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Abstract

Motivation: Spatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue archi-
tecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice.
Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies.
Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative
approach to decoding tissue complexity.

Results: Here, we present a graph neural network based framework to predict the spatial expression of highly expressed genes from tissue his-
tological images. Extensive experiments on two separate breast cancer data cohorts demonstrate that our method improves the prediction per-
formance compared to the state-of-the-art, and that our model can be used to better delineate spatial domains of biological interest.

Availability and implementation: https://github.com/song0309/asGNN/

1 Introduction

Dissecting the cellular and spatial heterogeneity of tissues is
critical to characterizing cellular composition and organiza-
tion, and ultimately their contribution to phenotype varia-
tion. Unlike traditional bulk and single-cell transcriptomics,
spatial transcriptomics technologies enable spatially re-
solved gene expression profiling within intact tissues by us-
ing imaging or sequencing methods. Unlike imaging
methods, which required targeted probes for a predeter-
mined set of genes, sequencing-based methods perform
RNA sequencing of the whole transcriptome with a posi-
tionally barcoded array of spots aligned to the histological
image of the tissue (Asp et al. 2020). However, while
sequencing-based spatial transcriptomics technologies have
been widely used in biomedical research, their high cost still
hinders their application in clinical studies. In contrast, his-
tological images, such as hematoxylin and eosin (H&E) or
immunofluorescence (IF) staining images, which are gener-
ated by most spatial transcriptomics technologies with ISC
method, can be acquired cost-efficiently at high quality.
However, while these histological images are commonly
used to compensate for spatial gene expression in down-
stream analyses (Dries et al. 2021), the dependencies be-
tween spatial gene expression profiles and histological
images have only been explored to a limited extent; using
such dependencies may alleviate the reliance on spatial

transcriptomics by estimating spatial gene expression di-
rectly from tissue morphology.

As spatial transcriptomics data continue to accumulate, an
increasing number of computational methods (He et al.
2020, Dawood et al. 2021, Monjo et al. 2022) aim to estab-
lish a connection between spatial gene expression profiles
and histological images based on existing spatial transcrip-
tomics datasets. These approaches predict the gene expres-
sion of each capturing spot with the corresponding image
patch from H&E staining image. However, all of these meth-
ods fail to model spatial proximity in gene expression, which
is one of the essential properties in real spatial transcriptom-
ics data. A few attempts have been made to circumvent this
issue, which either apply Transformer (Pang et al. 2021,
Yang ef al. 2023) or GNN (Zeng et al. 2022, Mejia et al.
2023) approaches to incorporate the relations among captur-
ing spots when predicting spatial gene expression.

Despite the fact that transformer-based methods naturally
model global relations among image patches and capturing
spots by exploiting the self-attention mechanism, some meth-
ods attempt to further refine these relations by either incorpo-
rating positional information [e.g. HisToGene (Pang et al.
2021)] or imposing locality in the image embedding space
[e.g. EGN (Yang et al. 2023)]; they therefore lack the capabil-
ity to distinguish compartments showing similar morphologi-
cal features but distinct gene expressions in the tissues,
such as tumors and their microenvironment. In addition,
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transformer-based methods may be prone to overfitting issue
due to limited training data in the existing spatial transcrip-
tomics datasets. Conversely, while GNN-based methods em-
phasize local relations among image patches and capturing
spots in the graph, they may not retain global relations
between spatially distant regions showing both similar mor-
phological features and gene expression, particularly in the
non-well-structured tissues, such as lymph nodes and tumors.
Some methods allow both local and global relations to be
encoded by considering both image and positional embed-
dings in the graph construction [e.g. SEPAL (Mejia et al.
2023)], but these relations, which are hard-coded in the
graph prior to model training, might not be present in
gene expression.

To overcome the aforementioned issues, we propose an
adaptive spatial Graph Neural Network (asGNN) for spatial
gene expression prediction, which builds on the smoothing-
based GNN (SBGNN) framework of (Wang et al. 2024). The
SBGNN framework was developed to predict liquid-liquid
phase separation from 3D molecular graphs, by using graph
structure to adaptively refine molecular graphs to remove
task irrelevant edges to help perform graph classification.
Similarly, we adaptively remove edges in our spatial graph to
help accurately predict gene expression. Following Wang
et al. (2024), during training we apply smoothing-based vari-
ational optimization (VO) (Leordeanu and Hebert 2008)
to search for a graph that captures both local and global
relations important to a given task. In our case, these are
relations among the capturing spots for a given image, and
we use Graph Transformer Networks (GTN) (Shi et al. 2020)
as the backbone to better align these relations with actual
proximity in gene expression among capturing spots. Our
experiments demonstrate that the spatial graphs learned
from asGNN not only improve the spatial gene expression
prediction compared to the state-of-the-art methods but also
help to detect biologically interpretable spatial domains.
Furthermore, the prototype clustering analysis on breast
cancer tissues suggests that asGNN can be used to study the
homogeneity and heterogeneity of spatial organization across
tissue sections from patients in different conditions. The pre-
dictions from our model thus have the potential to be trans-
lated into clinical diagnostics tools to inform personalized
treatment decisions.

2 Materials and methods

The overall architecture of our model is summarized in
Fig. 1. Below, we provide full details of the architecture and
our end-to-end optimization algorithm, which build on the
smoothing-based GNN framework of Wang et al. (2024).

2.1 Adaptive spatial GNN architecture

We assume we have input data of the form X =
{Gi=(X;,E))li=1,...,N}, where G; is the image graph for
the ith data point (a whole slide image), with X; the matrix of
node features for data point 7, and E; the edge set for the
spatial connectivity of graph G; (in our images, the spots are
positioned in a regular grid, and we use an 8-connected
neighborhood). X; has dimensions N; X Dy, where N; is the
number of nodes (spots) in the image graph G;, and Dy is
the dimensionality of the image features. Our task is then
to predict the output spatial gene expression data,
Y={Yj]i=1,...,N}, where Y; is the expression matrix for
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image i, whose dimensionality is N; X Dy, where Dy is the
number of predicted genes.

2.1.1 Adaptive graph refinement

We adapt the graph refinement procedure introduced
in Wang et al. (2024). During training, we learn to predict a
matrix of latent meta-features, Z; for each image, with
dimensionality N;x Dz, where Dj is the meta-feature
dimensionality. The latent meta-features in our model are
learned as a linear transformation of the image features, i.e.
Z; = X;Wy. We then define a distance function on the nodes
of graph i:

d(nlvnz) :(Zd](an,Zn2)+ﬁd2(7l17n2), (1)

where z, are the meta-features associated with node # (i.e.
the nth row of Z,), d; is the Euclidean distance, d;(n1,1,) is
the shortest path distance between nodes 7, and 7, in G;, and
{a,p} are hyperparameters. Our distance function here is
adapted from Wang et al. (2024), where we exclude their fi-
nal “degree consistency” term, due to the regular topology of
our initial spatial graph. We use the distances in Eq. (1) to de-
fine a distance matrix D; between each pair of nodes in graph
i, and use an arbitrary clustering algorithm to map this to a
vector C; of cluster indices; here C; € {1,... 7Ki}N", where K;
is the maximum cluster index for image 4, and C;(n) = k indi-
cates that node # belongs to cluster k. The clusters {1,...,K;}
represent potentially meaningful spatial domains in image i
(e.g. tumor microenvironment regions). We choose Affinity
Propagation (AP) as our clustering algorithm (Frey and
Dueck 2007), hence, C;=AP(D;), where AP(.) denotes
the application of the AP algorithm. Finally, using the
learned cluster vectors, we form the refined spatial graphs
for each training instance, G,={X; E}}, where E,=
{(n,m) € E|C, = C,,}, hence restricting the graph so that in-
formation is shared via message passing only within spatial
domains (clusters).

2.1.2 Predicting spatial gene expression

We use the refined graphs to predict the spatial gene expres-
sion matrices as output; we thus adapt the framework of
Wang et al. (2024) (designed for graph classification tasks) to
perform multivariate graph regression. Our network outputs
the predicted matrix by performing message passing on the
refined graphs, G!. The network is parameterized by weight
matrices W1, where L is the number of layers in the GNN,
with W, having dimensionality D,_; X D;, such that D; is
the number of hidden units per node in layer /, and Dy = Dy,
D; = Dy We treat {L,D;y_ -1} as additional hyperpara-
meters. The message-passing updates can be written as:

-1
X, W,

{m‘(,%:)EE,} \/deg(n)deg(m) ’

(2)

I _
X, =0

for levels I < L, where 6(x) = max(0,x) is the RELU function,
and deg(n) is the degree of node n. For level L, a final linear
is used, which is applied to each node independently;
hence: xt =xL-1w,.

For our training loss, we use the function:
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Figure 1. Adaptive spatial graph neural network (asGNN) architecture. We summarize the key components of our asGNN architecture. asGNN begins by
extracting image features from image patches over capturing spots arranged in an 8-connected spatial graph with an encoder. Adaptive graph refinement
is then applied, as introduced in Wang et al. (2024); for each meta-epoch, asGNN samples N, sets of parameters for a linear meta-feature transformation,
that projects the image features to a set of meta-features for each spot, and graph refinement is performed by applying Affinity Propagation (AP)
clustering to the meta-features to sparsify the input graph. We use a GTN as the backbone model in asGNN, and train the ensemble of GTNs with image
features on the sparsified spatial graphs to predict the gene expression separately. Lastly, we average the training scores over all the samples using the
score function shown, which combines the mean squared error (MSE) and per-gene Pearson correlation coefficient (PCC) of the predicted gene
expression values, and apply variational updates to parameters of the linear meta-feature transformation layer

L(X,V\Wo..r)=>,Li(Gi, YiiWo..1)
Li(Gy, YilWo.1) = MSE(XE, Y,) =2 %,_,_p, PCC(xL, y,).
(3)

Here, MSE(X, Y) is the mean squared error between matri-
ces X and Y (summed across all elements), PCC(x,y) is the
Pearson correlation coefficient (PCC) between vectors x and
y (each being a vector of expression values across the nodes
of the final layer), and 1 is a tradeoff parameter (which we set
to 0 when considering the MSE loss only).

2.2 End-to-end training

Since, in our architecture, the projection W determines the
meta-feature matrix Z, which in turn determines the graph
structure of the adapted (refined) spatial graph G’ used for
message passing, we have a complex interaction between a
discrete optimization over the space of refined spatial graphs
(implicitly parameterized by Wy) and the continuous predic-
tions of the network (determined by Wi ). The underlying
objective (Eq. (3)) is therefore discontinuous at points where
changing W, changes the refined graphs; however, if W, is
held constant, the objective is continuous over the remaining
parameters, and can be handled by gradient descent.

Following Wang et al. (2024), we thus use a modified form
of VO (Leordeanu and Hebert 2008), which allows us to con-
vert an objective with discontinuities into a continuous objec-
tive. This is done by introducing a variational distribution
over the parameters Wy, which we take to be a Gaussian with
a symmetric covariance matrix. At a given meta-epoch ¢, this
variational distribution has the form:

vec(W() ~ N (|py, 0:1), (4)
where vec(Wy) is the vectorization of matrix Wy, u, is a
vector of mean values, o, is a scalar, and I is the identity
matrix. At meta-epoch ¢, we draw S samples from Eq. (4),
Wi,..., W3, and for each we optimize the remaining parame-
ters using gradient descent, to find W5 ; for s=1,...,S
(where we reserve a portion of the training data as a valida-
tion set to perform early stopping). Hence, we can calculate
the sample training loss at meta-epoch ¢:
Ly = L(X, YW ). (5)
We then apply the smoothing-based optimization (SMO)
updates from Leordeanu and Hebert (2008), to update u
and o:

> Fsvec(Wp)
Hip1 = B SN
3 (6)
_ ZSFS|VCC(\X/6)_M|2
Or+1 =

DxDz > . F. '

where F; =max(—L;+¢,0) is the score for sample s, with
the offset ¢ >0 set to a positive constant (we treat ¢ as an ad-
ditional hyperparameter, which is set empirically to ensure
that —L;+¢>0 for observed values of L,). The updates in
Eq. (6) can be shown to improve the value of F (i.e. the in-
verse loss) in expectation [as shown in Wang et al. (2024)
and Leordeanu and Hebert (2008)); hence:
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where Q; = N(.|u,,6;) is the variational distribution over W,
at meta-epoch #, and E[] is the expectation operator.

3. Experiments
3.1 Data preparation

In this work, we focus on spatial transcriptomics data gener-
ated by ST using the ST1K protocol (Shah et al. 2016), which
measures the spatial expression of 26 949 genes by placing an
array of 1007 capturing spots arranged in a 33 X 35 grid onto
the tissue section and provides a tissue image stained with
H&E. ST data were collected from two cohorts for breast
cancer studies: one cohort (He et al. 2020) contains 68 tissue
sections from 23 breast cancer patients with five different
molecular subtypes, and the other cohort (Andersson et al.
2021) consists of 36 tissue sections from eight HER2-positive
breast cancer patients. In the latter, each patient has one tis-
sue section that was manually annotated with up to five tis-
sue types based on the morphological features of the
associated H&E staining image. We extracted image patches
of 224 x 224 pixels centered on the corresponding capturing
spots for each H&E staining image, where 224 x 224 pixels
approximately cover each spot and is the standard input size
for convolutional neural networks (CNNs) to derive a conve-
nient feature set. For the spatial gene expression data, we fol-
lowed the experimental setting in ST-Net (He et al. 2020),
and first preprocessed the unique molecular identifier (UMI)
counts in the raw data by normalizing them to sum to one af-
ter adding a pseudo count one for each capturing spot, and
then transformed the normalized counts onto a log scale.
Many of the genes are either lowly or sparsely expressed, and
thus may not be essential for latent representation learning.
Therefore, we followed the ST-Net setting (He ef al. 2020)
and filtered the top 250 genes with the highest gene expres-
sion across all tissue sections from two data cohorts for
model training and prediction.

3.2 Experimental design

For spatial gene expression prediction, we benchmarked
asGNN against four main baseline methods, including ST-
Net (He et al. 2020), HisToGene (Pang et al. 2021), a basic
(non-adaptive) GTN, and AP-Clustering + GTN (AP-GTN).
The basic GTN was coupled with different spatial adjacency
graphs by randomly dropping edges among capturing spots
at ratios ranging from 0% (full) to 100% (empty), and the
AP-GTN was combined with a spatial graph determined by
AP clustering with similar distance function as Eq. (1) but de-
fined on the untransformed image features. Note that other
methods we mentioned in the Introduction were excluded
from the comparison since either their codes were not
publicly available at the time of investigation or they showed
unreasonably poor performance on the data in our experi-
mental setting. We used two different image features, includ-
ing morphological and convolutional features, with all the
methods tested, except for ST-Net and HisToGene. The
morphological features were calculated as a 142-dimensional
vector concatenating morphological statistics and nuclei type
proportion, derived from the nuclei segmentation produced
by HoVerNet (Cosatto et al. 2013) on each image patch
around a capturing spot. The convolutional features were cal-
culated as a 1024-dimensional vector extracted from pre-
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trained DenseNet-121 on ImageNet for each image patch
around a capturing spot. Lastly, we assessed the performance
of spatial gene expression prediction for all compared meth-
ods with both holdout and external validation sets. In the
holdout validation, we stratified the 68 tissue sections from
the first data cohort based on their molecular subtypes into
training, validation, and test sets, consisting of 38, 15, and 15
sections, respectively, where the validation set was used to
prevent overfitting in model training and select the best
hyperparameters while the test set was used to evaluate the
performance of the methods. In the external validation set,
we employed 24 tissue sections from the second data cohort
to evaluate the generalization of methods.

For spatial domain detection, we applied AP clustering to
raw convolutional features and convolution-associated meta-
features acquired from asGNN (1=0) and asGNN for spot
clustering separately. Without the need to specify the number
of clusters, the performance of AP clustering may be de-
graded when an intact spatial domain is partitioned into sep-
arate regions. We thus first attempted to merge AP clusters
by hierarchical clustering based on the averaged features per
cluster, to find the best alignment of the detected spatial
domains with the annotations. However, depending on the
complexity of the tissue section, the clustering performance
may still be suboptimal as delicate spatial domains can be
merged with their surrounding domains. Therefore, we uti-
lized the AP generated clusters to first sparsify the spatial ad-
jacency graph, and then identified connected components
(CC) in the sparsified graph as fine-grained clusters, before fi-
nally applying hierarchical clustering to merge these fine-
grained clusters according to their averaged features to find
the best alignment between the merged spatial domains and
the annotations.

In the last experiment, we performed a prototype clustering
analysis to investigate the spatial organization across tissue
sections. We pooled spatial domains detected by the asGNN
for all tissue sections and computed the average of the nuclei
type proportions over the image patches within each spatial
domain based on the nuclei segmentation results derived
from HoVerNet. We then applied k-means to group spatial
domains into either k = 5 or k=10 prototype clusters accord-
ing to their averaged nuclei type proportion. Furthermore, we
used the Wilcoxon rank sum test to identify differentially
expressed genes for each prototype cluster based on the corre-
sponding spatial gene expression, and then performed gene
ontology (GO) enrichment analysis on prototype clusters to
explore their associated biological functions.

Finally, all the experiments were conducted on a cluster us-
ing 30 CPUs and 256 GB RAM. In this environment, running
the asGNN with S =30 required roughly 1h of wall time on
the training data for each meta-epoch. Despite the best-
performing model typically being discovered in the earlier
epochs, we ran 60 meta-epochs in total to ensure comprehen-
sive exploration.

3.3 Spatial expression prediction

To evaluate the spatial gene expression prediction perfor-
mance, we initially applied asGNN, along with two state-of-
the-art methods, ST-Net and HisToGene, for the holdout and
external validations on the spatial transcriptomics data from
68 and 36 breast cancer tissue sections, respectively, where
the validation performance was measured by two metrics,
mean squared error (MSE) and PCC. It is evident that
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Table 1. Spatial gene expression prediction performance comparison of state-of-the-art models.
Method Spatial graph Morphological features Convolutional features

Holdout External Holdout External

MSE PCC MSE PCC MSE PCC MSE PCC
ST-Net? N/A - - - - 0.712 0.065 1.081 0.292
HisToGene® N/A - - - - 0.723 0.024 1.297 0.204
GTN? Full 0.719 0.063 1.246 0.199 0.736 0.065 1.071 0.280
AP-GTN? Pre-clustered 0.716 0.051 1.361 0.125 0.733 0.074 0.986 0.235
asGNN* Adaptive 0.701 0.069 1.213 0.210 0.705 0.083 0.990 0.288
GTN Full 0.710 0.090 1.240 0.204 0.711 0.101 0.961 0.297
AP-GTN Pre-clustered 0.713 0.073 1.302 0.193 0.721 0.098 0.973 0.242
asGNN Adaptive 0.703 0.103 1.208 0.212 0.696 0.113 0.932 0.312

* The models only optimize mean square error in their loss function.

ST-Net and HisToGene, basic GTN models with full (8-connected) spatial adjacency graphs, GTN model with sparsified spatial graph by AP clustering (AP-
GTN), and the asGNN model, using both morphological and convolutional features from HoVerNet and DenseNet-121 as image features respectively, and
performing both holdout and external validation on two data cohorts consisting of 68 and 32 breast cancer tissue sections separately. The basic GTN and
AP-GTN models are as outlined in Wang et al. (2024). The best performance in terms of mean square error (MSE) and Pearson correlation coefficient (PCC)
are underlined in each column of the table (see complete results in Supplementary Table S1).

asGNN consistently achieved the best spatial gene expression
prediction performance with the lowest MSE (0.696 and
0.932) and the highest PCC (0.113 and 0.312) across all tis-
sue sections in both holdout and external validation sets,
compared to the other baseline methods, as shown in Table 1
and Supplementary Table S1. ST-Net and HisToGene exhibit
competitive prediction performance in terms of MSE (ST-
Net: 0.712; HisToGene: 0.723) in the holdout validation, but
demonstrate worse performance (ST-Net: 1.081; HisToGene:
1.297) in the external validation, which suggests these meth-
ods might be prone to overfitting, due to the limited training
data in our experimental setting, and may be less generaliz-
able to external data. The significance levels of improvement
achieved by asGNN compared to baseline models are pre-
sented in Supplementary Table S2; we note that a large ma-
jority of the comparisons (across diverse feature sets, test
sets, performance metrics and training objectives), have high
statistical significance, suggesting our approach provides a
robust improvement over baseline methods.

To better understand how the adaptive spatial graph
learned from asGNN informs spatial gene expression predic-
tion, we introduced GTN models with varying levels of edge
removal (dropout) applied to the full spatial graph as baseline
methods; following the baseline comparisons used in Wang
et al. (2024). The comparison between GTN models with dif-
ferent spatial adjacency graphs confirms that spatial gene ex-
pression prediction benefits from local relations among the
capturing spots. The observation that asGNN outperforms
all basic GTN models indicates that the local relations might
be redundant and even misleading, and that pruning the spa-
tial adjacency graph with guidance from the spatial gene ex-
pression prediction significantly improves the prediction
performance. Further comparison between asGNN and
AP-GTN suggests that hard-coded local relations are not al-
ways reflected in the actual spatial gene expression, resulting
in overfitting to training data.

Furthermore, we assessed the spatial gene expression pre-
diction performance of asGNN, AP-GTN, and GTN models
with both morphological and convolutional features in both
validation settings to explore the predictive power of differ-
ent image features. Our results revealed that the performance
improved significantly only when convolutional features
were coupled with the asGNN, which indicates that while
morphological features generally show high predictive

performance, convolutional features have the potential to
show higher concordance with spatial gene expression by
establishing better local relations.

To investigate the importance of modeling gene correlation
in spatial gene expression prediction, we conducted ablation
studies by setting 4 to 0 in the loss for asGNN and GTN
models. The asGNN clearly shows better prediction perfor-
mance compared to its variant with 4=0, which indicates
that modeling gene correlation in GTNs improves the exploi-
tation of local relations for spatial gene expres-
sion prediction.

Finally, we visualized the gene expression patterns gener-
ated by asGNN and the alternative methods (the baseline
ST-Net and HisToGene) on breast tissue sections in the test
set from the holdout validation, as shown in Fig. 2. We se-
lected the top predicted gene for each section from the
asGNN, including COL1A2, MYL9, C4B, IGLLS5, and
GASS, which are all spatially variable genes [assessed using
SPARK (Sun et al. 2020), P-value <.05] and related to breast
cancer. We then compared the spatial expression patterns of
the selected genes with their ground-truth from associated
spatial transcriptomics data and counterparts from ST-Net
and HisToGene. It is clear that spatial expression patterns
predicted by asGNN are highly correlated with their ground-
truth patterns and exhibit appropriate continuity over neigh-
boring spots, which demonstrates that asGNN is capable of
capturing local relations in the spatial expression.
Supplementary Table S4 and Figs S7-S9 further compare the
top predicted genes by asGNN, ST-Net and HisToGene; as
shown, there is only minimal overlap between the top genes
predicted by each method dataset at tissue-specific levels,
while out of the 15 selected tissue-specific genes (across Fig. 2
and Supplementary Figs S8 and S9), asGNN performs best
according to PCC on nine of these (compared to two and
four for ST-Net and HisToGene, respectively).

3.4 Spatial domain detection

One of the key advantages of asGNN is that it performs spot
clustering implicitly in refining the spatial adjacency graph,
where clusters obtained from either AP clustering on the la-
tent meta-features or the sparsified spatial graph can be
interpreted as spatial domains within the tissue section. To
provide a quantitative measure of the spatial domains
detected by asGNN, we evaluated spot clustering
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Figure 2. Expression pattern visualization of the top predicted genes by asGNN on five breast cancer tissue sections. Visualization of the raw and
predicted expression patterns from ST-Net, HisToGene, and asGNN for five spatially variable genes. Genes were selected by ranking prediction
performance for each breast cancer tissue sections in the holdout validation set. Both mean squared error (MSE) and Pearson correlation coefficient
(PCC) between raw and predicted expression are reported for each gene. Further visualizations of the top predicted genes by ST-Net and HisToGenes are

shown in Supplementary Figs S8 and S9

performance by computing the adjusted rand index (ARI) be-
tween spot clusters and annotations on 8 breast cancer tissue
sections from the external validation set. ARIs were further
optimized by merging either AP or CC clusters based on la-
tent meta-features with hierarchical clustering, as described
above in the Experimental Design. To better understand the
importance of latent meta-features in spatial domain detec-
tion, we introduced a naive method in the comparison, which
directly applied AP clustering to raw image features to
generate AP and CC clusters. Note that we only focus on the
convolutional features and their latent meta-features in this
experiment, due to their superior performance in spatial gene
expression prediction.

As shown in Supplementary Fig. S1, asGNN outperforms
other baseline methods regardless of merging strategies and
achieves the overall best ARI (median ARI=0.423) by merg-
ing CC clusters for spatial domain detection, which indicates
fine-grained CC clusters with convolution-associated meta-
features learned from asGNN have the potential to accurately
delineate spatial domains. We observed that convolution-

associated meta-features generally improve the spot cluster-
ing performance compared to raw convolutional features in
both merging strategies, and noticed a substantial improve-
ment by merging CC clusters (P-value <.05), which implies
that convolution-associated meta-features are more informa-
tive in capturing location relations. Interestingly, asGNN
shows slightly worse ARI (median ARI=0.322) than those
from asGNN (1 =0) (median ARI=0.363) when merging AP
clusters, which might be attributed to delicate spatial
domains being masked by the coarse-grained clusters
obtained from AP clustering, possibly as a result of using
non-optimal clustering hyperparameters.

To illustrate how the CC merging strategy and
convolution-associated meta-features contribute to spatial
domain detection intuitively, we further visualized the spot
clustering results on annotated breast cancer tissue sections,
as depicted in Fig. 3. We found that the spatial domains from
asGNN matched well with the annotated tissue regions and
even exhibited high agreement with fine-grained structures
(e.g. breast gland and immune infiltrate), whereas the spatial
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Figure 3. Spatial domain visualization on four breast cancer tissues. Visualization of spatial regions annotated by pathologists and spatial domains
optimized by merging connected-component (CC) clusters from naive, asGNN (1= 0) and asGNN on four breast cancer tissue sections. Adjusted rand
index (ARI) between detected spatial domains and annotated spatial regions, along with the corresponding P-values from permutation test, were
reported for each method across different tissues. Note that the spatial domains are labeled similarly if they were recognized as the same region in the

annotation. Singleton clusters were excluded for better visualization

domains from naive methods appeared over-smoothed and
failed to distinguish spatial domains correctly. asGNN and
asGNN (4= 0) demonstrated superior performance in spatial
domain detection by merging AP clusters (as shown in
Supplementary Fig. S2); asGNN could identify continuous
spatial domains with clear boundaries and asGNN (1=0)
could even recognize narrow structures consisting of a few
spots (e.g. immune infiltrate). We note, however, that
asGNN tends to produce fewer AP clusters than the actual
number of annotated regions for most tissues, which might
obfuscate some fine-grained structures.

3.5 Prototype clustering and enrichment analysis

To further chart the spatial organization under various tissue
contexts, we employed k-means clustering to discover proto-
types for the spatial domains across all tissue sections from
breast cancer patients. Instead of relying on latent meta-
features, which might be biased toward spatial expression of
particular genes, we used nuclei type composition derived
from nuclei segmentation in the prototype clustering. As
depicted in Fig. 4, the spatial organization shows visual con-
sistency across replicated tissue sections, implying the robust-
ness of asGNN in spatial domain detection. While prototype

clusters from different granularities of clustering exhibit high
correspondence, the prototype clustering with k=10 allows
finer-grained characterization spatial organization in breast
cancer, such as tumor regions with different subtypes (clus-
ters 0, 1, and 6).

To evaluate the stability of the cluster prototypes, we mea-
sured the stability score (SS) for each prototype cluster by cal-
culating the bootstrapped ARIs of the clustering results after
masking out each prototype cluster in turn. Subsequently, to
further investigate the biological interpretation of prototype
clusters, we conducted GO enrichment analysis on the differ-
entially expressed genes from all the genes in the original spa-
tial gene expression data (not only the predicted genes) for
each prototype cluster for both k=35 and k=10 clustering
settings, and the top enriched GO terms along with the SSs
for each prototype cluster are present in Supplementary
Table S3. We identified prototype clusters with SS >0.7 and
found their enriched biological processes to be highly relevant
to the corresponding regions in the annotated tissue sections;
for example, clusters 1 and 6 in the k=10 setting are
enriched for tumor development and tumor-associated im-
mune responses (de Visser and Joyce 2023), respectively,
closely resembling the tumor core and surrounding regions in
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Figure 4. Prototype cluster visualization on 15 breast cancer tissue sections. Discovering prototype clusters across different breast cancer tissue
sections by applying k-means to nuclei type composition of their AP clusters from the asGNN method (nuclei type composition determined using the
nuclei segmentation results from HoVerNet). (a) Visualization of prototype clusters (k=5). (b) Visualization of prototype clusters (k= 10). Further

examples are shown in Supplementary Figs S5 and S6

a few tissue sections. Interestingly, we also discovered that
several prototype clusters, which are enriched for biological
processes related to the microenvironment, are spatially adja-
cent to each other in some breast cancer tissue sections, which
aligns well with the concept of a multilayered microenviron-
ment (Laplane ez al. 2018).

4 Discussion

We have introduced an asGNN architecture for spatial gene
expression prediction, which builds on the adaptive graph re-
finement framework of Wang et al. (2024). We have shown
that our model generates state-of-the-art performance for
predicting spatial gene expression from histological image
data. Our method learns to adapt the spatial graph structure
on an image-by-image basis, so that information is only
shared between spots in coherent spatial domains, defined by
the learned meta-features. Our model can be trained in an
end-to-end fashion, using a smoothing-based VO approach
(Leordeanu and Hebert 2008, Wang et al. 2024). Further, we
have shown that the spatial domains identified by our
method achieve a high degree of alignment with pathologist

annotations, and can be readily interpreted biologically
through our prototype analysis as corresponding to layered
tumor and tumor microenvironment regions.

As future work, we intend to investigate both the biological
and clinical potential of our method. The ready availability
of large quantities of histology images [for instance, in TCGA
(Weinstein ef al. 2013)] suggests that we may be able to im-
prove the predictive performance or fine-tune our model to
different tumors using a pseudo-labeling (semi-supervised)
approach, by augmenting our training set with instances
where only image or image and bulk expression data are
available. Further, the ability of our approach to generate pu-
tative spatial domains, suggests that we may be able to iden-
tify de novo tumor-type specific tumor or microenvironment
domains through such analysis. We further plan to test the
potential of our approach to handle spatial expression data
with higher spatial resolution (for instance, subcellular), and
explore the potential for using cluster identity to influence
graph refinement (to model inter-cluster dependencies).
Finally, we intend to investigate the potential of our method
to identify spatial biomarkers for patient stratification for
clinical diagnostics and personalized treatment, where the
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spatial expression patterns predicted by our model can be
used both as biomarkers themselves, and, in a semi-
supervised setting, to help learn novel biomarkers. Code
available at: https://github.com/song0309/asGNN/.

Supplementary data

Supplementary data are available at Bioinformatics online.
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