants and suggest greater
biodiversity changes than expected in the near future.

Climate change is expected to alter species distributions, resultingin
cascading risks to global biodiversity and ecosystem functioning’™>.
Terrestrial plant species have beenrepeatedly shown to respond slowly
despite the rapid pace of warming>* ™. As a consequence, delayed spe-
cies extinctions and abrupt community reshuffling are expected in
the future’. However, this consensus is mostly supported by evidence
from forest ecosystems, with the response of other ecosystems rela-
tively understudied. Compared with forests, grassland ecosystems
have the potential to be highly responsive to climate change, as they
are often dominated by relatively short-lived species'' and might be
more directly exposed to harsh climatic conditions****, Identifying
suchrapid ecological changes in non-forest communities isimportant
forearly detection and accurate projection of climate change impacts.
Therefore, we ask whether grassland communities closely track climate
change, shiftingin compositioninaconsistent direction atarapid pace.

However, few studies have focused on the pace of compositional
shiftsin grasslandsrelative to climate change (but see ref. 22). Further-
more, inconsistent findings from observational and experimental stud-
iessuggest that compositional shifts are highly variable. For example,
some long-term observations have shownrelative increasesin grasses
at the cost of forbs under concurrent warming and drying®, while
climate change manipulative experiments have suggested seemingly
inconsistent compositional shifts?**. The persistent challenge in
assessing how grassland communities track climate change requires
long-term, extensive records and inference methods to analyse them
robustly.

To test whether grassland community compositions respond
rapidly and consistently to climate change, we collected compositional
datafromlong-term quantitative observations and manipulative exper-
imentsin the California Floristic Province (CFP), aglobal biodiversity

A full list of affiliations appears at the end of the paper.

e-mail: zhukai@umich.edu

Nature Ecology & Evolution | Volume 8 | December 2024 | 2252-2264

2252


http://www.nature.com/natecolevol
https://doi.org/10.1038/s41559-024-02552-z
http://orcid.org/0000-0003-1587-3317
http://orcid.org/0000-0003-3660-3797
http://orcid.org/0000-0002-6264-101X
http://orcid.org/0000-0003-2118-4788
http://orcid.org/0000-0002-1684-8247
http://orcid.org/0000-0003-2893-6161
http://orcid.org/0000-0003-0033-5647
http://orcid.org/0000-0002-9740-8111
http://orcid.org/0000-0001-9045-3107
http://crossmark.crossref.org/dialog/?doi=10.1038/s41559-024-02552-z&domain=pdf
mailto:zhukai@umich.edu

Article

https://doi.org/10.1038/s41559-024-02552-z

hotspot*** (Extended Data Fig. 1). Encompassing broad geographic,
climatic and edaphic gradients, the CFP harbours over 5,000 native
vascular plant species with over 30% endemism™, but is heavily invaded
by non-native species®. We first compiled 12 long-term observational
records (Extended Data Table 1 and Extended Data Fig. 2) across the
regional climate gradient during a period of climate warming and
drying (equation (1), Extended Data Fig. 3 and Supplementary Tables 1
and2). Weleveraged 829,337 occurrence recordsinalarge-scale com-
munity science programme and 30 year temperature and precipitation
climatologies to estimate the realized climatic niches of 349 species
in the CFP (Supplementary Table 3). We then quantified how com-
munities shifted in composition through changes in the community
temperature index (CTI) and community precipitation index (CPI),
calculated from species’ realized climatic niches and their relative
abundance (equations (2) and (3)). This approach does not require a
complete species turnover to detect compositional changes; rather,
itis sensitive to more nuanced changesin species’ relative abundance.
We compared community compositional changes with the observed
climate changes. In parallel, we applied the same approach to three
long-term global change experiments within the CFP and estimated
the effects of climate manipulations on community compositions.
Finally, we analysed the abundance changes of individual species and
synthesized observational and experimental community composi-
tional shifts in the climate niche space.

Given the considerable observed climate warming and dryingin
the CFP (Extended DataFig.1), we hypothesize that the CFP grassland
communities would shift towards species associated with warmer
and drier locations (thermophilization and xerophilization, respec-
tively) atacomparable rate to that of climate change, by contrastto the
lagged responsein forests. We also anticipate that community compo-
sitional shifts, both those observed over time and those manipulated
by experiments, would be consistent in direction. These hypotheses,
tested with a combination of long-term observations and manipula-
tive experiments, enable us to answer the ecological question of how
grassland communities, a potentially highly responsive system, track
climate change.

Estimates of species’ climatic niches

Species had distinct geographic distributions that indicate their cli-
matic niches across the CFP grasslands (Fig. 1a,b). Species’ temperature
niche centroids (medians of mean annual temperature at recorded
occurrences) ranged from 8.15 °C to 17.3 °C, and the precipitation
niche centroids (medians of annual precipitation at recorded occur-
rences) ranged from266 mmto 1,410 mm (Fig. 1c). Additional analyses
supported the robustness of our niche estimates against alternative
occurrence datasets (Supplementary Table 3and Supplementary Fig.1),
climate datasets (Supplementary Fig. 2), climate variables (Supplemen-
tary Figs. 3 and 4), summary statistics (Supplementary Figs. 5 and 6),
spatial and climate thinning (Supplementary Figs. 7 and 8) and time
periods (Supplementary Fig.9). Across all the species, the temperature
and precipitation niche centroids were negatively and significantly
correlated (Fig. 1c, Pearson’s correlationr=-0.671, P< 0.001). This cor-
relation suggests that species associated with warmer locations were
also associated with drier locations, probably reflecting the negative
correlation between temperature and precipitation in the semi-arid
Mediterranean climate of the CFP and species’ long-term adaptation
to thisregime.

We illustrate this pattern in climatic niche space with two spe-
cies of grasses: Danthonia californica and Stipa pulchra. They occupy
distinct geographical areas (Fig. 1a) and niches in the climate space
(Fig. 1b,c and Extended Data Figs. 4 and 5). D. californica, anorthern
CFPspecies, occursinrelatively cooler and wetter areas havingamean
annual temperature 0of12.5 °C (5.50-15.3 °C) (median and 90% interval)
and annual precipitation of 1,110 mm (510-2,750 mm). By comparison,
S. pulchra, a more southern species, inhabits warmer and drier

locations, characterized by a mean annual temperature of 15.3 °C
(12.9-17.4 °C) and annual precipitation of 549 mm (279-1,110 mm).
Among all the species, the clear niche differentiation lays the founda-
tion for using the species’ climatic niche estimates to subsequently
quantify community compositional shifts along observational and
experimental climate variations (Fig. 1c).

Observational and experimental evidence of
community shifts

Using our species’ climatic niche estimates, we analysed changes in
community indices in long-term observations to test whether commu-
nity thermophilization and xerophilization were tracking the observed
climate change (Fig. 2). The grassland communities were monitored
over 8-33 years, across 12 sites with 176 total plot years (Angelo Coast;
Carrizo Plain; Elkhorn Slough; Jasper Ridge; McLaughlin; Morgan
Territory; Pleasanton Ridge; Sunol; Swanton Ranch; University of
California (UC), Santa Cruz; Vasco Caves; Fig. 2, Extended Data Figs. 2
and 3, and Extended Data Table1). These observational sites spanned an
approximately 30,000 km?geographical area and varied with respect
tolocation (inland or coastal), soil type (serpentine or non-serpentine)
and dominant vegetation (annual or perennial grasses).

Across the observational network, we estimated an overall ther-
mophilization 0f0.0216 + 0.00592 °C yr! (mean + s.e., P=0.0053) and
xerophilization of -3.04 + 0.742 mm yr™ (P=0.0019) in these grassland
communities using linear mixed-effects models with site-level random
intercepts (equation (4)). Notably, these trends were comparable to the
climate warming and drying at these sitesin their order of magnitudes,
with mean annual temperature increasing at 0.0177 + 0.00260 °C yr™*
andannual precipitation decreasingat—4.22 +1.48 mmyr ™ (equation (1)
and Extended Data Fig. 3). When examined individually with linear
regression, 8 of the 12 sites had significant increases in CTland signifi-
cantdecreasesin CPlover theyears (Fig. 2 and Supplementary Tables 4
and 5). Four sites experienced no significant CTl or CPlchanges, which
might reflect the importance of factors other than regional climate
change in determining species composition, such as climate oscilla-
tions, soil type, microclimate, topography, propagule pressure and
disturbance regime®*~*°. For example, serpentine soils might limit
species’ establishment, especially non-native annual grass and forb
species, and thus dampen shifts in CTI and CPI compared with com-
munities in non-serpentine soils (Fig. 2¢,f)**. Inaddition, non-native
species that are typically much more abundant in non-serpentine
soils might respond faster than native species to climate warming
and drying, contributing to more rapid CTl and CPI changes®*. The
observational evidence reveals arapid, region-wide trend of grassland
community shifts towards warmer and drier species compositions,
consistently aligning with the observed climate warming and drying
trendsinthe region.

To disentangle the influence of local factors and focus on the cli-
matic drivers of community shifts, we analysed a series of manipulative
experiments using the same approach. The warming experiment (part
of the Jasper Ridge Global Change Experiment) was conducted for 16
consecutive years, from1999 to 2014, in~7,500 m?withina 50,000 m*
grassland and experienced a large variation of plot-level tempera-
ture (8.69-12.3 °C) and precipitation (240-1,380 mm) in 2,174 total
plot years*. The warming treatment increased in strength over three
phases: phase 1with+80 W mheating, phase 2 with +100 W mheat-
ing and phase 3 with +250 W m2heating.

Across three phases of the warming experiment, communities
in warming plots (n = 64, possibly compounded by drying), com-
pared with those in ambient plots (n =72), did not differ significantly
in phase 1 or 2. However, there was a significant increase in CTI of
0.148 + 0.0249 °C and a significant decrease in CPl of -17.3 + 2.76 mm
in phase 3 (Fig. 3), estimated using linear mixed-effects models with
year-level randomintercepts (equation (5) and Supplementary Table 6).
Inaddition to providing strong support for our hypothesis, we showed
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Fig.1| Grassland species occur along geographic and climatic gradients

to estimate niches. a, Occurrence of grassland species in the CFP, retrieved
from the GBIF data (grey points), highlighting two example species,

D. californicain the north (blue points) and S. pulchrain the south (red points).
b, Species occurrence in climate space of mean annual temperature and annual

T T
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Mean annual temperature (°C)

precipitation, retrieved from the CHELSA data (grey), highlighting the same
two example species, D. californica under cool and wet climates (blue) and

S. pulchraunder warm and dry climates (red). ¢, Estimated climatic niche
centroids from the medians of temperature and precipitation for each species
(grey), highlighting the two species (blue and red).

that experimental warming caused thermophilization and xerophiliza-
tioninasshortasayear, withthe effects being more significant under
stronger treatments.

We synthesized evidence from the effects of watering or drought
treatments in the Jasper Ridge Global Change Experiment and two
International Drought Experiments** on CTl and CPI (Extended Data
Figs. 6-8). Drought treatments led to either no significant change
or warmer and drier communities (increased CTI, decreased CPI),
whereas watering treatments drove the opposite community responses
(Extended Data Fig. 9 and Supplementary Table 7). These patterns
aligned with the coupled effects of thermophilization and xerophi-
lization caused by warming. Compared with CPI, a community index
calculated directly from a drought metric provided similar insight
into xerophilization driven by warming and drying (Supplementary
Figs.10-12). The use of CTland CPIrevealed community compositional
changes that were not evident when considering traditional species
guilds (native versus non-native, annual versus perennial, grass ver-
sus forb) (Supplementary Figs. 13-15). Collectively, the results from
observations and experimentsindicate that the combined warming and
dryinginthe CFP drive grassland communities towards species associ-
ated with warmer and drier locations. Importantly, the magnitude of
this shift scales with the strength of climate change.

Analysis and synthesis of community shifts
Underlying the shifts in community composition are changes in spe-
cies abundance**; thus, we identified key species that experienced

abundance changes and drove community compositional shifts. Across
the observational sites, certain species showed significantincreasesin
abundance over time (for example, Bromus diandrus, two-sided t-test,
P<0.05) orestablished after the first 5 years (for example, Eschschol-
zia californica); conversely, some species experienced decreases in
abundance (for example, Festuca myuros) or extirpated before the last
Syears (for example, Hypochaeris radicata) (Fig. 4a and Supplemen-
tary Fig.16). In the experiment, certain species showed increases (for
example, Brachypodium distachyon) or decreases (for example, Torilis
arvensis) inabundance under the warming treatments compared with
the ambient conditions (Fig. 4b and Supplementary Fig.17). There was
no evidence for dominant or rare species consistently driving com-
munity shifts (Supplementary Figs. 18 and 19). While the species con-
tributing to these community shifts varied, the ones that became more
abundant were generally associated with warmer and drier locations
(two-sided Wilcoxon test, P< 0.05) across the observations (Fig. 4c)
and under the warming experiment (Fig. 4d).

Despite differences intheidentities of species driving community
compositional changes, our synthesis in the niche space revealed
consistent and comparable community compositional shifts from
both long-term observations and manipulative experiments (Fig. 5).
Representing the CTI-CPI values of these communities in climate
niche space is akin to conducting an ordination analysis with only
two dimensions, which are more biologically meaningful and directly
linked to climate gradients (Figs. 1c and 5a). While the strength of the
warming experiment liesin establishing causality in controlled climate
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Fig. 2| Grassland community shifts from long-term observations. Consistent
with climate warming and drying, grassland communities shift dominance to
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locationsin 12 long-term observational sites across the CFP (red trend lines
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P>0.05,*P<0.05,*P<0.01, **P<0.001). Refer to Extended Data Table 1 for
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sample sizes. The box plots show the median (centre), the first and third quartiles
(bounds of the box), the range extending to the smallest and largest values within
1.5 times the interquartile range from the first and third quartiles (whiskers) and
outliers beyond this range (points). The map shows the geographical distribution
ofthe 12 sites with grassland percentage cover (green) from MODIS land-cover-
type data.
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Fig. 3| Grassland community shifts from along-term experiment. Warming
treatment causes communities to shift dominance to species associated with
warmer (CTI) and drier (CPI) locations in the Jasper Ridge Global Change
Experiment. The orange background shades denote phase 1(+80 W m heating)
in1999-2002, phase 2 (+100 W m 2 heating) in 2003-2009 and phase 3

(+250 W m2heating) in 2010-2014. Ambient plots (n = 72) and warming plots

(n=64)areinblack and red, respectively. Effects of warming during each phase
of treatment were estimated by linear mixed-effects models (two-sided ¢-test;
NS: P> 0.05,***P < 0.001). Box plots show the median (centre), the first and third
quartiles (bounds of the box), the range extending to the smallest and largest
values within1.5times the interquartile range from the first and third quartiles
(whiskers), and outliers beyond this range (points).

change scenarios, the 12 observational studies conducted across a
wide geographic range provide a comprehensive exploration of the
climate space (Fig. 5a)®.

Weidentified a shared patternin which community thermophiliza-
tion and xerophilization occurred along a common trajectory of CTI
and CPI, which showed remarkable consistency under both long-term
climate change and strong warming treatment (Fig. 5b). Among the sig-
nificant shifts, acommunity thermophilization of 0.1 °C corresponded
to a xerophilization of -12.3 mm (median) from the observations and
-9.28 mm from the experiment. More pronounced climate change
across the distributed observations (Extended Data Fig. 3 and Sup-
plementary Tables 1 and 2) and intensifying phases of the warming
experiment resulted in stronger community thermophilization and
xerophilization (Figs. 2,3 and 5c,d). Examining multiple compositional
shifts in the climate niche space reveals that while the magnitude of
these shifts may depend on the observed time period (Fig. 5c) or the
degree of warming (Fig. 5d), thermophilization and xerophilization
are highly coupled changes in the study region, stemming from the
structure of the distinctive climate niche space (Fig. 1a).

Discussion
Our study provides compelling evidence that grassland communities
inthe coastal CFP shiftina consistent direction and at arapid pace com-
parable to climate change. Our findings contrast with the documented
lagged responses in forests>**#1°7131516_We reported these shifts in
multiple communities across a vast geographic area, despite differ-
ences in climate, soil type, topography and land use history. Integrat-
ing evidence from climate change experiments, we uncovered a clear
pattern of climate-driven community compositional shifts.

The rate of grassland community thermophilization in this
study exceeds that in many studies of forest communities. Across
the 12 observational sites analysed, the overall thermophilization

rate (increasing CTI per year) of 0.0216 °C yr* (background climate
warming of 0.0177 °C yr™) is far greater than the thermophilization rate
0f 0.0039 °C yr*in western US forests (background climate warming
of 0.032°C yr!)*. It also exceeds the rate of 0.0066 °C yr in Andean
forest communities'* and 0.009 °C yr'in European forest communi-
ties'. Notably, herbaceous plants in the forest understory also have
such alagged response to climate change™'*""'*, The rate we observed
is close to that of temperate grasslands, savannas and shrublands,
as estimated from occurrence records®. The rapid response of our
grassland communities might be attributed to the faster population
turnover of common species, greater exposure to macroclimatic
changes and the dominance of non-native species. First, grasslands
are dominated by annual and short-lived perennial plants, leading to
faster changesin species’ relative abundance and shifts incommunity
composition compared to forests dominated by long-lived trees"'®".
In addition, plants’ seasonal dormancy in the dry summers of the
Mediterranean climate*® might also accelerate compositional changes.
Second, unlike forests, grasslands might have limited capacity for
understory microclimates to attenuate the effects of macroclimate
warming, leading to exposed microhabitats thatexperience more rapid
warming'?%?4%% Last, grasslandsin the study region, especially those
innon-serpentine soil, are dominated by non-native species adapted to
warmer and drier climates, whichwere able toincreasein distribution
and abundance rapidly®..

Furthermore, our study reveals a region-wide xerophiliza-
tion in the Mediterranean climate that is often overlooked in tem-
perate studies. We observed significant overall xerophilization at
arate of -3.04 mm yr™ across observational sites; in comparison, a
continental-scale assessment of the New World plant communities
did not conclude a consistent direction of either xerophilization or
mesophilization (increase in CPI)*. Previously, it has been shown that
thermophilization correlated with mesophilization (wetting), driven
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Fig. 5| Grassland community shifts synthesized from both the observations
and the experiment. a, Community compositions at the 12 observational sites
and the experimental site are described by the median CTI(°C) and CPI (mm),
positioned in estimated species’ climatic niche centroids (median, grey). The
inset rectangle shows the extent of b. b, Communities shiftin a consistent
directionin the climate spacein the observations and experiment. For the
observational sites, the arrows point from the start to the end of the sampling
period; for the experiment site, the arrows point from ambient to warming

treatments. The CTI-CPl extent is identical in c, whereas the inset rectangle
shows the extent of d. ¢, Communities shift significantly in 8 of 12 observational
sites. d, Communities shift significantly, primarily in the phase 3 warming of
the experiment.Inb-d, arrows are set to be semi-transparent for sites with
non-significant linear temporal trends in either CTl or CPland for phases with
non-significant differences between the ambient and warming treatmentsin
either CTlor CPI (two-sided t-test, P> 0.05). Refer to Figs. 1and 2 for Pvalues for
eachtest.
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by the positive correlation between temperature and precipitation
in temperate zones*. However, we reported an opposite coupling
between thermophilization and xerophilization (drying) in the coastal
CFP (Fig.5). Thedistinct coupling could arise from the negative correla-
tionbetween species’ temperature and precipitation niches shaped by
the Mediterranean climate, together with the concomitant warming
anddryingtrendsintheregion. Given that community compositional
changesinthe temperature and precipitation dimensions (Fig. 5b) were
strongly constrained by the narrow climate niche space of the species
poolavailable (Fig. 5a), any future combinations of climatic conditions
that extend beyond existing species’ climatic niches might limit the
pool of suitable species and, therefore, the ability of communities to
track changes in multiple climatic variables®.

We recognize a few limitations in our study. First, our estimation
of climatic niches did not account for species’ intraspecific variation
or their ability to acclimate or adapt to changing abiotic conditions,
which may constrain the application of our findings®**. However,
conducting such analyses would be feasible for only a limited number
of well-studied species rather than entire communities. Second, while
ourlong-term datasets encompassed a wide range of coastal grassland
typesinboth observational and experimental sites, we lacked similar
data from the complete range of interior grassland communities,
such as valley grasslands or oak-grass savannas®. Last, we could not
completelyisolate the individual effects of warming and drying within
this composite climate change driver, as the warming treatmentin the
experiment also resulted in some drying’®. Despite these complexities,
our study provides highly consistent observational and experimental
evidence of rapid grassland community shifts driven by climate change.

The strong response of coastal CFP grassland communities to
warming and drying suggests that these shifts might persist in the
face of ongoing climate change. Unlike forest communities that are
threatened by the growing climatic debt®'*, our study suggests that
grassland communities might suffer from different vulnerabilities
under climate change. The rapid changes in community composition
predict the possibility of changes inlocal biodiversity and species inter-
actioninimmediate terms**"~’, Furthermore, the coupled community
compositional shifts, constrained by distinct species’ niche space,
suggest that communities might be limited in the capacity to track
multidimensional climatic change. Our findings of rapid grassland
community shift offer novel insights into climate-driven biodiversity
changesin a highly responsive ecosystem.

Methods
Study area
The CFP grasslands are a prime study system due to their expansive
environmental gradients and remarkable species richness. Spanning
anarea of approximately 300,000 km?, the CFP extends across broad
geographic (115-124° W longitude, 28-44° N latitude) and climatic
(-8.35t0 20.3 °C temperature, 54.8- 3,600 mm precipitation) gradi-
ents. The CFPis hometoarichdiversity of plant species and is known as
aglobal biodiversity hotspot®***'. The CFP harbours an estimated 5,006
native vascular plant species, 1,846 of which are endemic®. Located on
the Pacific Coast of North America, the CFP has aMediterranean-type
climate, which has experienced significant changes, notably warming
and drying, over the past four decades (Extended Data Fig. 1).

In the CFP, grassland has the modal land cover type, occupying
12% of the total area (MODIS land-cover-type data)®’. CFP grasslands
are limited by both temperature and moisture. Disturbances such as
wildfires are critical to maintaining the biodiversity and ecosystem
functioning of CFP grasslands. The climatic gradient in the arealeads
to diverse grassland community compositions, including drierinland
communities dominated by annuals, wetter coastal communities with
higher abundances of perennials and communities adapted to unique
soil types such as serpentine. CFP grasslands provide key ecosystem
services, including carbonsequestration, nitrogen cycling and wildlife

habitat™. At the same time, grasslands in the CFP are a highly threatened
ecosystem, owing to conversion to agriculture, alteration in distur-
bance regimes (for example, fire, grazing) and invasive non-native
species, which dominate the vast majority of grasslands in the CFP.In
this study, we aim to investigate climate change impacts on the coastal
CFPgrassland communities by focusing on12 long-term observational
sitesand 3 global change experiments distributed across awide coastal
areawithinthe CFP (Extended Data Figs. 2 and 3).

Observational and experimental sites

We collected grassland community composition from 12 sites in the
CFP with 8-33 years of observations from 1983 to 2021 (Extended
Data Fig. 2). These sites are Angelo Coast®, Carrizo Plain®?, Elkhorn
Slough®, Jasper Ridge serpentine®**, McLaughlin annual®, McLaugh-
lin serpentine®, Morgan Territory®, Pleasanton Ridge*’, Sunol**’,
Swanton Ranch®’, UC Santa Cruz®® and Vasco Caves**’. They vary with
respect to climate, land use and disturbance history, soil type and
relative cover of native species. Sites were classified as either annual
valley grasslands, northern coastal prairies or serpentine grasslands
based on soil type and location relative to the coast (Extended Data
Table 1). Across sites, community composition sampling methods
varied between point-intercept and aerial cover estimates in quad-
rats (Extended Data Table1). Species abundance was measured as the
relative contribution of speciesto the totalintercepts orthe coverina
quadrat for standardization across datasets. Data for most sites were
collected once annually during peak spring growth. Most sites were
dominated by non-native annual grass and forb species, except for
sitesonserpentine soils that were dominated by diverse native species
(Extended Data Table 1). Extended Data Table 1 provides an overview
ofthelocations, grass types and community data collection methods
acrossall 12 sites.

Spanning large geographic and climatic gradients (Extended
DataTable1and Extended DataFig.3), these 12 sites have experienced
climate change. To quantify climate change that occurred within these
observational grassland communities, we extracted past climate data
from CHELSA®® and regressed annual temperature and precipitation
over four decades. Similar to the overall trends in the CFP (Extended
DataFig.1), the climatic trends in the 12 sites were warming (tempera-
tureincreases) and drying (precipitation decreases) from1980 t0 2019,
although the trends differed between sites (Extended Data Fig. 3 and
Supplementary Tables 1 and 2). We quantified overall trends in mean
annual temperature (MAT) and total annual precipitation (TAP) across
the 12 sites with the following linear mixed-effects model to account
for correlation between and within sites.

MATg; = Bo + bos + (By + bio)t’ + &g
t' =t-1980

<b05> ((0) 7 pTOTl) (6]
~N s
by 0/ \prory

Egti ~ N(O’UZ),

where sis the site of observation (one of the 12 sites), t is the time of
observation (year), i is the plot (within sites) and g, is the estimated
overall rate of change (°C yr™). Asimilar model applies to TAP,,. Overall,
the 12 sites experienced climate warming of 0.0177 + 0.00260 °C yr™
(mean £s.e.) and climate drying of -4.22 +1.48 mmyr™.

The warming experiment was part of the Jasper Ridge Global
Change Experiment (JRGCE) located in San Mateo, California (37° 24’
N, 122°14.5’ W). The site occupies ~7,500 m*within a 50,000 m? stand
of California annual and perennial valley grassland and has a Mediter-
ranean climate with cool, wet winters and warm, dry summers. The
experimental treatments consisted of four global change factors—
temperature, precipitation, CO, and nitrogen—at either ambient or
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an elevated level, applied in a complete factorial, randomized block
design with eight replicates. Thirty-six circular plots 2 min diameter,
subdivided into 4 equal-sized subplots, were established in the sum-
mer 0f 1997. The 1997-1998 growing season was a pretreatment year,
after which treatments were applied for 16 consecutive growing sea-
sons (1999-2014), from the time of germination (November) to plant
senescence (June).

Here we focus on the warming treatment, which was applied via
heaters suspended above the circular plots. The warming treatment
was implemented progressively with three phases. During phase 1
(1999-2002), the heating was applied at +80 W m?, resulting in an
approximate temperature warming of +1 °C. Subsequently, in phase 2
(2003-2009), the heating was increased to +100 W m~2, leading to a
temperature warming of around +1.5 °C. Finally, in phase 3 (2010-2014),
the heating was more than doubled in strength to +250 W m2, which
was approximately equivalent to a temperature warming of +2 °C
(ref. 42). We leveraged the full-factorial design and pooled subplots
withtreatments otherthan warminginabalanced mannertoarriveat72
ambient subplots and 64 warming subplots. The grassland community
composition was measured using asimilar point-intercept method, by
lowering pinsinto the vegetation at fixed grid locations and recording
the number and species of all plants that hit the pin®’.

Additional watering and drought experiments

In the main analysis, we focus on the effect of the warming treatment
in the JRGCE. Here we provide more information on the additional
treatments and experiments that were designed to study the effect
of changes in precipitation and drought. In the JRGCE, the watering
treatment imposed was +50% of ambient rainfall, plus two 10 mm
additions after the last rainfall event*?, giving rise to 72 ambient plots
and 64 watering plots.

The effects of both watering and drought were examined in the
McLaughlin Water Experiment located at the University of California
McLaughlinReserve (38°52’N,122°26’ W) from 2015 to0 2021 (missing
data in 2020)°. For the watering sub-experiment, horizontal water-
ing lines were laid out to water 30 serpentine plots and 10 total
non-serpentine plots, with equal numbers of unwatered control
plots. From1December to1March of each year, sprinklers were oper-
ated weekly to bring total (natural plus supplemental) precipitation
up to or slightly above the 30 year weekly average. For the drought
sub-experiment, rainfall shelters (3 x 3 m) that intercepted 100% of
precipitation were installed at 10 plots on deep serpentine soils, with
10 unsheltered control plots. The shelters in place from 1 December to
1March of each year were designed to exclude roughly 70% of annual
precipitation, simulating an ‘extreme’ drought scenario, although the
shelters did not completely exclude precipitation. Each year,al x1m
‘core’ plotin each plot was sampled for species-specific aerial cover.

Theeffect of drought was also examined at three sitesin the Santa
Cruz International Drought Experiment from 2015 to 2021 (missing
datain 2020)”. The experiment was conducted at three sites near UC
Santa Cruz(36°59’N,122°3’W), namely Arboretum, Marshall Field and
Younger Lagoon. Rainfallinterceptionshelters (4 x 4 m) with V-shaped
troughs wereinstalled to intercept 60% of ambient precipitation and to
divert the water off plots’. Each site had five drought treatment plots
and five control plots. Research plots occupying the central 2x2m
of shelters were sampled each year for species-specific aerial cover.

Taxonomic harmonization

The grassland community data inevitably contain taxonomic nomen-
clature issues. Following the general guidelines and best-practice
principles”, we harmonized taxon names in two steps. First, we cor-
rected misspelled species names by preparing a taxonomic table
with unique species names and guilds from observational and experi-
mental community data. The taxonomic table was first automatically
informed by the R package taxize” and then manually compiled by

two independent taxonomic experts on the author team (J.C. Lesage
andJ.C.Luong).Second, we consolidated the obsolete species names,
subspecies and varieties to up-to-date, consistent, synonym-resolved
species names, according to the current taxonomy by the same two
experts using the CaliforniaJepson eFlora™.

All taxonomic groups were identified at the species level, with
exceptionsinthe genera Avena, Festuca and Hypochaeris.In these gen-
era,somerecords wereidentified only at the genus level. To maximize
sample size and minimize bias, we retained these unidentified records
and assigned dummy species to these threerecords. The climatic niche
ofthe dummy species was estimated by averaging over all the species
intheir corresponding genus. Specifically, the Avena dummy species
were the average of Avena barbata and Avenafatua, the Festuca dummy
species were the average of Festuca bromoides and Festuca perennis,
and the Hypochaeris dummy species were the average of Hypochaeris
glabraand H. radicata.

In total, we identified 372 consolidated species (excluding dum-
mies and including 110 non-native species) across the observational
and experimental grassland communities. These species were used
for the subsequent analyses.

Species occurrence and climatic niche estimation

Weretrieved species’ geographical distributions from observed occur-
rence records and quantified their niches from climate data. Specifi-
cally, we first downloaded all the georeferenced plant location records
publicly available through the Global Biodiversity Information Facility
(GBIF) in the CFP on 2 August 20237°. We downloaded records of not
only the consolidated species but also their synonyms, identified by
two independent taxonomic experts on the author team (J.C. Lesage
and J.C. Luong). We filtered for GBIF records with coordinates and
with no known geospatial issues, including exactly zero coordinates,
coordinates outside of the given country’s polygon, uninterpretable
coordinates and out-of-range coordinates. We further filtered for
records with valid coordinate uncertainty below 10 km and removed
duplicate records. We obtained 830,175 records for 369 species. To
ensure that niche estimates are of high quality, we retained species
withmorethan100 occurrences recorded in the GBIF data. In total, we
retained 829,337 records for 349 species (including 239,797 records for
104 non-native species).

The relationship between species’ ecological niches and geo-
graphic distributions in the CFP” allows us to assess climate change
impacts on community composition by tracking communities in the
niche space. To estimate species’ climatic niches, we then obtained
long-term average climate data to quantify species niche centroids as
the median temperature and precipitation across all occurrences of the
species. We chose the median to summarize central tendency because
itisarobust statistic, which does not assume normal distributionandis
not unduly affected by outliers. Specifically, we obtained climatology
data from CHELSA for 1981-2010°. We show species’ niche estimation
withthe two examples corresponding toFig. 1, D. californica (Extended
DataFig.4) and S. pulchra (Extended Data Fig. 5).

Community compositional shift analysis
We calculated the community-weighted means (CWM) of the tem-
perature and precipitation niche centroids (species niche centroids).
We referred to these two CWM s as the CTI and the CPI, respectively.
Assigning CTland CPIto communities weighted by species abundances
isequivalent to the method of moments in statistical inference.
Indices such as CTl and CPI are straightforward measures of the
relative dominance of species associated with certain temperature
and precipitation levels, based on historical climate averages and
species occurrence records. Such indices have been extensively used
to test the prediction of directional compositional changes in a vari-
ety of communities, including animals®’®”’, plants®” and multi-taxon
communities®. For plants, analyses of resurveyed forest plots in the
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tropics suggest that thermophilization lags behind climatic warm-
ing for long-lived trees', consistent with slow tree migration in the
temperate zones®’. However, it remains unclear how climate change
drives CTI-CPIchangesingrasslands, where shorter lifespans promote
faster population turnover and might facilitate more rapid community
compositional shifts in response to climate change.

For site s, year t, plot i and species j, species abundance (point
intercept or percentage cover) is denoted as A, the temperature
niche centroid as T;and the precipitation niche centroid as P,. Across
allthespeciesj=1,...,/,the CWMof temperature, thatis, CTl, is the first
moment, or the expected community temperature under the species
abundance distribution:

AT

—_. 2
ZjAm‘j ( )

CTlg; = E(Nyg; =

Likewise, the CWM of precipitation, that is, CPI, is the expected
community precipitation under the species’ abundance distribution:
ZAsiP

Plg; =E(P)yi = ——
C Sti ( )Stl ZJAS[U (3)

A higher CTI suggests that species associated with warmer loca-
tions are more prevalent and abundant in the community; likewise,
alower CPl suggests that species associated with drier locations are
more prevalent and abundant in the community®.

For the observational communities, we compared CTI and CPI
across years, quantifying the rate of thermophilization and xerophi-
lization. While simple linear regression provides a straightforward
way to characterize site-specific trends, we quantified overall trends
in CTland CPlwith linear mixed-effects models, to account for spatial
correlation between sites and temporal autocorrelation within sites.

CTlg; = Bo + bos + (Br + bis)t’ + €
t'=t-1983

()G o)
~N ,
bis 0 PToTy Tf

&i ~ N(0,0%),

where s is the site of observation (one of the 12 sites), ¢ is the time of
observation (year), i is the plot (within sites) and S, is the estimated
overallrate of change (°C yr™). Asimilar model applies to CPIl,. The use
ofrandomintercepts (b,,) and randomslopes (b,,) accounts for spatial
correlation in compositional changes. Annual grassland communi-
ties are highly independent of years, as shown in previous studies*,
partly driven by the summer dieback of Mediterranean grasslands*®.
Nevertheless, our use of randomintercepts and randomslopes further
alleviates possible issues from temporal autocorrelation. We also
summarized site-specific CTI and CPI change over the years by linear
regression (Fig. 2 and Supplementary Tables 4 and 5).

For the experimental communities, similar to observations, we
quantified the overall effects of experimental treatments on CTl and
CPl using linear mixed-effects models, pooling data from all years in
an experiment, with the consideration of temporal correlation (Fig. 3
and Supplementary Table 7).

CTl; = Bo + boe + Bix; + €4
bo, ~ N(0,7%) (5)

g ~ N(O, 02),

where tis the time of experimental treatment (year), i is the plot, x;is the
experimental treatment of the plot (0 = control group, 1 =treatment

group) and B, is the estimated treatment effect (°C). Likewise, a similar
model applies to CPIl,.. The use of randomintercepts (b,,) accounts for
variations and correlations between years. We also compared CTland
CPlbetween ambient and warming treatments each year using linear
regressions with CTl or CPl as the response variable and treatment as
the predictor.

Similar to the analyses for the warming treatment, we used linear
mixed-effects models to test the effects of watering and drought in
additional experiments. For JRGCE, we also tested the effects of water-
ing treatment on CTl and CPI (equation (5), Extended Data Fig. 6 and
Supplementary Table 7). For the McLaughlin Water Experiment, we
tested the effects of watering on CTl and CPI in both serpentine and
non-serpentine communities (equation (5), Extended DataFig.7a,band
Supplementary Table 7). The effects of drought were tested similarly in
the serpentine community (equation (5); drought treatment was not
available for the non-serpentine community) (Extended Data Fig. 7c
and Supplementary Table 7). For the Santa Cruz International Drought
Experiment, the effects of drought on CTland CPlweretested at three
sites (Arboretum, Marshall Field and Younger Lagoon), respectively
(equation (5), Extended Data Fig. 8 and Supplementary Table 7). We
visualized and compared the effects of global change manipulations
inthree experiments (Extended Data Fig. 9).

When fitting linear mixed-effects models, we used two-sided
t-teststo test whether slope parameters f, were significantly different
from zero and concluded significance when P < 0.05. We used com-
munities defined by distinct combinations of plot and year as units of
analysis. Plots within asite are biological replicates. We did not adjust
for multiple comparisons, as we performed each test for anindepend-
ent set of observations or anindependent experiment.

Analysis and synthesis of community shifts

We examined responses at the species level that underlie
community-level responses. We identified the species that increased
ordecreasedinabundance over time at each observational site, espe-
cially those that established in the community (appeared after the
first 5 years) or extirpated from the community (disappeared in the
last 5 years) (Supplementary Fig. 16)*". A similar comparison was con-
ducted for the experiment, by identifying the species that increased
or decreased in abundance in the warming treatment compared with
the ambient treatment (Supplementary Fig. 17). We compared the
temperature and precipitation niche centroid among species that
increased, decreased or had no change in abundance under climate
change using the two-sided Wilcoxon test, robust to outliers in spe-
cies’ niche centroid (Fig. 4c,d). To explore whether community com-
positional shifts were driven by dominant or rare species, we further
compared the rank abundance curves over time at observational sites
(Supplementary Fig. 18) and between ambient and warming treat-
ments in the experiment (Supplementary Fig. 19). We compared the
evenness of communities measured by Pielou’s evenness J over time
(linear regression, two-sided t-test) or between treatments (two-sided
Wilcoxon test, P< 0.05).

We synthesized community compositional shifts fromlong-term
observations acrossthe 12 sites and theJRGCE warming experimentin
the climate niche space (Fig. 5). We visualized and quantified the change
in CPIrelative tothe changein CTland vice versaforboth observational
and experimental data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The grassland community composition dataset that supports the
findings of this study is publicly available via Zenodo at https://doi.
org/10.5281/zenodo.13750955 (ref. 80). The occurrence data were
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retrieved from GBIF, the climatic variables at occurrence locations
were retrieved from CHELSA and intermediate datasets are also avail-
ablein the same folder.

Code availability

Allthe computational analyses were performedinR4.2.0 (ref. 81). The
fully reproducible workflow, including code and processed data, is in
the form of an R package and publicly available via Zenodo at https://
doi.org/10.5281/zenodo0.13750955 (ref. 80).
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Extended Data Table 1| Information of 12 observational sites

Label Site name Latitude Longitude Grasstype = Community data Number Number Number Reference Percentage
collection method of plots ofyears ofdata of
points non-native
species
A Angelo -123.653 39.717 Coastal Cover in 30x0.09-m* 5 14 70 Suttle & Thomsen®' 67.80%
Coast prairie quadrats
B Carrizo -119.863 35.189 Valley 9x9 point-intercepts 8 15 120 Grinath et al.*? 49.20%
Plain in 1-m?2 quadrats, first
species hit
C Elkhorn -121.7M 36.867 Coastal 5x5 point-intercepts 3 20 59 Hayes & Holl®® 94.10%
Slough prairie in 0.25-m? quadrats;

each species
recorded only once
at each sample point

D Jasper -122.242 37.406 Serpentine  Coverin 1-m? 12 33 396 Hobbs & Mooney®*®®  10.60%
Ridge quadrats
Serpentine

E/F McLaughlin = -122.421 38.87 Valley/ Coverin 1-m? 41/38 14 588/532 Fernandez-Going 85.1%/32.8%
Annual/ Serpentine  quadrats etal.®®
Serpentine

G Morgan -121.796 37.818 Valley 70 point-intercepts 8 9 59 Gennet et al.” 98.70%
Territory along four 17-m

transects; tallest
species only

H Pleasanton  -121.885 37615 Valley 70 point-intercepts 6 10 60 Dudney et al.%%; 95.40%
Ridge along four 17-m Gennet et al.”
transects; tallest
species only
Sunol -121.829 37.51 Valley 70 point-intercepts 9 8 69 Dudney et al.”%; 88.90%
along four 17-m Gennetetal.”’
transects; tallest
species only
J Swanton -122.221 37.045 Coastal 5x5 point-intercepts 3 14 42 Hayes & Holl®® 95.80%
Ranch prairie in 0.25-m? quadrats;

each species
recorded only once
at each sample point

K UC Santa -122.053 36.986 Coastal 5x5 point-intercepts 3 14 42 Hayes & Holl®® 94.20%
Cruz prairie in 0.25-m? quadrats;
each species
recorded only once
at each sample point

L Vasco -121.687 37.805 Valley 70 point-intercepts 10 n 99 Dudney et al.%%; 93.40%
Caves along four 17-m Gennetetal.”’
transects; tallest
species only
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Extended Data Fig. 1| Climate change in the California Floristic Province in30arcsec (~-1km) resolution, estimated from the CHELSA time series data.
Contour lines surround pixels with statistically significant trends (two-sided

(CFP). Linear regressions describe trends in (A) mean annual temperature

(°Cyr™) and (B) annual precipitation (mmyr™) over the years, from 1980 to 2019, t-test,p<0.05).
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Extended Data Fig. 2| Data availability of 12 observational sites and three global change experiments. The green lines indicate the start and the end of
sampling; the black dots show the years in which sampling was conducted; the size of the black dots shows the sample size (number of treatment plots or number of

observational plots per year).
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summarized by regression lines, solid p < 0.05, dashed p > 0.05 (two-sided ¢-test;
ns:p>0.05,*p<0.05,*p<0.01,**p<0.001). The map shows the geographical
distribution of the 12 sites with grassland percent cover (green) from MODIS

land cover type data.
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in geographical space and climate space. The left shows GBIF occurrence distributions, as well as a Gaussian data ellipse at the 95% confidence interval and
recordsin the CFP. The right panel shows the number of GBIF records (n) and acentroid cross (median) for the joint distribution.
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Extended DataFig. 6 | Effect of watering treatmentin the Jasper Ridge *** p < 0.001). Box plots show the median (center), the first and third quartiles
Global Change Experiment. Watering treatment generally decreased CTI (°C) (bounds of the box), the range extending to the smallest and largest values within
andincreased CPI(mm). Ambient plots (n = 72) and watering plots (n = 64) are 1.5 times the interquartile range from the first and third quartiles (whiskers), and
showninblack and blue, respectively. Effects across all years were estimated by outliers beyond this range (points).

linear mixed-effects models (two-sided ¢-test; ns: p > 0.05,* p < 0.05,** p < 0.01,
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Extended Data Fig. 7 | Effect of watering and drought treatmentsin

the McLaughlin Water Experiment on CTI (°C) and CPI (mm). Watering
experiments were conducted in both (A) serpentine and (B) non-serpentine
sites, while drought experiment was conducted in (C) the serpentine site.
Ambient plots, watering plots, and drought plots are in black, blue, and brown,
respectively. There were 30 ambient and 30 treatment plotsin (A). There were

tenambient and ten treatment plots in (B) and (C). Effects across all years were
estimated by linear mixed-effects models (two-sided t-test; ns: p > 0.05,

*p <0.05,* p<0.01,**p <0.001). Box plots show the median (center), the first
and third quartiles (bounds of the box), the range extending to the smallest and
largest values within 1.5 times the interquartile range from the first and third
quartiles (whiskers), and outliers beyond this range (points).
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Extended Data Fig. 8 | Effect of drought treatment on CTI (°C) and CPI (mm)

in the Santa Cruz International Drought Experiment. Experiments were
conducted at three sites: (A) Arboretum (10 ambient plots and 8 treatment plots),
(B) Marshall Field (9 ambient plots and 9 treatment plots), and (C) Younger
Lagoon (5ambient plots and 5 treatment plots). Ambient plots and drought

plots are showninblack and brown, respectively. Effects across all years were

estimated by linear mixed-effects models (two-sided t-test; ns: p > 0.05,

*p <0.05,* p<0.01,**p <0.001). Box plots show the median (center), the first
and third quartiles (bounds of the box), the range extending to the smallest and
largest values within 1.5 times the interquartile range from the first and third
quartiles (whiskers), and outliers beyond this range (points).
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Extended Data Fig. 9 | Effect size of manipulations on CTI (°C) and decreased
CPI(mm) in three global change experiment projects. JRGCE: Jasper Ridge
Global Change Experiment; MWE: McLaughlin Water Experiment; SCIDE: Santa
CruzInternational Drought Experiment. Different phases, soil types, and sitesin

T
Increased temperature

Increased precipitation Decreased precipitation

Manipulation

Significance — ns — sig

aproject were considered to constitute different experiments. Effect sizes were
estimated across years in each experiment by linear mixed-effects models (two-
sided t-test; ns: p > 0.05, sig: p < 0.05). We show the mean estimates (points) and
1.95standard errors (error bars).
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