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Abstract
Motivation: Spatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue archi
tecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice. 
Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies. 
Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative 
approach to decoding tissue complexity.
Results: Here, we present a graph neural network based framework to predict the spatial expression of highly expressed genes from tissue his
tological images. Extensive experiments on two separate breast cancer data cohorts demonstrate that our method improves the prediction per
formance compared to the state-of-the-art, and that our model can be used to better delineate spatial domains of biological interest.
Availability and implementation: https://github.com/song0309/asGNN/

1 Introduction
Dissecting the cellular and spatial heterogeneity of tissues is 
critical to characterizing cellular composition and organiza
tion, and ultimately their contribution to phenotype varia
tion. Unlike traditional bulk and single-cell transcriptomics, 
spatial transcriptomics technologies enable spatially re
solved gene expression profiling within intact tissues by us
ing imaging or sequencing methods. Unlike imaging 
methods, which required targeted probes for a predeter
mined set of genes, sequencing-based methods perform 
RNA sequencing of the whole transcriptome with a posi
tionally barcoded array of spots aligned to the histological 
image of the tissue (Asp et al. 2020). However, while 
sequencing-based spatial transcriptomics technologies have 
been widely used in biomedical research, their high cost still 
hinders their application in clinical studies. In contrast, his
tological images, such as hematoxylin and eosin (H&E) or 
immunofluorescence (IF) staining images, which are gener
ated by most spatial transcriptomics technologies with ISC 
method, can be acquired cost-efficiently at high quality. 
However, while these histological images are commonly 
used to compensate for spatial gene expression in down
stream analyses (Dries et al. 2021), the dependencies be
tween spatial gene expression profiles and histological 
images have only been explored to a limited extent; using 
such dependencies may alleviate the reliance on spatial 

transcriptomics by estimating spatial gene expression di
rectly from tissue morphology.

As spatial transcriptomics data continue to accumulate, an 
increasing number of computational methods (He et al. 
2020, Dawood et al. 2021, Monjo et al. 2022) aim to estab
lish a connection between spatial gene expression profiles 
and histological images based on existing spatial transcrip
tomics datasets. These approaches predict the gene expres
sion of each capturing spot with the corresponding image 
patch from H&E staining image. However, all of these meth
ods fail to model spatial proximity in gene expression, which 
is one of the essential properties in real spatial transcriptom
ics data. A few attempts have been made to circumvent this 
issue, which either apply Transformer (Pang et al. 2021, 
Yang et al. 2023) or GNN (Zeng et al. 2022, Mejia et al. 
2023) approaches to incorporate the relations among captur
ing spots when predicting spatial gene expression.

Despite the fact that transformer-based methods naturally 
model global relations among image patches and capturing 
spots by exploiting the self-attention mechanism, some meth
ods attempt to further refine these relations by either incorpo
rating positional information [e.g. HisToGene (Pang et al. 
2021)] or imposing locality in the image embedding space 
[e.g. EGN (Yang et al. 2023)]; they therefore lack the capabil
ity to distinguish compartments showing similar morphologi
cal features but distinct gene expressions in the tissues, 
such as tumors and their microenvironment. In addition, 
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transformer-based methods may be prone to overfitting issue 
due to limited training data in the existing spatial transcrip
tomics datasets. Conversely, while GNN-based methods em
phasize local relations among image patches and capturing 
spots in the graph, they may not retain global relations 
between spatially distant regions showing both similar mor
phological features and gene expression, particularly in the 
non-well-structured tissues, such as lymph nodes and tumors. 
Some methods allow both local and global relations to be 
encoded by considering both image and positional embed
dings in the graph construction [e.g. SEPAL (Mejia et al. 
2023)], but these relations, which are hard-coded in the 
graph prior to model training, might not be present in 
gene expression.

To overcome the aforementioned issues, we propose an 
adaptive spatial Graph Neural Network (asGNN) for spatial 
gene expression prediction, which builds on the smoothing- 
based GNN (SBGNN) framework of (Wang et al. 2024). The 
SBGNN framework was developed to predict liquid–liquid 
phase separation from 3D molecular graphs, by using graph 
structure to adaptively refine molecular graphs to remove 
task irrelevant edges to help perform graph classification. 
Similarly, we adaptively remove edges in our spatial graph to 
help accurately predict gene expression. Following Wang 
et al. (2024), during training we apply smoothing-based vari
ational optimization (VO) (Leordeanu and Hebert 2008) 
to search for a graph that captures both local and global 
relations important to a given task. In our case, these are 
relations among the capturing spots for a given image, and 
we use Graph Transformer Networks (GTN) (Shi et al. 2020) 
as the backbone to better align these relations with actual 
proximity in gene expression among capturing spots. Our 
experiments demonstrate that the spatial graphs learned 
from asGNN not only improve the spatial gene expression 
prediction compared to the state-of-the-art methods but also 
help to detect biologically interpretable spatial domains. 
Furthermore, the prototype clustering analysis on breast 
cancer tissues suggests that asGNN can be used to study the 
homogeneity and heterogeneity of spatial organization across 
tissue sections from patients in different conditions. The pre
dictions from our model thus have the potential to be trans
lated into clinical diagnostics tools to inform personalized 
treatment decisions.

2 Materials and methods
The overall architecture of our model is summarized in  
Fig. 1. Below, we provide full details of the architecture and 
our end-to-end optimization algorithm, which build on the 
smoothing-based GNN framework of Wang et al. (2024).

2.1 Adaptive spatial GNN architecture
We assume we have input data of the form X ¼
fGi ¼ ðXi;EiÞji¼ 1; . . . ;Ng, where Gi is the image graph for 
the ith data point (a whole slide image), with Xi the matrix of 
node features for data point i, and Ei the edge set for the 
spatial connectivity of graph Gi (in our images, the spots are 
positioned in a regular grid, and we use an 8-connected 
neighborhood). Xi has dimensions Ni × DX, where Ni is the 
number of nodes (spots) in the image graph Gi, and DX is 
the dimensionality of the image features. Our task is then 
to predict the output spatial gene expression data, 
Y ¼ fYiji¼ 1; . . . ;Ng, where Yi is the expression matrix for 

image i, whose dimensionality is Ni×DY, where DY is the 
number of predicted genes.

2.1.1 Adaptive graph refinement
We adapt the graph refinement procedure introduced 
in Wang et al. (2024). During training, we learn to predict a 
matrix of latent meta-features, Zi for each image, with 
dimensionality Ni×DZ, where DZ is the meta-feature 
dimensionality. The latent meta-features in our model are 
learned as a linear transformation of the image features, i.e. 
Zi ¼XiW0. We then define a distance function on the nodes 
of graph i: 

dðn1;n2Þ ¼ αd1ðzn1 ; zn2Þþ βd2ðn1;n2Þ; (1) 

where zn are the meta-features associated with node n (i.e. 
the nth row of Zi), d1 is the Euclidean distance, d2ðn1;n2Þ is 
the shortest path distance between nodes n1 and n2 in Gi, and 
fα;βg are hyperparameters. Our distance function here is 
adapted from Wang et al. (2024), where we exclude their fi
nal “degree consistency” term, due to the regular topology of 
our initial spatial graph. We use the distances in Eq. (1) to de
fine a distance matrix Di between each pair of nodes in graph 
i, and use an arbitrary clustering algorithm to map this to a 
vector Ci of cluster indices; here Ci 2 f1; . . . ;Kig

Ni , where Ki 

is the maximum cluster index for image i, and CiðnÞ ¼ k indi
cates that node n belongs to cluster k. The clusters f1; . . . ;Kig

represent potentially meaningful spatial domains in image i 
(e.g. tumor microenvironment regions). We choose Affinity 
Propagation (AP) as our clustering algorithm (Frey and 
Dueck 2007), hence, Ci ¼ APðDiÞ, where APð:Þ denotes 
the application of the AP algorithm. Finally, using the 
learned cluster vectors, we form the refined spatial graphs 
for each training instance, G0i ¼ fXi;E0ig, where E0i ¼
fðn;mÞ 2 EjCn ¼ Cmg, hence restricting the graph so that in
formation is shared via message passing only within spatial 
domains (clusters).

2.1.2 Predicting spatial gene expression
We use the refined graphs to predict the spatial gene expres
sion matrices as output; we thus adapt the framework of 
Wang et al. (2024) (designed for graph classification tasks) to 
perform multivariate graph regression. Our network outputs 
the predicted matrix by performing message passing on the 
refined graphs, G0i. The network is parameterized by weight 
matrices W1...L, where L is the number of layers in the GNN, 
with Wl having dimensionality Dl − 1×Dl, such that Dl is 
the number of hidden units per node in layer l, and D0 ¼DX, 
DL ¼ DY. We treat fL;D1...L− 1g as additional hyperpara
meters. The message-passing updates can be written as: 

xl
n ¼ σ

X

fmjðm;nÞ2E0g

xl − 1
m Wl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
degðnÞdegðmÞ

p

0

@

1

A; (2) 

for levels l<L, where σðxÞ ¼maxð0;xÞ is the RELU function, 
and degðnÞ is the degree of node n. For level L, a final linear 
is used, which is applied to each node independently; 
hence: xL

n ¼ xL − 1
n WL.

For our training loss, we use the function: 
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LðX ;YjW0...LÞ ¼
P

i LiðGi;YijW0...LÞ

LiðGi;YijW0...LÞ ¼MSEðXL
i ;YiÞ− λ

P
j¼1...DY

PCCðxL
ij ; yijÞ:

(3) 

Here, MSEðX;YÞ is the mean squared error between matri
ces X and Y (summed across all elements), PCCðx;yÞ is the 
Pearson correlation coefficient (PCC) between vectors x and 
y (each being a vector of expression values across the nodes 
of the final layer), and λ is a tradeoff parameter (which we set 
to 0 when considering the MSE loss only).

2.2 End-to-end training
Since, in our architecture, the projection W0 determines the 
meta-feature matrix Z, which in turn determines the graph 
structure of the adapted (refined) spatial graph G0 used for 
message passing, we have a complex interaction between a 
discrete optimization over the space of refined spatial graphs 
(implicitly parameterized by W0) and the continuous predic
tions of the network (determined by W1...L). The underlying 
objective (Eq. (3)) is therefore discontinuous at points where 
changing W0 changes the refined graphs; however, if W0 is 
held constant, the objective is continuous over the remaining 
parameters, and can be handled by gradient descent.

Following Wang et al. (2024), we thus use a modified form 
of VO (Leordeanu and Hebert 2008), which allows us to con
vert an objective with discontinuities into a continuous objec
tive. This is done by introducing a variational distribution 
over the parameters W0, which we take to be a Gaussian with 
a symmetric covariance matrix. At a given meta-epoch t, this 
variational distribution has the form: 

vecðWt
0Þ � N ð:jμt; σtIÞ; (4) 

where vecðW0Þ is the vectorization of matrix W0, μt is a 
vector of mean values, σt is a scalar, and I is the identity 
matrix. At meta-epoch t, we draw S samples from Eq. (4), 
W1

0 ; . . . ;WS
0, and for each we optimize the remaining parame

ters using gradient descent, to find Ws
1...L for s¼ 1; . . . ;S 

(where we reserve a portion of the training data as a valida
tion set to perform early stopping). Hence, we can calculate 
the sample training loss at meta-epoch t: 

Lt
s ¼ LðX ;YjWts

0...LÞ: (5) 

We then apply the smoothing-based optimization (SMO) 
updates from Leordeanu and Hebert (2008), to update μ 
and σ: 

μtþ 1 ¼

P
s FsvecðWt

0ÞP
s Fs

;

σtþ 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
s FsjvecðWt

0Þ− μtj
2
2

DXDZ
P

s Fs

s

;

(6) 

where Fs ¼maxð− Lsþ c;0Þ is the score for sample s, with 
the offset c>0 set to a positive constant (we treat c as an ad
ditional hyperparameter, which is set empirically to ensure 
that − Lsþ c>0 for observed values of Ls). The updates in 
Eq. (6) can be shown to improve the value of F (i.e. the in
verse loss) in expectation [as shown in Wang et al. (2024)
and Leordeanu and Hebert (2008)); hence: 

Figure 1. Adaptive spatial graph neural network (asGNN) architecture. We summarize the key components of our asGNN architecture. asGNN begins by 
extracting image features from image patches over capturing spots arranged in an 8-connected spatial graph with an encoder. Adaptive graph refinement 
is then applied, as introduced in Wang et al. (2024); for each meta-epoch, asGNN samples Ns sets of parameters for a linear meta-feature transformation, 
that projects the image features to a set of meta-features for each spot, and graph refinement is performed by applying Affinity Propagation (AP) 
clustering to the meta-features to sparsify the input graph. We use a GTN as the backbone model in asGNN, and train the ensemble of GTNs with image 
features on the sparsified spatial graphs to predict the gene expression separately. Lastly, we average the training scores over all the samples using the 
score function shown, which combines the mean squared error (MSE) and per-gene Pearson correlation coefficient (PCC) of the predicted gene 
expression values, and apply variational updates to parameters of the linear meta-feature transformation layer
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EW0�Qtþ1 ½FðX ;YjW0...LÞ�≥EW0�Qt ½FðX ;YjW0...LÞ�; (7) 

where Qt ¼Nð:jμt;σtÞ is the variational distribution over W0 

at meta-epoch t, and E½:� is the expectation operator.

3. Experiments
3.1 Data preparation
In this work, we focus on spatial transcriptomics data gener
ated by ST using the ST1K protocol (Shah et al. 2016), which 
measures the spatial expression of 26 949 genes by placing an 
array of 1007 capturing spots arranged in a 33×35 grid onto 
the tissue section and provides a tissue image stained with 
H&E. ST data were collected from two cohorts for breast 
cancer studies: one cohort (He et al. 2020) contains 68 tissue 
sections from 23 breast cancer patients with five different 
molecular subtypes, and the other cohort (Andersson et al. 
2021) consists of 36 tissue sections from eight HER2-positive 
breast cancer patients. In the latter, each patient has one tis
sue section that was manually annotated with up to five tis
sue types based on the morphological features of the 
associated H&E staining image. We extracted image patches 
of 224×224 pixels centered on the corresponding capturing 
spots for each H&E staining image, where 224×224 pixels 
approximately cover each spot and is the standard input size 
for convolutional neural networks (CNNs) to derive a conve
nient feature set. For the spatial gene expression data, we fol
lowed the experimental setting in ST-Net (He et al. 2020), 
and first preprocessed the unique molecular identifier (UMI) 
counts in the raw data by normalizing them to sum to one af
ter adding a pseudo count one for each capturing spot, and 
then transformed the normalized counts onto a log scale. 
Many of the genes are either lowly or sparsely expressed, and 
thus may not be essential for latent representation learning. 
Therefore, we followed the ST-Net setting (He et al. 2020) 
and filtered the top 250 genes with the highest gene expres
sion across all tissue sections from two data cohorts for 
model training and prediction.

3.2 Experimental design
For spatial gene expression prediction, we benchmarked 
asGNN against four main baseline methods, including ST- 
Net (He et al. 2020), HisToGene (Pang et al. 2021), a basic 
(non-adaptive) GTN, and AP-Clustering þ GTN (AP-GTN). 
The basic GTN was coupled with different spatial adjacency 
graphs by randomly dropping edges among capturing spots 
at ratios ranging from 0% (full) to 100% (empty), and the 
AP-GTN was combined with a spatial graph determined by 
AP clustering with similar distance function as Eq. (1) but de
fined on the untransformed image features. Note that other 
methods we mentioned in the Introduction were excluded 
from the comparison since either their codes were not 
publicly available at the time of investigation or they showed 
unreasonably poor performance on the data in our experi
mental setting. We used two different image features, includ
ing morphological and convolutional features, with all the 
methods tested, except for ST-Net and HisToGene. The 
morphological features were calculated as a 142-dimensional 
vector concatenating morphological statistics and nuclei type 
proportion, derived from the nuclei segmentation produced 
by HoVerNet (Cosatto et al. 2013) on each image patch 
around a capturing spot. The convolutional features were cal
culated as a 1024-dimensional vector extracted from pre- 

trained DenseNet-121 on ImageNet for each image patch 
around a capturing spot. Lastly, we assessed the performance 
of spatial gene expression prediction for all compared meth
ods with both holdout and external validation sets. In the 
holdout validation, we stratified the 68 tissue sections from 
the first data cohort based on their molecular subtypes into 
training, validation, and test sets, consisting of 38, 15, and 15 
sections, respectively, where the validation set was used to 
prevent overfitting in model training and select the best 
hyperparameters while the test set was used to evaluate the 
performance of the methods. In the external validation set, 
we employed 24 tissue sections from the second data cohort 
to evaluate the generalization of methods.

For spatial domain detection, we applied AP clustering to 
raw convolutional features and convolution-associated meta- 
features acquired from asGNN (λ¼ 0) and asGNN for spot 
clustering separately. Without the need to specify the number 
of clusters, the performance of AP clustering may be de
graded when an intact spatial domain is partitioned into sep
arate regions. We thus first attempted to merge AP clusters 
by hierarchical clustering based on the averaged features per 
cluster, to find the best alignment of the detected spatial 
domains with the annotations. However, depending on the 
complexity of the tissue section, the clustering performance 
may still be suboptimal as delicate spatial domains can be 
merged with their surrounding domains. Therefore, we uti
lized the AP generated clusters to first sparsify the spatial ad
jacency graph, and then identified connected components 
(CC) in the sparsified graph as fine-grained clusters, before fi
nally applying hierarchical clustering to merge these fine- 
grained clusters according to their averaged features to find 
the best alignment between the merged spatial domains and 
the annotations.

In the last experiment, we performed a prototype clustering 
analysis to investigate the spatial organization across tissue 
sections. We pooled spatial domains detected by the asGNN 
for all tissue sections and computed the average of the nuclei 
type proportions over the image patches within each spatial 
domain based on the nuclei segmentation results derived 
from HoVerNet. We then applied k-means to group spatial 
domains into either k¼ 5 or k¼ 10 prototype clusters accord
ing to their averaged nuclei type proportion. Furthermore, we 
used the Wilcoxon rank sum test to identify differentially 
expressed genes for each prototype cluster based on the corre
sponding spatial gene expression, and then performed gene 
ontology (GO) enrichment analysis on prototype clusters to 
explore their associated biological functions.

Finally, all the experiments were conducted on a cluster us
ing 30 CPUs and 256 GB RAM. In this environment, running 
the asGNN with S¼30 required roughly 1 h of wall time on 
the training data for each meta-epoch. Despite the best- 
performing model typically being discovered in the earlier 
epochs, we ran 60 meta-epochs in total to ensure comprehen
sive exploration.

3.3 Spatial expression prediction
To evaluate the spatial gene expression prediction perfor
mance, we initially applied asGNN, along with two state-of- 
the-art methods, ST-Net and HisToGene, for the holdout and 
external validations on the spatial transcriptomics data from 
68 and 36 breast cancer tissue sections, respectively, where 
the validation performance was measured by two metrics, 
mean squared error (MSE) and PCC. It is evident that 
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asGNN consistently achieved the best spatial gene expression 
prediction performance with the lowest MSE (0.696 and 
0.932) and the highest PCC (0.113 and 0.312) across all tis
sue sections in both holdout and external validation sets, 
compared to the other baseline methods, as shown in Table 1 
and Supplementary Table S1. ST-Net and HisToGene exhibit 
competitive prediction performance in terms of MSE (ST- 
Net: 0.712; HisToGene: 0.723) in the holdout validation, but 
demonstrate worse performance (ST-Net: 1.081; HisToGene: 
1.297) in the external validation, which suggests these meth
ods might be prone to overfitting, due to the limited training 
data in our experimental setting, and may be less generaliz
able to external data. The significance levels of improvement 
achieved by asGNN compared to baseline models are pre
sented in Supplementary Table S2; we note that a large ma
jority of the comparisons (across diverse feature sets, test 
sets, performance metrics and training objectives), have high 
statistical significance, suggesting our approach provides a 
robust improvement over baseline methods.

To better understand how the adaptive spatial graph 
learned from asGNN informs spatial gene expression predic
tion, we introduced GTN models with varying levels of edge 
removal (dropout) applied to the full spatial graph as baseline 
methods; following the baseline comparisons used in Wang 
et al. (2024). The comparison between GTN models with dif
ferent spatial adjacency graphs confirms that spatial gene ex
pression prediction benefits from local relations among the 
capturing spots. The observation that asGNN outperforms 
all basic GTN models indicates that the local relations might 
be redundant and even misleading, and that pruning the spa
tial adjacency graph with guidance from the spatial gene ex
pression prediction significantly improves the prediction 
performance. Further comparison between asGNN and 
AP-GTN suggests that hard-coded local relations are not al
ways reflected in the actual spatial gene expression, resulting 
in overfitting to training data.

Furthermore, we assessed the spatial gene expression pre
diction performance of asGNN, AP-GTN, and GTN models 
with both morphological and convolutional features in both 
validation settings to explore the predictive power of differ
ent image features. Our results revealed that the performance 
improved significantly only when convolutional features 
were coupled with the asGNN, which indicates that while 
morphological features generally show high predictive 

performance, convolutional features have the potential to 
show higher concordance with spatial gene expression by 
establishing better local relations.

To investigate the importance of modeling gene correlation 
in spatial gene expression prediction, we conducted ablation 
studies by setting λ to 0 in the loss for asGNN and GTN 
models. The asGNN clearly shows better prediction perfor
mance compared to its variant with λ¼0, which indicates 
that modeling gene correlation in GTNs improves the exploi
tation of local relations for spatial gene expres
sion prediction.

Finally, we visualized the gene expression patterns gener
ated by asGNN and the alternative methods (the baseline 
ST-Net and HisToGene) on breast tissue sections in the test 
set from the holdout validation, as shown in Fig. 2. We se
lected the top predicted gene for each section from the 
asGNN, including COL1A2, MYL9, C4B, IGLL5, and 
GAS5, which are all spatially variable genes [assessed using 
SPARK (Sun et al. 2020), P-value <.05] and related to breast 
cancer. We then compared the spatial expression patterns of 
the selected genes with their ground-truth from associated 
spatial transcriptomics data and counterparts from ST-Net 
and HisToGene. It is clear that spatial expression patterns 
predicted by asGNN are highly correlated with their ground- 
truth patterns and exhibit appropriate continuity over neigh
boring spots, which demonstrates that asGNN is capable of 
capturing local relations in the spatial expression. 
Supplementary Table S4 and Figs S7–S9 further compare the 
top predicted genes by asGNN, ST-Net and HisToGene; as 
shown, there is only minimal overlap between the top genes 
predicted by each method dataset at tissue-specific levels, 
while out of the 15 selected tissue-specific genes (across Fig. 2 
and Supplementary Figs S8 and S9), asGNN performs best 
according to PCC on nine of these (compared to two and 
four for ST-Net and HisToGene, respectively).

3.4 Spatial domain detection
One of the key advantages of asGNN is that it performs spot 
clustering implicitly in refining the spatial adjacency graph, 
where clusters obtained from either AP clustering on the la
tent meta-features or the sparsified spatial graph can be 
interpreted as spatial domains within the tissue section. To 
provide a quantitative measure of the spatial domains 
detected by asGNN, we evaluated spot clustering 

Table 1. Spatial gene expression prediction performance comparison of state-of-the-art models.

Method Spatial graph Morphological features Convolutional features

Holdout External Holdout External

MSE PCC MSE PCC MSE PCC MSE PCC

ST-Neta N/A – – – – 0.712 0.065 1.081 0.292
HisToGenea N/A – – – – 0.723 0.024 1.297 0.204
GTNa Full 0.719 0.063 1.246 0.199 0.736 0.065 1.071 0.280
AP-GTNa Pre-clustered 0.716 0.051 1.361 0.125 0.733 0.074 0.986 0.235
asGNNa Adaptive 0.701 0.069 1.213 0.210 0.705 0.083 0.990 0.288
GTN Full 0.710 0.090 1.240 0.204 0.711 0.101 0.961 0.297
AP-GTN Pre-clustered 0.713 0.073 1.302 0.193 0.721 0.098 0.973 0.242
asGNN Adaptive 0.703 0.103 1.208 0.212 0.696 0.113 0.932 0.312

a The models only optimize mean square error in their loss function.
ST-Net and HisToGene, basic GTN models with full (8-connected) spatial adjacency graphs, GTN model with sparsified spatial graph by AP clustering (AP- 
GTN), and the asGNN model, using both morphological and convolutional features from HoVerNet and DenseNet-121 as image features respectively, and 
performing both holdout and external validation on two data cohorts consisting of 68 and 32 breast cancer tissue sections separately. The basic GTN and 
AP-GTN models are as outlined in Wang et al. (2024). The best performance in terms of mean square error (MSE) and Pearson correlation coefficient (PCC) 
are underlined in each column of the table (see complete results in Supplementary Table S1).
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performance by computing the adjusted rand index (ARI) be
tween spot clusters and annotations on 8 breast cancer tissue 
sections from the external validation set. ARIs were further 
optimized by merging either AP or CC clusters based on la
tent meta-features with hierarchical clustering, as described 
above in the Experimental Design. To better understand the 
importance of latent meta-features in spatial domain detec
tion, we introduced a naive method in the comparison, which 
directly applied AP clustering to raw image features to 
generate AP and CC clusters. Note that we only focus on the 
convolutional features and their latent meta-features in this 
experiment, due to their superior performance in spatial gene 
expression prediction.

As shown in Supplementary Fig. S1, asGNN outperforms 
other baseline methods regardless of merging strategies and 
achieves the overall best ARI (median ARI¼0.423) by merg
ing CC clusters for spatial domain detection, which indicates 
fine-grained CC clusters with convolution-associated meta- 
features learned from asGNN have the potential to accurately 
delineate spatial domains. We observed that convolution- 

associated meta-features generally improve the spot cluster
ing performance compared to raw convolutional features in 
both merging strategies, and noticed a substantial improve
ment by merging CC clusters (P-value <.05), which implies 
that convolution-associated meta-features are more informa
tive in capturing location relations. Interestingly, asGNN 
shows slightly worse ARI (median ARI¼0.322) than those 
from asGNN (λ¼0) (median ARI¼ 0.363) when merging AP 
clusters, which might be attributed to delicate spatial 
domains being masked by the coarse-grained clusters 
obtained from AP clustering, possibly as a result of using 
non-optimal clustering hyperparameters.

To illustrate how the CC merging strategy and 
convolution-associated meta-features contribute to spatial 
domain detection intuitively, we further visualized the spot 
clustering results on annotated breast cancer tissue sections, 
as depicted in Fig. 3. We found that the spatial domains from 
asGNN matched well with the annotated tissue regions and 
even exhibited high agreement with fine-grained structures 
(e.g. breast gland and immune infiltrate), whereas the spatial 

Figure 2. Expression pattern visualization of the top predicted genes by asGNN on five breast cancer tissue sections. Visualization of the raw and 
predicted expression patterns from ST-Net, HisToGene, and asGNN for five spatially variable genes. Genes were selected by ranking prediction 
performance for each breast cancer tissue sections in the holdout validation set. Both mean squared error (MSE) and Pearson correlation coefficient 
(PCC) between raw and predicted expression are reported for each gene. Further visualizations of the top predicted genes by ST-Net and HisToGenes are 
shown in Supplementary Figs S8 and S9
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domains from naive methods appeared over-smoothed and 
failed to distinguish spatial domains correctly. asGNN and 
asGNN (λ¼ 0) demonstrated superior performance in spatial 
domain detection by merging AP clusters (as shown in 
Supplementary Fig. S2); asGNN could identify continuous 
spatial domains with clear boundaries and asGNN (λ¼ 0) 
could even recognize narrow structures consisting of a few 
spots (e.g. immune infiltrate). We note, however, that 
asGNN tends to produce fewer AP clusters than the actual 
number of annotated regions for most tissues, which might 
obfuscate some fine-grained structures.

3.5 Prototype clustering and enrichment analysis
To further chart the spatial organization under various tissue 
contexts, we employed k-means clustering to discover proto
types for the spatial domains across all tissue sections from 
breast cancer patients. Instead of relying on latent meta- 
features, which might be biased toward spatial expression of 
particular genes, we used nuclei type composition derived 
from nuclei segmentation in the prototype clustering. As 
depicted in Fig. 4, the spatial organization shows visual con
sistency across replicated tissue sections, implying the robust
ness of asGNN in spatial domain detection. While prototype 

clusters from different granularities of clustering exhibit high 
correspondence, the prototype clustering with k¼10 allows 
finer-grained characterization spatial organization in breast 
cancer, such as tumor regions with different subtypes (clus
ters 0, 1, and 6).

To evaluate the stability of the cluster prototypes, we mea
sured the stability score (SS) for each prototype cluster by cal
culating the bootstrapped ARIs of the clustering results after 
masking out each prototype cluster in turn. Subsequently, to 
further investigate the biological interpretation of prototype 
clusters, we conducted GO enrichment analysis on the differ
entially expressed genes from all the genes in the original spa
tial gene expression data (not only the predicted genes) for 
each prototype cluster for both k¼5 and k¼ 10 clustering 
settings, and the top enriched GO terms along with the SSs 
for each prototype cluster are present in Supplementary 
Table S3. We identified prototype clusters with SS >0.7 and 
found their enriched biological processes to be highly relevant 
to the corresponding regions in the annotated tissue sections; 
for example, clusters 1 and 6 in the k¼10 setting are 
enriched for tumor development and tumor-associated im
mune responses (de Visser and Joyce 2023), respectively, 
closely resembling the tumor core and surrounding regions in 

Figure 3. Spatial domain visualization on four breast cancer tissues. Visualization of spatial regions annotated by pathologists and spatial domains 
optimized by merging connected-component (CC) clusters from naive, asGNN (λ¼ 0) and asGNN on four breast cancer tissue sections. Adjusted rand 
index (ARI) between detected spatial domains and annotated spatial regions, along with the corresponding P-values from permutation test, were 
reported for each method across different tissues. Note that the spatial domains are labeled similarly if they were recognized as the same region in the 
annotation. Singleton clusters were excluded for better visualization
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a few tissue sections. Interestingly, we also discovered that 
several prototype clusters, which are enriched for biological 
processes related to the microenvironment, are spatially adja
cent to each other in some breast cancer tissue sections, which 
aligns well with the concept of a multilayered microenviron
ment (Laplane et al. 2018).

4 Discussion
We have introduced an asGNN architecture for spatial gene 
expression prediction, which builds on the adaptive graph re
finement framework of Wang et al. (2024). We have shown 
that our model generates state-of-the-art performance for 
predicting spatial gene expression from histological image 
data. Our method learns to adapt the spatial graph structure 
on an image-by-image basis, so that information is only 
shared between spots in coherent spatial domains, defined by 
the learned meta-features. Our model can be trained in an 
end-to-end fashion, using a smoothing-based VO approach 
(Leordeanu and Hebert 2008, Wang et al. 2024). Further, we 
have shown that the spatial domains identified by our 
method achieve a high degree of alignment with pathologist 

annotations, and can be readily interpreted biologically 
through our prototype analysis as corresponding to layered 
tumor and tumor microenvironment regions.

As future work, we intend to investigate both the biological 
and clinical potential of our method. The ready availability 
of large quantities of histology images [for instance, in TCGA 
(Weinstein et al. 2013)] suggests that we may be able to im
prove the predictive performance or fine-tune our model to 
different tumors using a pseudo-labeling (semi-supervised) 
approach, by augmenting our training set with instances 
where only image or image and bulk expression data are 
available. Further, the ability of our approach to generate pu
tative spatial domains, suggests that we may be able to iden
tify de novo tumor-type specific tumor or microenvironment 
domains through such analysis. We further plan to test the 
potential of our approach to handle spatial expression data 
with higher spatial resolution (for instance, subcellular), and 
explore the potential for using cluster identity to influence 
graph refinement (to model inter-cluster dependencies). 
Finally, we intend to investigate the potential of our method 
to identify spatial biomarkers for patient stratification for 
clinical diagnostics and personalized treatment, where the 

Figure 4. Prototype cluster visualization on 15 breast cancer tissue sections. Discovering prototype clusters across different breast cancer tissue 
sections by applying k-means to nuclei type composition of their AP clusters from the asGNN method (nuclei type composition determined using the 
nuclei segmentation results from HoVerNet). (a) Visualization of prototype clusters (k¼ 5). (b) Visualization of prototype clusters (k¼ 10). Further 
examples are shown in Supplementary Figs S5 and S6
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spatial expression patterns predicted by our model can be 
used both as biomarkers themselves, and, in a semi- 
supervised setting, to help learn novel biomarkers. Code 
available at: https://github.com/song0309/asGNN/.

Supplementary data
Supplementary data are available at Bioinformatics online.
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