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Abstract
Spatial transcripome (ST) profiling can reveal cells’ structural organizations and functional roles in tissues. However, deciphering the spatial 
context of gene expressions in ST data is a challenge—the high-order structure hiding in whole transcriptome space over 2D/3D spatial 
coordinates requires modeling and detection of interpretable high-order elements and components for further functional analysis and interpreta
tion. This paper presents a new method GraphTucker—graph-regularized Tucker tensor decomposition for learning high-order factorization in ST 
data. GraphTucker is based on a nonnegative Tucker decomposition algorithm regularized by a high-order graph that captures spatial relation 
among spots and functional relation among genes. In the experiments on several Visium and Stereo-seq datasets, the novelty and advantage of 
modeling multiway multilinear relationships among the components in Tucker decomposition are demonstrated as opposed to the Canonical 
Polyadic Decomposition and conventional matrix factorization models by evaluation of detecting spatial components of gene modules, cluster
ing spatial coefficients for tissue segmentation and imputing complete spatial transcriptomes. The results of visualization show strong evidence 
that GraphTucker detect more interpretable spatial components in the context of the spatial domains in the tissues.
Availability and implementation: https://github.com/kuanglab/GraphTucker.

1 Introduction
In high-throughput spatial transcriptomics (ST) RNA se
quencing, spatial gene expressions are profiled from a contig
uous population of cells from a tissue. Many ST technologies 
such as those based on in situ capturing (ISC) allow 
transcriptome-wide capturing, making it useful for analyzing 
spatial gene expression patterns with a high coverage of the 
whole transcriptome (Ståhl et al. 2016; Asp et al. 2020). One 
major complication to ISC-based technologies is that many 
RNA molecules are failed to be captured due to limitations in 
the capturing technology, resulting in much sparser gene 
expressions than what is actually present in the cells. 
Additionally, identifying spatial patterns can be difficult due 
to the high dimensionality and high-order organization of the 
data with complex relations among genes in 2D/3D spatial 
coordinates. Methods for deciphering these high-order struc
tures and complex relations are, therefore, important for per
forming functional analyses of ST data.

Linear matrix factorization models have been successfully 
shown to offer thorough functional interpretation of ST data 
(Bergenstråhle et al. 2020). Nonnegative spatial factorization 
(NSF) is a recently developed probabilistic spatial-aware non
negative matrix factorization (NMF) model that has been 
demonstrated to identify important spatial components 
across ST datasets (Townes and Engelhardt 2024). NSF and 
NMF-related models are limited however in their usage of 
matrix representation of the data, as they collapse the spatial 
components into a single joint-dimension without capturing 
higher-order relationships.

Tensor decomposition models do not suffer from this issue 
as they allow for separate representations of spatial coordi
nates and genes for capturing higher-order structures. FIST is 

one such tensor model that finds a linear tensor decomposition 
of a ST data tensor graph-regularized by a protein-protein in
teraction network and spatial graphs along x and y dimensions 
(Li et al. 2021). One drawback of FIST is its use of the canoni
cal polyadic decomposition (CPD) which restricts component 
interactions across the modes to be a one-to-one match. This 
restriction not only over-simplifies the high-order structure 
with a strong assumption across the modes but also signifi
cantly reduces the interpretability of the detected components, 
such that the interpretations of the CPD model learned on ST 
data rely on the imputation of the whole tensor for other anal
yses (Li et al. 2021; Song et al. 2023).

In this work, we present GraphTucker, a graph-regularized 
Tucker decomposition model which offers a novel approach 
for higher-order interpretation of ST data allowing multiway 
relations among the components across the spatial modes 
and the gene mode. As outlined in comparison with other fac
torization models in Fig. 1, GraphTucker finds a Tucker ten
sor decomposition with a nonnegative factorization 
algorithm which simultaneously reconstructs the tensor and 
exploits relationships among the spatial coordinates and 
genes. The component matrices and the core tensor in the 
Tucker decomposition can be aggregated to derive interpret
able spatial components that capture important higher-order 
spatial gene expression activity maps as well as reconstruct
ing the ST data. In the experiments, we demonstrate 
GraphTucker is an effective and scalable method for applica
tion to 10x Genomics Visium data and high-resolution 
Stereo-seq data.

Note that deep-learning models for resolving spatial tran
scriptomes have been growing in popularity, with methods 
such as STAGATE, Tangram, ST-Net, Hist2ST, stPlus, and 
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GNTD being used with varying types of neural-network 
models (He et al. 2020; Biancalani et al. 2021; Shengquan 
et al. 2021; Dong and Zhang 2022; Zeng et al. 2022; Song 
et al. 2023). Although these methods have been shown to 
perform well in their respective contexts, none of the deep 
neural-network models provide interpretation of the struc
tures in the original ST data such as spatial components or 
spatial context for gene modules.

2 Methods
In this section, we first introduce the GraphTucker model 
and its nonnegative factorization algorithm, and then, the 
derivation of the spatial components from the Tucker factori
zation. Note that while the formulations are only shown for 
three-way tensors for conciseness, they can be directly gener
alized to higher orders.

2.1 Preliminaries
GraphTucker consists of two main components, a Tucker 
tensor decomposition (Fig. 1A) and Cartesian product graph 
regularization (Fig. 1B), which are reviewed below. A more 
complete background review is also given in Section S1 in 
Supplementary Materials for readers’ interest.

2.1.1 Tucker decomposition 
Given a third order tensor X 2 RI× J×K, the Tucker decompo
sition seeks to approximate X in the following form: 

X �〚G;A;B;C〛 �
XRa

i¼1

XRb

j¼1

XRc

k¼1

gijk ai
�bj
�ck;

where Ra;Rb; and Rc are the number of components/columns 
in the factor matrices A;B and C, respectively, such that 
A 2 RI×Ra ;B 2 RJ×Rb , and C 2 RK×Rc , and G 2 RRa×Rb×Rc . 

The Tucker decomposition allows for factor matrices to have 
different number of components, and we notate this by say
ing X has rank ¼ ðRa;Rb;RcÞ. G is known as the core tensor, 
and contains values indicating the multiway interactions 
among the components from each of the factor matrices.

2.1.2 Cartesian graph regularization
Cartesian product graph regularization has been previously 
shown to improve spatial gene expression imputation (Li 
et al. 2021). In this setting of ST data factorization, the 
Cartesian product graph Gðx; y; gÞ is calculated as the 
Cartesian product of three graphs: a protein-protein interac
tion (PPI) network Gg, and two unweighted, undirected chain 
graphs Gx and Gy which correspond to the x and y compo
nents of the grid. To compute the Laplacian Lðx; y; gÞ of the 
Cartesian product graph we take the Kronecker sum of the 
Laplacians of each of the three graphs, i.e. 
Lðx; y; gÞ ¼ Lx�Ly�Lg, where each Laplacian matrix Li of a 
graph Gi is calculated as Li ¼ Di − Wi with Di and Wi being 
the degree and adjacency matrices of Gi; for i 2 fx; y; gg. 
This Laplacian of the product graph can impose a high-order 
regularization on a Tucker decomposition X̂ as, 

vecðX̂ ÞTLðx; y; pÞvecðX̂ Þ;

where vecðXÞ denotes vectorization of a tensor X. This regu
larization term helps enforce two assumptions about how the 
data is laid out in the tensor: co-expressed (or the same) genes 
should share similar expression levels at adjacent spots.

2.2 GraphTucker: graph-regularized Tucker 
decomposition
Given a ST tensor, T 2 Rny×nx×ng

þ where ny, nx, and ng denote 
the number of spots along y-coordinate and x-coordinate and 
the number of genes respectively, GraphTucker solves the fol
lowing minimization problem: 

Figure 1. Overview of factorization of ST data with graph regularization. (A) Factorization of spatial gene expression tensor using four different methods. 
These include two matrix factorizations, (A1) Nonnegative matrix factorization (NMF), (A2) Nonnegative matrix tri-factorization (NMTF), and two tensor 
decomposition methods, (A3) Canonical polyadic decomposition (CPD) and (A4) Tucker decomposition. (B) The Cartesian product is computed between 
spatial graphs in the x and y coordinates, and a PPI network. This product graph is used to apply graph regularization to the Tucker decomposition 
optimization. (C) Spatial components are constructed using the core tensor and the x and y factor matrices. � denotes matrix multiplication, � denotes 
component-wise outer product, and ×n denotes the n-mode tensor product.
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min
fG;Ay;Ax;Agg

1
2
jj M� ðT−T̂Þjj2Fþ

λ
2

vecðT̂ÞTLcvecðT̂Þ

s:t: G;Ay;Ax;Ag≥0;
(1) 

where T̂ ¼〚G;Ay;Ax;Ag〛 2 R
ny×nx×ng
þ is the 

rank� ðry; rx; rgÞ Tucker decomposition of the original data 
tensor T, Ay 2 R

ny×ry
þ ;Ax 2 Rnx×rx

þ are the x and y factor ma
trices, Ag 2 R

ng×rg
þ is the gene component factor matrix, G 2

Rry×rx×rg
þ is the core tensor as defined in the Tucker model, 

M 2 Rny×nx×ng

½0;1� is a binary mask tensor for selecting observed 
entries in both spatial gene expression tensors, and Lc ¼

Lðg; y;xÞ ¼ Lg�Ly�Lx is the Laplacian matrix of the 
Cartesian product of a PPI graph and each spatial chain 
graphs in the x and y modes.

We propose an iterative algorithm GraphTucker in 
Algorithm 1 that updates the factor matrices and core tensor 
in succession, computing the partial derivatives for one while 
fixing all others. GraphTucker takes in four main inputs: the 
incomplete spatial gene expression tensor T, a binary mask 
tensor M for selecting observed entries in T, PPI network Gg, 
and hyperparameter λ for controlling the influence of the 
graph regularization on the imputation. The output is the 
Tucker decomposition of T composed of Ay;Ax;Ag; and G.

GraphTucker minimizes the optimization problem in 
Equation (1) using a multiplicative updating (MU) approach 
to maintain nonnegativity. GraphTucker starts by first com
puting the gradient of Equation (1) w.r.t. Ay while fixing 
Ax;Ag, and G. The MU rule is derived based on the positive 
and negative components of the gradient which are then used 
to update Ay. This updating process continues similarly by 
finding MU rules for Ax;Ag, and then, G, in that order. 
Complete derivations of MU rules for the factor matrices and 
core tensor are provided in Equations S2(12)–(28) in the 
Supplementary Materials. GraphTucker runs either until con
vergence or a maximum number of iterations has been 
reached, which we set to 5000. Convergence is determined if 
the residuals between iterations is less than 10−4.

To improve interpretability and convergence, a normaliza
tion step is performed at the end of every iteration: the sums 
of each column in each factor matrix are multiplied in the 
corresponding entries in the core tensor to represent the mag
nitude of each multiway interaction and then each column in 
each factor matrix is normalized to sum to 1 [Supplementary 
Equation S3(29)].

2.3 Spatial component construction
Using the resulting regularized Tucker decomposition found 
by GraphTucker, we define the spatial components tensor 
Gxy as shown in Fig. 1C: 

Gxy ¼ G×1Ax×2Ay; (2) 

where Gxy contains rg spatial components which each corre
spond to a gene component in Ag, meaning each spatial com
ponent is composed of all combinations of interactions 
between a particular gene component ½Ag�:;i and all compo
nents of Ax and Ay. Spatial components and their coefficients 
therefore indicate activities of each gene component at the 
locations in a tissue. To analyze strong multiway interactions, 
as indicated by large values in the core tensor, a sparse core 
tensor can also be constructed by keeping the largest n% of 
entries and setting all other entries to zero. To only use the 

strong interactions, the spatial components can then be con
structed by replacing G with Gn in Equation (2), where n 
indicates the top n% of entries kept in the core tensor.

3 Experiments
In the experiments, we measure GraphTucker’s performance by 
evaluating its ability to estimate missing or holdout gene expres
sion entries and capture known tissue structures by the spatial 
components and the spatial coefficients of the gene modules on 
several human and mouse 10x Genomics Visium and Stereo-seq 
datasets. Multiple linear factorization models and a CPD model 
are compared against GraphTucker as baselines.

3.1 Data preparation
The datasets used in this study are listed in Table 1 with spec
ifications of the size, density, annotation, platform, and 
source of each dataset. The MBSA, MBSP, and BRCA1 data
sets were downloaded from 10x Genomics website https:// 
www.10xgenomics.com/products/spatial-gene-express. The 
BRCA1 data was manually annotated into 20 tissue regions 
(Xu et al. 2024). The DLPFC Human Brain dataset was gen
erated and annotated in the spatialLIBD project (Maynard 
et al. 2021; Pardo et al. 2022; Huuki-Myers et al. 2023). 
Two Stereo-seq mouse embryo datasets were dowloaded 
from MOSTA with anatomical regions annotated based on 
cell segmentation with nucleic acid staining image followed 
by unsupervised spatial clustering and analysis of known spa
tially variable marker genes (Chen et al. 2022).

Given the hexagonal grid structure of the Visium protocol, 
the datasets were adjusted by shifting odd-numbered rows by 
half a spot to give a square grid. All gene expressions from a 
tissue are then arranged into a three-way tensor 
T 2 Rny×nx×ng . Extremely lowly expressed entries (less than 3 
UMI counts) are set to 0. Low density genes with total UMI 
counts less than 4 were also removed for better computa
tional efficiency in the datasets used in the imputation experi
ment and the larger Stereo-seq datasets used in the case 
study. Rows and columns of all empty spots were also 
cropped out and removed. Each entry in the tensor was then 
log-transformed as Ty;x;g  logðTy;x;gþ1Þ. The size of the 
processed data is given in Table 1.

Version 4.4.226 Homo sapien and Mus musculus PPI net
works were acquired from BioGRID and used for human and 
mouse datasets, respectively (Stark et al. 2006). PPI networks 
were overlapped with each dataset based on intersection be
tween the genes remaining after preprocessing and the genes 
connected in the network.

3.2 Compared methods
We used three methods based on the factorizations shown in  
Fig. 1A as well as NSFH as baseline comparisons, focusing 
on linear methods that are able to extract spatial components 
in spatial transcriptomics data so that they can be used for 
direct quantitative and visual comparison to GraphTucker.

� Nonnegative Matrix Factorization (NMF) factorizes a 
matrix Y into two matrices W, H such that Y ¼WH 
(panel A1 in Fig. 1A). The number of columns in W and 
rows in H is denoted as the rank, which can be tuned 
according to the needed approximation accuracy. We ap
ply NMF by flattening the spatial gene expression tensor 
T 2 Rny×nx×ng

þ into a matrix Y 2 Rng×nxny
þ , and factorize it 
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into a gene component matrix W 2 Rng×r
þ and spatial 

component coefficient matrix H 2 Rr×nxny
þ , where r is the 

rank. We use the MATLAB function nnmf(), which is an 
implementation of the algorithm in Berry et al. (2007), 
for testing NMF. 

� Regularized Nonnegative Matrix Tri-Factorization 
(RNMTF) is a regularized Nonnegative Matrix Tri- 

Factorization (NMTF), which is an altered NMF that 
allows for multiway interactions between gene and spatial 
components through the addition of a core matrix S, such 
that Y ¼WSH (panel A2 in Fig. 1A). This also allows W 
and H to have their own ranks rW and rH, such that 
S 2 RrW×rH

þ . We adopted RNMTF (Hwang et al. 2012) to 
include regularization to NMTF by introducing graph 
regularization into the optimization, where W can be 
seperatedly regularized by a PPI network and H by a x/y 
spatial graph. These regularizations have corresponding 
hyperparameters γ and ρ, which we tuned to minimize ap
proximation error. 

� Nonnegative spatial factorization (NSF) is a new method 
that extends NMF to be both probabilistic and spatially 
aware by modeling Gaussian processes across spatial 
data, and was demonstrated for recovering spatial factors 
in ST data (Townes and Engelhardt 2024). NSF factorizes 
a matrix Y ¼ FW, where F is the spatial factors matrix 
with L components that models a Gaussian Process prior 
over the factors, and W is the loadings matrix. A hybrid 
version (NSFH) was also created that allows the separa
tion of spatial factors into nonspatial and spatial ones. 
We only use the spatial factors as we do not expect non
spatial factors to provide useful components for spatial 
component analysis. We followed the same preprocessing 
and postprocessing experimental setup as used in their 
experiments to obtain the spatial factors (components) us
ing the top 2000 genes as determined by Poisson deviance. 
We also run NSFH with the number of inducing points 
(IPs) equal to the number of observations (spots) in each 
tested dataset for the full resolution. 

� Fast Imputation of Spatially resolved transcriptomes by 
graph-regularized Tensor completion (FIST) is a recently 
developed method that uses the CPD for finding a regular
ized tensor decomposition of spatial transcriptomics data 
(panel A3 in Fig. 1A) (Li et al. 2021). FIST differs from 
GraphTucker mainly in its ability to find multilinear rela
tionships between its components. FIST spatial compo
nents are computed by taking the outer product between 
the rank-r pairs of components in its x and y fac
tor matrices. 

A note is that running FIST with λ ¼ 0 is equivalent to 
computing the nonnegative CPD of the given tensor without 
regularization. Similarly, running GraphTucker with λ ¼ 0 is 
equivalent to computing the nonnegative Tucker decomposi
tion without regularization. We tested both settings to dem
onstrate the importance of including graph regularization.

3.3 Imputation by spotwise cross-validation
We evaluated the generalization of GraphTucker, RNMTF, 
and FIST by running 5-fold cross-validation across three 
Visium datasets: MBSA, MBSP, and BRCA1. Cross- 

Algorithm 1 GraphTucker

Inputs:

Spatial gene expression tensor T 2 Rny×nx×ng
þ , binary mask 

tensor M 2 Rny×nx×ng

f0;1g for selecting observed entries, PPI 
network Gg, hyperparameter λ.

Initialize:

Randomly initialize Ay 2 R
ny×ry
þ , Ax 2 Rnx×rx

þ , Ag 2 R
ng×rg
þ

and G 2 Rny×nx×ng
þ . Construct spatial chain graphs Gx 

and Gy .
while not converged do

½Ay�i;j  ½Ay�i;j

@F1
@Ay

h i−

i;j
þλ @F 2

@Ay

h i−

i;j

@F1
@Ay

h iþ

i;j
þλ @F 2

@Ay

h iþ

i;j

0

B
B
@

1

C
C
A (Eq. S2.(20)) 

½Ax�i;j  ½Ax�i;j

@F 1
@Ax

h i−

i;j
þλ @F2

@Ax

h i−

i;j

@F 1
@Ax

h iþ

i;j
þλ @F2

@Ax

h iþ

i;j

0

B
B
@

1

C
C
A (Eq. S2.(19)) 

½Ag�i;j  ½Ag�i;j

@F1
@Ag

h i−

i;j
þλ @F 2

@Ag

h i−

i;j

@F1
@Ag

h iþ

i;j
þλ @F 2

@Ag

h iþ

i;j

0

B
B
@

1

C
C
A (Eq. S2.(19)) 

½vecðGðgÞÞ�i  ½vecðGðgÞÞ�i

@F 1
@vecðGðgÞÞ

h i−

i
þλ @F 2

@vecðGðgÞÞ

h i−

i

@F 1
@vecðGðgÞÞ

h iþ

i
þλ @F 2

@vecðGðgÞÞ

h iþ

i

0

B
@

1

C
A

(Eq. S1. (28)) 

〚G;Ay;Ax;Ag〛 〚G×1U×2V×3W;
AyU−1;AxV−1;AgW−1〛== normalization

(S3.(29)) 

end while

Return: Ay ;Ax ;Ag;G

Table 1. Summary of datasets.

Dataset Size (nx;ny; ng) Density Annotation Platform

Mouse Brain Section 1, Sagittal-Anterior (MBSA) (66, 59, 11 327) 0.1239 NA 10x Visium [12]
Mouse Brain Section 1, Sagittal-Posterior (MBSP) (67, 62, 11 285) 0.0987 NA 10x Visium [12]
Human Breast Cancer, Block A Section 1 (BRCA1) (60, 77, 12 125) 0.1204 20 regions 10x Visium [12]
DLPFC Human Brain 151673 (59, 76, 17 891) 0.0134 7 layers 10x Visium [14, 15, 16]
Mouse Embryo E.9.5 E1S1 (Day 9.5) (80, 107, 9687) 0.0703 11 organs Stereo-seq [17]
Mouse Embryo E.11.5 E1S1 (Day 11.5) (187, 264, 10 023) 0.0392 18 organs Stereo-seq [17]
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validation was performed spotwise where 20% of spots are 
held out for testing by setting their entries equal to 0, with 
the remaining 80% of spots used for training. Spots which 
contain zero gene expression across all genes were not se
lected for testing. In FIST and GraphTucker, test spots and 
all-zero spots were excluded from training by using the mask 
tensor. NMF was not compared against in this experiment 
since the removal of whole spots completely prevents any im
putation in its factorization. NSFH was also not compared 
since its setting was only on 2000 genes in all the experiments 
in the original study (Townes and Engelhardt 2024).

3.4 Spatial component analysis
We analyzed GraphTucker’s spatial components by compar
ing them against ground-truth annotated regions in two 
Visium datasets, BRCA1 Human Breaset Cancer dataset and 
DLPFC Human Brain dataset, expecting good spatial compo
nents can reveal detailed domain structures for biological in
terpretation of spatial augmentations corresponding to the 
annotations. First, after running each method on both data
sets, we matched each annotated region to a corresponding 
spatial component by calculating the Area Under the receiver 
operating Curve (AUC) and Euclidean Distance (ED) pair
wise between every region and spatial component. Matches 
were selected by choosing the pairing with the lowest ED.

3.5 Spatial domain detection
In addition, we also performed k-means clustering on each 
method’s spatial components across the spots using k ¼ 7 
and k ¼ 20 to match the number of regions on the BRCA1 
and DLPFC datasets, respectively. We then compared the 
resulting clusterings to the ground-truth annotations to mea
sure how closely each method’s spatial components captured 
the annotated regions.

3.6 Evaluation metrics
Three metrics were used to evaluate cross-validation perfor
mance: mean absolute error (MAE), mean average percent er
ror (MAPE), and coefficient of determination (R2) 
[Supplementary Equation S4(30)]. We use MAE and MAPE 
to measure how accurate each method approximates missing 
gene expression values, and R2 is used to measure how im
puted expressions correlate with the original expressions 
across a spot.

AUC was calculated by binarizing the annotated region on 
the tissue, such that every spot in the region has a value of 1 
and 0 everywhere else. AUC was then calculated by thresh
olding a spatial component using the binary annotation as 
labels for each spot. Euclidean distance (ED) was calculated 
by normalizing both the binary annotation and spatial com
ponent to length 1, and then, computing the Euclidean dis
tance between the two. AUC and ED are used to measure 
how closely a spatial component corresponds to a region, 
with an AUC of 1 and ED of 0 indicating a perfect represen
tation of the region.

In the clustering experiments, we computed the Adjusted 
Rand Index (ARI) between these clusterings and the original 
clusterings [Supplementary Equation S4(31)]. An ARI closer 
to 1 indicates the spatial component clusterings better match 
the original clusters.

3.7 Parameter tuning
In the imputation experiments, we chose to use rank¼ 50 for 
factorization with RNMTF, FIST, and GraphTucker since 
previous extensive experimentation with decomposition 
analysis of the datasets showed that 50 components are suffi
cient for achieving good imputation and using higher ranks 
do not lead to consistent improvement (Song et al. 2023). 
GraphTucker was run with rank ¼ (50, 50, 50) for a high res
olution in x/y coordinates. FIST and GraphTucker were both 
tuned with and without graph regularization, and we report 
the results for λ ¼ 0:1 as it gave stable performance across all 
the datasets as previously observed (Li et al. 2021; Song et al. 
2023). We also tuned γ and ρ for RNMTF, but observed best 
performance with ρ ¼ 0 and γ ¼ ½0:1; 1;10� for MBSA, 
MBSP1, and BRCA1, respectively.

For the spatial component analyses, each method was run 
with the number of gene components equal to the number of 
regions. GraphTucker was run with rank¼ ð30;30; 7Þ and 
rank¼ ð30; 30; 20Þ on the human brain and breast cancer 
datasets, respectively, as we observed that 30 x/y components 
provides a sufficient resolution for detecting the low number 
of gene components. Specifically, on the human brain data
set, NMF was run with rank¼7, RNMTF with rank ¼
(7,50), and NSFH with L¼7. Similarly on the breast cancer 
dataset, NMF was run with rank¼20, RNMTF with rank ¼
(20,50), NSFH with L¼20. We also tested NMF, RNMTF 
at other ranks around the number of ground-truth regions. 
The detected components are not significantly different and 
thus, we only show the results for ranks 7 and 20 on the two 
datasets, respectively. Since FIST is inflexible in choosing 
rank in each mode, we tested a larger rank¼50 and reported 
the lower average ED in the comparison. We tuned λ for both 
GraphTucker and FIST and found λ ¼ 1 to give the best 
results for both AUC and ED. RNMTF was run with ρ ¼
0; γ ¼ 0:1 the same optimal parameters in the imputation 
experiments.

In the case study on the two Stereo-seq mouse embryos, we 
ran GraphTucker with rank¼ ð64; 64; 64Þ; λ ¼ 0:1 for the 
higher resolution of the spot grid, and complex annotations 
of the organs in the mouse embryos, around 50 annotated 
regions depending the developmental day. We, then, manu
ally analyzed the resulting spatial components to look for vi
sual matches to any of the annotated regions.

4 Results
4.1 GraphTucker imputes missing spatial gene 
expressions in Visium data more accurately
We benchmarked GraphTucker against the baseline methods 
to evaluate its performance in cross-validation experiments 
across three 10x Genomics Visium datasets including mouse 
brain sagittal-anterior (MBSA) and sagittal-posterior (MBSP) 
datasets, and a human breast cancer (BRCA1) dataset. All 
methods were evaluated by three performance metrics, MAE, 
MAPE, and R2 across all datasets as shown in Table 2.

In terms of MAE and MAPE, GraphTucker outperforms 
both RNMTF and FIST across all three datasets. As expected, 
GraphTucker and FIST perform better using graph regulari
zation than without, with GraphTucker achieving improved 
approximation over FIST when using λ ¼ 0:1. This difference 
in performance is less pronounced on the BRCA1 dataset, al
though GraphTucker is still slightly better. RNMTF performs 
significantly worse than FIST and GraphTucker, which is 
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expected as it was not originally developed for generalization 
in a spotwise cross-validation context.

GraphTucker similarly outperforms FIST in terms of R2, 
demonstrating it can better impute missing values that corre
late more closely to missing gene expressions. In datasets 
with highly sparse expressions across even a small number of 
genes, a poor generalization for these genes can result in very 
low and sometimes negative R2 as seen in RNMTF.

4.2 GraphTucker detects spatial components that 
capture known tissue regions in annotated 
Visium data
To analyze the GraphTucker’s components, we evaluated 
how closely its spatial components captured known tissue 
regions in the two annotated Visium datasets from the human 
brain tissues consisting of seven regions, and the human 
breast cancer tissue with twenty regions. The results are visu
alized in Figs 2 and 3 for the two datasets, respectively. We 
also found that using the top 10% and 5% of core tensor 
entries in the human brain and breast cancer datasets respec
tively gave lower ED and and higher AUC on average across 
matched spatial components as shown in Supplementary 
Figs. S1 and S2. Despite using such a small amount of entries 
in the core tensor, they accounted for 0.835 and 0.684 of to
tal interactions respectively for the two datasets.

As shown in Table 3, GraphTucker using the top 10% and 
5% of core tensor entries had the best average AUC and ED 
of its region-spatial component matches on the human brain 
and BRCA1 datasets. This suggests GraphTucker can suffi
ciently capture a wide variety of regions in its components, 
even with a high number of closely packed regions such as in 
the breast cancer tissue. Furthermore, these results indicate 
that many of these spatial domains can be captured by a rela
tively low number of component interactions of high impor
tance, which GraphTucker excels at finding.

In the human brain dataset, GraphTucker achieves the 
highest AUC and lowest ED in regions L3 and L6, as well as 
the highest AUC in L1 and L4 and lowest ED in WM, as 
shown in Fig. 2. NSFH has the best performance for the L5 
region, and highest AUC for the WM. Lastly, NMF best cap
tures the L2 region. An important note is that GraphTucker’s 
and NSFH’s spatial components are noticeably smoother 
compared to NMF due to their respective usage of graph reg
ularization and Gaussian Process prior.

In the breast cancer dataset, we report visualizations and 
metrics for eight of the twenty regions in Fig. 3. GraphTucker 
achieves the highest AUC and lowest ED in six of the shown 
regions, DCIS-LCIS1, DCIS-LCIS 4, IDC 2, IDC 5, IDC6, 
and IDC7, as well as the highest AUC in DCIS-LCIS 3. NSFH 
best captures IDC 4 and FIST achieves the lowest ED in 

DCIS-LCIS 3. Complete results for all twenty regions are pro
vided in Supplementary Fig. S3. An important note is that 
some regions are captured best by the same component, 
which we observed in regions IDC 6 and IDC 7, as both 
NMF, FIST, and GraphTucker captured these regions in the 
same spatial component.

On the Human Brain dataset, we obtained a curated layer- 
specific marker gene list from Maynard et al. (2021) and 
compared the top genes in the matched gene components of 
GraphTucker, NMF, RNMTF, and FIST. We excluded WM 
and L1 regions in this analysis since they only have five 
marker genes each. We found significant overlap in all the 
other five regions L2-L6. NSFH is not applicable in this 
analysis as only 25 of the 126 marker genes were present in 
the 2000 genes pre-selected for training. Supplementary Fig. 
S3 shows that GraphTucker is able to highly rank layer- 
specific marker genes in its gene components, and overall 
finds these genes better than the other methods. On a region- 
by-region basis, in some cases NMF and FIST have slightly 
larger overlap (see P-values in Supplementary Tables S2–S4). 
Regardless, these results provide additional evidence that 
GraphTucker gene components capture the layer-specific 
expressions by recovering many marker genes known in 
the literature.

For the six tumor edge regions, we observed only three 
GraphTucker spatial components to match to these six 
regions, with four regions being best captured by a single 
component. Since each component alone was not sufficiently 
visualizing any one region, we combined all three compo
nents using all core tensor entries and averaged them to deter
mine how well the tumor edges were captured as a whole, 
which is shown in Fig. 4. These averaged components provide 
a significantly better visualization of the tumor edge regions 
than when separated. Although the spatial components con
structed from the top 5% of core tensor entries can approxi
mate most of the tumor edge regions, using more entries gives 
a better overall segmentation of the combined regions, espe
cially for capturing tumor edge regions. Given that the 
regions were annotated based on morphological features 
rather than regional gene expressions, every region might not 
be separable based on their spatial gene expression. In fact, 
our results suggest that these tumor edge regions might share 
more similar expression patterns as detected by the three spa
tial components.

Lastly, we ran k-means clustering on each method’s spatial 
components and compared the clusterings against the 
ground-truth annotations for both datasets, as shown in the 
first columns of Figs 2 and 3. In the human brain tissue, none 
of the methods is able to completely delineate the L1–L5 
regions; however, GraphTucker does achieve the highest ARI 
and correctly captures the L6 region, which only NSFH is 

Table 2. Spotwise cross-validation results across three Visium datasets.a

MBSA MBSP BRCA1

Methods MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

RNMTF, rank ¼ (50,50) 1.19 0.69 –2.12 1.07 0.64 –1.77 1.08 0.64 –1.67
FIST, rank¼50, λ ¼ 0 0.33 0.21 0.61 0.35 0.22 0.39 0.31 0.20 0.61
FIST, rank¼50, λ ¼ 0:1 0.30 0.19 0.68 0.33 0.21 0.41 0.30 0.19 0.68
GraphTucker, rank ¼ (50,50,50), λ ¼ 0 0.34 0.21 0.56 0.36 0.23 0.32 0.31 0.19 0.61
GraphTucker, rank ¼ (50,50,50), λ ¼ 0:1 0.29 0.18 0.71 0.31 0.20 0.49 0.30 0.18 0.70

a The best results for each metric are marked in bold.
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Figure 2. Comparison of seven annotated regions from the Visium human brain dataset with matched spatial components. Area Under the receiving 
operator Curve (AUC) and Euclidean Distance (ED) between spatial component and region annotation is listed above each component. The clustering 
shown for GraphTucker used all core tensor entries, and the spatial components shown used only the top 10% of entries. Best scores are marked 
in bold.

Figure 3. Comparison of eight annotated regions from human breast cancer dataset (BRCA1) with matched spatial components. Area Under the 
receiving operator Curve (AUC) and Euclidean Distance (ED) between spatial component and region annotation are listed above each component. The 
clustering shown for GraphTucker used all core tensor entries, and the spatial components shown used only the top 5% of entries. Best scores are 
marked in bold.
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able to capture with a similar structure, albeit not as smooth 
and slightly shifted. GraphTucker also achieves the highest 
ARI on the breast cancer dataset and has significantly 
smoother clusters compared to NSFH and NMF, the next 
two best methods. We also repeated spot clustering using 
sparse core tensors but observed that ARI was not improved 
when using less entries while still being better than all the 
baseline methods.

4.3 GraphTucker identifies important early 
developmental regions in high-resolution Stereo- 
seq mouse embryos
To understand how GraphTucker may generalize to different 
datasets, we used two Stereo-seq mouse embryo datasets 
(Chen et al. 2022) as a case study to analyze how 
GraphTucker may identify known annotated regions in high- 
resolution data. The two embryos are from days 9.5 and 11.5 
in the embryonic stage and have annotations of several im
portant developmental regions.

We observed in both datasets that GraphTucker was able 
to accurately identify eleven regions in the day 9.5 embryo 
and ten in the day 11.5 embryo, shown in Fig. 5. Several of 
the spatial components correlate highly to the annotated 
regions, for example, the dermomyotome, heart, and liver in 
both embryos, and the neural crest and notochord in the day 
9.5 embryo. Some regions, such as the brain, were captured 
by more than one spatial component, though we chose to 
present the spatial component that best captured the region 
as a whole. The blood vessel, connective tissue, inner ear, jaw 
and tooth, lung primordium, meninges, spinal cord, and sur
face ectoderm regions in the Day 11.5 embryo are not 
reported as we identified no spatial components that clearly 
matched to these regions.

4.4 Runtime analysis shows GraphTucker is 
scalable to Visium and Stereo-seq data
Empirical runtimes were measured on a server with a config
uration of Intel® Xeon® E52687W v3 3.10 GHz, 25M 
Cache, and 256GB of memory. We measured the time needed 
for 50 iterations on each of the datasets. We report the aver
age time needed for one iteration, and do not observe any sig
nificant deviance at later iterations. A full table of ranks used 
for runtime testing are provided in Supplementary Table S6. 
The runtime for each method across each dataset are pro
vided in Supplementary Fig. S5.

Running GraphTucker on the four Visium datasets and 
MOSTA 9.5 dataset took between one to two hours to finish 
1000 iterations using around 20GB memory. Although 
GraphTucker was run using 5000 maximum iterations to 

ensure sufficient convergence in our experiments, we observe 
similar results for spatial components when running with 
1000 iterations that produces visually identical spatial com
ponents in significantly reduced total runtime.

GraphTucker and the MATLAB NMF implementation are 
both several times slower than FIST and RNMTF on both 
Visium and Stereo-seq data. Since runtime is significantly 
dominated by the ng term, with relatively low ranks rx; ry;

and rg, runtime is not significantly affected by the size of the 
tissue nx and ny unless using very high-resolution spatial tran
scriptomics data. We observe this substantial increase on the 
Stereo-seq Day 11.5 mouse embryo, as running GraphTucker 
with rank¼ ð64; 64;64Þ; λ ¼ 1 on the dataset with 1000 itera
tions took 6 hours using 81GB memory. This large increase 
also occurs in NMF as shown in Supplementary Fig. S5.

NSFH was not directly comparable as we observed a high 
variance in its runtimes and numerical stability. NSFH was 
tested on the BRCA1 dataset with maximum inducing points 
and rank L ¼ 20, and ran five times using 2000 or 10,000 
genes. Run times in both scenarios were inconsistent and var
ied between 2 and 5 hours. In comparison, the run time for 
GraphTucker on BRCA1 with rank¼ð50; 50; 20Þ; λ ¼ 0:1 for 
1000 iterations is around 1.5 hours. Thus, the runtime of 
NSFH and GraphTucker is similar on the Visium data.

5 Discussion
In the experiments, we demonstrated GraphTucker as not 
only an improved imputation method, but also as a high- 
order factorization method for finding spatial components 
that delineate complex spatial regions across tissues. These 
components are able to capture highly irregular regional 

Table 3. Region-spatial component matching.a

Human brain (7 regions) BRCA1 (20 regions)

Methods Avg. AUC Avg. ED Methods Avg. AUC Avg. ED

NMF rank¼7 0.740 1.007 NMF rank¼20 0.865 1.073
RNMTF rank=(7,50) 0.734 1.007 RNMTF rank=(20,50) 0.817 1.146
NSFH L¼ 7 0.825 0.921 NSFH L¼ 20 0.862 1.033
FIST rank¼7, λ¼1 0.684 1.038 FIST rank¼50, λ¼1 0.791 1.033
GraphTucker rank=(30,30,7), λ¼1 0.826 0.926 GraphTucker rank=(30,30,20), λ¼1 0.893 1.008
GraphTucker10% rank= 

(30,30,7), λ¼1
0.871 0.906 GraphTucker5% rank= 

(30,30,20), λ¼1
0.903 0.976

a The best metrics are marked in bold. GraphTuckern% indicates using n% sparse core tensor.

Figure 4. Comparison of six tumor edge regions with spatial components 
found by GraphTucker. The combined component was averaged from 
three spatial components, one of which matched to four tumor 
edge regions.
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structures due to their multilinear relationships and smooth
ness from PPI and spatial graph regularization. A significant 
aspect of GraphTucker shown in the spatial component 
analysis is its ability to identify the most important compo
nent interactions, as we observed that selecting only a top 
fraction of core tensor entries can lead to improved perfor
mance for spatial domain detection. This suggests that the 
majority of spatial variation in gene expression can be cap
tured with a few components, and considering too many 
interactions may be detrimental. The option of investigating 
the sparse structure in its core tensor offers flexibility in iden
tifying the most important interactions, depending on 
the analysis.

In our case study on two Stereo-seq mouse embryo, we 
sought to understand how GraphTucker can generalize on 
higher resolution datasets. Despite the lack of ground-truth 
annotation, we were still able to manually identify several re
gional matches among GraphTucker’s spatial components. 
Several spatial components uniquely highlight certain 
regions, such as the heart and liver in both embryos, suggest
ing that the corresponding gene components are highly spe
cific to these developmental regions.

6 Conclusion
GraphTucker is a novel, high-order, multilinear method for 
spatial transcriptomics data factorization that employs a 
graph-regularized Tucker decomposition model for gene ex
pression imputation and gene and spatial component analy
sis. Cross-validation experiments across three Visium 
datasets demonstrate GraphTucker’s improvement in impu
tation over existing methods. Visualization and quantitative 
analysis of GraphTucker’s components on annotated human 
brain and human breast cancer tissues further exemplify the 
correctness and significance of its spatial components. Lastly, 
our case study on two mouse embryo datasets show potential 
for GraphTucker’s use for generalization and downstream 
analysis of gene components. Further research should be con
ducted to analyze GraphTucker gene components as they 

may contain important gene modules that can reveal new cell 
and gene functionalities corresponding to their regional loca
tions as indicated in the spatial components. In addition, fur
ther application of GraphTucker on 3D datasets once they 
can be generated could provide even more insight into the 
spatial distribution of cells and their gene expressions in full 
3D space.
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