Unleashing CPU Potential for Executing GPU
Programs through Compiler/Runtime Optimizations

Ruobing Han
Georgia Institute of Technology
Atlanta, USA
hanruobing @ gatech.edu

Abstract—Although modern CPUs deliver high performance,
they are often under-utilized in CPU-GPU heterogeneous systems.
Enabling CPUs to execute GPU programs facilitates workload
sharing between CPUs and GPUs, which can increase CPU device
utilization and overall benefit heterogeneous systems.

The flat collapsing transformation represents a state-of-the-
art solution for GPU-to-CPU migration and is widely accepted
in both academic and commercial projects. However, in this
paper, we identify that CPU programs transformed by flat
collapsing transformation are not compatible with standard
CPU compiler optimizations and runtime environments, which
leads to suboptimal performance. Based on the observation, we
propose four compiler/runtime optimizations. These optimizations
complement flat collapsing transformation and help generate high-
performance programs. Our evaluations demonstrate an average
performance improvement of 20.84% over the state-of-the-art
framework on an x86 CPU and 16.10% on an ARM CPU.

I. INTRODUCTION

For the stereotype of CPU-GPU heterogeneous systems,
GPUs are the predominant devices for executing massively
computing applications, while CPUs are primarily required to
provide more accessible options to users. However, it is often
overlooked that CPUs also provide a substantial amount of
computational resources. For example, the latest Intel Gold
6423N [6] and AMD EPYC 9654P [5] CPUs feature 28 and 96
CPU cores, respectively, along with AVX support, providing
up to 6.5 and 10.9 TFLOPS/sec of computational power.
Similarly, ARM-based CPUs like Fujitsu’s A64FX deliver a
peak performance of 5.4 TFLOPS/sec [2]. These CPUs achieve
peak data processing performance at a magnitude similar to that
of NVIDIA A100 GPUs, which offer 19.5 TFLOPS [4]. This
implies that, with full utilization of the performance capabilities,
CPUs might achieve performance comparable to GPUs.

Although CPUs provide a substantial amount of com-
putational resources, they are consistently underutilized in
heterogeneous systems. It is not surprising to find users waiting
for hours to have GPU devices scheduled while many CPUs
remain idle. This observation raises an important question:
"Can CPUs be effectively utilized to run GPU applications?"

GPU programs typically consist of a large number of
lightweight parallel tasks, whereas CPUs are designed to handle
a relatively small number of heavy workloads. Running GPU
programs on CPUs requires transforming programs designed for
the bulk-synchronous parallel model into traditional program-
ming models, which do not support a high number of active

Jisheng Zhao
Georgia Institute of Technology
Atlanta, USA
jisheng.zhao@cc.gatech.edu

Hyesoon Kim
Georgia Institute of Technology
Atlanta, USA
hyesoon@cc.gatech.edu

threads. MCUDA [49] proposes a compiler transformation that
wraps the workload of an entire GPU block and executes it
using a single CPU thread. This transformation, named "flat
collapsing transformation’ in [23], enhances per-
formance compared to directly mapping one GPU thread to
one CPU thread by reducing the overhead of thread context
switching and better utilizing the vector units in CPU cores. An
example of flat collapsing transformation is demonstrated in
Figure 1. The flat collapsing transformation can be implemented
using either a source-to-source translator [9], [49] or low-
level Intermediate Representation (IR) transformation [12],
[21], [23], [40]. We use a CUDA-to-OpenMP example to
demonstrate how flat collapsing transformation aims to utilize
CPU computational resources for executing GPU programs.

CUDA program Transformed CPU program

1 void tiled_reverse(int *d,
intn){ int n, int bid) {
2 _ shared__ int s[BLOCK_SIZE]; t 2 ints[BLOCK_SIZE];
I3 intidx[BLOCK_SIZE];
#pragma omp simd
for (int tid=0; tid<BLOCK_SIZE: tid++) {

1 _ global__void tiled_reverse(int *d,

3 intidx = blockldx.x * BLOCK_SIZE+ & 4.

idx[tid] = bid*BLOCK_SIZE+tid;
threadldx.x; i 5. s[tid] = d[idx[tid]];
4 s[threadldx.x] = d[idx]; }
: #pragma omp simd

: for (int tid=0; tid<BLOCK_SIZE: tid++)
: 6. d[idx[tid]] = s[(n-idx[tid]-1)%BLOCK_SIZE];
6  dlidx] =s[(n-idx-1) % BLOCK_SIZE]; : }
} : 7. void main() {
: #pragma omp parallel for
for (int bid=0; bid<GRID_SIZE; bid++)
tiled_reverse(d, n, bid);

}

5  __syncthreads();

7. void main() {
8. tiled_reverse<<<GRID_SIZE, :
BLOCK_SIZE>>>(d, n); = 8.
)
Fig. 1: An example of a CUDA program and the corresponding

CPU program transformed by flat collapsing transformation.

The workflow for existing GPU-to-CPU solutions [3], [21],
[23], [27], [49] is illustrated by the solid black line in Figure 2.
Initially, GPU programs are transformed into CPU programs
using flat collapsing transformation. These generated CPU
programs are then subjected to standard compiler optimizations.
Finally, runtime libraries that implement GPU APIs (e.g.,
cudaMalloc, cudaMemcpy, kernel launch) with equivalent CPU
functions are linked to produce executable CPU files.

However, in this paper, we highlight that this pipeline
does not effectively utilize the computational potential of
CPUs for two main reasons. First, the CPU programs are
transformed from GPU programs, which are optimized for GPU



anti GPU Program [« tail block
coalescing adaptive sync
flat collapsing
b-|OCk-s|ZE-I----) CPU Program
invariant
compiler optimization
(e.g., 03, Polly)
optimized
CPU Program
linkin GPU runtime library
g (CPU implementation)

| executable file | A

GPU block
dynamic tiling

Fig. 2: The existing GPU-to-CPU migration process is depicted
in black text. We propose four optimizations, highlighted in
green text, which can be integrated into this workflow.

architectures. Some GPU optimizations do not benefit CPU
architectures. Second, the existing pipeline treats transformed
CPU programs as ordinary CPU programs and optimizes them
with standard compiler optimizations. However, CPU programs
transformed by flat collapsing transformation are usually more
complex than manually written CPU programs. Therefore, the
existing compiler optimizations are too general to effectively
optimize these programs.

Based on these observations, we propose four compiler/run-
time optimizations designed to enhance the performance of
transformed CPU programs. These optimizations, which are
compatible with flat collapsing transformation and highlighted
in green in Figure 2, specifically address key inefficiencies.
The anti-coalescing transformation and tail block adaptive
synchronization are compiler transformations applied to GPU
programs, while block size invariant analysis is a transformation
applied to CPU programs. GPU-block dynamic tiling is a
runtime optimization that targets the kernel launch function.

This paper offers several noteworthy contributions:

« Identification of unresolved efficiency challenges in exist-
ing GPU-to-CPU migration solutions.

o Introduction of three compiler optimizations designed to
enhance the performance of generated CPU programs.

o Introduction of a runtime optimization that dynamically
adjusts the workload distribution to optimally align with
CPU computational resources.

« Integration of the proposed optimizations into a state-
of-the-art GPU-to-CPU solution, resulting in significant
performance improvements on both x86 (20.84%) and
ARM CPUs (16.10%).

In this paper, we focus on migrating CUDA applications to
CPUs. However, the proposed optimizations are not limited
to any specific programming languages. Consequently, the
technical contributions are also applicable to other parallel
programming models (e.g., HIP [1], OpenCL [41]) and libraries
(e.g., OCCA [38], Kokkos [S1]).

II. BACKGROUND

A. Flat Collapsing Transformation

GPUs are designed to handle the efficient execution of a large
number of lightweight tasks, while CPUs are optimized for a
smaller quantity of heavy tasks. To reconcile the disparity in
parallelism and workload granularity, MCUDA [49] introduces
a compiler transformation referred to as the flat collapsing
transformation. The transformation aims to migrate GPU
programs to CPUs in an efficient manner. Essentially, the
flat collapsing transformation wraps the workload in a CUDA
block into a CPU function to be executed by a CPU thread.
Figure 1 showcases a CUDA application and the CPU program
transformed by the flat collapsing transformation.

There are several important points to note in this example.
Firstly, all CUDA blocks are transformed into iterations within
a loop in the main function of the transformed CPU program,
with length equals to the grid size, allowing parallelization
across multiple CPU threads. Secondly, the CUDA threads
are also transformed into iterations within loops, with lengths
equivalent to the block size. These loops can be vectorized
using SIMD instructions. We call these loops flat loops in
this paper. Thirdly, the CUDA shared memory variable s is
mapped to CPU thread-local memory. Fourthly, a barrier is
present in the CUDA program (line 5th), causing the flat
collapsing transformation to generate two sequential flat loops
that wrap the CUDA code before (line 3-4th) and after the
barrier (line 6th). Lastly, the local variable idz is extended to
arrays with lengths equal to the CUDA block size, as they are
referenced in both flat loops. This transformation is critical for
maintaining the correctness of flat collapsing transformation,
which is called ’selective replication’” in MCUDA [49]. The
insight is that, after migrating to a CPU program, where a
CPU thread needs to execute a GPU block workload, the CPU
thread should create arrays to store local variables of each
GPU thread in the block.

In general, flat collapsing transformation is a compiler
transformation that groups multiple parallel fine-grained work-
loads into a single coarse-grained task. It reduces the number
of parallel tasks by increasing the workload of each task,
thereby bridging the gap between the number of concurrent
threads required by software developers and the concurrent
cores supported by hardware. Similar transformations are
utilized to improve the runtime of GPU programs [8] or to
support performance portability of SPMD languages on devices
with less parallelism [23], [27], [31]. Thus, we believe the
optimizations proposed in this paper can also be extended for
GPU-to-GPU transformations and projects aimed at SPMD
performance portability.

B. Challenges for Existing Solutions

Although flat collapsing transformation is expected to
generate programs suitable for CPUs, we find that the generated
CPU programs consistently exhibit suboptimal performance.
The low performance stems from two main reasons. First,
the original GPU programs are designed for utilizing GPU



computation resource, which may not perform optimally on
CPU architectures. Second, flat collapsing transformation is not
compatible with existing compiler optimizations. Specifically,
the CPU programs generated by flat collapsing transformation
are too complex to be effectively analyzed and transformed by
standard compiler optimizations. Consequently, these programs
cannot be optimized significantly.

We illustrate a CUDA program and the corresponding
CPU program generated by flat collapsing transformation in
Figure 1. Although the original CUDA program is simple, the
transformed CPU program is more complex: The CPU program
includes indirect memory accesses (lines 5-6th) introduced by
flat collapsing transformation. These indirect memory accesses
bring challenges for compiler optimization, as the compiler
cannot clearly determine memory access dependencies. An
attempt to optimize this code section using LLVM Polly [19],
a popular polyhedral model compiler, results in the warning
message "The array subscript of ’s’ is not affine," preventing
Polly from optimizing this section. Additionally, flat collapsing
transformation generates a significant number of loops where
the length is equal to the CUDA block size. Since the CUDA
block size is typically a runtime variable, these loops are
dynamic' and challenging to optimize because the compiler
has limited knowledge about their properties.

III. PROBLEM STATEMENTS

We provide detailed discussions about the limitations of
existing GPU-to-CPU solutions in this section and introduce
four corresponding optimizations in Section IV.

A. Divergent Memory Access Preferences

GPU and CPU architectures have different memory access
preferences. CUDA optimizes memory bandwidth utilization
by grouping interleaved global memory access among threads
into a single request, a technique known as memory coalescing.
In contrast, CPUs favor sequential memory access patterns to
achieve high spatial locality. Consequently, directly transform-
ing CUDA’s interleaved access pattern into CPU code could
result in poor cache utilization on the CPU. An example that
derived from Hetero-Mark [50] is shown in Listing 1. The
CUDA program contains an interleaved access pattern (line 7th)
to apply global memory coalescing. However, the transformed
CPU program has poor spatial locality (line 20th).

We profile this program on both an NVIDIA GTX TITAN
X GPU and Intel CPUs using three GPU-to-CPU migration
solutions [21], [26], [49]. The comparison of Last-Level-Cache
(LLC) performance, as shown in Table I, reveals that the CPU
programs transformed from CUDA do not utilize the CPU cache
as efficiently as the original programs on NVIDIA GPUs.

'Dynamic loops are loops with unknown number of iterations at compile
time.

2The GPU hit rate is not split into load and store, as the profiling toolkit
does not distinguish between load and store hit rates.

GPU-to-CPU solutions

Metrics NV-GPU

DPC++ MCUDA CuPBoP
#of LLC1d 4,578,831 9,086,165 11,034,617 8,899,486
#of LLC st 4,179,010 6,989,671 414,866 637,932
LLC 1d Hit 90.83%? 72.2% 63.4% 72.6%
LLC st Hit 90.83%? 76.1% 76.5% 83.7%

TABLE I: The profiling result for the CUDA program and
CPU programs transformed by three CUDA-to-CPU solutions.

B. Flat Loop Optimization

All transformed CPU programs are loop-intensive because
flat collapsing transformation introduces flat loops to wrap the
original CUDA code. Therefore, optimizing these flat loops
is crucial. Each flat loop has a uniform length equivalent to
the CUDA block size, which is typically a runtime variable.
Consequently, all flat loops are classified as dynamic loops.

There are two common strategies for loop optimization: loop
vectorization and reduction of the loop body. However, both
approaches face significant challenges. Dynamic flat loops
present greater complexity for vectorization compared to static
loops. Similarly, optimizing the loop body is challenging due to
the great amount of instructions dependent on runtime variables,
which hinders effective analysis and optimization. Moreover,
flat collapsing transformation often introduces indirect memory
access, which poses challenges for memory access dependency
analysis and impedes the application of compiler optimizations.

It is important to note that even for CUDA programs that
use a constant value as the block size, it is still challenging
for flat collapsing transformation to generate static loops. This
limitation arises because flat collapsing transformation is a
module-level transformation, which cannot utilize cross-module
information. A CUDA program contains two modules: host
and kernel, executed on the CPU and GPU respectively. The
block size value is specified in the host module. The kernel
module gets the block size by reading from NVIDIA GPU
intrinsic registers at runtime. Thus, it is challenging for flat
collapsing transformation to retrieve the static block size across
the module boundary since it is a module-level transformation.

C. Uneven Workload Configuration

The third challenge arises from the mapping strategy
employed by flat collapsing transformation, which assigns
a GPU block to a CPU thread. From the hardware perspective,
this approach maps a GPU streaming multiprocessor (SM) to
a CPU core. Workloads optimized for a GPU SM may not
perform equally well on a CPU core. For instance, an SM in
the NVIDIA A100 GPU is equipped with 192KB of L1 cache
and shared memory, and it provides a computational capacity
of 180 GFLOPs. In contrast, a core in the Intel 6424N CPU
comes with a 2MB L2 cache and has a computational capacity
of 230 GFLOPs. Consequently, direct mapping of a CUDA
block to a CPU thread can lead to suboptimal utilization of
the CPU’s computational resources.



IV. OPTIMIZATIONS

To address the issues outlined in Section III, we propose four
compiler/runtime optimizations: In response to the disparities
in memory access patterns, we introduce anti-coalescing trans-
formation, a novel GPU-to-GPU transformation that eliminates
the negative effects of memory coalescing. We propose block
size invariant analysis and tail block adaptive synchronization
to tackle the challenges associated with flat loops. Furthermore,
to effectively cater to the specific requirements of CPU
architectures regarding workload configuration, we propose
GPU-block dynamic tiling, which redistributes workloads to
ensure optimal utilization of CPU resources.

These optimizations can be integrated into the existing
GPU-to-CPU workflow (highlighted in green in Figure 2).
The anti-coalescing transformation and tail block adaptive
synchronization are GPU-to-GPU transformations, while block
size invariant analysis optimizes the transformed CPU programs.
GPU-block dynamic tiling is a runtime optimization that targets
the kernel launch function within the runtime library.

The CPU program transformed by flat collapsing transforma-
tion (the bottom part of Listing 1) contains nested loops. The
outer loop is generated by the flat collapsing transformation
(refer to flat_loop), and the inner loop is the loop that
contains the global memory coalescing in the original CUDA
program (refer to original_loop). The high locality can be
achieved by exchanging the order of outer/inner loops, as the
memory access index (inder) is linearly increased with the
flat_loop’s induction variable (tid). However, since there is
a data dependency (tid->index) between these loops, the loop
reordering cannot be applied.

We attempt to use LLVM optimization and the Polly
compiler [19] to optimize the cpu_Histogram function. The
LLVM loop-interchange optimization reports a dependency
between the flat loop and the original loop and cannot
transform the nested loops. Polly detects indirect memory
access when accessing the priv_hist array and leaves the
code section unchanged. This evaluation demonstrates the
challenges existing compiler optimizations face when analyzing
programs generated by flat collapsing transformation.

// original CUDA program

2 __global__ void cuda_Histogram(uint32_t =xpixels,

3 // CPU program transformed by the

uint32_t num_pixels) {
uint32_t priv_hist[256];
uint32_t gsize = blockDim.x % gridDim.x;
uint32_t index blockDim.x * blockIdx.x+threadIdx.
while (index < num_pixels) {
uint32_t color pixels[index];
priv_hist[color]++;
index += gsize;

}

X7

}
flat collapsing
void cpu_Histogram(uint32_t xpixels, uint32_t
num_pixels) {
for (int tid 0; tid < BLOCK_SIZE; tid++) {
uint32_t priv_hist[256];
uint32_t gsize = BLOCK_SIZE x GRID_SIZE;
uint32_t index BLOCK_SIZE » BLOCK_ID + tid;
while (index < num_pixels) {
uint32_t color pixels[index];
priv_hist[color]++;
index += gsize;

}

Listing 1: The Histogram benchmark in Hetero-Mark.

A. Anti-Coalescing Transformation

1) Insight: As noted in Section III, one of the most common ”

CUDA memory access patterns, global memory coalescing,

1 // incorrect CUDA program
__global__ void transformed_cuda_Histogram(uint32_t =
pixels, uint32_t num_pixels) {
uint32_t priv_hist[256];
uint32_t gsize blockDim.x * gridDim.x;

5 uint32_t index = blockDim.x * blockIdx.x+threadIdx.x;
6 while (index < num_pixels) {
7 uint32_t color = pixels[index];
8 priv_hist[color]++;
9 index += gsize;
10 __syncthreads(); // incorrect barrier usage, as not
all threads can access it
11 }
12}
13 // correct CUDA program, generated by the anti-
coale ng transformation
14 __global__ void transformed_cuda_Histogram(uint32_t =

pixels, uint32_t num_pixels) {

uint32_t priv_hist[256];

uint32_t gsize blockDim.x » gridDim.x;

uint32_t index blockDim.x = blockIdx.x+threadIdx.
X;

__shared__ bool has_activated_thread;

bool activated true;

20 do {

has_activated_thread false;
22 __syncthreads () ;
activated &= (index < num_pixels);
has_activated_thread |= activated;
25 if (activated) {
uint32_t color pixels[index];
27 priv_hist[color]++;
index += gsize;

29 }
30 } while
31}

(has_activated_thread);

can lead to poor performance in transformed CPU programs
This is because transformed CPU programs exhibit low spatial
locality. An example of global memory access coalescing is
shown in Listing 1, where the transformed CPU program has
a large stride (gsize) between each memory access of array
pixels, resulting in the low spatial locality. To address the
slowdown caused by the global memory coalescing, we propose
the anti-coalescing transformation, a transformation applied
before the flat collapsing transformation (i.e. operates at CUDA
program). This policy makes the anti-coalescing transformation
effectively circumvents the complications arising from flat
collapsing transformation.

Listing 2: The incorrect and correct solutions for inserting a
barrier into the loop of the CUDA program in Listing 1.

Instead of trying to reordering the generated loops, the anti-
coalescing transformation applies transformation on the CUDA
program to guide the flat collapsing transformation directly
generate flat loop inside original loop.

The anti-coalescing transformation utilizes an internal prop-
erty of the flat collapsing transformation. Specifically, as
discussed in [23], [27], when there is a barrier inside the
original loop, the flat collapsing transformation will then
generate the flat loop inside the original loop. Thus, we could



insert a barrier in the original loop to make the flat loop
the inner loop in the transformed CPU program. However,
directly inserting a barrier inside the original loop may generate
incorrect CUDA programs. For example, at the top of Listing 2,
the inserted barriers may not be reached by all threads.
In CUDA, it results in undefined behavior. Thus, the anti-
coalescing transformation has to apply extra transformations to
transform the original loop to a do-while loop with auxiliary
instructions to maintain correctness. The CUDA program
transformed by the anti-coalescing transformation is shown
at the bottom of Listing 2. The transformed CPU program
is shown in Listing 3: with a barrier inside the transformed
original loop, the flat collapsing transformation generates the
flat loop (line 13th) inside the original loop (line 11th). In
this order, the array index index[tid] (line 17th) is linearly
increased with the induction variable (tid) of the inner loop,
which achieves high spatial locality.

2) Implementation: The anti-coalescing transformation is a
pattern matching and rewriting method: it first scans the CUDA
program to identify code sections that contain global memory
coalescing patterns. Then, it applies compiler transformations
to these sections.

I bool has_activated_thread;
2 void cpu_Histogram(uint32_t *pixels, uint32_t
num_pixels) {

3 uint32_t priv_hist [BLOCK_SIZE] [256];

) uint32_t gsize = BLOCK_SIZE * GRID_SIZE;

5 uint32_t index [BLOCK_SIZE];

6 for (int tid = 0; tid < BLOCK_SIZE; tid++)

index[tid] = BLOCK_SIZE % BLOCK_ID + tid;

8 bool activated[BLOCK_SIZE];

9 for (int tid = 0; tid < BLOCK_SIZE;
10 activated[tid] = true;

11 do {

12 has_activated_thread = false;

13 for (int tid = 0; tid < BLOCK_SIZE; tid++) {
14 activated[tid] &= (index[tid] < num_pixels);
15 has_activated_thread |= activated[tid];

16 if (activated[tid]) {

17 uint32_t color = pixels[index[tid]];

18 priv_hist[tid] [color]++;

19 index[tid] += gsize;
20 }
21 }

} while

tid++)

(has_activated_thread);

3}

Listing 3: The CPU program generated from the bottom of
Listing 2, which achieves high spatial locality.

Detecting global memory coalescing: Although there are
multiple ways to implement global memory coalescing, after
analyzing CUDA programs in real applications, we have
identified a common code pattern that satisfies three conditions:

1) global memory coalescing is always implemented in loop
constructs;

2) the stride value in that loop has a linear relationship with
the GPU block dimension value;

3) there is a global memory access inside the loop, and the
index used to access has a linear relationship with the
loop induction variable and the thread index.

Our compiler analysis takes the loops in the CUDA function

to check if they satisfy the 2nd and 3rd conditions listed above.

For example, the code in Figure 3 contains a global memory
coalescing pattern and satisfies all three conditions. It includes

a for-loop construct (condition 1), and its stride (gsize) has
a linear relationship with the block dimension (condition 2).
Additionally, there is a global memory access inside the loop,
and the index has a linear relationship with the loop induction
variable and thread index (condition 3). Therefore, the anti-
coalescing transformation identifies this code section as a global
memory coalescing code section.

uint32_t priv_hist[256];

uint32_t gsize = blockDim.x * gridDim.x;

uint32_t index = blockDim.x * blockIdx.x + threadIdx.x;

while (index < num_pixels) { ——> cond1: loop structure
uint32_t color = pixels[index];
priv_hist[color]++;
index += gsize; cond3: induction variable

}

cond2: stride

Fig. 3: The code sections that satisfy all conditions are identified
as global memory coalescing code sections.

Applying the transformation: In the second phase, the anti-
coalescing transformation applies code transformation to those
detected code sections, i.e. loop nest. The actual transformation
is to visit the loop nest in a top-down manner and rewrite
each level of the loop by substituting loop-iterator related
operations and loop body into a new loop template. As shown
in Figure 4, the anti-coalescing transformation extracts loop-
body (red), loop-cond (blue), loop-initialization (green), and
loop stride (orange) information from the original loop structure,
and fills them into a template to get the new loop. The
template provides auxiliary variables and related operations that
record whether a CUDA thread is still activated (activated)
and whether there are any activated threads in the CUDA
block (has_activated_thread). The former is required for
each thread, and thus, is defined as a CUDA local variable,
while the latter is shared within a block and defined as a CUDA
shared variable. To guide the flat collapsing transformation
generates the flat loop as the inner loop, a barrier operation
is applied before executing the original loop body.

loop_prehead:
int iter = init_iter(threadld);

loop_prehead:
int iter = init_iter(threadld);
__shared__ bool has_activated_thread;
bool activated = true;
loop_entry:
has_activated_thread = false;
__synchthreads();
activated &=
(iter < LOOP_BOUNDARY);

loop_entry:

if NOT (iter < LOOP_BOUNDARY)

goto loop_exit; has_activated_thread |= activated;
if (activated) {
LOOP_BODY; LOOP_BODY
goto loop_entry; } a
if (has_activated_thread)
goto loop_entry;
loop_exit: loop_exit:
Original GPU program Transformed GPU program

Fig. 4: The anti-coalescing transformation rewrites the original
loop by extracting its iterator information and loop body, filling
them into a template to construct the new loop.



3) Proof: In this section, we provide a theoretical proof of
the correctness of anti-coalescing transformation. To guarantee
correctness, the transformed program must preserve identical
semantics in terms of data access. Considering CUDA’s SPMD
model, the correctness of data access is assured by ensuring
the accuracy of the workload distribution. Specifically, anti-
coalescing transformation applies transformations only to loops
that contain global memory coalescing. Therefore, the most
critical aspect is to ensure that the loop bodies are executed
the same number of times and that the induction variables
maintain original values across all iterations.

For the original loop (left of Figure 4), each thread may
have a different loop length. For thread ¢, the loop length is

LOOP_BOUNDARY — im’t_iter(t)—‘

iginal_length =
original_teng { stride_value

ey

In the transformed loop (right of Figure 4), let iter! denote

the value of the iter variable for thread ¢ in iteration 7. Then,
the following relationship can be established:

@)
3

itery, = init_iter(t)

iter! = iter! | + stride_value

In the transformed loop, the original loop body resides within
the generated do-while loops and is wrapped by an if-statement
with the conditional variable activated. The do-while loop
is governed by the shared variable has_activated_thread,
indicating that all threads possess the same loop length. Let
has_activated_thread; represent the value of the shared
variable has_activated_thread in the 7 th iteration, and
activated! denote the value of activated in the 7 th iteration
for thread ¢. The following relationships are then established:

n—1
has_activated_thread; = \/ activated! 4
t=0
activated; = |\ (iter!, < LOOP_BOUNDARY)  (5)

p=0

Combing Eq 4, Eq 5 and Eq 3, we get Eq 6.

LOOP_BOUNDARY —init_iter(t)
stride_value

true, ifi< [

activated: =
false,

otherwise
(0)
We understand that for each iteration ¢, the loop body
is executed only when both has_activated_thread; and
activatedﬁ are true. From Eq 4, it is evident that when
activatedﬁ is true, has_activated_thread; is invariably true
as well. Additionally, according to Eq 6, the activated variable
remains true for the first [LOOP—BO;I%E?&EQi“it-i‘er(t)
Consequently, the loop body in the transformed loop is executed
the same number of times as in the original loops (Eq 1).

iterations.

B. Flat Loop Optimization

All transformed CPU programs are loop intensive. As
illustrated in Figure 1, flat collapsing transformation typically
generates a significant number of flat loops. Each iteration
within these loops represents a CUDA thread. These loops
have a desirable characteristic — they are parallelizable. Since
GPU programs generally lack dependencies among threads, the
corresponding transformed flat loops should similarly exhibit
no inter-iteration dependencies. Therefore, optimizing these
flat loops is crucial for achieving high performance. While
loop optimization is a well-explored area for traditional CPU
programs, our evaluation reveals that modern compilers’ loop
optimization strategies are often too generic and conservative
for these specific flat loops. In response, we propose two
compiler transformations that convert the programs into formats
that enable more compiler optimizations.

1) Block Size Invariant Analysis: All flat loops have the GPU
block size as their length. The block size is a variable initialized
in the host program and passed to the kernel program during
kernel launch. Since the host and kernel programs are distinct
modules that do not share information during compilation, flat
collapsing transformation cannot access the block size from the
host program while transforming the kernel program. Therefore,
flat collapsing transformation makes GPU block size a runtime
variable. Consequently, all flat loops are dynamic loops, which
are difficult to optimize.

Another critical observation is that, in real-world GPU
applications, block sizes are often determinable through static
analysis. Developers commonly choose constant block sizes
for two main reasons. First, it facilitates efficient utilization
of shared memory and synchronization within a CUDA SM.
Second, GPUs traditionally impose a limit on the maximum
number of threads per block to align with hardware constraints.

Based on these observations, we propose block size invariant
analysis, which analyzes the host program and utilizes the
results to optimize the kernel program, thereby converting
dynamic loops to static loops. The block size invariant analysis
represents an inter-module optimization, which is challenging
to implement within modern compiler infrastructures.

The block size invariant analysis analyzes the original GPU
program and applies transformations to the CPU program.
Specifically, it analyzes kernel launch instructions in CUDA
host programs to determine block sizes for a CUDA kernel fy.
It then generates a wrapper function k,, that contains multiple
versions of fi’s body, each tailored to different block sizes.
The block size invariant analysis also replaces the original call
sites of fj with k,,. The process is illustrated in Figure 5.

The block size invariant analysis initially applies a compiler
analysis that constructs pointer alias information and a call
graph. It then performs inter-procedural constant propagation,
which helps identify constant block sizes from the host
programs and passes these to the kernel programs. The block
size invariant analysis subsequently synthesizes a wrapper
function composed of several versions of the kernel function.
This is achieved by substituting the runtime block size variable
with constants detected during the analysis phase. Ultimately,



GPU kernel program

__global__ kernel(/*args*/){
FUNC_BODY;

GPU host program

kernel<<<GRID, 64>>>(/*args*/);
kernel<<<GRID, 128>>>(/*args*/);

}

‘ Block Size Invariant Analysis

void wrapper_kernel(int block_size, /*args*/){
switch (block_size) {

case 64:
for (int tid = 0; tid < 64; tid++) FUNC_BODY_64; break;
case 128:
for (int tid = 0; tid < 128; tid++) FUNC_BODY_128; break;
default:
for (int tid = @; tid < block_size; tid++) FUNC_BODY;
} ’ CPU wrapper function

Fig. 5: Wrapper function generation.

the original call sites are modified by replacing the kernel
function with this wrapper function.

The block size invariant analysis always maintains correct-
ness, even in cases where the block size cannot be analyzed
at compile time. As demonstrated in Figure 5, the generated
switch instruction contains a default branch for cases where the
block size cannot be predicted. In such cases, the block size
will be a runtime variable, and the original program generated
by flat collapsing transformation will be executed.

__global__ void k1(...) {
int gid = bid*bdim-+tid;
__global_void ki(...){ 'fiﬁ;gkldﬁ)x"NOCKD'm'X'1 X
int gid = bid*bdim-+tid; tail outigidj=in[gid];
Il only the last block block syncthread’s()'
pontepe e el
if (gid < sync i
out[gid]=in[gid]; omslslr?(]:t;:lga'?; 0;
y—
GPUprogram _ _| _______L S |
i flat flat
CPU program VY collapsin ycollapsing

void k1_cpu(...) {
for(int tid=0;tid<B_SIZE;tid++){
int gid=B_ID*B_SIZE+tid;

void k1_cpu(...) {
if (B==B_SIZE - 1)
for(int tid=0;tid<B_SIZE;tid++){

if (gid<N) int gid = B_ID*B_SIZE+tid;
/I masked Id/st required if (gid < N)
out[gid]=in[gid]; out[gid]=in[gid];
}
} else

for(int tid=0;tid<B_SIZE;tid++){
int gid = B_ID*B_SIZE+tid;
/I masked Id/st NOT required
out[gid]=in[gid];

}

}

Fig. 6: An example of tail block adaptive synchronization.

2) Tail Block Adaptive Synchronization: GPU programs
exhibit parallelism at two levels: grid and block. Consequently,
tail blocks are commonly required to manage edge cases, as
illustrated at the top-left of Figure 6. When the block size is
not a divisor of NN, certain threads in the last block should
not activate, necessitating an if-statement branch to filter out
these inactive threads. However, this conditional branch is
also applied to other blocks. In the transformed CPU program,
shown at the bottom-left, masked load/store operations are
required when vectorizing these flat loops. For CPUs that have

no or limited support for masked instructions, this will hinder
the utilization of SIMD instructions.

Based on the observation, we propose tail block adaptive
synchronization. Similar to block size invariant analysis, it
is a cross-module analysis. It analyzes the grid/block size
information from the host program and uses this information
to detect condition statements in the kernel program that only
diverge at the tail block. For example, in the top-left CUDA
program in Figure 6, the condition i f(gid < N) will be true
for all blocks except the tail block. Thus, the if statement can
be eliminated in these blocks.

The tail block adaptive synchronization is applied to the
CUDA program, resulting in the modified CUDA program
(top-right) that retains the if-statement only in the tail block,
while eliminating it from all other blocks. Consequently, the
transformed CPU programs, depicted at the bottom-right, have
a reduced requirement for masked load/store operations. For
those architectures that do not support masked load/store
instructions, the tail block adaptive synchronization brings
higher performance.

It is important to note that existing compiler optimiza-
tions cannot achieve the same transformation. For compiler
optimizations designed for GPU execution, this kind of
transformation (from Figure 6 top-left to top-right) will not
achieve any speedup on GPU execution since it introduces
extra synchronization and does not decrease the total number
of if-statements for each thread. Similarly, CPU optimizations
(e.g., loop peeling, loop unswitching) cannot translate the CPU
program from bottom-left to bottom-right in Figure 6 either.
This is because the branch condition depends not only on
the loop induction variable (tid), but also on the block size
and grid size, which are runtime variables passed from the
host module. By analyzing host programs, tail block adaptive
synchronization can apply code transformations that cannot be
done by existing compiler optimizations.

C. GPU-Block Dynamic Tiling

1) Insight: As introduced in Section III-C, directly mapping
CUDA blocks to CPU threads often yields suboptimal results.
This is because, from the hardware perspective, GPU SMs and
CPU cores have different capacities.

To mitigate the mismatch, we propose GPU-block dynamic
tiling, enabling runtime redistribution of the CUDA workload
across CPU cores to accommodate architectural differences
and improve computational efficiency. Instead of mapping a
single GPU block to a CPU thread, the GPU-block dynamic
tiling maps N GPU blocks to a CPU thread. The optimal
N depends on both the characteristics of the CUDA kernels
and the capacity of the CPU. The GPU-block dynamic tiling
initially tiles GPU blocks such that the total number of tiled
blocks matches the number of CPU cores, with the tiled block
size equal to nz:;i;iiiefxg;jcg—iiiis. This approach ensures full
CPU utilization and avoids unnecessary context switches as
the number of thread is same as the number of CPU cores.

Furthermore, we find that for some CUDA programs,
particularly those with lightweight kernels, further tiling




the GPU blocks can enhance performance. This seemingly
counterintuitive phenomenon arises from the fact that additional
tiling, although it does not utilize all CPU cores, reduces the
overhead associated with CPU synchronization. The execution
of lightweight kernels primarily suffers high CPU synchroniza-
tion overhead; hence any reduction in this aspect can improve
overall performance. Additionally, further tiling of GPU blocks
enables more effective use of CPU computation resources, such
as increasing cache locality by aggregating more CUDA blocks
be executed by the same CPU cores.

Based on the observation, we propose GPU-block dynamic
tiling to dynamically adjust the tile size. This optimization is
motivated by the observation that for most CUDA programs, the
same kernel is launched multiple times with similar workloads,
e.g., the same kernels are launched iteratively to process
different batches in batch processing programs. GPU-block
dynamic tiling is a hill-climbing-like approach: it iteratively
increases the tile size and measures the achieved speedup for
kernel execution until no further performance improvement is
observed. Therefore, this dynamic approach provides a more
efficient mapping of CUDA blocks onto CPU cores, particularly
for lightweight kernels. Compared with a normal kernel launch,
the tuning process only includes extra simple calculations
and time measurements, resulting in negligible overhead. In
our evaluation, we include the tuning overhead in the kernel
execution time to demonstrate the overall runtime improvement.

2) Implementation: The GPU-block dynamic tiling is inte-
grated into the kernel launch function as a runtime optimization.
Upon kernel launch, the optimization first determines if the
kernel has been executed previously. If not, the tiled block
size is set to ni;i‘i;fi efng?fg*izis, which matches the number
of CPU cores. Otherwise, if the kernel has been executed
before, the method doubles the last tiled block size to further
grouping the blocks into CPU cores. The execution time with
the new tile size is then measured and compared with the
runtime of previous tile size. If the current tile size exhibits
superior efficiency, the optimal solution is updated accordingly.
Conversely, the tile size is set back to the previous one and
remains invariant for subsequent kernel launches.

An example of the GPU-block dynamic tiling process is
demonstrated in Figure 7. For a GPU kernel with 128 blocks,
when executed on a 4-core CPU, at the first launch, GPU-block
dynamic tiling assigns blocks to four threads to fully utilize
all CPU cores. At the second launch, GPU-block dynamic
tiling tries to double the tile size. Thus, only two threads are
required, each executing 64 blocks. After execution, GPU-
block dynamic tiling detects a speedup compared to the first
iteration. Therefore, it tries to further increase the tile size in
the third kernel launch but detects a slowdown. Consequently,
GPU-block dynamic tiling rolls back to the best-evaluated tile
size for all remaining kernel launches.

D. Scope of Proposed Optimizations

We summarize the scope of GPU programs that benefit from
each proposed optimization: anti-coalescing transformation is
used to optimize GPU kernels that contain global memory

for(iter=0;iter<100;iter++) {

kernel<<<128, block>>>(...)

}

thread0 thread1 thread2 thread 3
set tiling size to block: block: block: block: 1st
use all threads 0-31 32-63 64-95 96-127
further tiling, and |  block: block:
detect speedup | 0-63 64107 || unused || unused | |2nd
further tiling, and 5
;e,ecet’ s’,gfd:xn g|°102k7 unused || unused || unused ||3rd
stop tuning, and R .
keep use the s 23EE unused unused || 4th
optimal tiling size 0-63 64-127

iterations

Fig. 7: The process of GPU-block dynamic tiling.

coalescing code sections; block size invariant analysis is
suitable for GPU programs whose block sizes are static values
in host programs; tail block adaptive synchronization can be
used to optimize GPU kernels that contain branch instructions
which diverge only for the last block; GPU-block dynamic
tiling is a runtime optimization and requires that kernels are
launched multiple times with similar workloads.

V. EVALUATION

To illustrate the compatibility of the proposed optimiza-
tions with flat collapsing transformation, we integrate these
optimizations into CuPBoP [21], [22] (commit: fd5681), a GPU-
to-CPU framework that utilizes flat collapsing transformation.
To execute CUDA source code on CPUs, the source code
is first compiled to LLVM IR. Then, the proposed compiler
optimizations and flat collapsing transformation are applied
as LLVM-IR transformations. The transformed IR is finally
compiled to CPU executable files.

Additionally, two other GPU-to-CPU solution, DPC++ [26]
(version 2024.0.2) and MCUDA [49] (version 1.0.1), are used
as the baselines.

Two platforms are utilized for evaluation: one is equipped
with two Intel Gold 6226R CPUs (x86), and the other features
a single ARM A64FX CPU (AArch64). To avoid randomness
in runtime evaluation, we run each evaluation 7 times and
report the median as the final result.

We use benchmarks from different areas: Parboil [48], Ro-
dinia [10], and Hetero-mark [50] offer CUDA implementations
of conventional HPC applications. Polybench [18] comprises
linear algebra operations implemented in various languages.
We do not evaluate all applications in these benchmarks, since
some applications are not supported by DPC++, CuPBoP and
MCUDA: MCUDA does not support C++ syntax, dynamic
shared memory, or using integer types for grid/block sizes.
Therefore, for almost all benchmarks, we must apply manual
preprocessing and post-processing to the source code, resulting
in a significant workload. Similarly, DPC++ and CuPBoP do
not support texture memory and atomic instructions. In general,



these GPU-to-CPU solutions are error-prone; therefore, we only
evaluate CUDA benchmarks that can be successfully migrated.

For all evaluations, we apply compiler O3 pipeline to the
transformed CPU programs.

We use CuPBoP as the baseline, and demonstrate the runtime
improvement achieved by applying all proposed optimizations
in Figure 8. While all optimizations are applied simultaneously,
it is observed that different applications experience varying
degrees of speed-up from each optimization. Consequently,
applications are categorized based on the optimization that
delivers the most significant impact on runtime. For the x86
(Figure 8a), out of all 16 applications, 4 demonstrate a notable
speed-up due to anti-coalescing transformation, 9 due to block
size invariant analysis, and 3 owing to GPU-block dynamic
tiling. On average, the proposed optimizations contribute to a
20.84% speed-up. Analyzing each optimization individually,
anti-coalescing transformation contributes to a 24.46% speed-up
for applications that benefit from it, while block size invariant
analysis and GPU-block dynamic tiling result in speed-ups of
14.18% and 53.46%, respectively. Since x86 supports masked
1d/st, applying tail block adaptive synchronization does not
yield significant improvement.

A similar trend is observed for ARM CPUs, as depicted in
Figure 8b. Since ARM CPUs do not support masked load/store,
four applications benefit from tail block adaptive synchro-
nization, which can be optimized using SIMD instructions to
achieve a speed-up of 25.23%. The cumulative effect of all
optimizations results in a 16.10% speed-up.

Comparing the runtime with other GPU-to-CPU solutions
(Figure 9), our solution achieves the highest performance across
all benchmarks, indicating that the observed speed-up from the
proposed optimizations is not due to potential implementation
drawbacks in CuPBoP. Our solution is 47.39%, 51.46%, 20.84%
faster than MCUDA, DPC++, and CuPBoP on average.

In the following sections, we evaluate the effect of each
optimization individually. The anti-coalescing transformation,
block size invariant analysis, and GPU-block dynamic tiling
optimizations are evaluated using the Intel CPU, which offers
mature profiling toolkits. The tail block adaptive synchroniza-
tion is assessed on the ARM CPU which does not support
masked load/store operations.

A. Anti-Coalescing Transformation

We evaluate the effectiveness of anti-coalescing transfor-
mation on five CUDA kernels that leverage global memory
coalescing. The performance of the transformed CPU kernels,
both with and without anti-coalescing transformation, is com-
pared in Figure 10. The results demonstrate that anti-coalescing
transformation significantly reduces the kernel execution time
for all kernels. This reduction is attributable to the improved
cache locality, as evidenced by the decrease in the number of
LLC misses (middle of Figure 10). It is important to recognize
that the anti-coalescing transformation introduces extra branch
instructions in the transformed code. To assess this overhead,
we present the results at the bottom of Figure 10. Despite the

anti ! block T Dblock ]
—coalescing | invariant ! tiling !
701 dominant | dominant | domingnt]
1 1 1
60 1 i i i
1 1 1
1 1 1
—_ 1 1 1
g 50 4 ! = m | 1
2 i i i
3 40 : : :
[0} 1 1 1
g 1 1 1
& 301 i i i
1 1 1
1 1 1
20 i i i
1 1 1
1 1 1
10 H H: : :H
1 1 1
o L NI IN Bliee B8 BB
- 0 0 & = ¥ > >0 0 v o =
ESgfFEEeEzzE58833
3% %% "888¢% 3
T 88 g 2
Q
(a) Intel x86 CPU evaluation.
anti ! block ! tall 1 Dblock 7
coalescing ! invariant ! block I tiing |!
60 dominant ! dominant ! dominant ! dominant!
i i i i
501 i i | |
1 1 1 1
3 i i i i
) ] I I 1 ]
g 1 : : : :
3 ] ] ] ]
el 1 1 1 1
g 30 | | : :
(=N 1 1 1 1
w 1 1 1 1
1 1 1 1
20 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
101 i i i i
H C1lle | |
MR R R RO R AR H
2 g © © & S 5 % > >0 0 0 x =
ELgTEEEREEZEE 888
%% % 78888 z
T R Az Z &

(b) ARM AArch64 CPU evaluation.

Fig. 8: The speed-up achieved by the proposed optimizations.
Although all four optimizations are applied concurrently,
programs exhibit varied improvements from each. Consequently,
programs are categorized based on the optimization that yields
the most significant speed-up.

extra branch instructions, the overhead is negligible compared
to the achieved runtime improvement.

In addition to enhanced cache utilization, we also observe
that the CPU program optimized by anti-coalescing trans-
formation provides more opportunities for leveraging SIMD
instructions, as illustrated in Table II. This is due to the fact that
the optimized programs’ inner loops access memory addresses
sequentially, a pattern that compilers are more likely to optimize
through vectorization transformations. Nevertheless, the most
significant speed-up is attributed to improved cache utilization.
When evaluating with loop-vectorization settings turned off,
all five applications still achieve the same speed-up.

B. Block Size Invariant Analysis

The block size invariant analysis enables the generation
of flat loops with constant lengths and loop bodies with
constant block sizes, which are more amenable to optimization
by standard compiler techniques. The block size invariant
analysis achieves a significant speed-up (over 30%) for



B MCUDA
[ DPC++
[ CuPBoP
[ Our solution

10t n

- Log Scale

Execution Time (sec)
)

107t

|

Fig. 9: The runtime result comparision with three CUDA-to-
CPU solutions: DPC++(commercial), MCUDA (academic), and
CuPBoP (academic).

Hist
Col2im
sad 8
sad_16
Hotspot
NW

2MM

ADI
SYRK
2DCONV
3DCONV
JACOB2D
JACOB1D

w 10% 3

E

o w/o anti

.E 103 4 . w/ anti

c

2 - .

§ 10° 4

o

E 48]

s 1o

—

& _ A 'm'm 'm
E 101 |

u

c

s 2

S [] 1
# |

hist Col2im sad_8 sad_16 vecadd

Fig. 10: The runtime, number of LLC misses and executed
branch instructions on transformed CPU programs.

App. Anti AVX Instructions
128 256 512
Hist w/ 190,063,921 0 93,068,672
w/o 190,067,557 0 13,483,904
Col2im w/ 22,884,123,056 11,475,615,858 23,085,449,918
w/o 0 0 0
Sad 8 w/ 33,554,561 4,194,320 22,020,182
- w/o 0 0 0
w/ 5 16 1,048,620
Sad_16 ), 1 0 3
Vecadd w/ 213,961,856 58,722,304 71,574,784
w/o 0 0 0

TABLE II: Number of executed AVX instructions with and
without anti-coalescing transformation.

2DCONYV, 3DCONYV, JACOBI, and JACOB2D applications,
as it enables loop vectorization to generate programs that
utilize SIMD instructions effectively. All these applications
employ CUDA blocks with two dimensions. Since flat col-
lapsing transformation generates a single for-loop to sim-
ulate all threads, it incurs additional instructions such as
threadldz.y = tid%block_size.y to calculate the thread
index in all dimensions. These instructions are associated
with DIV and REM operations. For the LLVM compiler, its
cost function is affected by these instructions, leading to an
estimated overhead for vectorization exceeds that of the scalar
version, thereby preventing the application of loop vectorization
to these programs. With block size invariant analysis, the block
size variables are replaced with constants. Notably, as most
block size values are powers of two, these expensive DIV/REM
operators can be replaced by SHIFT and AND operators.
Consequently, the compiler opts to apply vectorization on
the transformed programs, thereby enhancing the utilization
of SIMD instructions. The utilization of AVX instructions is
documented in Table III.

App. invariant AVX Instructions
128 256 512
2DCONV w/ 23,134,208 0 78,249,984
w/o 0 0 0
3DCONV w/ 28,285,440 0 102,737,920
w/o 0 0 0
JACOBI1D w/ 41,120,000 30,720,000 100,800,000
w/o 0 0 0
JACOB2D w/ 5,200,000 0 26,880,000
w/o 0 0 0

TABLE III: The number of executed AVX instructions with-
/without the block size invariant analysis.

In addition to loop vectorization, the constant block size
further facilitates other compiler optimizations, including con-
stant propagation and constant folding. As a result, applications
not optimized by loop vectorization still attain improvements.
Owing to the ubiquity of flat loops and instructions that utilize
block size variables as operands in the transformed CPU
programs, almost all programs benefit from block size invariant
analysis to varying extents.

C. Tail Block Adaptive Synchronization

The tail block adaptive synchronization is specifically
designed for CPUs lacking support for masked load/store
instructions. Therefore, its effect is evaluated on the ARM
CPU. Four applications — 2DCONYV, 3DCONYV, JACOBID,
and JACOB2D — are transformed using tail block adaptive
synchronization, and each experiences a significant speed-up
of 13.63%, 26.81%, 62.92%, and 17.60% respectively.

This speed-up is attributed to the utilization of SIMD
instructions, as detailed in Table IV. Without tail block adaptive
synchronization, all load/store instructions reside within the
if-statements, necessitating masked load/store for vectorization.
However, with tail block adaptive synchronization, most



load/store instructions, except those executed by the last blocks,
are moved out of the conditional statement, thereby allowing
optimization using general vectorization instructions provided
by ARM CPUs. This substantial amount of SIMD computation
results in significant speed-up,

App. Tail simd_inst ase_spec ase_sve_int
2DCONV w/ 37483230 33541230 31398389
w/o 4222977 2172 1724
3DCONV w/ 55305575 48205721 34415726
w/o 7087320 2438 1744
JACOBID w/ 92277566 91866604 85218510
w/o 24 408 22046 1693
JACOB2D w/ 124677629 123423652 98905416
w/o 565 787 1964 1690

TABLE IV: The number of executed SIMD instructions
with/without the tail block adaptive synchronization.

D. GPU-Block Dynamic Tiling

The GPU-block dynamic tiling is tailored for GPU programs
that iteratively launch the same kernels. We evaluate the tiling
processes of four CUDA benchmarks that iteratively launch
same kernels at least 10 times, with results presented in
Figure 11. In the initial phase, the tiled block size is set to
match the number of CPU cores. The tiling size is gradually
increased during execution, until further increases do not yield
any additional speed-up.

We compared the execution time with the workload config-
urations in CuPBoP, which equally distribute CUDA blocks
to all CPU cores. Three programs (BS, FIR, and GA) benefit
from the GPU-block dynamic tiling, achieving speed-ups
of 29.67%, 75.98%, and 67.78%, respectively. For the Hist
applications, optimal CPU performance is already achieved by
evenly distributing blocks across all CPU cores

210
° FIR
N .
W 28— Hlst/\
3 BS _—
5 2° — Ga
2
T 2%

1 2 3 4 5 6 7 8

execution time (ms)
]
1
L

launch time

Fig. 11: The process of the GPU-block dynamic tiling.

The FIR benchmark experiences the most significant speed-
up. Initially, each CUDA block contains only 32 threads, each
has a lightweight workload of just 32 FLOPs and minimal
memory access. As a result, the transformed CPU program
could not fully utilize the available CPU resources. In its

default configuration, each kernel launch involved 128 CUDA
blocks, translating to 128 CPU threads in the transformed
CPU program. This setup led to a substantial synchronization
overhead relative to the kernel workload. With the application
of GPU-block dynamic tiling, each CPU core is tasked with
executing 16 CUDA blocks, reducing the number of required
CPU threads to eight and thus diminishing the kernel launch
and synchronization overhead. Such an adjustment enables the
FIR application to substantially benefit from the optimization.

VI. RELATED WORK

For more than a decade, researchers have sought to achieve
high performance for GPU programs on CPUs. To bridge the
parallelism gap between these two architectures, the researchers
in MCUDA [49] propose a compiler transformation, flat
collapsing transformation, that generates loops to wrap CUDA
kernels. This transformation enables the use of fewer CPU
threads, with each thread handling a heavier workload that is
better suited for CPU architectures. The transformation has
been widely used for GPU-to-CPU migration. For example,
POCL [27] and SYCL [24] use it to support CPU backends
for OpenCL and SYCL languages.

This transformation is widely used [15], [21], [29], [47] with
different implementations: Moses et al. [40] implement the
transformation on MLIR [39]; Ocelot [12] and CuPBoP [21]
implement it as LLVM IR transformations; and Cumulus [9]
implements it as a CUDA-to-C++ transformation. We imple-
ment the proposed optimizations as LLVM IR transformations
to make them compatible with CuPBoP.

Some researchers expand the flat collapsing transformation:
COX [23] proposes the hierarchical collapsing to support
CUDA warp-level functions, and [20] proposes additional
compiler analysis to detect implicit barriers in CUDA programs
to ensure the correctness of the flat collapsing transformation.

The flat collapsing transformation focuses solely on barrier
instructions. To ensure program correctness, it generates
separate loops to wrap instructions before and after these
barriers. For instructions that are not barriers, flat collapsing
transformation simply wraps them into loops. Therefore, there
is potential for further optimization, as discussed in this paper.

OCCA [38] introduced a library-based approach that utilizes
APIs to abstract backend and kernel languages, making it
compatible with various parallel programming models such as
OpenMP and OpenCL. The library employs Just-In-Time com-
pilation to compile kernel functions and offers minor extensions
to C to facilitate programming for each backend. Similarly,
Kokkos [51] is designed to provide an easy-to-program solution
for various types of devices, such as CPU, GPU, and FPGA,
through its C++ library. It offers an abstraction layer that
separates user algorithms from execution details, enabling
performance optimization across different architectures. The
optimizations introduced in this paper are also applicable to
these two library-based approaches.

There are several projects [14], [35]-[37], [44], [45], [53]
that address the differences in high-performance programs



on CPUs and GPUs. Majeti et al. [35] propose a source-
to-source translation that converts data structures (e.g., AOS
to SOA) based on the target backend to optimize CPU and
GPU preferences. In [53], tunable factors like caching, tiling,
and prefetching are manually tuned for OpenCL programs
to improve performance on both CPUs and GPUs. On the
other hand, Falch et al. [14] present an auto-tuning approach
based on machine learning. These factors also influence
energy efficiency, as explored in [45]. These methods require
developers to provide explicit tuning knobs in programs to
achieve performance portability across different hardware. In
contrast, our approach can be applied to general GPU programs
without the need for explicit tuning knobs.

VII. DISCUSSIONS
A. Why Existing Compiler Optimizations Cannot Help?

In Section V, for the baseline, we apply LLVM’s O3
optimization on all CPU programs. Despite this, it does not
achieve the same performance as our proposed optimizations.

We also attempt to use Polly [19], a popular Polyhedral
model compiler, to optimize the CPU programs generated
by flat collapsing transformation. However, we find that it
cannot analyze most of the programs. To apply Polyhedral
model optimization effectively, the loop sections must be
static control parts (SCoPs) [16], [17], where loop bounds
and memory dependencies are amenable to static analysis.
Unfortunately, the CPU programs generated by flat collapsing
transformation typically contain indirect memory accesses,
which pose significant challenges for memory dependency
analysis and prevent the polyhedral compiler from functioning
effectively. Specifically, flat collapsing transformation expands
local variables into arrays, transforming scalars into array
elements. Consequently, a CUDA program that accesses
memory using a scalar index might be transformed into one
involving indirect memory access. For example, flat collapsing
transformation converts idx to idz[tid] in Figure 1. When we
attempt to optimize this CPU program using Polly, it reports
the warning message "The array subscript of ’s’ is not affine,"
leaving the code section unchanged.

Similarly, the complexities introduced by flat collapsing
transformation also prevent other general compiler optimiza-
tions. Thus, in this paper, we summarize the common patterns
in CPU programs generated by flat collapsing transformation
and propose four optimizations accordingly, which can be used
complementarily with standard compiler optimizations.

B. Do These Optimizations Nullify CUDA Optimizations?

The tail block adaptive synchronization, block size invari-
ant analysis, and GPU-block dynamic tiling can be applied
alongside general CUDA programs and are not related to any
CUDA -specific optimizations.

It is true that anti-coalescing transformation undoes what
programmers have intentionally implemented. Specifically,
anti-coalescing transformation reverses the global memory
coalescing optimization, which intentionally makes threads
access interleaving memory addresses. However, this reversal is

necessary to provide portability for real-world GPU programs.
All GPU-to-CPU solutions aim to migrate unchanged GPU
programs, and most off-the-shelf GPU programs are optimized
specifically for GPU architectures. Thus, reversing GPU
optimizations is necessary to achieve performance portability.

C. Why Run GPU Programs on CPUs?

There are multiple benefits to executing GPU programs
on CPUs. First, it allows workload sharing between GPUs
and CPUs, which can address the imbalance of utilization in
CPU-GPU clusters, thereby reducing runtime [30], [32] and
lowering energy consumption [46]. Second, the CPU offers a
more mature development environment, allowing developers to
use CPU toolkits to debug GPU programs [7], [9], [13], [43].
Lastly, it provides a platform for education and research for
those who do not have access to GPUs and wish to explore
proof-of-concept GPU programming.

We acknowledge that supporting the translation of CPU
programs to GPUs is also important. Some researchers focus on
executing OpenMP programs written for CPUs on GPUs [11],
[25], [33], [34], [42]. PPCG [52] is a source-to-source translator
based on polyhedral analysis, which translates sequential CPU
programs to GPU programs.

VIII. CONCLUSION

The flat collapsing transformation is widely used for GPU-to-
CPU migration solutions. Nevertheless, there is untapped poten-
tial to achieve superior performance since the transformed CPU
programs do not fully utilize CPU computational resources.
We have identified three unaddressed challenges in current
solutions. Accordingly, we introduce four compiler/runtime
optimizations to facilitate the generation of more performance-
efficient CPU programs. We integrate these optimizations into
an off-the-shelf GPU-to-CPU solution and demonstrate the
achieved speedup through experiments. We evaluate the speed-
ups of CPU programs on both x86 and ARM architectures. On
average, the optimized applications yield speed-ups of 20.84%
on x86 CPUs and 16.10% on ARM CPUs.

These optimizations pave the way for further advancements
in the performance portability of GPU programs to CPUs,
thereby making them more efficient and effective in heteroge-
neous computing environments.

ACKNOWLEDGEMENTS

This research was partially supported by NSF PPOSS
2119523, Intel, AMD and BAH. We also want to acknowledge
the research infrastructure and services provided by the Rogues
Gallery testbed [28], hosted by the Center for Research
into Novel Computing Hierarchies (CRNCH) at Georgia
Tech. The Rogues Gallery testbed is primarily supported by
the National Science Foundation (NSF) under NSF Award
Number #2016701. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.



APPENDIX
A. Abstract

The artifact integrates the proposed compiler optimizations
into CuPBoP [22] to provide a solution for executing GPU
programs on CPUs. The artifact also provides three examples
containing GPU programs that can be transformed by each of
the proposed optimizations.

The LLVM IR-to-IR transformations in the artifact are
the optimizations (anti-coalescing transformation, block size
invariant analysis, and tail block adaptive synchronization)
proposed in the paper.

B. Artifact check-list (meta-information)

o Compilation: CUDA, LLVM and GCC.

¢ Run-time environment: Linux (Ubuntu 20.04).

« Hardware: x86 CPU.

o Output: CPU executable file.

« How much disk space required (approximately)?: 5 GB.

« How much time is needed to prepare workflow (approxi-

mately)?: 20 minutes.

« How much time is needed to complete experiments (approx-

imately)?: 5 minutes.
o Publicly available?: Yes.
o Code licenses (if publicly available)?: Apache-2.0 license.
o Archived (provide DOI)?: 10.5281/zenodo.13250264.

C. Description

1) How to access: The artifact can be downloaded from
https://zenodo.org/doi/10.5281/zenodo.13250263. It is also
available on GitHub at https://github.com/drcut/CuPBoP-
MICRO-AE/tree/v1.0.0.

cd CuPBoP-MICRO-AE
» export CuPBoP_PATH=$PWD
3 mkdir build && cd build
+ # SCUDA_PATH should be set
5 CC=gcc CXX=g++ cmake ..
6 make
export CuPBoP_BUILD_PATH=$PWD
8 export PATH=$CuPBoP_BUILD_PATH/compilation:$PATH
9 export LD_LIBRARY_PATH=$CuPBoP_BUILD_PATH/runtime:
$CuPBoP_BUILD_PATH/runtime/threadPool:
SLD_LIBRARY_PATH

E. Experiment workflow

All evaluations follow the same workflow. First, the LLVM
IR-to-IR translator applies the proposed optimizations. Then,
the transformed IR is used to generate CPU executable files.
Finally, the executable files are executed to verify correctness.

We provide the script run.sh for each evaluation, which
integrates the above workflow. Users can directly execute
run. sh to run the evaluation.

F. Evaluation and expected results

There are three independent evaluations for the three
proposed compiler optimizations, respectively.

I cd $CuPBoP_PATH/MICRO_AE_example/anti-coalescing-—
transformation
2 bash run.sh

+ c¢d $CuPBoP_PATH/MICRO_AE_example/block-size-invariant-—
analysis
5 bash run.sh

7 cd $CuPBoP_PATH/MICRO_AE_example/tail-block-adaptive-
synchronization
8 bash run.sh

2) Hardware dependencies: x86 CPU.
3) Software dependencies:

o Ubuntu 20.04;

o GCC-8;

o« LLVM-14,

Anti-Coalescing: The input CUDA program contains a global
memory coalescing access pattern. The translator is expected
to detect the code section and apply the anti-coalescing
transformation. The translator is expected to output:

o« CUDA-10.1 toolkit;
o moodycamel::ConcurrentQueue (C++ library);

I Find global memory coalescing
2> Loop at depth 1 containing: %37<header><exiting>, $41<
latch>

D. Installation

Download artifact: We recommend downloading the artifact
from GitHub, which can automatically download the third-party

Block Size Invariant Analysis: The input CUDA program
contains three different kernel launches, with block sizes of
16, 32, and 42. The translator is expected to collect all block
sizes. Thus, it is expected to output:

libraries required for execution.

git clone --recursive —--branch v1.0.0 --depth 1 https
://github.com/drcut/CuPBoP-MICRO-AE.git

I possible block sizes:

2 x: 16 y: 1 z: 1
3 x: 32 y: 1 z: 1
4 x: 42 y: 1 z: 1

(Optional) Download LLLVM: The artifact requires LLVM-

14. For users who do not have it installed, we recommend
downloading the pre-built LLVM.

wget https://github.com/llvm/llvm-project/releases/
download/llvmorg-14.0.0/clang+llvm-14.0.0-x86_64~
linux-gnu-ubuntu-18.04.tar.xz

> tar -xvf clang+llvm-14.0.0-x86_64-1linux—gnu-ubuntu

Tail Block Adaptive Synchronization: The input CUDA
kernel contains an if condition that will only diverge at the
last block (with block index equal to grid size - 1). Thus, the
translator should apply tail block adaptive synchronization to
the kernel. The translator should output:

-18.04.tar.xz

3 export PATH=$PWD/clang+llvm-14.0.0-x86_64-1linux-gnu-

ubuntu-18.04/bin:$PATH

I Condition is always true (without tail block) with
threshold 512 and global index ranges: [0, 496)

2> The function can be optimized by tail block adaptive
sync

Build artifact:


https://zenodo.org/doi/10.5281/zenodo.13250263
https://github.com/drcut/CuPBoP-MICRO-AE/tree/v1.0.0
https://github.com/drcut/CuPBoP-MICRO-AE/tree/v1.0.0

G. Notes

The workflow of executing CUDA source code on CPUs first
requires compiling CUDA source code to LLVM IR, which
necessitates the CUDA toolkit. In the artifact, we choose to
directly provide the generated LLVM IR and focus on the
evaluation of the IR-to-IR transformation. However, we also
provide the CUDA source code (i.e., hist.cu and vecadd.cu).
Although this source code is not directly used for artifact
evaluation, it provides a more comprehensive understanding
of the LLVM IRs used for evaluation.

—
—

[2]
[3]

[4

=

[5]
[6]

[7]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

“Hip,” 2016. [Online]. Available: https://github.com/ROCm-Developer-
Tools/HIP

“A64fx specifications,” 2018. [Online]. Available: https://www.fujitsu.
com/global/about/resources/news/press-releases/2018/0822-02.html

“Hip-cpu,” 2020. [Online]. Available: https://github.com/ROCm-
Developer-Tools/HIP-CPU
“Nvidia alOO specifications,” 2021. [Online]. Available: https:

/lieeexplore.ieee.org/abstract/document/9361255

“Amd epyc™ 9654,” 2023. [Online]. Available: https://www.amd.com/
en/products/cpu/amd-epyc-9654

“Intel xeon gold 6423, 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/products/sku/236591/intel-
xeon-gold-6423n-processor-52-5m-cache-2-00- ghz/specifications.html
T. M. Aamodt, W. W. Fung, 1. Singh, A. El-Shafiey, J. Kwa, T. Hether-
ington, A. Gubran, A. Boktor, T. Rogers, and A. B. et al., “Gpgpu-sim
3.x manual,” 2012.

P. Barua, J. Shirako, and V. Sarkar, “Cost-driven thread coarsening for
gpu kernels,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, 2018, pp. 1-14.

V. Blomkvist Karlsson, “Cumulus-translating cuda to sequential c++:
Simplifying the process of debugging cuda programs,” 2021.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE international symposium on workload characterization
(IISWC). Teee, 2009, pp. 44-54.

A. Chikin, T. Lloyd, J. N. Amaral, E. Tiotto, and M. Usman, “Memory-
access-aware safety and profitability analysis for transformation of
accelerator-bound openmp loops,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 16, no. 3, pp. 1-26, 2019.

G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: a dynamic
optimization framework for bulk-synchronous applications in hetero-
geneous systems,” in 2010 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT). 1EEE, pp. 353-364.
A. S. Elhelw and S. Pai, “Horus: A modular gpu emulator framework,” in
2020 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). 1EEE, 2020, pp. 104-106.

T. L. Falch and A. C. Elster, “Machine learning based auto-tuning for
enhanced opencl performance portability,” in 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop. 1EEE, 2015,
pp. 1231-1240.

J. Fang, P. Zhang, T. Tang, C. Huang, and C. Yang, “Implementing
and evaluating opencl on an armv8 multi-core cpu,” in 2017 IEEE
International Symposium on Parallel and Distributed Processing with
Applications and International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC). 1EEE, 2017, pp. 860-867.

P. Feautrier, “Parametric integer programming,” RAIRO-Operations
Research, vol. 22, no. 3, pp. 243-268, 1988.

S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam, “Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies,” International Journal of
Parallel Programming, vol. 34, pp. 261-317, 2006.

S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to gpu codes,” in 2012
innovative parallel computing (InPar). leee, 2012, pp. 1-10.

T. Grosser, H. Zheng, R. Aloor, A. Simbiirger, A. GroBlinger, and L.-
N. Pouchet, “Polly-polyhedral optimization in llvm,” in Proceedings of
the First International Workshop on Polyhedral Compilation Techniques
(IMPACT), vol. 2011, 2011, p. 1.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[35]

[36]

(371

(38]

[39]

[40]

Z. Guo, E. Z. Zhang, and X. Shen, “Correctly treating synchronizations
in compiling fine-grained spmd-threaded programs for cpu,” in 2011
International Conference on Parallel Architectures and Compilation
Techniques. 1EEE, 2011, pp. 310-319.

R. Han, J. Chen, B. Garg, J. Young, J. Sim, and H. Kim, “Cupbop: A
framework to make cuda portable,” in Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, 2023, pp. 444-446.

R. Han, J. Chen, B. Garg, X. Zhou, J. Lu, J. Young, J. Sim, and H. Kim,
“Cupbop: Making cuda a portable language,” ACM Transactions on
Design Automation of Electronic Systems, vol. 29, no. 4, pp. 1-25, 2024.
R. Han, J. Lee, J. Sim, and H. Kim, “Cox: Exposing cuda warp-
level functions to cpus,” ACM Transactions on Architecture and Code
Optimization (TACO), 2022.

L. Howes and M. Rovatsou, “Sycl integrates opencl devices with modern
c++,” Khronos Group, 2015.

J. Huber, M. Cornelius, G. Georgakoudis, S. Tian, J. M. M. Diaz, K. Dinel,
B. Chapman, and J. Doerfert, “Efficient execution of openmp on gpus,”
in 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 1EEE, 2022, pp. 41-52.

Intel, “Dpct,” 2020. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html

P. Jaiskelidinen, C. S. de La Lama, E. Schnetter, K. Raiskila, J. Takala,
and H. Berg, “pocl: A performance-portable opencl implementation,”
International Journal of Parallel Programming, vol. 43, no. 5, pp. 752—
785, 2015.

A. Jezghani, J. Young, W. Powell, R. Rahaman, and J. E. Coulter, “Future
computing with the rogues gallery,” in 2023 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). 1EEE,
2023, pp. 262-269.

R. Karrenberg and S. Hack, “Improving performance of opencl on cpus,”
in International Conference on Compiler Construction. Springer, 2012,
pp. 1-20.

C. Lee, W. W. Ro, and J.-L. Gaudiot, “Boosting cuda applications
with cpu-gpu hybrid computing,” International Journal of Parallel
Programming, vol. 42, no. 2, pp. 384-404, 2014.

J. Lee, J. Kim, S. Seo, S. Kim, J. Park, H. Kim, T. T. Dao, Y. Cho,
S. J. Seo, S. H. Lee et al., “An opencl framework for heterogeneous
multicores with local memory,” in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques, 2010,
pp. 193-204.

J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Skmd: Single kernel on mul-
tiple devices for transparent cpu-gpu collaboration,” ACM Transactions
on Computer Systems (TOCS), vol. 33, no. 3, pp. 1-27, 2015.

S. Lee and R. Eigenmann, “Openmpc: Extended openmp programming
and tuning for gpus,” in SC’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE, 2010, pp. 1-11.

S. Lee, S.-J. Min, and R. Eigenmann, “Openmp to gpgpu: a compiler
framework for automatic translation and optimization,” ACM Sigplan
Notices, vol. 44, no. 4, pp. 101-110, 2009.

D. Majeti, R. Barik, J. Zhao, M. Grossman, and V. Sarkar, “Compiler-
driven data layout transformation for heterogeneous platforms,” in Euro-
Par 2013: Parallel Processing Workshops: HeteroPar. Springer, 2014,
pp. 188-197.

D. Majeti, K. S. Meel, R. Barik, and V. Sarkar, “Automatic data
layout generation and kernel mapping for cpu + gpu architectures,”
in Proceedings of the 25th International Conference on Compiler
Construction, 2016, pp. 240-250.

D. Majeti and V. Sarkar, “Heterogeneous habanero-c (h2c): a portable
programming model for heterogeneous processors,” in 2015 IEEE
International Parallel and Distributed Processing Symposium Workshop.
IEEE, 2015, pp. 708-717.

D. S. Medina, A. St-Cyr, and T. Warburton, “Occa: A unified approach
to multi-threading languages,” arXiv preprint arXiv:1403.0968, 2014.
W. S. Moses, L. Chelini, R. Zhao, and O. Zinenko, “Polygeist: Raising
¢ to polyhedral mlir,” in 2021 30th International Conference on Parallel
Architectures and Compilation Techniques (PACT). 1EEE, 2021, pp.
45-59.

W. S. Moses, I. R. Ivanov, J. Domke, T. Endo, J. Doerfert, and O. Zinenko,
“High-performance gpu-to-cpu transpilation and optimization via high-
level parallel constructs,” in Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel Programming,
2023, pp. 119-134.


https://github.com/ROCm-Developer-Tools/HIP
https://github.com/ROCm-Developer-Tools/HIP
https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2018/0822-02.html
https://github.com/ROCm-Developer-Tools/HIP-CPU
https://github.com/ROCm-Developer-Tools/HIP-CPU
https://ieeexplore.ieee.org/abstract/document/9361255
https://ieeexplore.ieee.org/abstract/document/9361255
https://www.amd.com/en/products/cpu/amd-epyc-9654
https://www.amd.com/en/products/cpu/amd-epyc-9654
https://www.intel.com/content/www/us/en/products/sku/236591/intel-xeon-gold-6423n-processor-52-5m-cache-2-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/236591/intel-xeon-gold-6423n-processor-52-5m-cache-2-00-ghz/specifications.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

A. Munshi, “The opencl specification,” in 2009 IEEE Hot Chips 21
Symposium (HCS). 1EEE, 2009, pp. 1-314.

G. Ozen and M. Wolfe, “Performant portable openmp,” in Proceedings
of the 31st ACM SIGPLAN International Conference on Compiler
Construction, 2022, pp. 156-168.

A. Patel, S. Tian, J. Doerfert, and B. Chapman, “A virtual gpu
as developer-friendly openmp offload target,” in 50th International
Conference on Parallel Processing Workshop, 2021, pp. 1-7.

A. Qasem, A. M. Aji, and M. L. Chu, “Investigating data layout
transformations in chapel,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). 1EEE, 2018,
pp. 915-924.

A. Qasem and S. Teich, “Evaluating the impact of data layout and
placement on the energy efficiency of heterogeneous applications,” in
2017 Eighth International Green and Sustainable Computing Conference
(IGSC). 1IEEE, 2017, pp. 1-8.

E. Stafford, B. Pérez, J. L. Bosque, R. Beivide, and M. Valero, “To
distribute or not to distribute: the question of load balancing for
performance or energy,” in Euro-Par 2017. Springer, 2017, pp. 710-722.
J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu,
and W.-m. W. Hwu, “Efficient compilation of fine-grained spmd-
threaded programs for multicore cpus,” in Proceedings of the Sth
annual IEEE/ACM international symposium on Code generation and
optimization, 2010, pp. 111-119.

J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. W. Hwu, “Parboil: A revised benchmark
suite for scientific and commercial throughput computing,” Center for
Reliable and High-Performance Computing, vol. 127, p. 27, 2012.

J. A. Stratton, S. S. Stone, and W.-M. W. Hwu, “Mcuda: An efficient
implementation of cuda kernels for multi-core cpus,” in International
Workshop on Languages and Compilers for Parallel Computing. Springer,
2008, pp. 16-30.

Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. McCard-
well, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite for
cpu-gpu collaborative computing,” in 2016 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, 2016, pp. 1-10.

C. R. Trott et al., “Kokkos 3: Programming model extensions for the
exascale era,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 4, 2022.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenllado,
and F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 9,
no. 4, pp. 1-23, 2013.

Y. Zhang, M. Sinclair, and A. A. Chien, “Improving performance
portability in opencl programs,” in Supercomputing: 28th International
Supercomputing Conference, ISC 2013, Leipzig, Germany, June 16-20,
2013. Proceedings 28. Springer, 2013, pp. 136-150.



	Introduction
	Background
	Flat Collapsing Transformation
	Challenges for Existing Solutions

	Problem Statements
	Divergent Memory Access Preferences
	Flat Loop Optimization
	Uneven Workload Configuration

	Optimizations
	Anti-Coalescing Transformation
	Insight
	Implementation
	Proof

	Flat Loop Optimization
	Block Size Invariant Analysis
	Tail Block Adaptive Synchronization

	GPU-Block Dynamic Tiling
	Insight
	Implementation

	Scope of Proposed Optimizations

	Evaluation
	Anti-Coalescing Transformation
	Block Size Invariant Analysis
	Tail Block Adaptive Synchronization
	GPU-Block Dynamic Tiling

	Related work
	Discussions
	Why Existing Compiler Optimizations Cannot Help?
	Do These Optimizations Nullify CUDA Optimizations?
	Why Run GPU Programs on CPUs?

	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Notes

	References

