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Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent and leading causes of cancer deaths globally, with limited 
diagnostic and clinically significant therapeutic targets. Identifying the genes and processes involved in developing and 
progressing LUAD is crucial for developing effective targeted therapeutics and improving patient outcomes. Therefore, the 
study aimed to explore the RNA sequencing data of LUAD from The Cancer Genome Atlas (TCGA) and gene expression 
profile datasets involving GSE10072, GSE31210, and GSE32863 from the Gene Expression Omnibus (GEO) databases. The 
differential gene expression and the downstream analysis determined clinically significant biomarkers using a network-based 
approach. These therapeutic targets predominantly enriched the dysregulation of mitotic cell cycle regulation and revealed 
the co-overexpression of Aurora-A Kinase (AURKA) and Targeting Protein for Xklp2 (TPX2) with high survival risk in 
LUAD patients. The hydrophobic residues of the AURKA–TPX2 interaction were considered as the target site to block the 
autophosphorylation of AURKA during the mitotic cell cycle. The tyrosine kinase inhibitor (TKI) dacomitinib demonstrated 
the strong binding potential to hinder TPX2, shielding the AURKA destabilization. This in silico study lays the foundation 
for repurposing targeted therapeutic options to impede the Protein–Protein Interactions (PPIs) in LUAD progression and aid 
in future translational investigations.
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Introduction

Lung cancer has emerged as the second most prevalent can-
cer and the leading cause of cancer-related death, posing a 
serious global health concern [1]. Tobacco smoking is the 
primary cause of lung cancer deaths worldwide, with men 
being more vulnerable than women [2]. Despite advances 

in research and therapy, LUAD remains a life-threatening 
malignancy that accounts for 40% of all lung cancer cases 
[3]. Despite advances in cancer treatment options, such as 
chemotherapy, immunotherapy, and non-invasive surgical 
resection, the 5-year overall survival (OS) rate for LUAD 
patients remains about 17.4% [4]. Therefore, it is impera-
tive to understand the molecular mechanisms underlying the 
disease and identify key biomarkers to enable early detection 
and successful management of the disease. Technologies 
such as next-generation sequencing, microarrays, and pro-
teomics have been instrumental in identifying biomarkers, 
but identifying key genes remains a challenge for developing 
targeted therapies to improve patient outcomes [5]. Network 
pharmacology addresses the multiple key factors and targets 
that interact to govern associated complex pathways [6].

Recently, the clinical results of targeted therapy at 
the molecular level for LUAD patients were promis-
ing. However, the obstacle of drug resistance continues 
to impede patients’ overall cure. Precision oncology has 
improved treatment results and quality of life compared to 
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conventional chemotherapy since the emergence of genomic 
medicine [7]. Recent progress in understanding pathways, 
advancements in technologies for identifying genetic abnor-
malities, and the emergence of novel drugs to inhibit these 
pathways have enabled healthcare professionals to customize 
treatment approaches [8]. Several significant targetable path-
ways in lung adenocarcinoma have been discovered, includ-
ing the Epidermal Growth Factor Receptor (EGFR), PI3K/
AKT/mTOR, and RAS-MAPK pathways [9, 10]. Targeting 
EGFR mutations is the primary approach for treating LUAD 
[11]. Identifying these genetic alterations is crucial in clini-
cal practice across the globe. Despite this, novel oncogenic 
drivers have recently emerged, resulting in clinically effec-
tive therapeutics that are either approved or in development 
[12]. Recent studies revealed that overexpression, amplifica-
tion, and exon-skipping mutations in novel molecular targets 
such as Mesenchymal–Epithelial Transition factor (MET) 
and Neurotrophic Tyrosine Kinase (NTRK) are associated 
with aggressiveness, metastasis, vascular invasion, and drug 
resistance ultimately impacting the poor prognosis of LUAD 
population [13, 14]. Numerous drugs that target these path-
ways have been developed and demonstrated therapeutic 
effects. Some of these, such as the EGFR inhibitors erlotinib 
and gefitinib and the PI3K/AKT/mTOR inhibitor everoli-
mus, have now been supplanted as the first-line treatment 
[15, 16].

Network pharmacology addresses the multiple key fac-
tors and targets that interact to govern associated complex 
pathways [6]. This concept challenges the traditional notion 
of treating a single disease with a single medicine that tar-
gets a single biological target. Instead, it proposes a ‟multi-
component, multi-target network” and is consistent with the 
complexity of compositions and the involvement of multiple 
targets [17]. Globally, drug repurposing is becoming increas-
ingly popular as an attractive choice due to its reduced risk, 
possible cost savings, and more rapid development timelines 
compared to developing novel drugs [18, 19]. The potential 
for drugs that can target numerous targets simultaneously is 
extremely attractive for repurposing, as this dual synergistic 
technique promises to improve therapeutic alternatives [20]. 
The conventional approach for small-molecule drug discov-
ery emphasizes interactions between proteins and ligands. 
This approach is ideal for proteins such as enzymes, ion 
channels, or receptors since these proteins usually possess 
distinct binding sites for ligands, facilitating accurate inter-
action [21, 22].

PPIs are important for multiple biological processes 
and are dysregulated in complex diseases. Despite their 
significance, employing PPIs for therapeutic reasons has 
been challenging due to their complexity [23]. Modulat-
ing PPIs with small molecules was considered intricate 
and ‟undruggable” [24]. Due to their domain-specific 
and often flat attributes, small molecules pose design 

challenges for PPI interfaces. Inhibition was complicated 
due to their high-affinity binding between continuous or 
discontinuous amino acids and a lack of reference ligands 
for comparison [25, 26]. However, protein functional sites 
tend to aggregate within the core of their interfaces. These 
regions have the spatial extent of small molecules, exhibit 
hydrophobic characteristics, and demonstrate the ability to 
conform and interact with drug-like compounds dynami-
cally. The path to successful PPI inhibitor discoveries has 
seamlessly blended numerous domains and utilized current 
approaches for targeted therapies, encompassing structural 
analysis, computational modeling, and biomarkers [23]. 
Over the last decade, cancer research has made significant 
advancements, particularly in studying intricate PPI tar-
gets driving the cellular processes that govern cell cycle 
progression, DNA repair, apoptosis evasion, and tumor 
suppression, such as MDM2-p53 in 2013, Bcl-2-Bax the 
same year, c-Myc-Max in 2014, KRAS-PDEδ in 2017, and 
Hsp90-Cdc37 in 2018. These accomplishments have pro-
pelled several PPI inhibitors into clinical trials, marking 
a promising trajectory toward novel and effective cancer 
therapeutics [27–31].

The study utilized the gene expression datasets from the 
TCGA and GEO databases to identify key biomarkers asso-
ciated with LUAD. Differential gene expression analysis 
unveiled significant overlapping genes. The static network-
based approach demonstrated a subnetwork of genes with 
multiple dysregulated anomalies in LUAD progression. The 
co-overexpression of AURKA-TPX2 was found to be asso-
ciated with high survival risk in the patients, emphasizing 
the need for screening drugs that can inhibit the shielding 
potential of TPX2 in AURKA autophosphorylation and 
address increased cell proliferation, genomic instability, 
and resistance to apoptosis in LUAD [32]. Molecular dock-
ing provided a platform for repurposing 18 FDA-approved 
targeted cancer drugs and assessing their potential to target 
multiple targets. It demonstrated the inhibitory potential of 
FDA-targeted cancer drugs on the TPX2–AURKA interac-
tion, aiding the experimental investigators to develop tar-
geted therapeutic strategies and improve clinical outcomes.

Methodology

The study focuses on the analysis of transcriptome data from 
publicly accessible archives that pertain to LUAD patients. 
The aim was to identify clinically significant biomarkers 
employing a static network-based approach. FDA-approved 
anti-cancer drugs were repurposed for the uncovered target, 
revealing prospective therapeutic avenues through molecular 
interaction studies. Figure 1 depicts the overall workflow of 
the study.
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Analysis of Differential Gene Expression

The study involved the analysis of transcriptomic profiling 
data from TCGA-LUAD with primary tumor and adjacent 
tumor normal samples [33]. The analysis also included three 
microarray datasets, GSE10072, GSE31210, and GSE32863 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/). Each microarray data-
set had different sample sizes and platforms. The analysis 
focused on gene expression profiles from human LUAD tis-
sues and adjacent normal tissues, considering DNA methyla-
tion and smoking status. The edgeR (V3.36.0) and limma 
(V3.50.3) packages of R (V4.1.2) were used to identify the 
differentially expressed genes (DEGs) in tumor vs. normal 
samples. DEGs were determined based on P value < 0.05 
and log2 fold change (log2FC) > 1, with false discovery rate 
control using the Benjamini & Hochberg method. The over-
lapping DEGs were screened for determining genes differ-
entially expressed in all four LUAD gene expression datasets 
using a Venn diagram (https://​bioin​forma​tics.​psb.​ugent.​be/​
webto​ols/​Venn/) [34].

PPI Network Construction and Topological Analysis

The PPI network of the DEGs was determined using the 
String database (https://​string-​db.​org/) at 5% confidence 
with a medium score, which aimed to exclude PPIs with low 
probability and enhance the reliability of the results. This 
approach facilitated increased coverage for a comprehensive 
understanding of protein interactions within the biological 
system, potentially encompassing less explored or transient 
interactions that may not be captured by high- and low-
confidence networks [35]. Molecular Complex Detection 
(MCODE) was used to identify densely connected regions 
in a large PPI network. A cut-off degree of 10, cut-off node 
score of 0.2, K-core of 2, and a maximum depth of 100 

were used as parameters. Further, CytoHubba identified the 
central nodes using the Maximal Clique Centrality (MCC) 
method [36, 37].

Gene Ontology and Functional Enrichment Analysis

The ShinyGo (V0.77) was used for determining the Gene 
Ontology (GO) terms of the hub genes to describe the asso-
ciated biological process, cellular component, and molecu-
lar function confined to Homo sapiens [38]. An FDR cut-
off < 0.05 was used to identify statistically significant results. 
The use of FDR correction aided in minimizing the chances 
of erroneously identifying GO terms, thus enhancing the 
reliability and validity of the findings [39, 40].

Survival Analysis of Hub Genes

The Kaplan–Meier (KM) plotter tool was used to compare 
the survival risk based on the expression of the hub genes. 
The genes were categorized into high- and low-expression 
cohorts based on the median expression values. The OS 
based on the LUAD data against hub genes was assessed for 
200 months. For each gene, the log-rank P value and median 
survival were determined [41, 42].

Molecular Interaction Analysis

Molecular docking of the AURKA-TPX2 complex with 
the 18 FDA-approved cancer-targeted therapy Drugs for in 
silico validation of drug in the treatment of LUAD was per-
formed. The list of drugs was retrieved from The National 
Institute of Cancer (NCI) website maintained by the NIH. 
The AURKA-TPX2 crystal structure was downloaded from 
the Protein Data Bank (PDB 1OL5). AutoDock Vina was 
used to dock the macromolecules [43], while Adenosine 
diphosphate (ADP) served as control. The docking pro-
cess included preparing the ligands and protein by adding 
hydrogen atoms, assigning Kollman charges, and removing 
water molecules. The active residues of the protein were 
determined using CASTp 3.0 and were validated with the 
TPX2-AURKA interaction binding pocket [44]. The dock-
ing scores of the most favorable poses of each complex were 
assessed [45, 46].

Results

Differentially Expressed Genes

The TCGA-LUAD transcriptomic profiling dataset 
comprised 537 tumor samples and 59 normal samples. 
Additionally, the microarray datasets GSE10072 and 
GSE31210, based on the GPL570 platform, consisted 

Fig. 1   The figure illustrates an overview of the methodology imple-
mented in this study

https://www.ncbi.nlm.nih.gov/geo/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/
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of 58 tumor samples and 49 normal samples, 226 tumor 
samples, and 20 normal samples of lung tissue, respec-
tively. A GPL6884 expression bead chip platform-based 
array dataset GSE32863 contained 58 tumors and 58 nor-
mal samples that were preprocessed and analyzed with a 
uniform criterion of log2FC > 1 at 5% significance. The 
DEGs were identified and illustrated using a volcano plot 
(Fig. 2). The number of up- and downregulated genes is 
shown in Table 1. The Venn diagram revealed 337 overlap-
ping DEGs (Fig. 3).

Fig. 2   The DEGs illustrated using a volcano plot with log2FC > 1 (upregulated), log2FC <  − 1 (downregulated), and adjusted P value < 0.05. a 
TCGA-LUAD, b GSE10072, c GSE31210, and d GSE32863

Table 1   The total number of DEGs and the number of up- and down-
regulated DEGs identified from the differential gene expression anal-
ysis of the LUAD expression datasets

Dataset Total DEGs Upregulated Downregulated

TCGA-LUAD 6847 5166 1681
GSE10072 693 215 478
GSE31210 2744 1217 1527
GSE32863 1301 551 750

Fig. 3   Venn diagram of the compared DEGs from LUAD expression 
datasets revealing the overlapping DEGs
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PPI Network and Hub Genes

The String database generated a network of significant pro-
tein-coding genes with medium confidence. As a result, a 
network consists of 337 nodes and 2870 edges with a clus-
tering coefficient of 0.435 (Supp Fig. 2a). MCODE iden-
tified six clusters of densely connected nodes within the 
network. Cluster 1, consisting of 62 nodes and 1881 edges, 
achieved a score of 61.672, indicating its significance com-
pared to the scores of the other clusters (Supp Fig. 2b). The 
cluster identified the top hub genes using the MCC method 
(Fig. 4), which outperforms other centrality algorithms in 
accurately assessing the importance of nodes in terms of 
their network structure. We observed network interactions 
among these nodes, which supported their potential roles as 
key regulators in the network.

Gene Ontology and Functional Enrichment of Hub 
Genes

The number of hub genes enriched to the GO terms was 
determined based on fold enrichment at FDR < 0.05. The 
GO analysis uncovered the biological process (Fig. 5a), cel-
lular component (Fig. 5b), and molecular function (Fig. 5c). 
A captivating revelation emerged as we uncovered the nar-
rative of the dysregulated hub genes in LUAD was signifi-
cantly related to cell cycle regulation, mitotic cell cycle, and 
cell division. The cellular components, such as the spindle, 
microtubule, and spindle pole, took the spotlight. Further-
more, these hub genes’ molecular functions have been corre-
lated to Adenosine triphosphate (ATP) binding, microtubule 
binding, and tubulin binding. The hub genes enriched to 
the top 5 GO terms were involved in cell cycle regulation, 
mitotic cell cycle processing, regulation of signaling, and 
cell division, which was illustrated using a GO chord dia-
gram (Fig. 5d).

Clinical Significance of the Hub Genes

The KM plotter assessed the expression of hub genes 
and their relationship with OS risk in LUAD patients for 
200 months (Fig. 6). The results revealed that the overex-
pression of these hub genes was associated with unfavorable 
OS rates in patients. The hub genes showed higher hazard 
ratios (HR) > 1 and log-rank P values < 0.05. The median 
survival expression in months was significantly higher in 
the low-expression cohort compared to the high-expression 
cohort (Table 2). The expression pattern of the hub genes in 
the selected gene expression datasets is listed in (Table 3). 
TPX2 and AURKA possessed higher expression cohorts in 
all four datasets with a high survival risk in the LUAD.

Molecular Docking

The analysis of molecular docking revealed that the 
drug molecules interacted with the binding pocket of the 
TPX2–AURKA interaction (Supp. Figs.  2 and 3). The 
complexes shown in Fig. 7 demonstrated the most favora-
ble docking results, with a distance of < 3.5 Aº between the 
receptor’s binding pocket residues and the drug molecules. 
According to the findings, the compounds predominantly 
interacted with the target proteins through hydrogen bonds, 
electrostatic interactions, salt bridges, and hydrophobic 
interactions. The residues and the chains of the receptor 
involved in hydrogen bonding, electrostatic, and hydropho-
bic interactions, and the binding energies of the complexes 
are listed in Table 4. The binding energy of the leads to the 
target ranged from − 10.23 to − 5.61 kcal/mol. In contrast to 
ADP, Dacomitinib exhibited a higher binding affinity, estab-
lishing hydrogen bonds and negatively charged interactions 
and occupying the hydrophobic region of the TPX2-AURKA 
binding pocket.

Discussion

Lung adenocarcinoma is a prevalent form of lung cancer and 
a leading cause of cancer-related deaths [47]. As genomic 
and proteomic data become more accessible, accurately 
identifying target drugs has become increasingly important. 
Targeted therapies offer significant potential for effectively 
treating LUAD, making the identification of such therapies 
essential for developing successful treatment approaches 
[48]. Therefore, the study involved identifying therapeutic 
targets by analyzing the transcriptomic datasets of the pri-
mary tumor in contrast to the adjacent tumor normal samples 
[49].

Our study used comprehensive in silico techniques to 
identify genes associated with LUAD by analyzing data 
from the TCGA and GEO databases. Unlike most previous 

Fig. 4   The top-ranked hub genes were identified using the MCC algo-
rithm
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studies, which focused on specific genetic events or cohort 
analysis, we used a broader approach. As a result, we dis-
covered 337 overlapping DEGs. The association between 
important DEGs regarding their physical and functional 
relationships was determined using a PPI network [50]. 
The topology analysis of the network aided in determin-
ing the significant clusters within the network, focusing on 
densely interconnected regions [51]. The aim was to gain 
insights into the critical genes, their interrelationships, and 
their involvement in regulating cancer-related biological 
processes induced by aberrant DNA methylation status and 
smoking status of LUAD patients. The top 10 highly ranked 
hub genes were identified using the MCC centrality metric 
with participation in the largest cliques within the network, 
holding significant importance and being involved in critical 

biological processes that contribute to cancer progression 
[51, 52]. Gene ontology of the hub genes provided struc-
tured terms for describing molecular functions, biological 
processes, and cellular components [53].

The overexpressed hub genes were predominantly 
enriched to cell cycle regulation and mitotic cell cycle, along 
with cellular components, such as the spindle and molecular 
functions involving microtubule binding, tubulin binding, 
and ATP binding, holistically triggered the critical cellular 
events were involved in LUAD pathogenesis [54–56]. As a 
result, mitotic cell cycle regulation was disrupted, result-
ing in uncontrolled cell growth and elevated tumor devel-
opment. The chromosome segregation during cell division 
was impaired, leading to genomic instability due to dys-
regulated microtubule dynamics, influencing cell motility 

Fig. 5   Gene functional enrichment of the hub genes based on fold enrichment at 95% confidence. a GO Biological process, b GO Cellular com-
ponent, c GO Molecular function, and d the top 5 GO terms enriched to the hub genes illustrated using GO chord plot
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and intracellular transport with alterations in the energy 
balance for regulating a wide range of cellular processes 
[57–59]. This intricate combination of overexpressed hub 
genes endorsed mitotic errors, genetic variations, and inva-
sive attributes, contributing to LUAD aggressiveness [60]. 
However, the expression patterns of the eight hub genes var-
ied, but AURKA and TPX2 were found co-overexpressed 
across the datasets.

The elevated levels of AURKA hindered the tumor sup-
pressors through phosphorylation, impeded normal func-
tioning, and triggered the activation of oncogenic factors, 
resulting in chromosomal instability [61]. TPX2 is crucial 
in ensuring accurate assembly of the mitotic spindle. In 

contrast, TPX2 was closely linked to the spindle pole dur-
ing mitosis. TPX2, like other mitosis-regulating proteins, 
was associated with unfavorable prognoses and linked to 
enhanced proliferation, invasion, and migration capabilities 
[62]. TPX2 activated AURKA by attaching it to its N-termi-
nal domain, which shielded AURKA from dephosphoryla-
tion. Therefore, the study demonstrated the significance of 
targeting co-overexpressed TPX2 and AURKA could pre-
sent a promising and innovative therapeutic approach [63]. 
Moreover, experimental and structural studies have validated 
the interaction between TPX2 and AURKA at the mitotic 
spindle [64]. The implementation of KM plots is crucial in 
the process of selecting biomarkers that have the potential 

Fig. 6   The KM plots of the hub genes represent their survival risk based on the median survival of LUAD patients for 200 months

Table 2   The median of the expression cohorts in months of the 
ranked hub genes demonstrates the OS of LUAD patients

Hub genes Median of low expression 
in months

Median of high 
expression in 
months

ASPM 103 62
AURKA 107 61.3
BUB1B 107 61.3
DLGAP5 103 66.47
KIF2C 108 52
KIF20A 110.27 52
NCAPG 106 62
PBK 107 52
TPX2 117.33 48
UBE2C 107 57

Table 3   The expression patterns of the hub genes based on log2FC 
values in all four datasets, revealing LUAD biomarkers

The bold genes exhibit comparable expression patterns

Hub Genes GSE32863 GSE31210 GSE10072 TCGA-LUAD

ASPM 1.26  − 1.51 1.48 3.87
AURKA 1.47 1.40 1.14 2.73
BUB1B  − 1.52 1.81 1.42 3.54
DLGAP5  − 1.71 2.08 1.31 3.81
KIF2C  − 1.33 1.77  − 1.92 3.69
KIF20A 1.09 1.53  − 1.8 3.27
NCAPG  − 1.90 1.74  − 1.72 3.72
PBK  − 1.60 1.37 1.26 3.49
TPX2 1.02 1.84 1.09 3.77
UBE2C  − 1.31 1.34 1.24 4.20
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to predict both therapeutic response and clinical outcomes 
[65]. The study elucidated the survival risk associated with 
the expression patterns of hub genes in NSCLC patients 
over 200 months. The hub genes showed a lower median 
expression in cohorts with high expression levels, indicat-
ing their involvement in impaired cell cycle regulation. This 
dysregulation increased the survival risk in LUAD patients, 
as indicated by an HR > 1, signifying a higher level of risk 
[66]. The KM plots indicate a higher risk of high-expression 
cohorts of AURKA and TPX2, which has opened an avenue 
for targeting the AURKA-TPX2 complex to inhibit AURKA 
autophosphorylation in the progression of LUAD. This 
implies that PPI inhibitors targeting this specific interaction 
could potentially overcome the specificity challenges faced 
by ATP-based inhibitors to some extent [67].

The study focused on determining the inhibitory poten-
tial of FDA-approved cancer drugs to overcome the need 
to target dysregulated AURKA-TPX2 complex in lung 
adenocarcinoma. TKIs have been extensively used to treat 
various cancers [68]. They have been developed to attenu-
ate the enzymatic activity of mutant tyrosine kinases that 
contribute to the malignant traits of cells by blocking the 
ATP-binding sites [69]. The molecular docking study dem-
onstrated the binding potential of the second-generation 

EGFR-tyrosine kinase in contrast to the ADP, which 
served as control. The catalytic activity of AURKA 
involves ATP hydrolysis to release ADP and bind to the 
receptor, releasing energy to facilitate autophosphorylation 
[70]. Dacomitinib interacted with AURKA at TYR197, 
LYS271, and GLU211 and TPX2 at PHE19 and GLU25 
with non-covalent interactions and possessed strong bind-
ing affinity with the complex [71]. The hydrogen bond 
formation of dacomitinib with the receptor at TYR197 
demonstrated strong evidence of exerting pharmacologi-
cal actions on TPX2, shielding the dephosphorylation at 
the tyrosine residues during the mitotic cell cycle due to 
the dysregulation of protein tyrosine phosphatase [32]. 
The findings revealed that screened drugs occupied the 
hydrophobic residues of the receptor’s interaction pocket 
and illustrated the potential to impede the AURKA–TPX2 
interaction in LUAD progression [46]. It is widely recog-
nized in computational drug development that integrat-
ing a drug into healthcare necessitates multiple modifica-
tions and advancements [72]. These drugs could evolve as 
promising therapeutic agents for inhibiting the dysregu-
lated protein–protein interactions in lung adenocarcinoma 
through rigorous in vitro and clinical investigations.

Fig. 7   The best-docked poses of the ligands with AURKA-TPX2 complex. a The cancer FDA-approved drugs docked with the complex b ADP 
and c Dacomitinib
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Conclusions

The study determined that 337 DEGs were differentially 
expressed across the transcriptomic datasets of LUAD sam-
ples. The downstream analysis of the DEGs using a network-
based approach determined that the densely interconnected 

nodes were predominantly involved in suppressing tumor 
suppressors, dysregulated mitotic cell cycle, and driving 
genomic instability due to impaired chromosomal segrega-
tion during cell division. These events were endorsed due 
to the co-overexpression of AURKA and TPX2 across the 
LUAD samples. The survival analysis of these hub genes 

Table 4   The binding energy of the FDA-approved cancer drugs with different types of interactions < 3.5 Aº with the AURKA (Chain A)-TPX2 
(Chain B) complex

Compounds Binding 
energy (kcal/
mol)

Hydrogen bond interactions Other interactions

ADP (control)  − 10.1 B:ASP24, A:ARG195, A:TYR197, A:GLU211, and 
A:SER266-conventional H-bonds

A:GLU211 and A:SER266-carbon H-bonds

A:LYS276-Salt bridge

Dacomitinib  − 10.23 A:TYR197, A:LYS271, and B:PHE19-conventional H-bond
B:PHE19 and B:GLU25-carbon H-bond

A:GLU211- Pi anion

Afatinib  − 9.87 A:SER266, LYS271, and PHE19-conventional H-bond
B:PHE19 and A:GLU211-carbon H-bond

GLU25-Electrostatic

Brigatinib  − 9.54 A:SER266-conventional H-bond
B:GLY26, B:ASP27, B:GLN29, B:ASN30, B:ASP32, 

A:ARG189-carbon H-bonds

B:ASP27-Salt bridge

Tepotinib  − 9.44 B:ASP27 and A:TYR212-conventional H-bonds
B:ASN30, B:ASP32, and A:GLU211-carbon H-bond

B:ASP27-Salt bridge

Selpercatinib  − 8.59 B:GLY26, A:ARG195, and A:SER266-conventional H-bonds
A:ILE158, A:ARG189, A:ARG195, A:LYS271, and 

A:GLU269-carbon H-bonds

A:GLY-Pi anion

Alectinib  − 8.04 B:ASP27, B:ASN30, B:ASP32, and A:ARG189-carbon 
H-bonds

B:ASP27-Electrostatic and salt bridge

Gefitinib  − 7.61 B:ASP24 and A:SER266-conventional H-bond
A:PRO191, SER266, and A:GLU269-carbon H-bond

B:GLY26, A:HIS190, and A:PRO191-Halogen
A:GLU211-Pi anion
A:GLU269-Electrostatic and salt bridge

Entrectinib  − 7.43 B:GLU25-conventional H-bond
B:ASP24, B:GLY26, and A:TYR197-carbon H-bonds

B:ASP32-Halogen

Osimertinib  − 7.39 B:GLU25, B:GLU26, B:ASP27, B:ASP32, and A:GLU211-
Carbon H-bonds

B:GLU25-Salt bridge

Crizotinib  − 7.22 A:GLU269-conventional H-bond
B:GLU25, B:GLY26, and A:GLU211-carbon H-bonds

B:ASP24-Halogen, A:GLU211-Pi anion, 
A:LYS271-Pi cation, and A:GLU269-salt 
bridge

Ceritinib  − 7.21 A;LYS271-Conventional H-bond
B:GLY26 and B:ASN30-Carbon H-bonds

B:ASP27-Pi anion and B:ASP32-salt bridge

Dabrafenib  − 6.97 B:GLU25, A:ARG195, A:GLY211, and A:TYR212-conven-
tional H-bonds

A:ARG189, A:ARG195, and PRO214-carbon H-bonds

B:GLU25-Halogen and Pi anion
A:GLU211-Pi anion

Erlotinib  − 6.63 A:GLU211 AND A:LYS271-conventional H-bonds
B:ASP24. A:ILE158,and A:SER266-carbon H-bonds

A:ARG195-Pi alkyl
A:GLU211-Pi anion

Pralsetinib  − 6.57 B:GLU25 and A:LYS271-conventional H-bonds
A:HIS190-carbon H-bond

-

Trametinib  − 6.48 B:GLU25 and A:TYR197-Conventional H-bond
B:ASP24, B:GLU25, and A:PRO191-Carbon H-bonds

A:GLU211-Pi anion
GLU25-Hydrophobic

Adagrasib  − 6.15 A:SER266-Conventional H-bond
A:PRO214, A:GLY265, A:SER266, and A:GLU269-Carbon 

H-bonds

A:GLU211-Pi anion and A:LYS271-Pi cation

Lorlatinib  − 5.98 A:TYR212 and A:LYS271-conventional H-bond
A:ILE158, A:GLU211, and A:SER266

B:GLU25-Halogen and A:GLU211-Pi anion

Sotorasib  − 5.61 A:HIS190-Conventional H-bond
B:GLU25-Carbon H-bond

A:GLU211-Pi anion
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revealed their clinical significance to be recognized as a crit-
ical therapeutic target, which has broadened the knowledge 
for targeting the AURKA-TPX2 complex in LUAD progres-
sion. The FDA-approved cancer-targeted drugs revealed the 
strong binding potential to the hydrophobic residues of the 
AURKA–TPX2 interaction pocket. Dacomitinib overper-
formed in the molecular docking studies, held with hydro-
gen and electrostatic interactions with both the chains and 
occupying the interaction pocket of the receptor. This study 
demonstrated an innovative targeted therapeutic strategy 
and addressed the knowledge gap on the pharmacological 
potential of FDA-approved cancer drugs in disrupting the 
AURKA–TPX2 interaction. Consequently, further in vitro 
evaluations and clinical studies of these drugs, coupled with 
structural modifications, would enhance drug-like proper-
ties and overcome the acquired drug resistance in LUAD 
patients, which holds the potential to develop a promising 
novel targeted therapeutic approach.
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