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Abstract

Lung adenocarcinoma (LUAD) is one of the most prevalent and leading causes of cancer deaths globally, with limited
diagnostic and clinically significant therapeutic targets. Identifying the genes and processes involved in developing and
progressing LUAD is crucial for developing effective targeted therapeutics and improving patient outcomes. Therefore, the
study aimed to explore the RNA sequencing data of LUAD from The Cancer Genome Atlas (TCGA) and gene expression
profile datasets involving GSE10072, GSE31210, and GSE32863 from the Gene Expression Omnibus (GEO) databases. The
differential gene expression and the downstream analysis determined clinically significant biomarkers using a network-based
approach. These therapeutic targets predominantly enriched the dysregulation of mitotic cell cycle regulation and revealed
the co-overexpression of Aurora-A Kinase (AURKA) and Targeting Protein for Xklp2 (TPX2) with high survival risk in
LUAD patients. The hydrophobic residues of the AURKA-TPX2 interaction were considered as the target site to block the
autophosphorylation of AURKA during the mitotic cell cycle. The tyrosine kinase inhibitor (TKI) dacomitinib demonstrated
the strong binding potential to hinder TPX2, shielding the AURKA destabilization. This in silico study lays the foundation
for repurposing targeted therapeutic options to impede the Protein—Protein Interactions (PPIs) in LUAD progression and aid
in future translational investigations.
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Introduction

Lung cancer has emerged as the second most prevalent can-
cer and the leading cause of cancer-related death, posing a
serious global health concern [1]. Tobacco smoking is the
primary cause of lung cancer deaths worldwide, with men
being more vulnerable than women [2]. Despite advances
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in research and therapy, LUAD remains a life-threatening
malignancy that accounts for 40% of all lung cancer cases
[3]. Despite advances in cancer treatment options, such as
chemotherapy, immunotherapy, and non-invasive surgical
resection, the 5-year overall survival (OS) rate for LUAD
patients remains about 17.4% [4]. Therefore, it is impera-
tive to understand the molecular mechanisms underlying the
disease and identify key biomarkers to enable early detection
and successful management of the disease. Technologies
such as next-generation sequencing, microarrays, and pro-
teomics have been instrumental in identifying biomarkers,
but identifying key genes remains a challenge for developing
targeted therapies to improve patient outcomes [5]. Network
pharmacology addresses the multiple key factors and targets
that interact to govern associated complex pathways [6].
Recently, the clinical results of targeted therapy at
the molecular level for LUAD patients were promis-
ing. However, the obstacle of drug resistance continues
to impede patients’ overall cure. Precision oncology has
improved treatment results and quality of life compared to
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conventional chemotherapy since the emergence of genomic
medicine [7]. Recent progress in understanding pathways,
advancements in technologies for identifying genetic abnor-
malities, and the emergence of novel drugs to inhibit these
pathways have enabled healthcare professionals to customize
treatment approaches [8]. Several significant targetable path-
ways in lung adenocarcinoma have been discovered, includ-
ing the Epidermal Growth Factor Receptor (EGFR), PI3K/
AKT/mTOR, and RAS-MAPK pathways [9, 10]. Targeting
EGFR mutations is the primary approach for treating LUAD
[11]. Identifying these genetic alterations is crucial in clini-
cal practice across the globe. Despite this, novel oncogenic
drivers have recently emerged, resulting in clinically effec-
tive therapeutics that are either approved or in development
[12]. Recent studies revealed that overexpression, amplifica-
tion, and exon-skipping mutations in novel molecular targets
such as Mesenchymal—Epithelial Transition factor (MET)
and Neurotrophic Tyrosine Kinase (NTRK) are associated
with aggressiveness, metastasis, vascular invasion, and drug
resistance ultimately impacting the poor prognosis of LUAD
population [13, 14]. Numerous drugs that target these path-
ways have been developed and demonstrated therapeutic
effects. Some of these, such as the EGFR inhibitors erlotinib
and gefitinib and the PI3K/AKT/mTOR inhibitor everoli-
mus, have now been supplanted as the first-line treatment
[15, 16].

Network pharmacology addresses the multiple key fac-
tors and targets that interact to govern associated complex
pathways [6]. This concept challenges the traditional notion
of treating a single disease with a single medicine that tar-
gets a single biological target. Instead, it proposes a “multi-
component, multi-target network™ and is consistent with the
complexity of compositions and the involvement of multiple
targets [17]. Globally, drug repurposing is becoming increas-
ingly popular as an attractive choice due to its reduced risk,
possible cost savings, and more rapid development timelines
compared to developing novel drugs [18, 19]. The potential
for drugs that can target numerous targets simultaneously is
extremely attractive for repurposing, as this dual synergistic
technique promises to improve therapeutic alternatives [20].
The conventional approach for small-molecule drug discov-
ery emphasizes interactions between proteins and ligands.
This approach is ideal for proteins such as enzymes, ion
channels, or receptors since these proteins usually possess
distinct binding sites for ligands, facilitating accurate inter-
action [21, 22].

PPIs are important for multiple biological processes
and are dysregulated in complex diseases. Despite their
significance, employing PPIs for therapeutic reasons has
been challenging due to their complexity [23]. Modulat-
ing PPIs with small molecules was considered intricate
and “undruggable” [24]. Due to their domain-specific
and often flat attributes, small molecules pose design

challenges for PPI interfaces. Inhibition was complicated
due to their high-affinity binding between continuous or
discontinuous amino acids and a lack of reference ligands
for comparison [25, 26]. However, protein functional sites
tend to aggregate within the core of their interfaces. These
regions have the spatial extent of small molecules, exhibit
hydrophobic characteristics, and demonstrate the ability to
conform and interact with drug-like compounds dynami-
cally. The path to successful PPI inhibitor discoveries has
seamlessly blended numerous domains and utilized current
approaches for targeted therapies, encompassing structural
analysis, computational modeling, and biomarkers [23].
Over the last decade, cancer research has made significant
advancements, particularly in studying intricate PPI tar-
gets driving the cellular processes that govern cell cycle
progression, DNA repair, apoptosis evasion, and tumor
suppression, such as MDM2-p53 in 2013, Bcl-2-Bax the
same year, c-Myc-Max in 2014, KRAS-PDES in 2017, and
Hsp90-Cdc37 in 2018. These accomplishments have pro-
pelled several PPI inhibitors into clinical trials, marking
a promising trajectory toward novel and effective cancer
therapeutics [27-31].

The study utilized the gene expression datasets from the
TCGA and GEO databases to identify key biomarkers asso-
ciated with LUAD. Differential gene expression analysis
unveiled significant overlapping genes. The static network-
based approach demonstrated a subnetwork of genes with
multiple dysregulated anomalies in LUAD progression. The
co-overexpression of AURKA-TPX2 was found to be asso-
ciated with high survival risk in the patients, emphasizing
the need for screening drugs that can inhibit the shielding
potential of TPX2 in AURKA autophosphorylation and
address increased cell proliferation, genomic instability,
and resistance to apoptosis in LUAD [32]. Molecular dock-
ing provided a platform for repurposing 18 FDA-approved
targeted cancer drugs and assessing their potential to target
multiple targets. It demonstrated the inhibitory potential of
FDA-targeted cancer drugs on the TPX2-AURKA interac-
tion, aiding the experimental investigators to develop tar-
geted therapeutic strategies and improve clinical outcomes.

Methodology

The study focuses on the analysis of transcriptome data from
publicly accessible archives that pertain to LUAD patients.
The aim was to identify clinically significant biomarkers
employing a static network-based approach. FDA-approved
anti-cancer drugs were repurposed for the uncovered target,
revealing prospective therapeutic avenues through molecular
interaction studies. Figure 1 depicts the overall workflow of
the study.
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Fig.1 The figure illustrates an overview of the methodology imple-
mented in this study

Analysis of Differential Gene Expression

The study involved the analysis of transcriptomic profiling
data from TCGA-LUAD with primary tumor and adjacent
tumor normal samples [33]. The analysis also included three
microarray datasets, GSE10072, GSE31210, and GSE32863
(https://www.ncbi.nlm.nih.gov/geo/). Each microarray data-
set had different sample sizes and platforms. The analysis
focused on gene expression profiles from human LUAD tis-
sues and adjacent normal tissues, considering DNA methyla-
tion and smoking status. The edgeR (V3.36.0) and limma
(V3.50.3) packages of R (V4.1.2) were used to identify the
differentially expressed genes (DEGs) in tumor vs. normal
samples. DEGs were determined based on P value <0.05
and log?2 fold change (1og2FC) > 1, with false discovery rate
control using the Benjamini & Hochberg method. The over-
lapping DEGs were screened for determining genes differ-
entially expressed in all four LUAD gene expression datasets
using a Venn diagram (https://bioinformatics.psb.ugent.be/
webtools/Venn/) [34].

PPI Network Construction and Topological Analysis

The PPI network of the DEGs was determined using the
String database (https://string-db.org/) at 5% confidence
with a medium score, which aimed to exclude PPIs with low
probability and enhance the reliability of the results. This
approach facilitated increased coverage for a comprehensive
understanding of protein interactions within the biological
system, potentially encompassing less explored or transient
interactions that may not be captured by high- and low-
confidence networks [35]. Molecular Complex Detection
(MCODE) was used to identify densely connected regions
in a large PPI network. A cut-off degree of 10, cut-off node
score of 0.2, K-core of 2, and a maximum depth of 100
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were used as parameters. Further, CytoHubba identified the
central nodes using the Maximal Clique Centrality (MCC)
method [36, 37].

Gene Ontology and Functional Enrichment Analysis

The ShinyGo (V0.77) was used for determining the Gene
Ontology (GO) terms of the hub genes to describe the asso-
ciated biological process, cellular component, and molecu-
lar function confined to Homo sapiens [38]. An FDR cut-
off <0.05 was used to identify statistically significant results.
The use of FDR correction aided in minimizing the chances
of erroneously identifying GO terms, thus enhancing the
reliability and validity of the findings [39, 40].

Survival Analysis of Hub Genes

The Kaplan—Meier (KM) plotter tool was used to compare
the survival risk based on the expression of the hub genes.
The genes were categorized into high- and low-expression
cohorts based on the median expression values. The OS
based on the LUAD data against hub genes was assessed for
200 months. For each gene, the log-rank P value and median
survival were determined [41, 42].

Molecular Interaction Analysis

Molecular docking of the AURKA-TPX2 complex with
the 18 FDA-approved cancer-targeted therapy Drugs for in
silico validation of drug in the treatment of LUAD was per-
formed. The list of drugs was retrieved from The National
Institute of Cancer (NCI) website maintained by the NIH.
The AURKA-TPX2 crystal structure was downloaded from
the Protein Data Bank (PDB 10L5). AutoDock Vina was
used to dock the macromolecules [43], while Adenosine
diphosphate (ADP) served as control. The docking pro-
cess included preparing the ligands and protein by adding
hydrogen atoms, assigning Kollman charges, and removing
water molecules. The active residues of the protein were
determined using CASTp 3.0 and were validated with the
TPX2-AURKA interaction binding pocket [44]. The dock-
ing scores of the most favorable poses of each complex were
assessed [45, 46].

Results

Differentially Expressed Genes

The TCGA-LUAD transcriptomic profiling dataset
comprised 537 tumor samples and 59 normal samples.

Additionally, the microarray datasets GSE10072 and
GSE31210, based on the GPL570 platform, consisted
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Fig.2 The DEGs illustrated using a volcano plot with log2FC > 1 (upregulated), log2FC < — 1 (downregulated), and adjusted P value <0.05. a

TCGA-LUAD, b GSE10072, ¢ GSE31210, and d GSE32863

Table 1 The total number of DEGs and the number of up- and down-
regulated DEGs identified from the differential gene expression anal-
ysis of the LUAD expression datasets

Dataset Total DEGs Upregulated Downregulated
TCGA-LUAD 6847 5166 1681
GSE10072 693 215 478
GSE31210 2744 1217 1527
GSE32863 1301 551 750

of 58 tumor samples and 49 normal samples, 226 tumor
samples, and 20 normal samples of lung tissue, respec-
tively. A GPL6884 expression bead chip platform-based
array dataset GSE32863 contained 58 tumors and 58 nor-
mal samples that were preprocessed and analyzed with a
uniform criterion of 10g2FC > 1 at 5% significance. The
DEGs were identified and illustrated using a volcano plot
(Fig. 2). The number of up- and downregulated genes is
shown in Table 1. The Venn diagram revealed 337 overlap-
ping DEGs (Fig. 3).

GSE31210

939
(11.3%)

GSE10072

GSE32863

TCGA-LUAD

Fig.3 Venn diagram of the compared DEGs from LUAD expression

datasets revealing the overlapping DEGs
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PPI Network and Hub Genes

The String database generated a network of significant pro-
tein-coding genes with medium confidence. As a result, a
network consists of 337 nodes and 2870 edges with a clus-
tering coefficient of 0.435 (Supp Fig. 2a). MCODE iden-
tified six clusters of densely connected nodes within the
network. Cluster 1, consisting of 62 nodes and 1881 edges,
achieved a score of 61.672, indicating its significance com-
pared to the scores of the other clusters (Supp Fig. 2b). The
cluster identified the top hub genes using the MCC method
(Fig. 4), which outperforms other centrality algorithms in
accurately assessing the importance of nodes in terms of
their network structure. We observed network interactions
among these nodes, which supported their potential roles as
key regulators in the network.

Gene Ontology and Functional Enrichment of Hub
Genes

The number of hub genes enriched to the GO terms was
determined based on fold enrichment at FDR <0.05. The
GO analysis uncovered the biological process (Fig. 5a), cel-
lular component (Fig. 5b), and molecular function (Fig. 5c).
A captivating revelation emerged as we uncovered the nar-
rative of the dysregulated hub genes in LUAD was signifi-
cantly related to cell cycle regulation, mitotic cell cycle, and
cell division. The cellular components, such as the spindle,
microtubule, and spindle pole, took the spotlight. Further-
more, these hub genes” molecular functions have been corre-
lated to Adenosine triphosphate (ATP) binding, microtubule
binding, and tubulin binding. The hub genes enriched to
the top 5 GO terms were involved in cell cycle regulation,
mitotic cell cycle processing, regulation of signaling, and
cell division, which was illustrated using a GO chord dia-
gram (Fig. 5d).

978NN

L

Fig.4 The top-ranked hub genes were identified using the MCC algo-
rithm
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Clinical Significance of the Hub Genes

The KM plotter assessed the expression of hub genes
and their relationship with OS risk in LUAD patients for
200 months (Fig. 6). The results revealed that the overex-
pression of these hub genes was associated with unfavorable
OS rates in patients. The hub genes showed higher hazard
ratios (HR) > 1 and log-rank P values <0.05. The median
survival expression in months was significantly higher in
the low-expression cohort compared to the high-expression
cohort (Table 2). The expression pattern of the hub genes in
the selected gene expression datasets is listed in (Table 3).
TPX2 and AURKA possessed higher expression cohorts in
all four datasets with a high survival risk in the LUAD.

Molecular Docking

The analysis of molecular docking revealed that the
drug molecules interacted with the binding pocket of the
TPX2-AURKA interaction (Supp. Figs. 2 and 3). The
complexes shown in Fig. 7 demonstrated the most favora-
ble docking results, with a distance of < 3.5 A° between the
receptor’s binding pocket residues and the drug molecules.
According to the findings, the compounds predominantly
interacted with the target proteins through hydrogen bonds,
electrostatic interactions, salt bridges, and hydrophobic
interactions. The residues and the chains of the receptor
involved in hydrogen bonding, electrostatic, and hydropho-
bic interactions, and the binding energies of the complexes
are listed in Table 4. The binding energy of the leads to the
target ranged from — 10.23 to —5.61 kcal/mol. In contrast to
ADP, Dacomitinib exhibited a higher binding affinity, estab-
lishing hydrogen bonds and negatively charged interactions
and occupying the hydrophobic region of the TPX2-AURKA
binding pocket.

Discussion

Lung adenocarcinoma is a prevalent form of lung cancer and
a leading cause of cancer-related deaths [47]. As genomic
and proteomic data become more accessible, accurately
identifying target drugs has become increasingly important.
Targeted therapies offer significant potential for effectively
treating LUAD, making the identification of such therapies
essential for developing successful treatment approaches
[48]. Therefore, the study involved identifying therapeutic
targets by analyzing the transcriptomic datasets of the pri-
mary tumor in contrast to the adjacent tumor normal samples
[49].

Our study used comprehensive in silico techniques to
identify genes associated with LUAD by analyzing data
from the TCGA and GEO databases. Unlike most previous
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studies, which focused on specific genetic events or cohort
analysis, we used a broader approach. As a result, we dis-
covered 337 overlapping DEGs. The association between
important DEGs regarding their physical and functional
relationships was determined using a PPI network [50].
The topology analysis of the network aided in determin-
ing the significant clusters within the network, focusing on
densely interconnected regions [51]. The aim was to gain
insights into the critical genes, their interrelationships, and
their involvement in regulating cancer-related biological
processes induced by aberrant DNA methylation status and
smoking status of LUAD patients. The top 10 highly ranked
hub genes were identified using the MCC centrality metric
with participation in the largest cliques within the network,
holding significant importance and being involved in critical

biological processes that contribute to cancer progression
[51, 52]. Gene ontology of the hub genes provided struc-
tured terms for describing molecular functions, biological
processes, and cellular components [53].

The overexpressed hub genes were predominantly
enriched to cell cycle regulation and mitotic cell cycle, along
with cellular components, such as the spindle and molecular
functions involving microtubule binding, tubulin binding,
and ATP binding, holistically triggered the critical cellular
events were involved in LUAD pathogenesis [54-56]. As a
result, mitotic cell cycle regulation was disrupted, result-
ing in uncontrolled cell growth and elevated tumor devel-
opment. The chromosome segregation during cell division
was impaired, leading to genomic instability due to dys-
regulated microtubule dynamics, influencing cell motility
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Fig.6 The KM plots of the hub genes represent their survival risk based on the median survival of LUAD patients for 200 months

Table2 The median of the expression cohorts in months of the
ranked hub genes demonstrates the OS of LUAD patients

Table3 The expression patterns of the hub genes based on log2FC
values in all four datasets, revealing LUAD biomarkers

Hub genes Median of low expression  Median of high

in months expression in
months

ASPM 103 62

AURKA 107 61.3

BUBI1B 107 61.3

DLGAP5S 103 66.47

KIF2C 108 52

KIF20A 110.27 52

NCAPG 106 62

PBK 107 52

TPX2 117.33 48

UBE2C 107 57

and intracellular transport with alterations in the energy
balance for regulating a wide range of cellular processes
[57-59]. This intricate combination of overexpressed hub
genes endorsed mitotic errors, genetic variations, and inva-
sive attributes, contributing to LUAD aggressiveness [60].
However, the expression patterns of the eight hub genes var-
ied, but AURKA and TPX2 were found co-overexpressed
across the datasets.

The elevated levels of AURKA hindered the tumor sup-
pressors through phosphorylation, impeded normal func-
tioning, and triggered the activation of oncogenic factors,
resulting in chromosomal instability [61]. TPX2 is crucial
in ensuring accurate assembly of the mitotic spindle. In

@ Springer

Hub Genes GSE32863 GSE31210 GSE10072 TCGA-LUAD
ASPM 1.26 -1.51 1.48 3.87
AURKA 1.47 1.40 1.14 2.73
BUBIB -1.52 1.81 1.42 3.54
DLGAP5 -1.71 2.08 1.31 3.81
KIF2C -1.33 1.77 -1.92 3.69
KIF20A 1.09 1.53 -1.8 3.27
NCAPG -1.90 1.74 -1.72 3.72
PBK —1.60 1.37 1.26 3.49
TPX2 1.02 1.84 1.09 3.77
UBE2C -1.31 1.34 1.24 4.20

The bold genes exhibit comparable expression patterns

contrast, TPX2 was closely linked to the spindle pole dur-
ing mitosis. TPX2, like other mitosis-regulating proteins,
was associated with unfavorable prognoses and linked to
enhanced proliferation, invasion, and migration capabilities
[62]. TPX2 activated AURKA by attaching it to its N-termi-
nal domain, which shielded AURKA from dephosphoryla-
tion. Therefore, the study demonstrated the significance of
targeting co-overexpressed TPX2 and AURKA could pre-
sent a promising and innovative therapeutic approach [63].
Moreover, experimental and structural studies have validated
the interaction between TPX2 and AURKA at the mitotic
spindle [64]. The implementation of KM plots is crucial in
the process of selecting biomarkers that have the potential
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Fig.7 The best-docked poses of the ligands with AURKA-TPX2 complex. a The cancer FDA-approved drugs docked with the complex b ADP

and ¢ Dacomitinib

to predict both therapeutic response and clinical outcomes
[65]. The study elucidated the survival risk associated with
the expression patterns of hub genes in NSCLC patients
over 200 months. The hub genes showed a lower median
expression in cohorts with high expression levels, indicat-
ing their involvement in impaired cell cycle regulation. This
dysregulation increased the survival risk in LUAD patients,
as indicated by an HR > 1, signifying a higher level of risk
[66]. The KM plots indicate a higher risk of high-expression
cohorts of AURKA and TPX2, which has opened an avenue
for targeting the AURKA-TPX?2 complex to inhibit AURKA
autophosphorylation in the progression of LUAD. This
implies that PPI inhibitors targeting this specific interaction
could potentially overcome the specificity challenges faced
by ATP-based inhibitors to some extent [67].

The study focused on determining the inhibitory poten-
tial of FDA-approved cancer drugs to overcome the need
to target dysregulated AURKA-TPX2 complex in lung
adenocarcinoma. TKIs have been extensively used to treat
various cancers [68]. They have been developed to attenu-
ate the enzymatic activity of mutant tyrosine kinases that
contribute to the malignant traits of cells by blocking the
ATP-binding sites [69]. The molecular docking study dem-
onstrated the binding potential of the second-generation

EGFR-tyrosine kinase in contrast to the ADP, which
served as control. The catalytic activity of AURKA
involves ATP hydrolysis to release ADP and bind to the
receptor, releasing energy to facilitate autophosphorylation
[70]. Dacomitinib interacted with AURKA at TYR197,
LYS271, and GLU211 and TPX?2 at PHE19 and GLU25
with non-covalent interactions and possessed strong bind-
ing affinity with the complex [71]. The hydrogen bond
formation of dacomitinib with the receptor at TYR197
demonstrated strong evidence of exerting pharmacologi-
cal actions on TPX2, shielding the dephosphorylation at
the tyrosine residues during the mitotic cell cycle due to
the dysregulation of protein tyrosine phosphatase [32].
The findings revealed that screened drugs occupied the
hydrophobic residues of the receptor’s interaction pocket
and illustrated the potential to impede the AURKA-TPX?2
interaction in LUAD progression [46]. It is widely recog-
nized in computational drug development that integrat-
ing a drug into healthcare necessitates multiple modifica-
tions and advancements [72]. These drugs could evolve as
promising therapeutic agents for inhibiting the dysregu-
lated protein—protein interactions in lung adenocarcinoma
through rigorous in vitro and clinical investigations.
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Table 4 The binding energy of the FDA-approved cancer drugs with different types of interactions <3.5 A° with the AURKA (Chain A)-TPX2

(Chain B) complex
Compounds  Binding Hydrogen bond interactions Other interactions
energy (kcal/
mol)
ADP (control) —10.1 B:ASP24, A:ARG195, A:TYR197, A:GLU211, and A:LYS276-Salt bridge
A:SER266-conventional H-bonds
A:GLU211 and A:SER266-carbon H-bonds
Dacomitinib -10.23 A:TYR197, A:LYS271, and B:PHE19-conventional H-bond A:GLU211- Pi anion
B:PHE19 and B:GLU25-carbon H-bond
Afatinib —-9.87 A:SER266, LYS271, and PHE19-conventional H-bond GLU25-Electrostatic
B:PHE19 and A:GLU211-carbon H-bond
Brigatinib -9.54 A:SER266-conventional H-bond B:ASP27-Salt bridge
B:GLY26, B:ASP27, B:GLN29, B:ASN30, B:ASP32,
A:ARG189-carbon H-bonds
Tepotinib -9.44 B:ASP27 and A:TYR212-conventional H-bonds B:ASP27-Salt bridge
B:ASN30, B:ASP32, and A:GLU211-carbon H-bond
Selpercatinib —-8.59 B:GLY26, A:ARG195, and A:SER266-conventional H-bonds A:GLY-Pi anion
A:ILE158, A:ARG189, A:ARG195, A:LYS271, and
A:GLU269-carbon H-bonds
Alectinib —-8.04 B:ASP27, B:ASN30, B:ASP32, and A:ARG189-carbon B:ASP27-Electrostatic and salt bridge
H-bonds
Gefitinib -7.61 B:ASP24 and A:SER266-conventional H-bond B:GLY26, A:HIS190, and A:PRO191-Halogen
A:PRO191, SER266, and A:GLU269-carbon H-bond A:GLU211-Pi anion
A:GLU269-Electrostatic and salt bridge
Entrectinib -7.43 B:GLU25-conventional H-bond B:ASP32-Halogen

B:ASP24, B:GLY26, and A:TYR197-carbon H-bonds

Osimertinib -7.39 B:GLU25, B:GLU26, B:ASP27, B:ASP32, and A:GLU211- B:GLU25-Salt bridge
Carbon H-bonds
Crizotinib —-7.22 A:GLU269-conventional H-bond B:ASP24-Halogen, A:GLU211-Pi anion,
B:GLU25, B:GLY26, and A:GLU211-carbon H-bonds A:LYS271-Pi cation, and A:GLU269-salt
bridge
Ceritinib -7.21 A;LYS271-Conventional H-bond B:ASP27-Pi anion and B:ASP32-salt bridge
B:GLY26 and B:ASN30-Carbon H-bonds
Dabrafenib —-6.97 B:GLU25, A:ARG195, A:GLY211, and A:TYR212-conven- B:GLU25-Halogen and Pi anion
tional H-bonds A:GLU211-Pi anion
A:ARG189, A:ARG195, and PRO214-carbon H-bonds
Erlotinib —6.63 A:GLU211 AND A:LYS271-conventional H-bonds A:ARG195-Pi alkyl
B:ASP24. A:ILE158,and A:SER266-carbon H-bonds A:GLU211-Pi anion
Pralsetinib —6.57 B:GLU25 and A:LYS271-conventional H-bonds -
A:HIS190-carbon H-bond
Trametinib —-6.48 B:GLU25 and A:TYR197-Conventional H-bond A:GLU211-Pi anion
B:ASP24, B:GLU25, and A:PRO191-Carbon H-bonds GLU25-Hydrophobic
Adagrasib -6.15 A:SER266-Conventional H-bond A:GLU211-Pi anion and A:LYS271-Pi cation
A:PRO214, A:GLY265, A:SER266, and A:GLU269-Carbon
H-bonds
Lorlatinib -5.98 A:TYR212 and A:LYS271-conventional H-bond B:GLU25-Halogen and A:GLU211-Pi anion
A:ILE158, A:GLU211, and A:SER266
Sotorasib —5.61 A:HIS190-Conventional H-bond A:GLU211-Pi anion
B:GLU25-Carbon H-bond
Conclusions nodes were predominantly involved in suppressing tumor

The study determined that 337 DEGs were differentially
expressed across the transcriptomic datasets of LUAD sam-
ples. The downstream analysis of the DEGs using a network-
based approach determined that the densely interconnected

@ Springer

suppressors, dysregulated mitotic cell cycle, and driving
genomic instability due to impaired chromosomal segrega-
tion during cell division. These events were endorsed due
to the co-overexpression of AURKA and TPX2 across the
LUAD samples. The survival analysis of these hub genes
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revealed their clinical significance to be recognized as a crit-
ical therapeutic target, which has broadened the knowledge
for targeting the AURKA-TPX2 complex in LUAD progres-
sion. The FDA-approved cancer-targeted drugs revealed the
strong binding potential to the hydrophobic residues of the
AURKA-TPX2 interaction pocket. Dacomitinib overper-
formed in the molecular docking studies, held with hydro-
gen and electrostatic interactions with both the chains and
occupying the interaction pocket of the receptor. This study
demonstrated an innovative targeted therapeutic strategy
and addressed the knowledge gap on the pharmacological
potential of FDA-approved cancer drugs in disrupting the
AURKA-TPX?2 interaction. Consequently, further in vitro
evaluations and clinical studies of these drugs, coupled with
structural modifications, would enhance drug-like proper-
ties and overcome the acquired drug resistance in LUAD
patients, which holds the potential to develop a promising
novel targeted therapeutic approach.
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