2024 IEEE Symposium on Security and Privacy (SP) | 979-8-3503-3130-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/SP54263.2024.00013

2024 IEEE Symposium on Security and Privacy (SP)

MQTTactic: Security Analysis and Verification for Logic
Flaws in MQTT Implementations

Bin Yuan*'1:3, Zhanxiang Song* 113, Yan Jia}2, Zhenyu Lu*, Deqing Zou*>3, Hai Jin%3, Luyi Xing'?
*School of Cyber Science and Engineering, Huazhong University of Science and Technology, China
tIndiana University Bloomington, USA
iDISSec, College of Cyber Science, Nankai Uniersity, China
§School of Computer Science and Technology, Huazhong University of Science and Technology, China

Abstract—IoT messaging protocols are critical to connecting
users and IoT devices. Among all the protocols, the Message
Queuing and Telemetry Transport (MQTT) is arguably the
most widely used. Mainstream IoT platforms leverage MQTT
brokers, server side implementation of MQTT, to enable and
mediate user-device communication (e.g., the transmission of
control commands). There are over 70 open-source MQTT
brokers, which have been widely adopted in production. Any
security defects in those open-source MQTT brokers easily get
into many vendors’ IoT deployments with amplified impacts,
inevitably endangering the security of IoT applications and mil-
lions of users. We report the first systematic security analysis
of open-source MQTT brokers in the wild. To enable the anal-
ysis, we designed and developed MQTTactic, a semi-automatic
tool that can formally verify MQTT broker implementations
based on generated security properties. MQT7Tactic is based on
static code analysis, formal modeling, and automated model
checking (with off-the-shelf model checker Spin). In designing
MQTTactic, we characterize and address key technical chal-
lenges. MQTTactic currently focuses on authorization-related
properties, and discovered 7 novel, zero-day flaws practically
enabling serious, unauthorized access. We reported all flaws
to related parties, who acknowledged the issues and have been
taking actions to fix them. Our thorough evaluation shows that
MQTTactic is effective and practical.

Index Terms—IoT Security, MQTT, Logic Flaw

1. Introduction

With the popularity of the Internet of Things (IoT)
comes the demand for effectively connecting the IoT devices
and users, which has been facilitated by the deployments of
messaging protocols. Among all, the Message Queuing and
Telemetry Transport (MQTT) protocol has become arguably
the most widely adopted for IoT in the wild [1]. Almost all
leading, commercial IoT cloud services and platforms (e.g.,

L Most of the work was done when Bin Yuan was at Indiana University
Bloomington. Zhanxiang Song was an intern of Indiana University Bloom-
ington at the time of the work.

2 Corresponding authors: Luyi Xing, Yan Jia, Deqing Zou.

3 B. Yuan, Z. Song, Z. Lu, D. Zou and H. Jin are also with Hubei Key
Laboratory of Distributed System Security, Hubei Engineering Research
Center on Big Data Security, National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab.

2385

AWS [2], Google [3], IBM [4], Microsoft [5], Baidu [6],
and Alibaba [7]) use the MQTT protocol. Moreover, there
are many open-source MQTT implementations — more
than 70 open-source MQTT brokers (see Appendix A.4)
developed in various languages, e.g., C, Rust, and Go
[8]. These open-source MQTT implementations have been
widely adopted in production: e.g., HiveMQ announces
that it is adopted by more than 120 companies [9], such
as T-mobile, BMW, and Audi; according to ZoomEye
[10], there have been over 318,000 deployments of
Mosquitto. Consequently, any security defects in those
open-source MQTT brokers easily get into many vendors’
IoT deployments with amplified impacts, inevitably
endangering the security of IoT applications and millions
of real users. However, little has been done to systematically
analyze security risks with open-source MQTT brokers,
not to mention formally verify their security for elevated
assurance, a critical effort for the IoT supply chain.

Challenges. We summarize challenges for systematic, for-
mal security analysis on open-source MQTT brokers below.

e C1: Implementation-specific protocol customization. De-
spite the standard MQTT specification [11], the brokers are
usually customized by developers. This is due to inadequate
or intentionally open specification in standard protocols
and project-specific optimizations (detailed in § 3.1). For
example, where in the messaging/logic process one actually
implements a permission check is often broker-specific, and
we show that the customization can easily go wrong (i.e.,
lack of authorization at proper points, § 5.1). Hence, one
cannot use a single unified model to abstract all MQTT
implementations. To verify broker implementations, one has
to consider their customized logic and flows, which is
nontrivial. Actually, fully modeling the operations in MQTT
implementations quickly become intractable [12], [13], in
particular for complex projects with large code footprints
(usually with more than 10,000 LOC), and complicated
control flows that cannot completely align with the protocol.

o C2: General model definition and implementation-specific
model construction. For practical formal analysis (e.g., to
avoid state explosion [14]), one should abstract the logic
and flows in the broker source code that are relevant to
key broker states while dropping those non-related flows
and implementation details. This requires identification and
a general definition of key states in a broker’s internal

© 2024, Bin Yuan. Under license to IEEE.
DOI 10.1109/SP54263.2024.00013
Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

operations. Then we need an approach to automatically
extract model-relevant information from a specific broker’s
source code and generate the model implementation (i.e.,
representation of the broker-specific model using a modeling
language, versus theoretical level model definition), so it
can be verified by automatic model checkers. The approach
should easily support many different broker implementations
in the wild (see Appendix A.4).

Our goals and the gaps in prior works. In this work, we
aim to develop formal methods and systematic techniques
to analyze the security of open-source MQTT brokers, espe-
cially focusing on control and logic flows of MQTT brokers’
operations (e.g., flawed control and logic flows lacking
necessary permission checks allow unauthorized access).
Although many works studied the security of IoT platforms
[15]-[29], their approaches cannot be directly applied to
formally model or analyze open-source MQTT brokers.
A most related work is MPInspector [15], which assesses
multiple IoT messaging protocols. Essentially, MPInspector
does not analyze source code and requires deploying and
running brokers for dynamic testing, inheriting limitations
of dynamic analysis for coverage (depending on the test
cases) and scalability. Hence, an analysis approach such as
ours (see below) that leverages information in the source
code, using static analysis and formal model checking,
will be complementary to the prior approaches [15],
[27]-[29]. § 6.1 details our comparison with MPInspector
including effectiveness and manual efforts (e.g., we can
find authorization flaws, while MPInspector cannot).

Moreover, prior approaches for model construction and
analysis [15], [30]-[39] generally cannot be directly applied
to generate useful models for MQTT broker implementa-
tions, because (1) they lack definitions for formal models
that can describe MQTT states and semantics; (2) they are
not suited to abstract key operations and logic from source
code that are relevant to key broker states.

Our solution: MQTTactic. In this paper, we design and
develop MQTTactic, a semi-automatic tool that can for-
mally verify MQTT broker implementations (§ 4). MQT-
Tactic is based on static code analysis, formal modeling
and automated model checking (with an off-the-shelf model
checker Spin [40]). In the design, MQTTactic first formally
defines a state-machine model for MQTT brokers, including
the definition of what constitute key states of an MQTT
broker’s operation, what actions and operations that lead
to state transitions (§ 4.2). Following the general model
definition, which is implementation-agnostic, MQTTactic
extracts model-relevant information from a specific broker’s
source code (based on static analysis and symbol execution)
and then automatically translates the model information
into a concrete model of the broker. A concrete
model essentially is a highly abstracted (or simplified)
implementation of the broker in the modeling language
(e.g., Promela [41] in our implementation), keeping only
execution paths that operate on or impact key broker states
of interest (defined by the general model definition). MQT-
Tactic then adopts Spin [40] for model checking, which

2386

verifies the model against a set of security properties. Our
current security properties are related to authorization, and
the model checking exhaustively visits the broker states by
traversing the execution paths in all possible orders, and
reports any states where unauthorized access occurs (e.g., an
unauthorized users’ message publishing or delivery indeed
goes through the course — indicating insufficient permission
check along the execution path). We validated the issues
reported by MQTTactic through proof-of-concept exploit
experiments (see results below). We release all source code
and generated models online [42].

Results. Empowered by MQTTactic, we verify 7 popular
open-source MQTT brokers and find 11 authorization-
related logic flaws, including 7 zero-day flaws that bear
novel, subtle logic issues never reported or fully understood
before. The flaws allowed practical, unauthorized access
to IoT devices, potentially directly impacting real vendors
that adopt the open-source brokers, with serious security
implications (with vendor acknowledgment, see our
responsible disclosure in § 5.2). Our findings suggest that
fully securing the MQTT systems is nontrivial — in the
absence of security guidance and with the complex or
customized MQTT logic flows, it is quite difficult for the
developers to achieve complete mediation in the source
code, leaving doors for the attackers to gain unauthorized
access to the IoT devices. Our thorough evaluation (§ 6),
including a detailed comparison with prior works, indicates
that MQTTactic is effective and practical (with small
amounts of manual efforts in configuration).

Contribution. We summarize our contributions as follows:
e New techniques. We designed and developed MQTTuctic,
including a set of novel techniques and designs that can
formally verify MQTT broker source code for logic flaws.
MQTTactic is capable of modeling MQTT brokers’ internal
operation states and generates highly effective model rep-
resentation from a large code base (e.g., more than 10,000
LOC), enabling efficient model checking.

o New understandings of security risk in loT broker supply
chain. We performed the first (up to our knowledge) sys-
tematic study on open-source MQTT brokers, characterized
their essential customization of the protocol. We showed that
the customization of messaging flow and logic easily went
wrong, especially for the frequent lack of necessary security
checks at proper logic process. The 7 zero-day logic flaws
brought to light new types of security-critical flaws, and also
indicated the seriousness of IoT supply risk that stakeholders
(open-source community, downstream vendors, users, and
regulators) should be aware of.

2. Background

2.1. The Basics of the MQTT Protocol

MQTT [43] is a popular publish-subscribe messaging
protocol for IoT. For two MQTT clients (a subscriber and
a publisher) to communicate with each other, the MQTT
server (broker) defines a topic to represent the subscriber’s
interested message category. The subscribers express their
interest by sending SUBSCRIBE request with the topic

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

to the broker for receiving messages; after the publisher
sends the message containing the topic using a PUBLISH
packet to the broker, the broker then transmits the message
to all the subscribers of the topic.

Note that, as per MQTT specification v3.1.1, when a
client publishes a large number of messages to the same
topic in an MQTT connection, the topic name would
be repeated in all the PUBLISH packets, which causes a
waste of bandwidth resources. To reduce resource consump-
tion, MQTT specification v5.0 introduces a new feature:
the Topic Alias, which is a 2-byte integer encoded as
an attribute field in the PUBLISH packet. The client and
broker can first negotiate a mapping relationship between
the Topic Alias and the topic, such that all the sub-
sequent PUBLISH packets over the same connection can
carry the 2-byte Topic Alias to replace the original
topic. Upon receiving packets with Topic Alias, the
broker would use the previously built mapping relationships
to retrieve the topic for these PUBLISH packets [44].

2.2. The Messaging Flows of MQTT

The three key processes in MQTT. The recent MQTT
version 5.0 [11] defines 15 types of control packets along
with the flags to designate the messaging flows. We briefly
introduce the connection, publishing, and subscription, the
three key processes in MQTT that cover most packet types.
e Connection. Three control packet types are used to define
the messaging flow of connections: the CONNECT packet
indicates a connection request from the client to the broker;
the CONNACK packet is used to acknowledge the CONNECT
request; the DISCONNECT packet is used for disconnection
notification. Note that, the CONNECT packet should include
the client’s identifier (called the ClientID), which is
unique among all clients. After the CONNECT request is ac-
cepted and acknowledged by the broker, a session (identified
by the C1ient ID) will be created for the client. Moreover,
a CONNECT request with an already existing ClientID
would result in the broker creating a new session to take
over the existing session and closing the existing session.
Further, the will flag in the CONNECT packet is used
to designate the broker to store a Will message and deliver
it to the appropriate subscribers when an abnormal discon-
nection happens (e.g., network outage). The CleanStart
flag defined in the CONNECT packet determines how to set
up the new session. In specific, a CONNECT packet with
CleanStart set to true would lead the broker to create
a new session; if a CONNECT packet with CleanStart set
to false and there is an existing associated session (the
session with the same ClientID), the broker will resume
the communications with the client based on the state of
the existing session. This flag is usually used to recover the
session of the client that is temporarily offline.
e Publishing. The PUBLISH packet is used to publish
messages. There are two important flags in the PUBLISH
packet. The Retained flag, if set, instructs the broker to
store the message first and later deliver it to new subscribers
automatically. The QoS flag indicates the level of assurance

2387

for message delivery — QoS O indicates at most once
delivery; QoS 1 indicates at least once delivery; QoS 2
indicates exactly once delivery. To enforce QoS 1 messag-
ing, the MQTT specification defines the PUBACK packet as
an acknowledgment of the QoS 1 message. Moreover, the
PUBREC, PUBREL, and PUBCOMP packets are defined to
enforce the QoS 2 messaging (see Figure 1 in § 3.2).

e Subscription. The SUBSCRIBE and UNSUBSCRIBE
packets are used to add/remove the subscription of the client
who sends the request. The SUBACK/UNSUBACK packet is
used to acknowledge the subscription/unsubscribing.

The asynchronous paradigm implied in MQTT. Gen-
erally speaking, the messaging flows defined in the MQTT
specification imply asynchronous IoT messaging paradigms,
logically. Specifically, the publishing from the publisher
to the broker and the message delivery from the broker
to the subscriber are decoupled and asynchronous — the
ownership of a message transfers to the broker after the
broker accepts it; after that, the delivery of the message
(from the broker to the subscribers) usually does not rely
on the subsequent behavior(s) of the publisher.

2.3. Threat Model

We consider realistic attack and application scenarios.
We consider 10T systems that use MQTT brokers (in the
cloud/server) to manage and mediate communication be-
tween clients (users and IoT devices). The administrator(s)
(e.g., device owners) can grant other users (e.g., an Airbnb
guest or an employee) access rights for IoT devices. The
users’ access rights are subject to revocation and expiration.
We consider the broker and the devices are benign, while
the users can be malicious and may attempt to escalate
their existing privilege to access other devices that they
are not entitled for. The malicious users can collect and
analyze network traffic between the broker and their own
(MQTT) clients, but cannot eavesdrop on or interfere with
the communication between other users and the broker.

3. Customization of MQTT Implementation
and A Motivating Example

In general, an MQTT broker is supposed to
follow the logic and messaging flows defined in the
protocol specification. However, we find that an actual
implementation is much more complicated than the
abstracted specification, always presenting a unique
customization of MQTT (§ 3.1). This section also provides
a motivating example (a zero-day vulnerability we found)
to show how the customization can easily go wrong (§ 3.2).

3.1. The Customization of MQTT Implementation

We summarized three sources of customization, often
essential in the MQTT protocol implementation.
e Missed authorization model. The MQTT specification
mainly defines the logic of message transmission (§ 2.2)
and provides little or no guidance on essential security
models, in particular: (1) where in the messaging/logic pro-
cess one should implement a security/permission check; (2)

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

what are sufficient security checks for the messaging/logic
flows of MQTT. Lacking essential security specification in
the protocol, we find that developers often implanted ad-
hoc (unsound) authorization mechanisms somewhere in the
MQTT messaging logic or missed necessary security checks
— we elaborate on a real example below (Flaw 1) as a
motivating example and more real examples in § 5.1.

o Customized messaging logic flows. Developers sometimes
implement MQTT with customized logic flows that are not
defined in the MQTT specification either in consideration
of resource constraints or to facilitate customized features.
For example, to prevent the client from sending duplicate
PUBLISH packets in the QoS 2 messaging, MQTT speci-
fication requires the broker to send a PUBREC packet to the
client upon receiving and storing the message. However, we
find that Mosquitto intentionally defers the PUBREC packet
if its message queue is full (a kind of resource constraint,
see Flaw 7 in § 5.1)

o Ambiguous definition. There are several ambiguous defini-
tions of the control flow in the MQTT specification. For ex-
ample, MQTT specification v5.0 states that, when process-
ing a QoS 2 message, “The receiver does not need to com-
plete the delivery of the Application Message before sending
the PUBREC or PUBCOMP.” Hence, the time to deliver the
QoS 2 message to the subscriber(s) is implementation-
specific, and an unsound implementation could lead to
security loopholes, such as Flaw 1 (see Figure 1).

Publisher Sub/siriber
s
197

MQTT broker

Malicious user loT device

Y !
@PUBUSH QoS2 msg M

J \J
@PuBREC 52)Store the msg M

Permission check

N
(BDpeliberate delay

<
PUBREL

> Permission check on the

<) subscriber's access right
Lacked check on the
publisher's access right

PUBCOMP @Dehverthe msg M
Figure 1: Flaw 1. Vulnerable QoS 2 messaging

3.2. A Motivating Example

In the following, we first describe the QoS 2 messaging
flow defined in the MQTT specification, and then report a
new security flaw we find. The flaw is due to the absence
of necessary security checks in the QoS 2 messaging flow,
which unfortunately is not defined in the protocol and is
thus difficult for developers to make right.

QoS 2 messaging flow. As shown in Figure 1, the MQTT
specification defines the QoS 2 messaging flow as follows.
Gn1: The publisher sends a QoS 2 message (M) to the broker
included in a PUBLISH packet.

($1: The broker stores the message M to process it later.
®1: The broker confirms receiving the QoS 2 message M
by sending a PUBREC packet to the publisher.

1: Upon receiving the PUBREC packet from the broker,
the publisher triggers the broker to deliver the message M
to the subscriber with a PUBREL packet.

2388

91: The broker delivers the message M to the subscriber.
(91: The broker informs the publisher of the completion of
message publication with a PUBCOMP packet.
Flaw 1: Timing manipulation for QoS 2 delivery. To
secure QoS 2 messaging, Mosquitto first checks (step ©)?)
the publisher’s permission of publishing the message M
before accepting M. Then, it checks (') the subscriber’s
permission of receiving M before delivery. While such two
steps of security checks may appear to be reasonable to
many, we find they are actually insufficient and incommen-
surate with the complicated logic of QoS 2 flows.
Specifically, although the MQTT messaging flows are
generally considered asynchronous (the publishing from the
publisher to the broker and the delivery from the broker
to the subscriber are considered asynchronous, see § 2.2),
we find that the delivery timing of a QoS 2 message is
somewhat controllable by the publisher — at least partially
breaking the “asynchronous” expectation. More specifically,
consider the smart home application of MQTT where there
could be users with malicious intentions (a common and
well-accepted IoT application scenario [29], [45], [46]), the
publisher (e.g., a malicious user) could deliberately delay
(step)') the PUBREL packet in step (2! to control the
time when the broker actually delivers M to the IoT device,
since the PUBREL packet works as a trigger to the message
delivery in the broker. If the delivery happens after the
administrator (e.g., an Airbnb host) revokes the publisher’s
(e.g., an Airbnb guest) access right (step (:21), the publisher
could still control the IoT device after he loses access right.
Discussion. Flaw 1 indicates that it is nontrivial to se-
curely implement the MQTT protocol with sufficient secu-
rity guards in the logic steps of the messaging flows. Hence,
there could be many more authorization-related flaws in the
real-world MQTT brokers, considering the large number of
open-source brokers and the complexity of MQTT messag-
ing flows within brokers (§ 3.1). Further, given the world-
wide usage of open-source MQTT brokers in production,
it is imperative to systematically study this problem and
come up with approaches and readily available tools that
can automatically identify the flaws in the brokers at scale.
Problem scope. In this paper, we focus on how to identify
authorization-related logic flaws in the open-source MQTT
brokers with elevated level of automation. Our goal is,
instead of verifying the entire source code space, to design a
general approach to abstract formal models from the source
code (e.g., MQTT brokers) based on logic perspectives of
our interest (i.e., necessary authorization checks and con-
straints in the messaging process), and verify the derived
models against generalized security properties. This will
enable us to find type-/domain-specific (e.g., authorization-
related) logic flaws, and rule out such categories of issues
based on a new level of formal guarantee. Other types of
flaws (e.g., flaws leading to crashes because of processing
malformed messages) are considered out of scope.

4. System Design and Implementation

In this section, we elaborate on the design and im-
plementation of MQTTactic, our semi-automatic tool for

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

security analysis of MQTT broker implementations.

4.1. Overview

At a high level, MQTT brokers in IoT applications
should ensure that any unauthorized client cannot send
messages (commands) to other clients or receive messages
from the broker. To detect the security flaws for many
different open-source MQTT brokers, our proposed general
approach is to construct a state transition model facilitated
by source code for each MQTT broker, and to use a model
checker to verify whether the pre-defined security properties
hold in the model. The model checker reports a security flaw
for each violation to the security properties. The reported
flaws are then validated manually through our end-to-end
deployments and execution of the MQTT brokers.
Architecture of MQTTactic. As mentioned earlier (§ 3.1),
each real-world MQTT implementation is a unique cus-
tomization to the MQTT specification. As a result, we
cannot use a single unified model to describe all MQTT
implementations. Therefore, our approach is to customize
a unique model for each MQTT broker implementation by
extracting implementation-specific information (e.g., control
flows) from the broker’s source code. Also recall that, due
to the large code footprints and complicated control flows of
the MQTT implementations, to fully abstract and model the
actual behaviors in an MQTT implementation is intractable.
Therefore, we abstract the control flows with their logical
constraints in the source code that are relevant to the broker
state machine (formally defined for MQTT in § 4.2), while
dropping those non-related implementation details. Note
that, as also shown by prior works [45], [47], one can always
enrich a model progressively to account for additional details
that were dropped in an initial model for increased coverage
(e.g., for extended security properties).

ontrol Flows Q

Code
Tempiates
3

Concrete
Model

Model
Checker (MC)

Proper

? Model Generator (MG)

Source Code Counterexamples
i i Analyzer (CEA
1
MQTT Broker 6 MQTT H
| SoQurce Code | . ; | S;Qec | podel MQTTactic e
Configuration : Definition

Figure 2: The architecture of MQTTactic

To this end, as outlined in Figure 2, we design MQT-
Tactic, which includes 3 key components: a general model
definition (§ 4.2), a model generator (MG, see § 4.2 and
4.3), and a model checker (MC, see § 4.4). The model
definition provides an general state-machine model for
MQTT brokers, including the definition of what constitute
key states of a MQTT broker’s operations, what actions
and operations that lead to state transitions (§ 4.2). Follow-
ing the general model definition which is implementation-
agnostic, the MG takes as input the broker source code
and a configuration file (see § 4.5) to generate a
specific concrete model for the MQTT broker. Specif-
ically, MG first extracts model-relevant information from
a specific broker’s source code (done by a sub-component
called source code analyzer or SCA, based on static analysis

2389

and symbol execution). MG then automatically translates
the model information into a concrete model of the broker
— done by a sub-component model constructor or MCT.
A concrete model, model of the specific broker, essen-
tially is a highly abstracted (or simplified) implementation of
the broker in the modeling language, keeping only execution
paths that operation on or impact key broker states of interest
(defined by the general model definition).

To detect security vulnerabilities, the MC then verifies
the concrete model against the pre-defined security
properties (§ 4.4). The MC reports a counterexample for
each violation to the properties it finds. The counterexample
would record the state transitions from the initial state to
the abnormal state where the violation happens and the
corresponding sequence of actions that drive these state
transitions. The counterexamples output by the MC are
then analyzed by the Counterexample Analyzer or CEA,
which mainly filters duplicated results. Each result is then
manually validated through PoC experiment.

4.2. Formal Definition for MQTT Brokers

Definition for a state-machine model. We model an MQTT
broker as a state transition system M = (V, O, S, sg, A, 0,
SP). Here V is a finite set of variables (e.g., subscription,
message queue, listed in Table 2) whose values collectively
constitute the states of the MQTT broker; © is the set
of generalized low-level operations (e.g., read, write,
see below) on the variables in V; S is the set of states, at
each of which the MQTT users/clients and MQTT broker
can perform actions (e.g., sending a PUBLISH request
and delivering a message to clients); so (so € S) is the
initial state where no actions have been performed in the
system; A is a finite set of client actions that can be
performed by a user/client resulting in a state transition of
the broker. A includes (1) common MQTT actions defined in
the specification (e.g., CONNECT, PUBLISH, SUBSCRIBE)
and (2) permission-related actions (e.g., add or revoke a
user’s access to a particular topic, detailed below); § is
a transition function that drives the system transit from one
state to the next upon actions being executed; SP is the set
of security proprieties where each sp (sp € SP) needs to
be verified in the model M. We further elaborate on the
formal definition of key elements in model M as follows.
e The variable set V. We define V = {vy, vy, ..., v,, } Which
include (1) variables defined by the MQTT specification
that comprise part of the broker states ; (2) security policy
(i.e., an access control policy) maintained by the broker (see
the full list in Table 2). For example, based on MQTT
specification, the MQTT broker would maintain retained
messages associated with MQTT topics. Hence, we use
URetainedMsg 1NV to record the retained messages. Also,
brokers normally record the security policy (see its model
below) for permission checking. Therefore, the vp,,...5ssi0n
in V is defined to record the access rights of all clients/users.

Since the variables with their values collectively
represent broker states, we call them state variables.
For finer-grained modeling, we further consider the state

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

variables as either session variables or global variables
(Table 2): (1) session variables such as vy, are related
to individual sessions (a session is specific to and generally
identified by the client’s ID, see § 2.2); (2) global variables
such as v, 4inearrso are broker-global (not session/client
specific). In our mogel implementation (§ 4.3), the broker
can have, for example, multiple vy, related to
multiple clients/sessions.

o The operation set O. An operation o; in O is defined gen-
erally as read, write, or deliver on a state variable in
V (see Table 3). With respect to the write operations, since
a state variable can be a list of elements (e.g., the variable
Vgups TeCOrds MQTT topics that the client has subscribed
to), write can be either add or remove elements to the
variable. The read operation means accessing the resource
represented by the variable. The deliver operation op-
erates on a message related state variable indicating that
the broker delivers the message to subscribers. Therefore
an operation is denoted as Oyeqds Owrites Oadds Oremoves
OF Ogeliver- An operation can be further labeled with the
variable being operated, such as 0syp_qdq (denoting an add
operation on the variable vg, ;).

o The state set S. A state s; (s; € S) for the MQTT
broker is defined by the values of all state variables V; s;
= {v], v}, ...,vl}. The state changes when the value of any
variable changes.

o The client action set A. A starts with a finite set of ac-
tions: A = { CONNECT, PUBLISH, PUBREL, SUBSCRIBE,
UNSUBSCRIBE, DISCONNECT } (with two more actions
AUTHORIZE and REVOKE to add, see below). It is a subset
of control packets defined in the MQTT specification. We
exclude the control packets that are unrelated to authoriza-
tion. For example, we exclude the AUTH packet, which is
used for authentication exchange between the client and
broker, and is irrelevant to our goal. Note that, the execution
of a client action can change the states of the broker, i.e., by
resulting in value changes to the variables in V. Intuitively,
for example, the client can perform a SUBSCRIBE action,
which could result in the variable vg,;s being updated.
Moreover, we abstract the authorization-related behav-
iors commonly found in MQTT broker implementations as
two general actions — the AUTHORIZE action for access
right authorization and the REVOKE action to remove certain
rights from the clients/users, and include them into .A. These
two actions can change the security policy (abstracted as the
state variable vp,,,.. ...) maintained by the MQTT broker.
Further, by abstracting the protocol specification, a client
action is represented as an ordered sequence of operations
in O that the broker is supposed to execute in response to
the action. For example, the action SUBSCRIBE is defined
as Osub_add — Oretained_read — Odelivers which means that,
when the broker receives a SUBSCRIBE packet from the
client (who aims to subscribe to a t opi c), the broker would
execute the 05y _adq Operation to update the subscription (an
0Oqdd to the vg,, - variable), execute the 0yctqined_read OpPer-
ation to obtain a Retained message for the topic (read
the Vi iined s 9 variable), and execute the 04¢jjper to send

2390

the Retained message to the client. Table 6 in Appendix
A.8 details the operation sequences for each action.

e The transition function §. We define the transition function
as 0: SxA — S, which drives the transition from one
state to the next with the execution of an action in A.
For example, §(sg, CONNECT) = s; (where sg, s; € S and
CONNECT € \A) indicates that the MQTT broker transfers
from the initial state (sg) to the state s; in which the MQTT
broker creates a session for the newly connected client.

e The security property set SP. SP records all the security
properties that will be verified in the model M (§ 4.4).
Common authorization model for MQTT implementa-
tions. Based on our survey of 7 popular MQTT implementa-
tions, almost all MQTT brokers use a security policy that can
be modeled as a three-tuple {client,topic,r} to indicate
that the subject client is authorized to access the object
topic with the access right 7.

e The subject client. Specifically, several brokers define the
client as the identifier of the client (ClientID), while
other brokers use an RBAC (role based access control)
mechanism — each client is assigned with a role R and
the role R is used as the client in the {client, topic,r}.
e The object topic. Usually, the MQTT brokers use
topics to represent the resources. For example, a smart
home system may authorize users with different topics
for them to access/control different smart home devices.

o The access right r. The access right r specifies the action
type on the topic. The most commonly used access rights
are the SUBSCRIBE right and the PUBLISH right, which
indicate whether a client is authorized to send SUBSCRIBE
and PUBLISH requests.

To enforce authorization, MQTT brokers store the 3-
tuples as the security policy. Typically, the brokers use a con-
figuration file or a database to store the security policy and
provide APIs to check and update the security policy (with

the policy abstracted as Vp,,missions UPermission < V)-

4.3. Implementation-Specific Model Construction

This section elaborates on the approach (the MG part
of MQTTactic) to generate Promela code that represents the
model for specific brokers. As mentioned in § 3.1), each
MQTT implementation is a customization to the protocol.
To construct a model that actually describes a specific
implementation, we need to abstract the implementation-
specific control flows with logical constraints that can
impact the broker states and state transitions. Our approach
entails first following the high-level model definition
(§ 4.2) to extract model-relevant information from a
specific broker’s source code (§ 4.3.1) and then translating
the model information into a concrete model (§ 4.3.2).

4.3.1. Extracting Model-Relevant Information from Bro-
ker Implementations. MQTTactic first extracts (from bro-
ker source code) model information that can describe a
concrete model for a specific broker (based on the
model definition). The model information to extract includes
(1) unique program-paths (along the control flows, after

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

pruning invalid paths, detailed below); (2) each program-
path characterized with an ordered sequence of operations
(e.g., reads/writes on state variables and thus impacting
broker states) — we abstract such a unique program-path
as Effective Path Type (detailed below). More specifically,
on the control flows starting from an entry point of the
broker (usually being a handler function corresponding to
an MQTT client action a (a € A, see Table 6) such as
PUBLISH or CONNECT), our approach extracts its different
program-paths and then Effective Path Types (denoted as a
set EPT,), and for each Effective Path Type ept (ept €
EPT,), abstracts its sequence of operations on the state
variables (e'gw [Osub_read’ Owill_read>» 0delive7‘])~ Note that
we remove invalid program paths (unreachable) based on
symbolic execution (detailed below). We elaborate on key
technical steps as follows.

Step 1: Identifying action entry points and state-
impacting code-blocks from implementation. A client
action a (a € A) triggers state transitions, and each broker
implementation has a set of entry functions (also called
action handler or handler) for handling specific actions. A
typical broker has the handlers for all actions in A. Starting
from an action handler, MQTTactic analyzes the code basic
blocks along the (inter-procedural) control flows (based on
its LLVM 1R, see § 4.5) to identify those blocks that impact
the broker states S, called Key Basic Blocks.

Def. 1: Key Basic Block (KBB). A Key Basic Block is a
basic block [48] in the broker’s ICFG [49] that performs at
least one operation o (o0 € O) on a state variable v (v € V)
(or multiple state variables). Notably, an update to v changes
the broker state (see the model definition in § 4.2).

Taking Figure 3 (a) as an example, starting from basic
block 1, we identify the basic block 4 and 8 as KBBs.
To find all KBBs on the LLVM IR, we leverage context-
sensitive pointer analysis (by adopting the off-the-shelf
tool SVF [50]) to find out all basic blocks that impacted
a variable v (v € V, MQTTactic currently relies on a
simple configuration to map out all the 7 variables in V to
variables at the code level, see § 4.5).

Step 2: Modeling implementation-specific control flows
for the actions. For each action a (a € A), our modeling
goal is to abstract how the action impacts the broker states
(i.e., leading to state transitions or updates to any variable
v, v € V). To this end, MQTTactic starts from its handler
and abstracts all its control flows with KBBs. In our context,
those non-KBB basic blocks are considered not to impact the
broker states. Hence, for example, in Figure 3 (a), we con-
sider the program paths 1-2-5-8-10 and 1-3-6-8-10
have the same impact (due to KBB 8) on the broker state.
To facilitate the modeling of the implementation-specific
actions, we introduce the definition of Path Type as follows.

Def. 2: Path Type. For an MQTT broker implementation,
one Path Type is the category of paths with a unique
sequence of KBB(s). Specifically, consider the ICFG in
Figure 3 (a) where the basic block 4 and basic block 8 are
KBBs. Although there are five paths in total (from block 1
the root to a leaf block), there are only three Path Types:
(1) the path that includes the KBB sequence {4, 8}, i.e.,

2391

the path 1-2-4-8-10; (2) the paths that include the KBB
sequence {8}, including the path 1-2-5-8-10 and the
path 1-3-6-8-10; (3) the paths that include no KBB,
including the paths 1-3-6-9 and 1-3-7.

Based on Def. 2, our modeling of each action in the
broker implementation comprises all its Path Types. For
example, in Figure 3 (a), the action that starts with block 1
is modeled as three unique KBB sequences: {KBB 4, KBB
8}, {KBB 8}, {none KBB}. Notably, our modeling removes
a Path Type if its underlying program path is invalid or un-
reachable (based on symbolic execution, see auxiliary step 2
below), and we consider those valid as Effective Path Types.

Further, based on Def. 1, each KBB includes code
statements that perform operations on one or more state
variables. Accordingly, in our modeling, each Effective Path
Type ept, with its sequence of KBBs, are further abstracted
as an ordered sequence of operations (e.g., [Osub_reads
Owill_reads Odeliver]), With each operation o € O. We show
a real example in Appendix A.10, with code snippets
of KBBs in the hmq broker along one of its Effective
Path Type, and how the code is abstracted as the ordered
sequence of operations. The above are core steps to extract
model information that describe implementation-specific
messaging flows. We refine and supplement the information
with two auxiliary steps below.

(a) Definition of Path Type (b) Illustration of Effective/False Path Type

Figure 3: The KBB and Path Type

o Auxiliary step 1: Abstracting permission-related path
constraints. As mentioned in § 3.1, although the MQTT
protocol lacks security-related specification, real-world bro-
kers implanted implementation-specific permission checks
somewhere along the control flows, i.e., in certain KBBs
(by checking/reading the security policy represented by
variable vp,,.,..... . Specifically, these permission checks
are in the form of invocation to the broker’s authoriza-
tion APIs (see § 4.2). Those permission checks present
constraints for the control flows between KBBs. For ex-
ample, in Figure 3 (a), the KBB 4 includes a permission
check against the subscriber for its SUBSCRIBE right (e.g.,
@t in Figure 1), and the KBB 8 delivers the message
(e.g., 9 in Figure 1). Here the control flow from KBB
4 to 8 includes a constraint, which we model as a 3-
tuple {subscriber,topic, SUBSCRIBE}, the same as the
modeling for security policies (see § 4.2). That is, the broker
checks the security policy (Vp,,.m;ission) 8t KBB 4, and if the
Upermission iNCludes the permission — the above constraint,
the execution then flows to KBB 8 to deliver the message.
o Auxiliary step 2: Pruning the Path Types. As mentioned
above, we filter the Path Types that are invalid or unreach-
able. This is because all program paths are obtained from

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

the LLVM IR (i.e., ICFG), and certain paths might not
be reachable at runtime due to their constraints not being
fulfilled. Take the ICFG in Figure 3 (b) as an example, where
the basic blocks II, III, V, and VI are KBBs. The figure
also shows the runtime constraints (e.g., the constraint of
{a =1} on the edge {I — II}). Based on the constraints,
the execution path {KBB II, KBB VI} is false (cannot
happen at runtime) due to constraint conflicts (with both
a = 1 and a = 2). Hence, we exclude such false paths
based on their symbolic constraints, which are obtained by
adopting off-the-shelf symbolic execution tool Haybale [51].
More specifically, for each Path Type pt identified above, we
perform the symbolic execution on the LLVM IR to look
for at least one true path that includes the KBB sequence
of pt, such that pt is valid (can happen at runtime). We set
the symbolic execution timeout as 30 minutes for each Path
Type, which is evaluated to be effective (see § 6).

4.3.2. Translating Model Information to Concrete Model
Implementation. Based on the above extracted model infor-
mation, our approach generates the Promela representation
of the concrete model for a specific broker Broker.
The model information includes: (1) the list of supported
client actions, denoted as set Ap,orer, Which can in-
clude elements such as CONNECT, PUBLISH, and PUBREL
(ABroker C A); (2) for each action a (a € Aproker), its
different Effective Path Types (denoted as a set EPT,); (3)
for each Effective Path Type ept (ept € EPT,), its sequence
of operations on specific state variables, denoted as seq (e.g.,
[Osub_read’ Owill_reads Odeliver])- Hence, the MQTTaCtiC will
translate this information into a concrete model in the
Promela language for model checking.

Based on such model information, we summarize the
Algorithm 1 and Algorithm 2 to generate the Promela
code of the concrete model. Particularly, as shown in
Algorithm 1, in the concrete model implementation (in
Promela), each client action a is implemented as either (1)
one Promela function (if it has only one Effective Path
Type, indicating only one kind of operation sequence im-
pacting broker states/state-variables) or (2) multiple Promela
functions corresponding to different Effective Path Types in
the broker for the client action. More specifically, Algo-
rithm 2 shows that we translate a specific Effective Path
Type ept, i.e., a sequence of operations on specific state
variables denoted as seq, into a Promela function by se-
quentially assembling Promela code templates (pre-defined)
corresponding to each operation o (0 € seq). Notably,
each code template describes the operation (read, write,
or deliver) performed on a particular state variable v
(v € V). We show a few real examples of code templates
in Appendix A.10 (see the full list of templates online [42]).

Further, by adapting the implementation for the Spin
model checker, we define a snippet of skeleton code in
Promela (see Listing 7 in Appendix A.10) , which includes
the “main” function for Spin to run. Essentially, the skeleton
code outlines the client actions that a client can run, such
as CONNECT and PUBLISH; it also defines the handler
functions (with just placeholders) of the broker in response

2392

to each client action. The placeholders are populated with
the above generated (by Algorithm 1 and 2) Promela func-
tions (corresponding to all different Effective Path Types
of all supported client actions of the broker). When Spin
runs, it exhaustively attempts all the Promela functions of
all the client actions (simulating that the client performs
those actions as many as possible in diverse orders), and
thus traverses the broker states automatically.

To implement the model with multiple concurrent
clients, in the skeleton code, we launch 2 processes for 2
publisher clients and 1 process for 1 subscriber client. Spin
runs each process (representing each client) in parallel, and
helps the client randomly invoke any of the support client
actions. Note that one can easily extend the implementation
to include more clients. We provide a running example for
concrete model generation in Appendix A.10.

Algorithm 1 Generate Promela Functions for Client Actions

Input: Ap,,ker, the list of supported client actions;
Input: {EPT% la; € ABroker}, Where EPT,, is the set of Effective Path
Types for action a;.
Output: {F(a;)|a; € ABroker}, where F(a;) is the set of generated Promela
functions for action a; (handler functions).
I: N « length(Ag, ker)
2: fori = 1,2,...,N do

3: F(a;) «+ 0

4. for ept in EPT,, do

5: // generate Promela function for each Effective Path Type
6: f <+ translateSingle EPT (ept)

7. F(a7) < F(a7) U f

8: end for

9: end for

10: return {F(a;)|a; € Aproker}

Algorithm 2 Generate Promela Function for each Path Type

Input: ept, a specific Effective Path Type, which includes a sequence of operations
seq = [01,...,0p), 0, € O.
Output: f, a single Promela function representing the ept.
1: function translateSingle E PT (ept)

2: C « 0 // C is aset of code snippets

3: seq <« getOperationSequence(ept)

4: for o in seq do

5: // generate code snippet for each operation in Effective Path Type
6: code_snippet < generateCode(o)

7: C <+ C U code_snippet

8: end for

9: // assemble code snippets to construct a Promela function

10: f + assemble(C)

11: return f
12: end function

4.4. Vulnerability Discovery with Model Checking

With an MQTT broker’s concrete model specified
in Promela, we use an off-the-shelf model checker Spin
[40] to verify the model against a set of security properties.
Definition of security properties. We generalize the fol-
lowing three security properties, based on our high-level
security goal and recent security analyses [15], [29].

e spy: A client Cy.c, that is receiving a message m from the
broker should have the right to read the message m.

o spo: A client Cgpq should have the right to send the
message m when the broker accepts the message m.

o sp3: The client Cy,.q that causally triggers the broker to
send a message m to other client(s) (subscribers) should
have the right to send m when m is delivered to the MOQTT
subscribers. The client Cy,4 is called a trigger.

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

Model checking. A concrete model essentially is a
highly abstracted (or simplified) implementation of the bro-
ker in the modeling language (§ 4.3.2), keeping only ex-
ecution paths that operate on or impact the state variables
(thus impacting broker states of our interest). A concrete
model includes multiple handler functions (generated by
Algorithm 1, corresponding to the client actions): upon a
client action a; (e.g., PUBLISH), Spin runs one handler
function related to a; (there can be multiple handler func-
tions for a,; corresponding to different Path Types in the
broker, see Algorithm 1), which updates or operates the
state variables. Spin can simulate multiple concurrent clients
(publishers, subscribers): a client can randomly perform a
client action, and Spin runs one of the corresponding handler
functions. Hence, Spin helps traverse potentially all different
sequences of client actions to visit potentially all possible
states of the broker.

To verify authorization related properties, MQTTactic
enhances the concrete model to additionally maintain
a new data D to keep track of ground-truth of each client’s
authorized rights. When Spin runs the concrete model,
MQTTactic randomly changes each client’s permissions be-
tween client actions (similar to AUTHORIZE and REVOKE
actions on a real broker). Due to permission changes, two
sequential client actions of the same type (e.g., PUBLISH)
may not both go through the same state transition (e.g., to
the point of 0gejiver in @ handler function) should the execu-
tion path include permission related constraint — permission
check (Auxiliary step 1, § 4.3.1).

Based on our security properties to discover insufficient
permission checks in the concrete model, we add two
assertions (checking whether the client has the permissions
based on ground-truth D) at any message delivery (0geiiver)-
One assertion requires the message sender or trigger (iden-
tified by ClientID) with the PUBLISH permission; the
other assertion ensures the message recipient with the SUB-
SCRIBE permission. See real assertion and model code
online [52]. When Spin traverses potentially all different
sequences of client actions to visit potentially all broker
states, any violation to the assertions indicates a flaw.

Taking Flaw 1 as an example (Figure 1), the publisher
client (who performs the action PUBREL in ()!) is expected
to have the right PUBLISH. However, the model checker
find a violating state (counterexample): after the client lost
the PUBLISH right, it performed the 4! step and led to
the (31 step of the broker (the broker lacks the permission
check @)t for the publisher client and let through the
operation to (3)*, violating sps).

4.5. Implementation Details and Discussion

Code analysis and converting broker source code to
LLVM IR. In § 4.3.1, MQTTactic performs static analyses
on source code. To analyze brokers developed in different
programming languages (e.g., C, C++, and Rust), we first
convert the broker source code into LLVM IR [53]. Specifi-
cally, we adopted off-the-shelf LLVM-based/supported tools
to generate the LLVM IR for different languages (Clang/-
Clang++ [54] used for C/C++, Gollvm [55] for Golang, and

2393

Rustc [56] for Rust). We provide detailed technical guidance
and examples for LLVM IR generation online [57], which
include environment configuration, necessary commands to
run the tool, and real examples (illustrating the translation
from real code snippets of MQTT brokers to LLVM IR).
MQTTactic further adopted SVF [50] and haybale [51] to
identify KBB and analyze control flows on the LLVM IR.
Full release of MQTTactic source code and concrete
model implementation. We fully release artifacts of this
study online [42], including (1) the MQTTactic source code
(5,500 LOC in total), and (2) the concrete models
implemented in Promela for 7 brokers (see broker names
and version in Table 1). [42] further includes a demo to run
MQTTactic with FlashMQ.
The configuration to run MQTTactic. To inspect
a specific MQTT broker implementation, MQTTactic
expects a simple configuration file to map (1) the
7 state variables (Table 2) defined in the model (§ 4.2)
to corresponding variables in the broker code; (2) the
8 client actions (e.g., CONNECT and PUBLISH, see
Table A.8) to handler functions implemented by the broker.
For example, for the FlashMQ broker, the configuration
file maps the CONNECT action to the handler function
named handleConnect, which is the entry point to handle
clients’ CONNECT actions. We additionally leverage the
configuration file to list the authorization function(s)
in the broker. We show the configuration file for the
FlashMQ broker in Appendix A.5. We evaluate the practical
manual efforts for preparing configuration in § 6.1.
Also, the configuration for a broker
implementation does not expect frequent changes along
with broker updates or version changes. In particular,
a broker’s interface-functions (e.g., the handlers) rarely
change (based on the Open-Closed Principle [58]). As an
evaluation on 7 brokers, by inspecting more than 350 Git
commits including 5 major version updates, we find that
their configuration expected almost no changes. Also,
any alterations to variable names or function names could
be easily tracked and captured from Git commits.
One-time efforts for code templates and limited im-
pact of MQTT versions. We leverage one-time efforts to
develop Promela code templates for the operations and a
skeleton code, which are reused for constructing concrete
models of different MQTT broker implementations. They
are also general across major MQTT versions used in the
wild, being usable and effective for both MQTT v3.1.1
and v5.0. Note that the MQTT specification comes with
a “Summary of new features in MQTT v5.0”, and the
new features added in MQTT v5.0, typically supporting
backward compatibility, do not change the core messaging
flow and operations. It took us about 3 domain-expert days
to identify the state variables in the MQTT specification,
implement the code templates and skeleton in Promela.

5. Security Flaws and Measurement of Impact

We ran MQTTactic on 7 popular open-source bro-
kers developed in 4 different languages, and identified 11

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

authorization-related logic flaws, including 7 zero-day flaws
(see Table 1) and 4 existing flaws (see Appendix A.6).
Notably, we only evaluated a subset of the 70+ open-
source brokers (see Appendix A.4), selecting only those
having implemented dynamical authorization mechanisms
and written in the programming languages supported by
MQTTactic currently (i.e., C/C++/Go/Rust). Further, in our
measurement study (§ 5.2), we manually investigated 13
other popular brokers — 7 commercial brokers from leading
IT companies and 6 open-source brokers (written in Java,
JS, or Erlang). Results have shown the pervasiveness of the
0-day flaws identified by MQTTactic.

5.1. New (0-day) Flaws Identified by MQTTactic

Flaw 2: Vulnerable delivery retry in QoS 1 messaging.
The MQTT specification defines the QoS 1 messaging as
“at least once delivery” in terms of delivery assurance (see
§ 2.2), with the following control flow (see Figure 4): if
the subscriber is online, the broker delivers the message
to the subscriber without delay (6)2-&)2-632-G2'). If the
subscriber is offline, the broker would retry to deliver the
message when the subscriber reconnects (()2-(22-(3)2-
(92-(92692). Most brokers add a permission check ()2)
before accepting the incoming message M, ensuring the
publisher/subscriber has the access right to send/receive the
message M. Still, MQTTactic reports a possible violation
to the security property sps — when the broker delivers
the message M, the publisher (i.e., the malicious user) does
NOT possess the right to send the message M — with the
attacking action sequence of ()2-GD2-€)2-(22-(3)2-(2)2-()2-
@?-)2-2.

Publisher Subscriber

127

MQTT broker

Malicious user loT device V. 5=

2-

2
@PUBLISH QoS1 msg M

The malicious user makes the de} f

the home router to disrupt the }

> 2
C1) Permission check
2
52 Store the msg M
' online,

@ deliver the msg M >

(54

ice go offline (e.g. turn off
i-Fi network) N
»>

2
(Spusack
<
<

\? If subscriber offline
msg delivery retry later

2 permission revoke (e.g., the
malicious user checks out)

@

<
<

2 Device reconnects
with cleanStart == 0

2Lacked check on the
publisher's access right
ZRedellverthe msg M

Figure 4: Flaw 2. Vulnerable retry in QoS 1 messaging

S5,

Flaw 3: Vulnerable delivery retry in QoS 2 messaging.
Due to the “exactly once delivery” feature (see § 2.2),
there is a similar ret ry mechanism in QoS 2 messaging,
which has the same security implication of that in QoS 1
messaging and leads to Flaw 3 in the QoS 2 messaging.
For simplicity, we omit the redundant description on Flaw
3 here (see Appendix A.l for the detailed description).

Flaw 4: Unguarded usage of the Topic Alias. MQTT
specification v5.0 uses Topic Alias to reduce the
resource consumption of MQTT messaging in that using
the 2-byte integer Topic Alias to represent the (possibly

2394

long) topic name (see § 2.1). As shown in Figure 5,
the control flow of the Topic Alias enabled MQTT
messaging is defined as G)*-(4-G)4-G)*-()4. Again,
though not explicitly specified in the MQTT specification,
the brokers would usually add a permission check (*)
before accepting and delivering the first message M1.
However, MQTTactic find such security practice has not
been completely enforced to guard all the PUBLISH
packets, reporting a flaw with the attacking sequence of
GDA-E*-(4-()1-()*-G*-(3)* in the VolantMQ broker. That
is, the broker does NOT check the publisher’s permission
when processing the subsequent PUBLISH packets only
carrying the Topic Alias (i.e., message M2).

Publisher Slﬁsg'i ber
s
197

MQTT broker

Malicious user loT device

@4PUBLISH msg M1 to topic
“t'_with alias 1

4
C1) Permission check

4
@ Deliver the msg M1

4 53) ' Store the alias 1 for
Permission revoke topic “t”
<
APUBLISH msg M2 with
(59 topic alias 1 (empty topic

4Lacked check on the
publisher's access right

4
@ Deliver the msg M2

(M)

Figure 5: Flaw 4. Unguarded usage of the Topic Alias

Flaw 5: Insecure session taking over. When receiving a
new CONNECT request with an already existing ClientID,
the broker creates a new session (with the same C1ientID)
to take over the existing session, during which, the broker
would deliver the Will message (if any) of the existing
session (see § 2.2). The session taking over process of
Mosquitto goes as ()35-€)5-(25-(35-695-3-(695 in Figure
6, where 5 and (5 are the permission checks added by
Mosquitto. Despite such security enforcement, MQTTactic
still reports a flaw during session taking over where a mali-
cious user (who is able to obtain the Cl1ientID of others
[29]) can trigger the delivery of a Will message containing
the topic that he is not entitled to access (violating the
security property sps).

Publisher MQTT broker Subscriber

/\

or

IoT device 5=~

-

=
Victim user oo
@5 CONNECT with WillMsg M
and clientlD ¢

©Permission check on the
publisher’s access right

s
S2)Store the WillMsg M

®5CONNACK

@Maliciaus user

] 5
é} Session taking over
5
(2 coNNECT with clientiD ¢

OCheck the right of the owner

of WillMsg (victim user)

OLacked check on the right of
the trigger (malicious user)

5
@ Deliver the WillMsg M

Figure 6: Flaw 5. Insecure session taking over

Flaw 6: Unvetted Will message. When a client sends a
CONNECT packet containing a Will message, the broker
would store the Will message and later deliver the Will
message to the appropriate subscribers when the client goes
offline accidentally (e.g., network outage). In the absence of

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

security guidance, we find the Will messaging in several
brokers is vulnerable. For instance, hmq [59] neither checks
whether the client is authorized to PUBLISH message to
the topic contained in the Will message when accept-
ing/storing the Will message ()¢ in Figure 7) nor when
delivering it (@), enabling any (unauthorized) client to
send commands to any topic arbitrarily.

Publisher MQTT Subscriber

197

broker

Malicious user loT device

6
(57) CONNECT with WillMsg M

6 Lacked check on the

@) WillMsg M

52) Store the WillMisg M

(I Lacked check on the
publisher's access right
6
Deliver the willMsg M

Figure 7: Flaw 6. Unvetted Will message

6
S3) CONNACK

’ Close network connection
unexpectedly

Flaw 7: Vulnerable message caching. Mosquitto uses
a homegrown cache-before-process mechanism to
limit the resource consumed by a single publisher during
QoS 2 messaging. In specific, Mosquitto stores the unfin-
ished valid QoS 2 messages in its InflightQueue (with a
finite capacity of n, n = 20 by default) first (G)7-C)7-()7-
®7 in Figure 8). After the InflightQueue is full, the new
valid QoS 2 messages will be cached in the CacheQueue
(697-@7-7). After finishing a message in the InflightQueue
(697-@7-()7-()7), the broker removes the finished mes-
sage from the InflightQuene ((97), moves a message in
the CacheQueue (e.g., M) to the InflightQueue (§97) and
continues to process the message M (§)7-627-C)7-§)7-197).

Publisher MQTT broker

Sugsﬁ'iber
—
18T

Malicious user =

loT device

 PUBLISH QosS2 msgs
(M, Mz, -+, Mo} to topic A" |
>

C1
) Esz%
@PuBREc 0y, Mg, oo, My}

PUBLISH QoS2 msg M to

topic “B”

€2) Permission check
55) Store the msg M to
CacheQueue (due to

BT inflightqueue is full)

Permission check

Store msgs (M, My, -+, Ma}
to InflightQueue
(length=n)

J.
Pem‘\\ss\on revoke topic
<
PUBREL Mo 0<k<n+1)

"2y Permission check on the
3 !
subscriber's access right

@Dellverthe msg Mk
PUBCOMP M
<
2oy Remove the msg Vi
from InflightQueue
3 Move the msg M to
@PUBREC msg M InflightQueue
@PUBREL msg M
2] Permission check on the
subscriber's access right
7 Lacked check on the
publisher’s access right
@puecomp msg M @Denverme msgM |

Figure 8: Flaw 7. Vulnerable message caching

Mosquitto’s cache-before-process mechanism
is found to be vulnerable: a malicious user could
force Mosquitto to cache a malicious message M in its
CacheQueue with n prepositive messages. After Mosquitto
revokes the user’s permission associated with the message 1,

2395

the user tricks Mosquitto into finishing one of the prepositive
messages and eventually delivering the malicious message
M (see above), which violates the security property sps.
PoC exploits and ethical consideration. We developed PoC
exploits for all flaws to confirm their realistic impacts (ela-
borated online [42]). For ethical experiments, we deployed
the MQTT brokers under inspection and the MQTT clients
in our lab environments, without affecting real-world IoT
services and users.

Possible mitigation to the flaws. Fully securing the MQTT
systems requires the developers to enforce sufficient se-
curity checks based on a complete understanding of the
security implications of the complex messaging logic, the
asynchronous expectation, and the dynamic access control in
real-world applications, which is unfortunately not easy for
the developers to make it right, in the absence of standard-
ized security guidance. To provide timely protection to the
MQTT brokers, we have suggested the necessary security
checks to fix the flaws we find, which are illustrated as the
“Lacked check” (the steps of ¢)s in blue) in the Figure 1, 4,
5, 6,7, 8, and 9. Moreover, the current MQTT specification
could be enhanced or better clarified to help developers
avoid the flaws. It is particularly imperative to enhance the
specification and provide guidance on where in the mes-
saging process one should implement a permission check
(e.g., Flaw 1 for the lack of authorization after a PUBREL).
Also, the protocol’s specification of certain operations can
be more deterministic, e.g., the timing to deliver the QoS
2 message (see “Ambiguous definition” in § 3.1).

5.2. The Pervasiveness and Magnitude of the Flaws

We list all the flaws identified by our tool MQTTactic in
Table 1 and 4. As we can see, each broker we inspected has
at least 3 (up to 9) flaws and violates all the 3 security
properties, indicating the authorization issues in MQTT
messaging come from various aspects and are common in
even the most popular brokers — there are over 318,000
deployments of the Mosquitto broker in production [10].

Moreover, we manually check 7 popular commercial
MQTT brokers and 6 other open-source brokers (imple-
mented in Java and Erlang, which MQTTactic does not
support currently, see § 7) to evaluate the pervasiveness of
the 0-day flaws identified by MQTTactic. Not surprisingly, as
shown in Table 5, all 6 open-source brokers are vulnerable.
More importantly, even brokers of the most popular/leading
IoT service providers (i.e., AWS, IBM, Baidu, Alibaba,
and Tencent), who have millions of users worldwide, are
also vulnerable. Notably, we find no flaw in the Google
broker and Azure broker, because they provide simplified
MQTT services, e.g., QoS 2 message is not supported.
Given the large number of the MQTT brokers’ downstream
MQTT customers and end-users, the pervasiveness and the
magnitude of the flaws in the brokers pose a significant
threat to today’s IoT ecosystem.

Responsible disclosure. We report all the identified flaws
to the 20 vendors, 13 of which have acknowledged the
seriousness of the problems and are taking actions to address

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: The 7 zero-day flaws identified by MQTTactic

Violation to which Mosquitto . FlashMQ . Emitter . VolantMQ . hmq . RMQTT . Mochi MQTT .
security propertics (C, 6.2K stars)™ | (C++, 80 stars)™ | (Go, 3.2K stars)™ | (Go, 879 stars)™ | (Go, 1k stars)™ | (rust, 125 stars)™ | (Go, 230 stars)
v2.0.11 v0.9.9 v3.0 v0.4.0 v1.5.0 v0.2.3 v1.2.3

Flaw 1 sp2, Sp3 v X N/A v X X X

Flaw 2 Spa v v 4 v X 4 4

Flaw 3 spa v v N/A v X 4 v

Flaw 4 spa X N/A N/A v N/A N/A N/A

Flaw 5 sp3 v v X v v v 4

Flaw 6 sp2, Sp3 X v X X v 4 X

Flaw 7 sp3 v X N/A X X X X

v indicates the flaw was identified in the broker, while X indicates the flaw was NOT identified in the broker.

* specifies the broker’s programming language and the number

of stars in GitHub. N/A indicates the broker does not support the corresponding feature (e.g., QoS 2 messaging and Topic Alias).

them with our help. Mitigation has been deployed or is on
the way — Mosquitto fixed Flaw 7 and partially fixed Flaw
1; FlashMQ fixed Flaw 2, Flaw 3, and Flaw 9; EMQX fixed
Flaw 9; Baidu resolved Flaw 10; Alibaba fixed Flaw 8.

6. Evaluation

Performance overhead. We run MQTTactic on a server
running Ubuntu 20.04, equipped with 192GB RAM, and
a 40-core CPU of Intel Xeon Platinum 8269CY @3.1GHz.
The major tasks of MQTTactic are data flow analyses,
symbolic execution, and model checking. The time of data
flow analyses for a broker is less than 5 minutes. The time
for symbolic execution is closely related to the amount of
codes in the action under inspection. Specifically, for the
CONNECT action of Mosquitto (2,000 LOC), it takes about
8 minutes with a single process to identify one effective path
type, while it takes less than 5 minutes to identify all the
effective path types for the CONNECT action in VolantMQ
(250 LOC). Similarly, the time needed for model check-
ing highly depends on the complexity of the concrete
model — it takes MC about 30 minutes to identify the
flaws in Mosquitto while only 2 minutes for VolantMQ.
Overall, it takes about 176 minutes for MQTTactic to finish
analyzing a broker in average.

Completeness of modeling. Our modeling goal for a
specific broker is to extract and abstract its control flows
with logical constraints impacting the key states of the
broker’s operations. We consider the broker’s state based
on the 7 state variables; hence, given huge code footprint
(e.g., 10K lines of code), we do not extract model-unrelated
implementation details (such as format check or exception
handling). To evaluate the completeness of modeling for our
goal, we manually inspect all 6 action handlers of FlashMQ
and their program paths: our generated model covers 10
out of 11 (91%) unique paths. The missed one is an
autonomous messaging flow unique to FlashMQ: regardless
of client actions, the broker autonomously delivers a Will
message if related client session is not alive based on a
timer. Hence, our search of paths starting from handler
functions (broker entry points of client actions) does not
cover this path. However, our general model definition (e.g.,
operation on Will message is considered to impact broker
state) enables us to cover such a path in the future work.
End-to-end effectiveness of modeling and verification. We
implement proof-of-concept test with the 36 counterexam-
ples reported by MQTTactic for FlashMQ and find that all
are executed successfully and violate the security properties

2396

(some counterexamples with slightly different action orders
indicate the same security flaw in nature).

6.1. Comparison with Prior Works

Comparison with MPInspector. We compare the (1) ef-
fectiveness of MPInspector [15] and MQTTactic (including
model definition, construction, and security violation iden-
tification) (2) manual efforts in the model construction.
o Effectiveness. The model definition and construction of
MPInspector and MQTTactic are significantly different and
thus MQTTactic can identify authorization-related violations
while MPInspector generally could not (with its focus on
authentication and secrecy of message attributes).
Extending MPInspector for access-control problems
can be non-trivial and entail serious research efforts. First,
MPInspector does not model authorization-related semantics
and states, limiting its ability to identify authorization
violations. MPInspector does not consider permissions,
models system states, or behaviors when access-policies
are changed or different, and thus, MPInspector could
not identify system states that violate access policies; for
example, the broker delivers or handles a message for
a client violating access policies. Second, MPInspector
is based on Active Automata Learning [60], which does
not directly come with semantics for the automata states.
To identify authorization violations, MPInspector should
supplement authorization-related semantics to the states.
Examples of necessary semantics for a state include (1)
whether a state indicates a message delivery; (2) who are
message recipients and senders; (3) permissions of the
related clients in the state. Expanding MPInspector states
with authorization-necessary semantics entails thorough
design and can be non-trivial. Hence, MPInspector cannot be
directly or simply adopted to find authorization mistakes like
MQTTactic can do. MPInspector does supplement semantics
to the states, such as in-message attributes to handle secrecy
and authentication properties. Current MQTTactic does not
focus on secrecy or authentication properties.
e Manual efforts expected. In general, MQTTactic and
MPInspector expect comparable amounts of manual effort
for model construction. For a specific broker, manual efforts
expected by MPInspector include (1) setting up the broker to
run, (2) communication configuration (e.g., MQTT version
and raw password), (3) collecting diverse network traffic,
(4) configuring LearnLib [60] — the underlying tool used
by MPInspector. In contrast, manual efforts expected by
MQTTactic is to develop a configuration file that

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

maps state variables/actions to program code (§ 4.5). We
apply MQTTactic and MPInspector for three real-world
broker implementations Mosquitto [61], Tuya cloud [62],
and FlashMQ [63], and evaluate the actual time (manual
efforts) needed to construct models. The results showed that
the manual efforts are comparable: MQTTactic needs 1.3 to
4.2 hours per broker, compared to MPInspector, which needs
1.6 to 3.8 hours (Table 7 in Appendix details the results).
Comparison with other prior model construction
methods. Prior approaches for model construction [15],
[30]-[39] generally cannot be directly applied to generate
useful models for MQTT broker implementations, because
(1) they lack definition for formal models that can describe
MQTT states and semantics; (2) they are not suited to
abstract operations and logic that are related to broker
states. Moreover, building models under the prior works’
contexts may or may not require more manual efforts
than ours to achieve their verification goals. For example,
MPInspector [15], LearnLib [60], NGLL [64], Libalf [65],
Tomte [66], ROLL [67], and Scikit-SpLearn [68] leverage
semi-automatic model inferring/learning techniques for
model construction, although their learning time increases
exponentially with the increasing input/output space.

7. Discussion and Future work

Possible false positives/negatives. During the investigation
of the 7 open-source brokers (see § 5), we did not come
across any false positives. Nevertheless, we present several
potential causes that could result in false positives/negatives,
which could serve as directions for future optimization.

e Fualse positives. (1) Partial symbolic execution: For ef-
ficiency in our current experiment configuration, instead
of symbolically executing all function calls, we mark the
return values of certain function calls (pertaining to system
functions like exit() or surpassing the specified callstack
depth) as indeterminate symbolic values. This can render
certain symbolic constraints not fully unidentified in run-
ning MQTTactic, over-estimate reachable paths, and lead
to false paths extracted. (2) Incorrect configuration:
An incorrect configuration (e.g., specifying incorrect
implementation-level variables) could lead to irrelevant ba-
sic blocks being identified as KBB and further cause false
path types to be added to the concrete model.

o False negatives. (1) Incomplete pointer analyses results:
Pointer analyses of SVF [50] might fail to identify all the
KBBs, which could cause certain effective path types not to
be added to the concrete model, resulting in MQTTac-
tic missing the flaws related to such effective path types; (2)
Incorrect configuration: Incorrect configuration
(e.g., incomplete mapping) could also cause certain path
types not being added to the concrete model; (3) Ad-
vanced programming language features: Different program-
ming languages features may bring various challenges to
control flow extraction. For example, function pointers in
C/C++ make it difficult for static analyzers to fully iden-
tify control flows. MQTTactic mitigated this problem with
pointer analyses. However, advanced programming language
features in different languages (e.g., Virtual Function in

2397

C++ and Interface in Golang) could pose new challenges
for extracting complete control flows from the source code.
Future efforts are expected to better solve the problem.
Towards fully automated analysis. In the current MQTTac-
tic, manual efforts comparable to related work are expected
(§ 6.1). In future work, we may leverage natural language
processing (NLP) based semantic analysis to help automat-
ically identify model-related function and variable names in
the source code, thus making MQTTactic more automatic.
Applicability. MQOTTactic cannot analyze a broker without
source code. Notably, developers of closed-source brokers
can leverage MQTTactic to find problems. Further, our
idea of extracting only model-relevant information from
large code bases for relatively efficient model checking can
be applied to other messaging protocols and application
domains.

8. Related Work

IoT platform security. The security of IoT platforms has
been widely studied, including the coarse-grained capabili-
ties, vulnerable automation control rule detection, delegation
problem, etc. [22], [23], [45], [69], [70]. Most of these
works typically focus on a specific cloud platform, such as
SmartThings [16]-[21], AWS’s Alexa platform [22], [23],
and IFTTT [24]-[26]. By contrast, our work tries to discover
security flaws across multiple brokers with a unified method.
Model-guided vulnerability identification. Model-guided
approaches have also been proposed for attack strategy gen-
eration (Fuzzing) [32]-[34] or model refining/learning [31].
However, most of these works require substantial manual
efforts for either building the model [32], [33] or performing
security checks on the model [31]. Moreover, Pacheco et al.
[71] proposed an approach for automated attack synthesis by
extracting finite state machines from the protocol specifica-
tion. In contrast, we use both the information in the protocol
specification and the implementation-specific details to de-
rive unique concrete models for each implementation, aim-
ing to identify the flaws in the protocol implementations.

9. Conclusion

We report the first attempt to systematically identify
authorization-related logic flaws in open-source MQTT bro-
ker implementations by formally verifying their source
codes. We propose MQTTuctic to analyze popular open-
source MQTT brokers, and discover 7 zero-day flaws with
serious security implications. Our findings suggest that the
customization of messaging flow and logic can easily go
wrong. Our new understandings and findings will provide
better protection to today’s IoT supply chain.

Acknowledgments

We would like to thank our shepherd and the anony-
mous reviewers for their insightful comments. This work
is supported by the National Natural Science Foundation of
China (No. 62372191). Yan Jia is supported by the National
Natural Science Foundation of China (No. 62102198) and
China Postdoctoral Science Foundation (No. 2021M691673,
No. 2023T160335). Luyi Xing is supported in part by NSF
CNS-2145675 and CCF-2124225.

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

References

(1]

[2]
(3]
(4]

(3]

(6]

(71
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

“2022 survey shows MQTT adoption is high
for industry,” https://www.hivemq.com/blog/
2022-survey-shows-mgqtt-adoption-is-high-for-industry/, accessed:
2023-04.

“AWS IoT,” https://aws.amazon.com/cn/iot-core, accessed: 2023-04.
“Google IoT,” https://cloud.google.com/iot-core, accessed: 2023-04.

“IBM IoT,” https://www.ibm.com/cloud/internet-of-things, accessed:
2023-04.

“Azure IoT,” https://azure.microsoft.com/en-us/solutions/iot/,
cessed: 2023-04.

ac-

“Baidu IoT,” https://intl.cloud.baidu.com/product/iot.html, accessed:
2023-04.

“Alibaba IoT,” https://mqtt.console.aliyun.com/, accessed: 2023-04.

“MQTT implementations,” https://en.wikipedia.org/wiki/
Comparison_of _MQTT_implementations, accessed: 2023-04.

“HiveMQ Customers,”
accessed: 2023-04.

https://www.hivemq.com/customers/,

“ZoomEye: Mosquitto usage,” https://www.zoomeye.org/
searchResult?q=app:”Mosquitto”, accessed: 2023-04.

“MQTT Specification,” https://mqtt.org/mqtt-specification/, accessed:
2023-04.

R. Jhala and R. Majumdar, “Software model checking,” ACM
Comput. Surv., vol. 41, no. 4, pp. 1-54, 2009.

K. Hofer-Schmitz and B. Stojanovié, “Towards formal methods of
iot application layer protocols,” in Proceedings of the 12th CMI
Conference on Cybersecurity and Privacy, 2019, pp. 1-6.

E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking
and abstraction,” ACM Transactions on Programming Languages and
Systems, vol. 16, no. 5, pp. 1512-1542, 1994.

Q. Wang, S. Ji, Y. Tian, X. Zhang, B. Zhao, Y. Kan, Z. Lin, C. Lin,
S. Deng, A. X. Liu, and R. Beyah, “Mpinspector: A systematic
and automatic approach for evaluating the security of iot messaging
protocols,” in Proceedings of the 30th USENIX Security Symposium,
2021, pp. 4205-4222.

E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “Flowfence: Practical data protection for emerging
iot application frameworks,” in Proceedings of the 25th USENIX

Security Symposium, 2016, pp. 531-548.

Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“Smartauth: User-centered authorization for the internet of things,”
in Proceedings of the 26th USENIX Security Symposium, 2017, pp.
361-378.

Z. B. Celik, G. Tan, and P. D. McDaniel, “Iotguard: Dynamic
enforcement of security and safety policy in commodity iot.” in
Proceedings of the 26th Annual Network and Distributed System
Security Symposium, 2019.

Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity, “Contexiot: Towards providing
contextual integrity to appified iot platforms.” in Proceedings of the
24th Annual Network and Distributed System Security Symposium,
2017.

Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging
in the internet of things,” in Proceedings of the 25th Annual Network
and Distributed Systems Security Symposium, 2018.

B. Yuan, Y. Wu, M. Y. L. Xing, X. Wang, D. Zou, and H. Jin.,
“Smartpatch: Verifying the authenticity of the trigger-event in the iot
platform,” IEEE Transactions on Dependable and Secure Computing,
vol. 20, no. 2, pp. 1656-1674, 2022.

2398

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

L. Cheng, C. Wilson, S. Liao, J. Young, D. Dong, and H. Hu, “Dan-
gerous skills got certified: Measuring the trustworthiness of skill cer-
tification in voice personal assistant platforms,” in Proceedings of the
27th ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1699-1716.

N. Zhang, X. Mi, X. Feng, X. Wang, Y. Tian, and F. Qian, “Dan-
gerous skills: Understanding and mitigating security risks of voice-
controlled third-party functions on virtual personal assistant systems,”
in Proceedings of the 41st IEEE Symposium on Security and Privacy,
2019, pp. 1381-1396.

E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized
action integrity for trigger-action iot platforms,” in Proceedings of the
25th Annual Network and Distributed System Security Symposium,
2018.

I. Bastys, M. Balliu, and A. Sabelfeld, “If this then what?: Control-
ling flows in iot apps,” in Proceedings of the 25th ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
1102-1119.

Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the attack surface of trigger-action iot platforms,” in
Proceedings of the 26th ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1439-1453.

“MQTTSA,” https://github.com/stfbk/mqttsa, accessed: 2023-04.

“MQTT-PWN,” https://github.com/akamai- threat-research/mqtt-pwn,
accessed: 2023-04.

Y. Jia, L. Xing, Y. Mao, D. Zhao, X. Wang, S. Zhao, and Y. Zhang,
“Burglars’ IoT Paradise: Understanding and Mitigating Security Risks
of General Messaging Protocols on IoT Clouds,” in Proceedings of
the 41st IEEE Symposium on Security and Privacy, 2020, pp. 465—
481.

K. Hofer-Schmitz and B. Stojanovi¢, “Towards formal methods of
iot application layer protocols,” in Proceedings of the 12th CMI
Conference on Cybersecurity and Privacy, 2019, pp. 1-6.

J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS implemen-
tations,” in Proceedings of the 24th USENIX Security Symposium,
2015, pp. 193-206.

S. Jero, M. E. Hoque, D. R. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in TCP congestion control using a
model-guided approach,” in Proceedings of the 25th Annual Network
and Distributed System Security Symposium, 2018.

B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of TLS,” in
Proceedings of the 36th IEEE Symposium on Security and Privacy,
2015, pp. 535-552.

S. Jero, H. Lee, and C. Nita-Rotaru, “Leveraging state information for
automated attack discovery in transport protocol implementations,” in
Proceedings of the 45th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2015, pp. 1-12.

Z. B. Celik, P. McDaniel, and G. Tan, “Soteria: Automated iot safety
and security analysis,” in Proceedings of the 23rd USENIX Annual
Technical Conference, 2018, pp. 147-158.

B. Aziz, “A formal model and analysis of the mq telemetry transport
protocol,” in Proceedings of the 9th International Conference on
Availability, Reliability and Security, 2014, pp. 59-68.

A. Rodriguez, L. M. Kristensen, and A. Rutle, “On modelling and
validation of the mqtt iot protocol for m2m communication,” in
Proceedings of the 39th International Workshop on Petri Nets and
Software Engineering, 2018, pp. 99-118.

J. Hcine and I. Ben Hafaiedh, “Formal-based modeling and anal-
ysis of a network communication protocol for iot: Mqtt protocol,”
in Proceedings of the 8th International Conference on Sciences of
Electronics, Technologies of Information and Telecommunications,
2018, pp. 350-360.

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

(391

[40]
[41]

[42]

[43]
[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]
[52]

[53]
[54]
[55]
[56]
[57]

[58]
[59]

[60]

[61]
[62]
[63]
[64]

[65]

B. Aziz, “A formal model and analysis of an iot protocol,” Ad Hoc
Networks, vol. 36, pp. 49-57, 2016.

“Spin,” http://spinroot.com/spin/whatispin.html, accessed: 2023-04.

“Promela,” https://en.wikipedia.org/wiki/Promela, 2022, accessed:
2023-04.

“MQTTactic,”
accessed: 2023-04.

“The MQTT protocol,” https://mqtt.org, accessed: 2023-04.

https://github.com/CGCL-codes/MQTTactic/,

“Topic Alias - MQTT 5.0 new features,” https://www.emqgx.com/en/
blog/mqtt5-topic-alias, accessed: 2023-04.

B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, and Y. Zhang, “Shat-
tered chain of trust: Understanding security risks in cross-cloud iot
access delegation,” in Proceedings of the 29th USENIX Security
Symposium, 2020, pp. 1183-1200.

Y. Jia, B. Yuan, L. Xing, D. Zhao, Y. Zhang, X. Wang, Y. Liu,
K. Zheng, P. Crnjak, Y. Zhang, D. Zou, and H. Jin, “Who’s in control?
on security risks of disjointed iot device management channels,” in
Proceedings of the 28th ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1289-1305.

R. Ensafi, J. C. Park, D. Kapur, and J. R. Crandall, “Idle port scanning
and non-interference analysis of network protocol stacks using model
checking,” in Proceedings of the 19th USENIX Security Symposium,
2010, pp. 257-272.

“Basic Block,” https://en.wikipedia.org/wiki/Basic_block, accessed:
2023-04.

“Control Flow Graph,” https://en.wikipedia.org/wiki/Control-flow_
graph, accessed: 2023-04.

Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis
in Ilvm,” in Proceedings of the 25th International Conference on
Compiler Construction, 2016, pp. 265-266.

“haybale,” https://github.com/PLSysSec/haybale, accessed: 2023-04.

“Security Property,” https://github.com/CGCL-codes/MQTTactic/
blob/e0090bba956d79791905c¢68e5e¢0dce1213de0579/Examples/
mosquitto_concrete_model.pml#L.1408, accessed: 2023-07.

“LLVM,” https://llvm.org/, accessed: 2023-04.

“Clang,” https://rustc-dev-guide.rust-lang.org/, accessed: 2023-04.
“Gollvm,” https://go.googlesource.com/gollvm/, accessed: 2023-04.
“Ruste,” https://clang.llvm.org/, accessed: 2023-04.

“LLVM IR generation,” https://github.com/CGCL-codes/MQTTactic/
tree/main/LLVM-IR-generation, accessed: 2023-04.

“Open closed principle,” https://en.wikipedia.org/wiki/Open-closed_
principle, accessed: 2023-04.

“hmgq,” https://github.com/fhmq/hmq, accessed: 2023-04.

M. Isberner, F. Howar, and B. Steffen, “The open-source learnlib: a
framework for active automata learning,” in Proceedings of the 27th
Computer Aided Verification, 2015, pp. 487-495.

“Eclipse Mosquitto,” https://mosquitto.org/, accessed: 2023-04.
“Tuya Smart,” https://en.tuya.com/, accessed: 2023-04.
“FlashMQ,” https://www.flashmq.org/, accessed: 2023-04.

O. Bauer, J. Neubauer, and M. Isberner, “Model-driven active au-
tomata learning with learnlib studio,” in Proceedings of the 7th
International Symposium on Leveraging Applications of Formal
Methods, 2016, pp. 128-142.

B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R.
Piegdon, “libalf: The automata learning framework,” in Proceedings
of the 22nd International Conference on Computer Aided Verification,
2010, pp. 360-364.

2399

[66]

[67]

[68]

[69]

[70]

[71]

F. Aarts, P. Fiterau-Brostean, H. Kuppens, and F. Vaandrager, “Learn-
ing register automata with fresh value generation,” in Proceedings
of the 12th International Colloquium on Theoretical Aspects of
Computing, 2015, pp. 165-183.

Y. Li, Y.-F. Chen, L. Zhang, and D. Liu, “A novel learning algorithm
for biichi automata based on family of dfas and classification trees,”
Information and Computation, vol. 281, p. 104678, 2021.

D. Arrivault, D. Benielli, F. Denis, and R. Eyraud, “Scikit-splearn:
a toolbox for the spectral learning of weighted automata compatible
with scikit-learn,” in Proceedings of the 19th Conference Francophone
sur I’ Apprentissage Aurtomatique, 2017.

E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerg-
ing smart home applications,” in Proceedings of the 37th IEEE
Symposium on Security and Privacy, 2016, pp. 636-654.

Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M.
Mao, A. Prakash, and S. J. Unviersity, “Contexlot: Towards providing
contextual integrity to appified iot platforms.” in Proceedings of the
24th Annual Network and Distributed System Security Symposium,
2017.

M. L. Pacheco, M. von Hippel, B. Weintraub, D. Goldwasser, and
C. Nita-Rotaru, “Automated attack synthesis by extracting finite state
machines from protocol specification documents,” in Proceedings of
the 43rd IEEE Symposium on Security and Privacy, 2022, pp. 51-68.

Appendix A.

A.1. Flaw 3: Vulnerable Delivery Retry in QoS 2
Messaging

Due to the “exactly once delivery” feature in QoS 2

messaging (see § 2.2), if the target client is offline, the
broker would retry to deliver the message M to the client
when the client reconnects (i.e., (33-(7)3-(9?2). However, we
find the delivery retry mechanism in QoS 2 has the same
problem of that in the QoS 1 messaging as elaborated in

the

Flaw 2. The exploiting and mitigation to the Flaw

3 are also similar to that of the Flaw 2. For simplicity,

we

omit the redundant description on the Flaw 3 and use

Figure 9 to illustrate the exploiting of Flaw 3 (i.e., G)3-GD3-

@3

-(93-693-(693-(93-(93-@3-©)3-6)3-693) and the possible

mitigation (i.e., @)?3).

Publisher Subscriber

197

loT device ¥ .=

MQTT broker
=
=3
Malicious user Hlio
’ The malicious user makes the d
home router to disrupt the Wi

C1)Permission check
3
5d)store the msg M

vice go offline (e.g. tum off the
network) -
>

3
@PUBLISH QoS2 msg M

3
©pusrec
<
PUBREL ,
> 3 If online,
deliver the msg M
5 (593 If subscriber offline,
pUBCOMp msg delivery retry later
Z Permission revoke (e.g. the
malicious user checks Gut)
<
3 Another victim benign user turnf on the home router to recover
(A3) the Wi ki network, automaticali malcing the devios back anline
»
@3 Device reconnects
&2 vith cleanstart == 0

fr)’Lacked check on the
publisher's access right
3
Redeliver the msg M

Figure 9: Flaw 3. Vulnerable retry in QoS 2 messaging

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

A.2. The State Variables

TABLE 2: The list of state variables

Type Variable name Data recorded in the variable
Session: vg, The client’s subscriptions
Session: v The Will message sent along
S TWillM sg with the CONNECT request
State Session: The (unfinished)
esSIon: Uy roooye e (unfinished) message queue
Session: Vprsg The message being processed
Session: v The session created at the
" “Session time of connection establishment
Global: U RetainedMsg The Retained message queue
Permission | v The access rights authorized
> Permission to all the clients/users
A.3. The List of operations

TABLE 3: The list of operations

Operation name Semantics

Odeliver deliver the message vpsqq
Osub_read read Vsubs

Osub_add write™ Ugyps

write™ Ugyups
read VSession
write USession

Osub_remove

OSession_read

OSession_write

Omsgs_queue_read read UM sgQue
write™ UnrsgQue

write UM sgQue

Omsgs_queue_add

Omsgs_quﬁuﬁ_rﬁmove

read URetainedIMsg
write™

Oretained_read

Oretained_add URctained]\/Isg

write vRetainedI\Jsg
WriteT Uprmissions WriteT D
Wwrite™ Upermissions Write~ D

Oretained_remove

Opermission_add

Opermission_remouve

read VUPermission
read Vyyiinsg
write” Uy sy
write” Uwinsg
Odeliver indicates the broker sending the message identified by the v, g
to the subscriber(s). write v; indicates changing the value of the variable
v,. writet v, indicates adding data element to the variable v,. write™ v,
indicates removing data element from the variable v,.

Opermission_check

Owill_read

Owill_add

Owill_remove

A.4. The (Incomplete) List of MQTT Brokers

Open-source MQTT brokers (with 20+ stars in the
GitHub, see the complete list at [57]). ejabberd, Emit-
ter, EMQ X, FlashMQ, HBMQTT, HiveMQ, Jmqtt, Mo-
quette, Mosca, Mosquitto, MQTTnet, MqttWk, NanoMQ,
RabbitMQ, Cassandana, Apache ActiveMQ, Apache Ac-
tiveMQ Artemis, Solace, SwiftMQ, VerneMQ, main-
flux, hmq, mgqtt, uMQTTBroker, volantmq, mgqtt, cross-
bar, Erl.mqtt.server, gmgqtt, smqtt, enmasse, mqtt, gnatmq,
gossipd, mica-mqtt, rumgqtt, jo-mgqtt, gmgqtt, sol, mqtt-
broker, mqtt, iot-mqtt, hermes, esp-idf-mqtt-broker, mmqtt,
JetMQ, mqttools, mqtt-gateway, TinyMqtt, whsnbg, mithqtt,
skyline, Aedes, hrotti, KMQTT, Mystique, SurgeMQ,

2400

creep, amlen, rmqtt, PronghornGateway, DovakinMQ, io-
Broker.mqtt, node-red-contrib-aedes, mqttcpp, LV-MQTT-
Broker, haskell-hummingbird, mhub, clima-link, GS.GRID,
pyrinas-server-rs, wave, lannister, JoramMQ

Commercial MQTT brokers (24 in total). Alibaba Cloud,
AWS IoT Core, adafruit, Azure IoT Hub, CloudMQTT,
Google Cloud IoT, Baidu Cloud, Tencent Cloud, Tuya
Cloud, Huawei Cloud, Onenet, HiveMQ Cloud, MyQt-
tHub, EMQ X Cloud, CrystalMQ, Yunba, Waterstream,
ThingScale IoT message broker, IBM Integration Bus, fle-
spi, Eurotech Everywhere Cloud, Bevywise MQTT Broker,
Akiro by Sentienz, Ably MQTT Broker

A.5. The configuration File of the FlashMQ
Broker

config = {
i Functions
"handle connect™ "void MqttPacket:handleConnect()",
"handle__publish": "void MqttPacket::handlePublish()",
"handle pubrel": "void MqttPacket::handlePubRel()",
"handle__subscribe": "void MqttPacket::handlePubRel()",
"handle unsubscribe™: "void MqttPacket:handleUnsubscribe()”,
"handle__disconnect": "void MqttPacket::handleDisconnect()”,
"handle authorize™: "void Authentication:loadMosquittoAclFile()”,
"handle revoke": "void Authentication:loadMosquittoAclFile()",
"premission_check": "AuthResult Authentication::aclCheck(
const std: :string &clientid, const std: :string &username,
const std: :string &topic, const std: :vector<std: :string> &subtopics,
AclAccess access, char qos, bool retain)”,

variables

"Subs": "SubscriptionNode::subscribers”,

"RetainedMsg": "RetainedMessageNode:retainedMessages”,
"Session™: "Session”,

"WillMsg": "Client:will topic”,

"MsgQue": "Session:qosPacketQueue”,

"Msg": "MqttPacket”,

"Permission™: "Authentication::aclTree",

)
Figure 10: The configuration of the FlashMQ broker

A.6. Existing Flaws Identified by MQTTactic

Jia et al. [29] identified several flaws in different com-
mercial MQTT brokers through manual analyses, while
Wang et al. [15] proposed a black-box analysis based
method to discover the security flaws in the IoT messaging
protocols. Among all the security flaws identified in [15]
and [29], four of them are authorization-related flaws (our
goal), which are also identified by MQTTactic, i.e., Flaw 8:
Unauthorized subscription via ClientID hijacking; Flaw
9: Unauthorized trigger of the Retained message; Flaw
10: Un-updated subscription; Flaw 11: Unauthorized trigger
of the Will message (see Table 4).

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

TABLE 4: The 4 existing flaws identified by MQTTactic

Violation to which Mosquitto . FlashMQ . Emitter . VolantMQ . hmq . RMQTT . Mochi MQTT .
security properties (C, 6.2K stars)™ | (C++, 80 stars)™ | (Go, 3.2K stars)™ | (Go, 879 stars)™ | (Go, 1k stars)™ | (rust, 125 stars)™ | (Go, 230 stars)
v2.0.11 v0.9.9 v3.0 v0.4.0 v1.5.0 v0.2.3 v1.2.3
Flaw 8 sp1 X X X v X v v
Flaw 9 Spa v v 4 v v 4 4
Flaw 10 sp1 X X 4 v v 4 4
Flaw 11 Sp2, SP3 X v X v v 4 X
v/ indicates the flaw was identified in the broker, while X indicates the flaw was NOT identified in the broker.
* specifies the broker’s programming language and the number of stars in GitHub.
A.7. Flaws Identified by MQTTactic in Other Bro-
kers
TABLE 5: The 0-day flaws identified by MQTTactic in other brokers (manually confirmed)
EMQX VerneMQ# |RabbitMQ# |HiveMQ# | Aedes? Moquette™
(II(E)TIZ‘;?iiars)* ;ngaztgz;rs)* (9Ij:§ll<aZtgz;rs)* gjggds’tars)* (ljéstk stars)™ (Zklgzirs)* Baidu | Google | AWS™ | Azure T |IBM | Alibaba™ | Tencent *
v4.3.11 v1.12.3 v3.10.7 V20212 |v0.46.3 v0.15
Flaw 1 X X N/A X 4 N/A N/A N/A NA | NA X X N/A
Flaw 2 4 v v v 4 N/A v N/A v N/A v v 4
Flaw 3 4 v N/A v 4 N/A N/A N/A N/A | N/A v 4 N/A
Flaw 4 X X N/A v N/A N/A N/A N/A N/A X X X N/A
Flaw 5 X v X v v v X X v X v N/A N/A
Flaw 6 4 X X X X v X N/A X X X N/A N/A
Flaw 7 X X N/A X X N/A N/A N/A NA | NA X X N/A

v/ indicates the flaw was identified in the broker, while X indicates the flaw was NOT identified in the broker.

#

means the broker is open-sourced. + means the broker is commercial. * specifies the broker’s programming language and the number of stars in GitHub.

N/A indicates the broker does not support the corresponding feature (e.g., QoS 2 messaging, Topic Alias, dynamical access control, etc.).

A.8. A Base Semantic Definition of Actions

TABLE 6: Actions definition

Action Name Parameters/Conditions Semantics of the action (Operation sequence)
CleanStart==false & ClientID==cid & oldSession(cid) | Cmsgs-aueuc-add =7 Osubadd =7 Owill_add
CONNECT . _ _ _ — Oclientid_write
CleanStart==false & ClientID==cid & !oldSession(cid) | Owili_add —* Oclientid_write
CleanStart==true Owill_add — Oclientid_write
DISCONNECT reasonCode==0x04(Disconnect with Will Message) Owill_read — Osub_read — Odeliver
reasonCode!=0x04 Owill_remove
QoS 0 & retained==false Osub_read — Odeliver
QoS 0 & retained==true Oretained_add — Osub_read —7 Odeliver
PUBLISH QoS 1 & retained==false & online(suber) Osub_read —> Odeliver
QoS 1 & retained==false & offline(suber) Osub_read —> Omsgs_queue_add(suber)
QoS 2 & retained==false Omsgs_queue_add(puber)
. Omsgs_queue_'read(PUber) — Osub_read
PUBREL 0nhne(suber) — Odeliver — Omsgs_queue_'remove(pUber)
Omsgs_queue_read(puber) — Osub_read
Ofﬂine(suber) — Omsgs_queue_add(SUber)
— Omsgs_queue_remouve(puber)
SUBSCRIBE — Osub_add — Oretained_read — Odeliver
UNSUBSCRIBE — Osub_remove
AUTHORIZE —_ Opermission_add
REVOKE — Opermission_remove

A.9. Comparison of Manual Efforts: MPInspector

v.s. MQTTactic

TABLE 7: Comparison of manual efforts: MPInspector v.s. MQTTactic

MPInspector MQTTactic
Setting up Specifying the Collecting Configuring Specifying Specifying
the broker communication configuration traffic Learlib the 7 variables the 9 functions
Mosquitto [61]# 1h 10 min 40 min 30 min 4h 10 min
Tuya cloud [62]+ 20 min 30 min 1h 2h N/A N/A
FlashMQ [63]# 30 min 10 min 40 min 20 min 1h 20 min
Total time 1 h 40 min - 3h 50 min 1 h 20 min - 4 h 10 min

In this comparison, we exclude one-time efforts, which both approaches need. # means the broker is open-sourced. ™ means the broker is commercial.

2401

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

A.10. An Example of Translating the Effective Path
Types into Promela code

We use pre-defined (with one-time efforts) code tem-
plates of each operation o (o € O) to generate the Promela
code for each Path Type ept. Specifically, each code tem-
plate describes the operation (read, write, or deliver)
performed on a particular state variable v (v € V). For
example, 0.1 reqd indicates to read the Will message
from the client’s session. Hence, the code template of
Owill_read 15 defined as shown in Listing 1. Notably, there
are placeholders in the code templates (e.g., “{clientID}”
in Listing 1), which will be populated with the actual values
when MCT constructs the concrete model.

msg = Sessions[{clientId}].willmessage

Listing 1: 0yi11_reqaa code template

Taking the hmq broker [59] as an example, we will
illustrate how to translate one of the Effective Path Types
(extracted by SCA module) for DISCONNECT action into
Promela code.

The ept example of DISCONNECT action. As shown below
(Listing 2, 3, 4), the ept contains 3 operations: Ol _reads
Osub_read> and>0dehver'

bool hasSubscription false;

j = 0;

// Traverse the subscription tree of {sess} and
check if it is subscribed to the topic of
message

do

8 j < MAXSUBSCRIPTIONS ->
if
(Sessions[{sess}].subscriptions[j]

{msg}.topic) ->

hasSubscription

break;
else -> skip;

.topic

true;

fi;
j

j+ 1
else —>
goto nextClients;

od;

nextClients:
skip;

Listing 6: 0syp_reaq code template

if c.info.willMsg != nil {
//read will msg variable
b.PublishMessage (c.info.willMsg)

Listing 2: Owill_read at hmgq_sourcecode/broker/client.go:850

// read subscription variable

return this.sroot.smatch(topic, gos, subs, goss)

Listing 3: Osub_read at hmg_sourcecode/broker/lib/topics/memtopics.go:82

for _, sub := range subs {

s, ok := sub. (xsubscription)

if ok {
// deliver the msg
if err := s.client.WriterPacket (packet); err
'= nil {

log.Error ("write message error", zap.Error(

err))

}

proctype ProcessSubscriber (short index) {
do

atomic({
// placeholders
CONNECT_{placeholder} () ;
}

atomic({
// placeholders
DISCONNECT_{placeholder} () ;
}

:: else —> break;
od;
}

init {

run ProcessPublisher (0);
run ProcessSubscriber (1) ;
run ProcessPublisher (2);

}

//Publisher client 1
//Subscriber client 1
//Publisher client 2

LiStil’lg 4. Odeliver At hmq_sourcecode/broker/broker.go:669

Generating Promela codes for ept. With the identified
ept(s) for the actions, we now generate the Promela codes
(see details in § 4.3.2). Firstly, we show the pre-defined
Promela code templates of these three operations as follows
(Listing 1 for owiii_read, Listing 5 for ogeriver, Listing 6 for
Osub read)~

Deliver ({msg}, {sess});

Listing 5: 04e1iver code template

2402

Listing 7: The model’s skeleton code

Then, MQTTactic will assemble these code templates
with the operation sequence of this ept to generate a handler
function (the function codes can be found at [42]) in Promela
code for the DISCONNECT action.The same process will
be carried out for other actions and epts. The placeholders
in skeleton code (Listing 7) would then be populated with
the above generated Promela functions to construct the
concrete model in Promela.

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

Appendix B.
Meta-Review

B.1. Summary

This paper focuses on the security of MQTT protocol,
a widely used IoT messaging protocol. The authors employ
static code analysis, formal modeling, and model checking
to identify the authorization-related logic flaws in open-
source MQTT brokers. They discover several zero-day flaws
which have been acknowledged by related parties.

B.2. Scientific Contributions

« Identifies impactful vulnerabilities
« Provides a valuable step forward in an established field
o Creates a new tool to enable future science

B.3. Reasons for Acceptance

1) This paper identifies multiple impactful vulnerabilities.
The authors used code analysis and formal analysis
to uncover logic flaws, especially the authorization-
related flaws, in open-source MQTT brokers. They
identified multiple zero-day vulnerabilities which can
be exploited to cause serious security implications, such
as gaining unauthorized access to IoT devices. The
authors reported the identified vulnerabilities to help
the related parties (e.g., [oT vendors) fix the issues.

The paper provides a valuable step forward in the field
of analyzing security flaws in MQTT brokers. The
authors fill multiple significant research gaps in prior
studies. First, the authors performed the first systematic
study on logic flaws in MQTT brokers. Although there
are a few work studies the implementation flaws (e.g.,
memory-related bugs) in MQTT brokers, logic flaws
remain unstudied. Second, the authors used static code
analysis and formal analysis to mitigate low code cov-
erage and poor scalability problems suffered from the
prior studies. As a result, the authors uncover many
previously unknown vulnerabilities in MQTT brokers.
The paper leads to a new tool named MQTTactic to
enable future science. The authors claim that they will
fully release artifacts of the paper online, including the
source code, setup instructions, and a demo. The arti-
facts will allow other researchers to evaluate new ideas,
develop new tools, and compare them with MQTTactic.

2)

3)

B.4. Noteworthy Concerns

1) Applicability. The authors designed their approaches
targeting open-source MQTT brokers, and the imple-
mented tool cannot handle closed-source MQTT bro-
kers. It would be very useful to extend the proposed
approach to cover those closed-source MQTT brokers.

2) Manual work. The proposed approach requires man-
ual efforts to configure the tool based on the domain

2403

knowledge about different MQTT brokers, and thus the
analysis process is not fully automated. It would be
good if the authors could adopt other techniques to
reduce manual efforts, such as leveraging NLP tech-
niques to analyze the specification of MQTT brokers
to automatically extract the required information for
configuration.

Appendix C.
Response to the Meta-Review

C.1. Applicability and Limitation

MQTTactic analyzes source code to identify security is-
sues. Notably, by analyzing source code when it is available,
MQTTactic may help more directly and precisely pinpoint
issues in the implementation than blackbox approaches.
Hence, MQTTactic is at least complementary to black-box
approaches. Moreover, the developers of closed-source soft-
ware or brokers can use MQTTactic to assess the security
of their brokers.

C.2. Manual Work

While MQTTactic advances the state of the art for formal
security analysis on source code, the manual efforts are
comparable to related work (§ 6.1). As mentioned in § 7,
we anticipate an NLP-based approach to help automatically
identify model-related function and variable names in the
source code, thus making MQTTactic more automatic (to
generate the configuration).

Authorized licensed use limited to: Indiana University. Downloaded on March 11,2025 at 15:44:33 UTC from IEEE Xplore. Restrictions apply.

