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Abstract. Chaotic Floquet systems at sufficiently low driving frequencies are known to heat up to an
infinite temperature ensemble in the thermodynamic limit. However at high driving frequencies, Floquet
systems remain energetically stable in a robust prethermal phase with exponentially long heating times.
We propose sensitivity (susceptibility) of Floquet eigenstates against infinitesimal deformations of the
drive, as a sharp and sensitive measure to detect this heating transition. It also captures various regimes
(timescales) of Floquet thermalization accurately. Particularly, we find that at low frequencies near the
onset of unbounded heating, Floquet eigenstates are maximally sensitive to perturbations and consequently
the scaled susceptibility develops a sharp maximum. We further connect our results to the relaxation
dynamics of local observables to show that near the onset of Floquet heating, the system is nonergodic
with slow glassy dynamics despite being nonintegrable at all driving frequencies.

1 Introduction

Periodically driven quantum many-body systems are
known to exhibit a plethora of interesting and novel out
of equilibrium phenomena, that often have no equilib-
rium counterparts [1–6]. However, these systems inher-
ently undergo a continuous exchange of energy with
one or more external driving agents; the energetic sta-
bility of such systems, particularly in the absence of
any environmental coupling, is therefore, not guaran-
teed. For generic quantum chaotic systems, the peri-
odic drive breaks the only local conservation law, i.e.,
energy conservation, thus steering the system towards
a ‘thermal death’ in the form of featureless infinite tem-
perature state after sufficiently long times [7–9]. Never-
theless, in finite-sized systems, this thermal death can
be avoided if the driving frequency is sufficiently high.
On the contrary, it is known that for sufficiently low fre-
quencies, heating dynamics is effectively described by
energy drift-diffusion processes, which can be captured
by the Fokker–Planck equation [10,11]. As the driv-
ing frequency increases, the heating time scales rapidly
increase and the Fokker–Planck approach breaks down
leading to long-lived prethermal Floquet phases [8,12–
18]. In this regime the dynamics of stroboscopically
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observed local observables is dictated by a local Flo-
quet Hamiltonian [19–21]. Using perturbative argu-
ments, the lifetime of this prethermal phase can be
shown to be exponentially long in the driving frequency
(see Refs. [2,15] for review). This lifetime can be signif-
icantly longer than experimentally relevant time-scales
for sufficiently high driving frequencies such that the
local Floquet Hamiltonian description becomes accu-
rate. At intermediate driving frequencies, one therefore
expects a transition in heating rates which separates
the dynamics of the low frequency regime dictated by
random unitary ensembles and the high frequency or
prethermal regime dictated by a local Floquet Hamil-
tonian. Detection and understanding of this heating
transition in Floquet systems have been the focus of
numerous theoretical and experimental studies in the
recent past. For example, it has been shown that the
heating rate in Floquet systems might show very strong
dependence on the driving amplitudes, initial states, or
resonant-type strong dependence on precise fine-tuned
values of driving frequencies [22–28].

Despite considerable progress, precise detection of
the driving frequencies for which typical Floquet sys-
tems start absorbing energy has remained a challenging
theoretical problem. This is partly because in the low
frequency regime, the dynamics starts to deviate non-
perturbatively away from any local conserved Hamilto-
nian picture. Recent studies have therefore focused on
directly observing the dynamics of local observables and
their approach to infinite temperature expectations to
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pin-point the onset of heating. In this paper we propose
a robust measure depending solely on the spectrum of
the unitary propagator, to sharply detect the onset of
Floquet heating in interacting periodically driven sys-
tems. Specifically, the formalism is connected to the
extreme sensitivity of the Floquet unitary propagator
in response to a controlled perturbation of the driving
protocol near the heating transition. This is quantified
using the diverging norm of the adiabatic gauge poten-
tial (AGP) or the fidelity susceptibility [29–34] of Flo-
quet eigenstates near the heating transition.

For static systems, the AGP generate adiabatic trans-
formations usually on the eigenstates of a Hamilto-
nian H(λ) along some perturbation of the Hamiltonian
∂λH. Consequently, it’s Hilbert Schmidt norm consti-
tutes of the first order perturbative expansion of eigen-
states with respect to ∂λH averaged over the full spec-
trum. In simpler language, this norm is nothing but
the typical susceptibility of energy eigenstates against
an infinitesimal deformation of the Hamiltonian. It can
be argued that the AGP or susceptibility is a diver-
gent quantity in the thermodynamic limit for chaotic
systems, in perfect analogy with classical chaos where
phase space trajectories are exponentially sensitive to
small perturbations.1 Consequently, it has been demon-
strated in the past few years that susceptibility is a very
strong and sensitive measure of the emergence of chaos
in quenched quantum systems, with varying integrabil-
ity breaking strengths [35,36]. In particular, the sus-
ceptibility reaches the maximum inside a broad KAM-
type chaotic regime separating integrable and ergodic
domains of the system. This KAM regime corresponds
to a prethermal state of the system with very long relax-
ation times and absence of thermalization. In exten-
sive local systems, both quantum and classical, and in
the thermodynamic limit this regime is believed to be
transient. Conversely in finite-size systems this regime
can be infinitely long-lived. This in turn indicates that
at sufficiently weak integrability breaking, local observ-
ables fail to thermalize within the Heisenberg time even
though the system can exhibit strong chaos.

We consider situations in which the averaged Hamil-
tonian of a finite size system over a full period is chaotic;
the system thus satisfies the eigenstate thermalization
hypothesis (ETH) [37–40] in the high frequency regime
when the Floquet Hamiltonian can be approximated
by a finite number of terms in the Floquet-Magnus
expansion. We then demonstrate how the suscepti-
bility of eigenstates of the Floquet unitary operator
sharply detect the onset of heating transition separat-
ing two ergodic/ETH regimes corresponding to finite
and infinite temperatures and described by appropri-
ate random matrix ensembles [41,42]. This maxi-
mum of susceptibility originates from a divergent low-
frequency spectral response revealing the existence of a
robust long-lived prethermal regime with glassy relax-
ation dynamics near the heating transition. As in static

1 For such classical systems this susceptibility can be viewed
as a complexity measure of trajectory-preserving canonical
transformations [47].

systems, in the thermodynamic limit this prethermal
KAM regime is transient but it can be stabilized by
finite system sizes with the maximum of the fidelity
susceptibility drifting towards higher driving frequen-
cies as the system size increases. Mathematically the
maximum of the susceptibility marks the onset of full
mixing between eigenstates of the folded Floquet spec-
trum. Physically this corresponds to the Thouless time,
setting the onset of the Random Matrix Theory (RMT)
behavior of the spectrum of the Floquet unitary becom-
ing shorter than the Heisenberg time. This Thouless
time also plays the role of the relaxation time of physi-
cal observables to the infinite-temperature state. In this
way there is a direct connection of the sharp detection
of the heating transition with experimentally accessi-
ble dynamics of Floquet systems. For example, local
dynamics of Floquet systems have been studied recently
using quantum simulators [43]. We therefore believe
that the method demonstrated is not only of theoretical
importance, it also smoothly connects to real dynamical
data within the scope of state of the art experimental
setups.

Finally, we note that the analysis and conclusions
presented in this work are based on a generic model
with no conservation laws, other than the emergent
energy conservation at high driving frequencies.

2 Methods: adiabatic gauge potential in

Floquet systems

We begin by introducing the Floquet AGP which we
construct directly from the Floquet unitary propaga-
tor. This ensures that the AGP remains a meaning-
ful quantity for all driving frequencies and even in the
absence of a well-defined Floquet Hamiltonian. With-
out loss of generality, we consider a two-step driving
protocol, where the stroboscopic evolution is governed
by the Floquet evolution operator:

UF = e−iHB
T
2 e−iHA

T
2 , (1)

where T = 2π/Ω with Ω being the driving frequency.
Let {|φn〉} be the set of Floquet eigenstates so that,

UF|φn〉 = e−iφn |φn〉, (2)

where −π < φ1 < φ2 < φ3 < · · · < π are the Floquet
eigenphases. Here and henceforth, we shall assume nat-
ural units with both the Boltzmann and Planck con-
stants set to unity. Note that unlike energy eigenval-
ues for a static Hamiltonian, the phases φn are not
gauge invariant as they are defined modulo 2π, while
the eigenvalues of the Floquet unitary exp[−iφn] are
uniquely defined. As we will see, this natural but sub-
tle difference is important to keep in mind while defin-
ing and analyzing gauge invariant (physical) observ-
ables like the fidelity susceptibility. We now proceed
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to define the Floquet AGP Aλ as the generator of adia-
batic transformations on the Floquet eigenstates along
some perturbation direction λ in the step Hamiltonians
HA,HB as,

i∂λ|φn〉 = Aλ|φn〉 (3)

and calculate the AGP from Eq. (2) as,

〈φm|Aλ|φn〉 = i〈φm|∂λ|φn〉 = i
〈φm|∂λUF|φn〉
e−iφn − e−iφm

. (4)

Without loss of generality, we assume a deformation
of the half-period Hamiltonian HA, such that the Flo-
quet unitary becomes

UF(λ) = e−iHB
T
2 e−i(HA+λO) T

2 , (5)

where O is an arbitrary local operator. For example,
setting O = HA we can analyze sensitivity of Floquet
eigenstates to perturbatively changing the strength of
the HA pulse. It is also convenient to refer to Φnm =
φn − φm as the level spacing between phases of the
Floquet unitary. We reiterate that unlike the eigenval-
ues e−iφn themselves the level spacing is not a gauge
invariant quantity. Following simple algebraic manipu-
lations, it is then easily seen that the matrix elements
of the AGP assume the following exact gauge invariant
form (see Appendix A for a derivation),

〈φm|Aλ|φn〉 = − ei Φnm
2

2 sin
(

Φnm

2

) 〈φm|OA(T )|φn〉, (6)

where δλ OA(T ) represents the effective perturbation
acting on the eigenstates of UF induced by the deforma-
tion HA → HA + δλ O of the driving Hamiltonian with
infinitesimal δλ. Given HA|Eα〉 = Eα|Eα〉, the operator
OA(T ) = UF∂λUF can be expressed in the eigenbasis of
HA as,

OA(T ) =
∑

α,β

〈Eα|O|Eβ〉Θ(ωαβ , T )|Eα〉〈Eβ |, (7)

where ωαβ = Eα − Eβ and,

Θ(ωαβ , T ) =
1

ωαβ

[

1 − eiωαβT/2

+
∑

z∈Z

(

eiωαβT/2 − iωαβ
T

2
− 1

)

×δ(ωαβT − 2zπ)
]

, (8)

with Z being an arbitrary integer. We note that
the expression for OA(T ) significantly simplifies if
[O, HA] = 0. In this case it is easy to see that ∂λUF =
−i(T/2)UFO and the matrix elements of the AGP sim-
plify to,

〈φm|Aλ|φn〉 = −iT
ei Φnm

2

2 sin
(

Φnm

2

) 〈φm|O|φn〉. (9)

In this work we focus on a more generic situation for
which [O, HA] �= 0.

The Floquet AGP defined in Eq. (6), in a physical
sense, determines the sensitivity of the Floquet eigen-
states to an infinitesimal deformation of the Hamilto-
nian from HA to HA + δλ OA. It is heavily dominated
by small denominators as can be seen from Eq. (6).
For this reason, the AGP in general is a divergent not
self-averaging operator in chaotic systems. In order to
regularize it, one can either consider a typical AGP [35])
or introduce a finite time cutoff [34,36]. In this paper
we adopt the latter option and define the regularized
AGP as,

Aλ =
i

2

∞
∑

N=0

e−μN

×
[(

∂λUFU†
F

)

(−N) −
(

U†
F∂λUF

)

(N)
]

,

(10)

where N represent stroboscopic instants of time and

(·) (N) = U†N
F (·) UN

F .
Physically μ introduces the small energy or long time

cutoff. To avoid divergences we choose μ to be exponen-
tially small in the system size but always parametrically
larger than the mean level spacing. It is easy to check
that the Floquet AGP regularized in this way has the
following matrix elements:

〈φm|Aλ|φn〉

= −i

(

1 − eiΦnm
)

(1+e−μ)

2 (eiΦnm −e−μ) (e−iΦnm −e−μ)
〈φm|OA(T )|φn〉

≈ − 2ei Φnm
2 sin

(

Φnm

2

)

μ2 + 4 sin2
(

Φnm

2

) 〈φm|OA(T )|φn〉, (11)

where the last equality follows from μ � 1. It is
straightforward to see that in the limit μ → 0 this
expression reduces to the exact definition in Eq. (6).
Unless specified otherwise, we shall henceforth refer to
the regularized version defined above as the definition
of the Floquet AGP.

Since the AGP generates adiabatic transformations
of a Floquet state, its norm reflects the sensitivity of
Floquet eigenstates against perturbations. For our pur-
pose, we shall be interested in the Floquet fidelity sus-
ceptibility (FFS) χm for a given eigenstate |φm〉, which
is nothing but the Frobenius norm of the AGP:

χm =
∑

n�=m

|〈φm|Aλ|φn〉|2

≈
∑

n�=m

4 sin2
(

Φnm

2

)

(

μ2 + 4 sin2
(

Φnm

2

))2 |〈φm|OA(T )|φn〉|2 .

(12)

In this form it is evident that μ regularizes the norm
of the AGP by eliminating divergences coming from
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nearly degenerate eigenstates with |2 sin(Φnm/2)| � μ.
As in Ref. [34] we set μ = γLΦH/π, where ΦH is
the Heisenberg scale, determined numerically as the
mean level spacing between the Floquet eigenvalues
φn: ΦH ≈ TD−1 in the low T (ETH) regime and
ΦH ≈ 2π/D in the high T (RMT) regime, where D is
the Hilbert space dimension of the relevant symmetry
block. In practice however, as T is increased, ΦH quickly
saturates to the RMT value 2π/D soon after band fold-
ing starts and much before the onset of Floquet heat-
ing. As a consequence, μ remains constant across the
range of T for which the crossover from ETH to RMT
behavior is detected by the FFS (see Appendix B).
The constant γ is chosen to be of order one to reduce
finite size effects. As mentioned before, one can analyze
the typical fidelity susceptibility instead of introducing
a finite time cutoff; the former remains well behaved
even at μ = 0 [35,44]:

χtyp = elog χm . (13)

As in the case of static Hamiltonians, the fidelity sus-
ceptibility in the form (12) can be related to the spectral
function of the operator OA(T ) [34] (see Appendix C
for a derivation):

χm =
T

2π

∑

n�=m

∫ 2π/T

0

4 sin2
(

ωT
2

)

(

μ2 + 4 sin2
(

ωT
2

))2 Sm(ω)dω,

(14)
where the spectral function Sm(ω) is given by,

Sm(ω) =
∑

n�=m

|〈φm|OA(T )|φn〉|2

δ (ωT − Φnm mod 2π) . (15)

For numerical stability, we approximate the delta func-
tion in Eq. (15) by a continuous Lorentzian filter,

Sm(ω) =
∑

n�=m

|〈φm|OA(T )|φn〉|2 Δ

Δ2 + 4 sin2(ωT−Φnm

2 )
.

(16)
with broadening scale Δ = 0.1ΦH . The choice of
the filter does not affect our results qualitatively (see
Appendix. D for a comparison of the results with a
Gaussian approximation of the delta function). In the
rest of this work, we shall be interested in the FFS and
spectral function averaged over the Floquet eigenspec-
trum, respectively defined as,

χ =
1

D
∑

m

χm, (17)

S(ω) =
1

D
∑

m

Sm(ω) (18)

In quantum language the spectral function S(ω) encodes
the amount of hybridization between the eigenstates
separated by the phase difference Φnm = ωT (mod 2π).

In turn, the fidelity susceptibility χm is dominated by
the frequencies close to the multiples of the driving fre-
quency Ω = 2π/T : |(ωT − μ) mod 2π| � 1. Physi-
cally the spectral function coincides with the strobo-
scopic Fourier transform of the connected autocorrela-
tion function (a.k.a. noise) of the relevant local observ-
able (see Appendix C). It therefore encodes information
about long time relaxation dynamics of this observable
[44]. Because by construction Φn,Φm ∈ [−π, π], from
Eq. (15) it is easy to see that the dominant contribu-
tion to χm arises from ω ≈ μ/T and ω ≈ (2π − μ)/T .
Then, it can be shown (see Appendix C) that when μ
is greater than the spectral gap, the FFS scales as

χ ∼ S(μ/T )

μ
. (19)

Note that in deriving the above relation, we have made
use of the periodic properties of the spectral function,
i.e., S(μ/T ) = S((2π − μ)/T ).

3 The model

For numerical analysis, we choose the Hamiltonians HA

and HB for the Floquet unitary operator in Eq.(1) as
follows:

HA = Jz

L
∑

i=1

σz
i σz

i+1 + Jzz

L
∑

i=1

σz
i σz

i+2

+Jx

L
∑

i=1

σx
i σx

i+1 + (hx + δhx)
L

∑

i=1

σx
i , (20a)

HB = Jz

L
∑

i=1

σz
i σz

i+1 + Jzz

L
∑

i=1

σz
i σz

i+2

+Jx

L
∑

i=1

σx
i σx

i+1 + (hx − δhx)

L
∑

i=1

σx
i , (20b)

where σx, σy and σz are the Pauli matrices with interac-
tion and field strengths chosen as Jz = Jzz = 1.0, Jx =
0.5, hx = 0.71, δhx = 1.0. The parameters are chosen
such that the average Hamiltonian Hav = (HA+HB)/2
is ergodic and satisfies ETH,

Hav = Jz

L
∑

i=1

σz
i σz

i+1 + Jzz

L
∑

i=1

σz
i σz

i+2

+Jx

L
∑

i=1

σx
i σx

i+1 + hx

L
∑

i=1

σx
i . (21)

We set the perturbation direction λ = Jz such that

O =
∂HA

∂Jz
=

L
∑

i=1

σz
i σz

i+1, (22)

123



Eur. Phys. J. B (2024) 97 :151 Page 5 of 15 151

Fig. 1 The Floquet fidelity susceptibility FFS as a function of the driving period T a for different L and the cutoff fixed
at μ = LΦH/π, and b for different μ with L = 18. The inset in a shows that in the high frequency regime T < T1 ≈ 1, the
FFS scales as χ ∝ L2/μ as opposed to χ ∼ L/μ in the low frequency regime: T > T2 ≈ 2. The top inset in b shows that the
position of the FFS maxima T ∗ = 1/(κ1 log(μ−1) + κ2), with κ1 ≈ 0.04 and κ2 ≈ 0.46, drifts towards 0 with decreasing

μ (as one approaches the thermodynamic limit). This implies exponentially long heating times: τ ∝ μ−1 ∼ e1/κ1T . The
bottom inset in b shows that the peak of the FFS scales with the cutoff as χ(T ∗) ∼ ημ−1.83 where η ≈ 0.00003

and we analyze the deformation of the Hamiltonian
with Jz → 1 + δJz.

For numerical analysis, we assume periodic bound-
ary conditions. The model is therefore symmetric under
translation as well as spin-inversion (Z2) operations. To
avoid degeneracies due to these symmetries, we restrict
ourselves to a particular momentum sector k such that
k �= 0, π as these momentum sectors have the addi-
tional parity symmetry. Furthermore, we also restrict
ourselves to the even Z2 sector.

4 Fidelity susceptibility

In this section, we shall analyze the scaling properties
of FFS for different values of the time-period T and
examine the corresponding heating regimes. In Fig. 1a
we plot the average FFS as a function of T for differ-
ent system sizes and the cutoff energy scale is fixed at
μ = LΦH/π. We observe that for T < 1, the curves
for the rescaled FFS show an excellent collapse (inset
of Fig. 1a) suggesting that χ ∼ L2T 2/μ. This scaling
agrees with general expectations from ETH implying
local thermalization and diffusive long-time relaxation
of an extensive observable O due to energy conserva-
tion: 〈O(NT )O(0)〉 ∼ C exp[−N/NTh], where NTh ∼
L2/(TD) is the stroboscopic Thouless time and D is
the diffusion coefficient. As a result the low-frequency
spectral function at ωT < ΦTh ≡ 1/NTh ∝ L−2 for
a fixed driving period. As it follows from Eq. (C3)
the corresponding scaling of the spectral function at
ωT < ΦTh is S(ω) ≈ CNTh ∝ L2. On the other hand,
for T > 2, the FFS is found to scale as χ ∼ LT 2/μ,
which now agrees with infinite temperature Floquet
ETH (i.e., with a random unitary ensemble) and physi-

cally follows from the fact that in the absence of conser-
vation laws O =

∑

j Oj is a sum of local independently
relaxing operators. In the intermediate range of driving
periods 1 < T < 2, the FFS develops a sharp peak.
The position of this peak T ∗(μ) drifts to lower peri-
ods as the cutoff μ decreases either together with the
system size (panel a) or at a fixed system size (panel
b): T ∗ ∼ 1/(κ1 log(μ−1) + κ2), where κ1 ≈ 0.04 and
κ2 = 0.46 are non-universal constants (see the top inset
in Fig. 1b.) We can invert this relation and interpret
μ−1 ∼ e1/κ1T ∗

as the heating time required for the
system to heat up. This scaling is clearly consistent
with exponential in driving frequency heating times
expected in generic Floquet systems [19–21,45,46].
Simultaneously the height of this peak clearly diverges
faster than 1/μ. Numerically this scaling is fitted best
by χ(T ∗) ∼ η/μ1.83, with η ≈ 0.00003 being a non-
universal constant; this scaling is close to the maximal
possible divergence χ∗ ∼ η/μ2 [36,47]. Physically such
scaling of χ signals very slow power-law or logarithmic
relaxation of the system in time indicating a long-lived
prethermal regime [36] in agreement with earlier numer-
ical works [20,48,49].

Finally, in Fig. 2, we plot the typical fidelity suscep-
tibility for different system sizes, which also behaves
qualitatively similar to the regularized FFS if we asso-
ciate μ with the Heisenberg scale ΦH/T , demonstrating
that the results are not artifacts of finite-time cutoffs.
The scaling of the maximum of χ is consistent with
χ∗ ∼ exp[2 log(2)L] in agreement with Ref. [35] for
static systems. We shall now further elaborate on these
numerically observed results in the next section.
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Fig. 2 Typical fidelity susceptibility as function of the
driving period for different system sizes. The top inset shows
that the susceptibility peak scales with the system size as
e1.2L/L ≈ e2 log 2L/L ∼ LD2. The bottom inset shows that
the position of the susceptibility peak T ∗ decreases with
increasing system size, suggesting that in the thermody-
namic limit, the RMT region extends to T → 0

5 Spectral function analysis

5.1 High frequency driving: T � 1

In the high driving frequency limit, the stroboscopic
evolution of the periodically modulated system is
approximately described by a time-independent local
Floquet Hamiltonian HF which satisfies UF =
exp (−iHFT ), and thus HF|φm〉 = ζm|φm〉, where φm =
Tζm mod 2π. In this regime, the Floquet Hamiltonian
HF can be approximated using the Floquet-Magnus
expansion as [2],

HF = Hav +
∑

k

T kHk, (23)

where Hav is the average Hamiltonian over one time-
period and Hk are higher order corrections in the
expansion. It is important to note that for generic non-
integrable systems, the Floquet–Magnus expansion is
guaranteed to converge for T < T ′ = 2π/Wav where
Wav = max{|ζav

m −ζav
n |} ∼ L is the bandwidth of Hav. In

Fig. 3a, we indeed see that the spectral function shows
a characteristic behavior that is expected in a generic
non-integrable Hamiltonian – a RMT plateau for ΦH <
ωT < ΦTh [39,44,50,51], where ΦTh ∼ TD/L2 is the
Thouless scale. This plateau scales as S(ω) ∼ T 2L2,
where quadratic dependence on L reflects diffusion,
while scaling with T 2 reflects that the effective pertur-
bation OA(T ) ∝ T [see Eq. (6)]. This plateau leads to
the ETH scaling of the fidelity susceptibility at T � 1:
χ ∼ L2T 2/μ discussed earlier (see Fig. 1a). However,
as we shall demonstrate in 5.3, the high-frequency ETH
scaling continues to hold well beyond T > T ′, suggest-
ing that the dynamics is dictated by some local Hamil-

tonian. However, it is not apparent whether this local
Hamiltonian can be obtained from the Floquet-Magnus
expansion. We note in passing that a similar observa-
tion was made in Ref. [8] in terms of level-statistics.

5.2 Low-frequency driving: T � 1

Although it is formally possible to identify a Floquet
Hamiltonian as HF = i log UF/T even in this regime,
the operator HF is ill defined as it is not local and does
not smoothly depend on the system size and the cou-
pling constants. The Floquet eigenphases in this regime
satisfy the properties of a random circular ensemble
with an average level spacing of 2π/D. Consequently,
the RMT plateau in the spectral function extends all
the way to the full spectral bandwidth which saturates
at ωT = 2π, as can be seen in Fig. 3d. In other words,
in the thermodynamic limit random matrix behavior
is expected to hold in the full spectrum of the Floquet
eigenphases. Therefore the spectral function is expected
to become flat for all values of ω ∈ [0, 2π/T ]. Also
because of lack of conservation laws the spectral func-
tion is expected to have a trivial linear scaling with L
due to extensivity of the perturbation.

5.3 Intermediate frequency driving: T � 1

For T > T ′ ≈ 0.4, the Floquet eigenstates start to
fold and convergence of the Floquet Magnus expan-
sion is no longer guaranteed. The folded states may
come arbitrarily close to unfolded states within the
spectrum but do not immediately develop any level-
repulsion with them. This is evident from Fig. 3b
where we see that qualitative features of the spec-
tral function remain unchanged, in particular, there
is still a low frequency RMT plateau. At the same
time the T 2 scaling of S(ω) breaks down indicating
that higher order terms in the Magnus expansion start
affecting the Floquet Hamiltonian. For similar reasons
the form of the operator OA(T ) also becomes affected
by higher order terms. Consequently the matrix ele-
ments 〈φm|OA(T )|φn〉 entering the spectral function
start depending on the driving period in a nontriv-
ial way. This situation continues up to T = T1 ≈ 1,
beyond which level-repulsion stars to develop between
the folded states as a result of hybridization, thereby
developing a low-frequency rapidly increasing tail as
opposed to the ETH plateau as seen in Fig. 3c. This
tail indicates breakdown of the Floquet-Magnus expan-
sion and lack of existence of any local Floquet Hamil-
tonian, an observation which has also been reported
before from the level-statistics analysis of Floquet sys-
tems [8]. This tail is also inconsistent with thermal-
ization to the infinite-temperature phase occurring at
lower driving frequencies. This spectral function anal-
ysis thus suggests that the Floquet Magnus expansion
remains valid for T � T1. It is interesting to note that
in a previous numerical study [8], it was observed that

T1 ≈ π/σ, where the variance σav ∼
√

L of the aver-
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Fig. 3 The spectral function at different driving periods for L = 18. The dashed vertical lines mark the average level
spacing (Heisenberg scale) ΦH for the corresponding T . Note that the y-axis is scaled with ΔT −2 to remove the explicit
scalings with T arising from the matrix elements and the cutoff. For a T < T ′ ≈ 0.4 < T1, where T ′ marks the beginning
of band-folding, the spectral function is similar to that for quenched systems. For T ′ < T < T1 ≈ 1 (b), band folding starts
but spectral weight for ω → 0 remains negligible. For T1 < T < T2 (c), significant spectral weight develops at low ω. The
inset in c shows the spectral function further scaled by ω; the development of a flattened region (inflection) with increasing
T shows that as the low ω peak drifts towards ΦH with increasing T , the decay of the tail of the peak approaches 1/ω.
Finally, for T > T2 ≈ 2, the spectral function plateaus over the full spectrum

age Hamiltonian spectrum. Our observations agree with
this estimate within numerical accuracy.

The low energy peak in the spectral function for T >
T1 is rather remarkable as it initially (as T increases)
develops much below the Heisenberg scale. The sub-
Heisenberg peak is not a result of finite size effects, as
can be seen from Fig. 4a. Its height scales exponentially
with the system size. It appears because of Floquet
many body resonances [49], which are analogous to res-
onances between symmetry sectors in integrable mod-
els at small integrability breaking [52]. To elaborate, we
first note that even for T > T1, majority of the Floquet
eigenstates are still adiabatically connected to those of
the average Hamiltonian Hav. This can be seen from
Fig. 4b, where we show the overlap between a couple of
typical eigenstates of the Floquet spectrum and that of
the average Hamiltonian. However, some of the Floquet
eigenstates become hybridized mixtures of eigenstates

of Hav having energy difference equal to integer multi-
ples of 2π/T , resulting in the breakdown of adiabaticity
[49]. This mixing eventually leads to O(1) off-diagonal
matrix elements of local observables at higher values of
T . The appearance of such resonant states is demon-
strated in Fig. 4b where a many-body resonant eigen-
state of the Floquet spectrum has high fidelity with
eigenstates of the average Hamiltonian that are distant
in terms of their eigenenergy. These eigenstates have
very small difference between eigenvalues of the Floquet
unitary and therefore dominate late-time dynamics

As T increases the peak is pushed beyond the Heisen-
berg scale indicating breakdown of this simple picture
of resonances, and yet there is no full thermalization.
This is true until the low frequency plateau between the
Heisenberg and the Thouless scales starts emerging in
the spectral function at T ∼ T2 and S(ω) becomes flat
again for ΦH � ωT � ΦTh as e.g., seen in Fig. 3d. At
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Fig. 4 a The spectral width at low ω for T = 1 grows exponentially with system size. The vertical dashed lines mark the
mean phase difference ΦH for difference system sizes. The inset shows the scaling of the low ω plateau Sp(ω) calculated
along the vertical black dashed line as a function of the system size. b Overlap defined as |〈Eav|φm〉|2 as a function of n
where |Eav〉 are the eigenstates of the average Hamiltonian and |φm〉 is a Floquet eigenstate (either typical or many-body
resonant) for L = 18. The typical states (red and green) have high overlap with few eigenstates of Hav that are close in terms
of their eigenenergy. On the contrary, the many-body resonant Floquet state (blue) has overlap with distant eigenstates of
Hav having energy difference equal to 2zπ/T with z = T = 1

the point when ΦTh becomes equal to μ the fidelity sus-
ceptibility develops a maximum (see Fig. 1b). For the
typical fidelity susceptibility (see Fig. 2) the maximum
corresponds to ΦTh ≈ ΦH . We can thus identify the
peak of χ with the onset of thermalization/ETH (see
also Ref. [35]). As shown in the inset of Fig. 1b, the
scaled FFS develops a sharp peak χ = χ∗ at T = T ∗

which scales as χ∗ ∼ 1/μ1.83 and within numerical pre-
cision agrees with χ∗ ∼ 1/μ2 expected from general
grounds [35]. As the system size increases the condi-
tion ΦTh = ΦH is met at lower driving periods such
that the FFS peak drifts towards T → 0 (see inset of
Fig. 2). This is consistent with the expectation that
in the thermodynamic limit the system reaches infinite
temperature state at any driving frequency.

To further support the discussion in this section, we
visualize the matrix elements of OA(T ) in Appendix E
through an intensity plot. The different regimes of heat-
ing identified through the spectral function in Fig. 3 can
also be clearly seen in the intensity plot. The different
regimes of heating identified through the spectral func-
tion in Fig. 3 can also be clearly seen in the intensity
plot. Furthermore, in Appendix F, we show the man-
ifestation of these different regimes in real time stro-
boscopic dynamics by analyzing the connected auto-
correlation function obtained from the discrete Fourier
transform of the spectral function.

6 Summary and concluding comments

We probe the onset of non-perturbative heating in Flo-
quet many-body systems. We show that the heating
transition can be associated with the maximum of the

Floquet fidelity susceptibility (FFS), which defines sen-
sitivity of eigenstates of the Floquet unitary to infinites-
imal deformations of the driving protocol. We do the
analysis by expressing the FFS through stroboscopic
non-equal time spectral function of the appropriate
observable, analogous to static quenches. The maxi-
mum of FFS can be either studied as a function of the
time cutoff 1/μ or of the system size. In the latter case it
effectively corresponds to setting the time cutoff at the
Heisenberg scale. In the former case one can effectively
work in the thermodynamic limit. By analyzing how the
maximum of FFS with respect to the driving period T
drifts with μ, one can accurately identify dependence
of the heating time on T . We also find that scaling of
the FFS with the system size allows one to unambigu-
ously identify existence of the extra conservation law at
low T and hence establish existence of a local Floquet
Hamiltonian.

Our analysis allows one to sharply separate three dif-
ferent regimes of Floquet dynamics (see Fig. 1): (i) high
frequency regime with the period of the driving T < T1,
where dynamics is well characterized by a local Flo-
quet Hamiltonian and the spectrum is described by the
Gaussian Orthogonal Ensemble (GOE). In this regime,
diffusion washes away all temporal correlations and the
connected auto-correlation vanishes beyond Thouless
time. In the spectral function S(ω), this manifests as
S(ω) ∝ L2 and independent of ω for ΦH < ωT <
ΦTh (ii) low frequency regime T > T2 where the sys-
tem heats up to an infinite temperature and the Flo-
quet spectrum is well described by the circular uni-
tary ensemble (CUE). The dynamics in this regime is
effectively random and again washes away all correla-
tions, once again leading to a similar independence with
respect to ω, i.e., S(ω) ∝ L (iii) intermediate frequency
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regime T1 < T < T2 where the system is character-
ized by very long relaxation times and absence of ther-
malization to either of the ensembles within Heisen-
berg time. In this regime, we have ΦH ≈ ΦTh and
S(ω) ≈ 1/ω for ωT ≈ ΦH , suggesting development
of order O(1) matrix elements of the local observable
O near the Heisenberg energy scale. This implies that
the auto-correlations survive till Heisenberg time and
the thermalization to infinite temperature is exponen-
tially slow in system size. For the model we numeri-
cally analyze, both times T1 and T2 decrease with the
inverse time cutoff μ with T1(μ) going to zero faster
than T2(μ) (see Fig. 1), implying that the intermedi-
ate regime becomes parametrically large at long cutoff
times (large system sizes). Existence of robust inter-
mediate non-thermalizing regime is consistent with ear-
lier findings that the level spacing ratio strongly devi-
ates from Wigner-Dyson statistics towards the Pois-
son regime at intermediate driving frequencies [8]. We
want to emphasize this deviation starts happening in
the regime where the local Floquet Hamiltonian is ill
defined and there is significant hybridization between
folded energy states. We showed that the onset of the
intermediate regime corresponds to Landau-Zener type
resonances, i.e., emergence of hybridization between
pairs of eigenstates of a local Floquet Hamiltonian sep-
arated by driving frequency (see also Refs. [49,52]). As
driving frequency is lowered further these resonances
proliferate forming a continuum but the system remains
non-ergodic until much longer periods where full level
repulsion develops and the system becomes ergodic
without any conservation laws.

Such a prethermal non-ergodic behavior is expected
in static systems for perturbations near integrable
points marking the transition of the system from inte-
grable to ETH behavior. However, note that for Flo-
quet systems which we analyze, there is no integrable
regime at any driving frequencies and the intermediate
(KAM-like) phase appears at the heating transition. In
a way the glassy dynamics can be viewed as coming
from hybridization between different symmetry blocks
due to emergent time translation invariance existing at
high driving frequencies due to presence of a local Flo-
quet Hamiltonian. These symmetry blocks play a simi-
lar role to symmetry blocks in integrable systems, which
are coupled by integrability breaking perturbations. We
emphasize again that breakdown of the Floquet Magnus
expansion [2] is associated with the emergence of the
intermediate KAM regime, which is parametrically far
from the regime of full thermalization. We stress that
the probe quantities presented in this paper are very
well connected to the actual dynamics of local observ-
ables in Floquet systems. We therefore, believe that the
predictions can be experimentally verified in present
day quantum simulators. Furthermore, very recently it
was observed (see Ref. [28]) that Floquet states lying
near the ground state of the Floquet Hamiltonian are
very special in a sense that they remain robust against
mixing even at significantly low driving frequencies. It
might be interesting to probe the robustness of these
states with the fidelity susceptibility. Furthermore, all

formulations presented in this paper can also be easily
extended to study classical Floquet systems [14,47,53].
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Appendix A: AGP for Floquet systems

In this appendix, we show the detailed steps for calculating
the explicit form of the Floquet AGP. We recall the general
form of the FLoquet AGP from the maix text,

〈φm|Aλ|φn〉 = i〈φm|∂λ|φn〉 = i
〈φm|∂λUF|φn〉

e−iφn − e−iφm
. (A1)

For a peturbation of the Hamiltonian HA,

UF = e−iHB
T
2 e−iHA

T
2 → e−iHB

T
2 e−i(HA+λO) T

2 , (A2)

the differential in UF assumes the form,

∂λUF = −ie−iHB
T
2 e−iHA

T
2

[

∫ T/2

0

eiHAtOe−iHAtdt

]

= −iUF

[

∫ T/2

0

eiHAtOe−iHAtdt

]

. (A3)

Given the spectral decomposition of the Hamiltonian HA =
∑

α Eα|Eα〉〈Eα|, and O =
∑

α,β Oα,β |Eα〉〈Eβ |, the numer-

ator in Eq. (4) is evaluated as,

〈φm|∂λUF|φn〉 = −ie−iφm
∑

α,β

Oα,β〈φm|Eα〉〈Eβ |φn〉

×

∫ T/2

0

ei(Eα−Eβ)tdt, (A4)

where Oα,β = 〈Eβ |O|Eα〉. Let us now define the effective
perturbation operator as,

OA(T ) =
∑

α,β

Oα,βΘ(ωαβ , T )|Eα〉〈Eβ |, (A5)

where ωαβ = Eα − Eβ and,

Θ(ωαβ , T ) =
1

ωαβ

∑

z∈Z

[

1 − eiωαβT/2

+

(

eiωαβT/2 − iωαβ
T

2
− 1

)

δ(ωαβT − 2zπ)

]

.

(A6)

Substituting in Eq. (A1), we find,

〈φm|Aλ|φn〉 = i
e−iφm

e−iφn − e−iφm
〈φm|OA(T )|φn〉

= −
ei Φnm

2

2 sin
(

Φnm

2

) 〈φm|OA(T )|φn〉. (A7)

Appendix B: Dependence of cutoff µ on T

In this appendix, we show that the dependence of the cutoff
μ with T when we choose the cutoff as μ = γLΦH/π. We
recall that ΦH ≈ T/D in the ETH regime and ΦH ≈ 2π/D
in the RMT regime. However, ΦH quickly saturates to the
RMT value as soon as T > T ′, i.e., after band-folding starts
with increasing T. As shown in Fig. 5 for γ = 1, the cut-
off therefore remains close to μ ≈ 2γL/D throughout the
regime where the Floquet dynamics crosses over from the
ETH to the RMT regime.

Fig. 5 The finite-time cutoff μ = LΦ/π remains constant
throughout the parameter range of T for which the FFS
detects the crossover in dynamics from ETH to RMT (see
red curve in Fig. 1a of main text). The constant value results
from the Heisenberg scale saturating to the RMT value
ΦH = 2π/D (and thus μ = 2L/D) for T > T ′

Appendix C: Spectral function

In this appendix, we show how we obtain the spectral func-
tion from the connected auto-correlation of a local observ-
able O in an eigenstate of the Floquet unitary |φn〉:

Cn
o (N) =

1

2
〈φn|{O(NT )O(0)}|φn〉c

=
1

2
[〈φn|O(NT )O(0) + O(0)O(NT )|φn〉

−〈φn|O(NT )|φn〉〈φn|O(0)|φn〉] , (C1)

where N are stroboscopic counts and T is the time period
of the drive, such that,

O(NT ) = (U†
F)NO(UF)N . (C2)

We then define the discrete Fourier transform of the the
connected autocorrelations averaged over the spectrum as
the spectral function:

S(ω) =
1

D

∑

n

∞
∑

N=−∞

Cn
o (NT )e−iωNT e−α|N|T , (C3)

where we introduce a broadening scale α, which allows us
to define a continuous spectral function that does not suffer
from discreteness of the energy spectrum. In terms of the
spectral decomposition of the Floquet unitary UF, Eq. (C3)
can be simpilfied to,

S(ω) =
1

D

∑

n,m�=m

|Omn|2Ξ, (C4)

where Ξ denotes the summation,

Ξ = 2
∞

∑

N=0

cos(ΦnmN) cos(ωNT )e−αNT − 1, (C5)

Φnm being the phase difference between eigenvalues of UF.
This sum can be exactly evaluated using the cesaro summa-
tion formula and the spectral function assumes the form,

S(ω) ∼
1

D

∑

n,m�=m

|Omn|2
sinh(Δ)

cosh(Δ) − cos(Φnm − ωT )
, (C6)
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Fig. 6 Intensity plot of the matrix elements Imn(T ) = log
[

T −2|〈φm|OA(T )|φn〉|2
]

in the Floquet eigenbasis with L = 16.
a For T = 0.02, the typical ETH profile is observed. b Band-folding without hybridization of the folded states can be seen
for T = 0.75 in the form of a grid-like patter. c Hybridization leads to many-body resonant states that have relatively
higher off-diagonal elements (see bright red spots near the diagonal in the inset) at T = 1.1. d Nearly uniform intensity
profile for T = 5.0 signaling the onset of RMT behavior at all scales

where we have replaced the dimensionless quantity αT by
Δ for notational simplicity. In the limit Δ → 0, the spectral
function can therefore be approximated by,

S(ω) =
1

D

∑

m,n�=m

|〈φm|O|φn〉|2
Δ

Δ2 + 4 sin2(ωT−Φnm

2
)
.

(C7)
In the main text, we choose Δ = 0.1 × ΦH , where ΦH is
the average phase difference Φn n+1. Note that for Δ → 0,
the lorenzian weight dependent on Δ reduces to a periodic
delta function and the spectral function simplifies to,

S(ω) =
1

D

∑

m,n�=m

|〈φm|O|φn〉|2 δ(ωT − Φnm mod 2π).

(C8)
One can also see how the fidelity susceptibility χm of a single
eigenstate as defined in the paper is connected with the
spectral function for the observable O ≡ OA,

χ =
1

D

∑

m,n�=m

4 sin2
(

Φnm

2

)

(

μ2 + 4 sin2
(

Φnm

2

))2 |〈φm|OA(T )|φn〉|2 ,

(C9)

which can be rewritten through the spectral function assum-
ing μ 	 Δ where Eq. (C8) applies as,

χ =
T

2π

∫ 2π/T

0

sin2
(

ωT
2

)

(

μ2 + 4 sin2
(

ωT
2

))2 S(ω)d(ω). (C10)

In the limit μ 
 1 such that we are still in the effec-
tive thermodynamic limit, the expression within the inte-
gral in the above equation (C10) is highly peaked for small
μ, at frequencies such that 2 sin(ωT/2) ∼ μ (i.e., for ωT ∼
2 sin−1

(

μ
2

)

, 2π − 2 sin−1
(

μ
2

)

as ωT ∈ [0, 2π]) and it can
therefore be seen that the average susceptibility scales with
the time-cutoff μ for μ 
 1 as,

χ ∼
S(μ/T )

μ
, (C11)

where we have made use of the fact that S((2π − μ)/T ) =
S(μ/T ).
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Fig. 7 Comparison of the spectral function defined using a Lorentz and Gaussian filter for different values of T

Appendix D: Spectral function with gaussian

filter

In this appendix, we show that the results on spectral func-
tion reported in the main text does not depend upon the
choice of filter used to approximate the delta function. To
this end, we use a Gaussian filter in stead of the Lorentzian
filter used in the main text and compare with the spectral
function obtained using the Lorentz filter. To elaborate, we
use a Gaussian filter of the following form for the spectral
function:

S(ω) =
1

D

∑

m,n�=m

|〈φm|O|φn〉|2 δg(ωT − Φmn), (D1)

where we approximate the delta function (see Ref. [28]) as,

δg(x) =
1 + ϑ3(

x
2
| iΔ2

π
)

1 + ϑ3(0| iΔ2

π
)

∼
∑

λ∈Z

exp

[

−

(

x − 2πλ

2Δ

)2
]

,

(D2)

upto a normalization constant. We choose Δ = 0.1ΦH and
ϑ3(z|τ) is the Jacobi theta function,

ϑ3(z|τ) =
∞

∑

n=−∞

eiπτn2

e2niz. (D3)

In Fig. 7, we compare the plots of the spectral function
using the Lorentz and Gaussian filter in all the relevant
heating regimes. It is straightforward to see that the spectral
functions obtained from the two different filters are almost
identical and have the same qualitative behavior.

Appendix E: Visualization of matrix ele-

ments of the perturbation operator

In Fig. 6, we show the intensity I(T ) of the matrix elements
of the perturbation operator OA(T ), defined as,

Imn(T ) = log

(

|〈φm|OA(T )|φn〉|2

T 2

)

, (E1)

for L = 16. For T < T ′, the matrix elements decay similarly
to that expected from ETH behavior, as shown in Fig. 6a
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for T = 0.02. After band-folding begins above T ′, the folded
states do not immediately hybridize upto T1 as can be seen
from the appearance of grid-like patterns in Fig. 6b with
T = 0.75. On further increasing T beyond T1, hybridization
leads to the emergence of many-body resonant states as can
be seen in the inset of Fig. 6c (bright red spots near the diag-
onal) for T = 1.1. Finally, RMT behavior emerges beyond
T > T2 when hybridization is complete leading to a feature-
less profile of the matrix elements, as shown in Fig. 6d for
T = 5.0 (Fig. 7).

Appendix F: Real time stroboscopic dynam-

ics

In this appendix, we analyze the real time stroboscopic evo-
lution of the local observable OA(T ) correspond to the dif-
ferent regimes of heating in Fig. 3 in the main text. Taking
a discrete Fourier transform of Eq. (C3), we obtain,

Co(N) ≡
1

D

∑

n

Cn
o (NT )e−NΔ =

1

Nmax

∑

ω

S(ω)eiωNT ,

(F1)
where ω = 0, 2π/NmaxT, 4π/NmaxT, . . . , 2π/T with Nmax

being the number of discrete intervals used in the Fourier
transform. In other words, the discrete Fourier trans-
form of the spectral function provides the connected auto-

Fig. 8 Real-time stroboscopic dynamics of the connected
auto-correlation function defined in Eq. (F1) corresponding
to different regimes of heating for L = 18. For T = 0.5
(high driving frequency) and T = 12.0 (low driving fre-
quency), the connected auto-correlation function decays
quickly implying fast thermalization. For T = 1.25 (interme-
diate driving frequency), thermalization is slow as thouless
time becomes comparable to heisenberg time (see Fig. 3).
The inset shows that below T < T ′ ≈ 0.4, the evolu-
tion of the auto-correlation function with NT collapses for
all T < T ′ for different driving frequencies in the high-
frequency regime. This is a consequence of the fact that
the heisenberg time itself depends on T for T < T ′ which
leads to a trivial rescaling of the intrinsic time-scale of the
dynamics

correlation function of the same observable as shown in
Fig. 3 with an overall damping e−NΔ that is negligible for
NΔ 
 1. In Fig. 8, we plot Co(N) as a function of N to show
the evolution of the auto-correlation function in different
heating regimes. The fast thermalization for T < T1 ≈ 1 as
well as for T > T2 ≈ 2 is clearly evident in the form of expo-
nentially decaying auto-correlation function and saturation
after finite Thouless time. However in the transition regime
T = 1.25, the decay is slower as the Thouless time-scale
merges with the Heisenberg scale. We note that for T < T ′,
the bandwidth of the Floquet operator UF decreases with
T , and consequently the Heisenberg time increases linearly
with T in leading order of the high-frequency expansion.
This results in a trivial rescaling of the time-scale of the
dynamics, which in turn results in a slower decay of auto-
correlation function with decreasing T as shown with the
scaled collapse in the inset of Fig. 8.
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