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Abstract

Spatial transcripome (ST) profiling can reveal cells’ structural organizations and functional roles in tissues. However, deciphering the spatial
context of gene expressions in ST data is a challenge—the high-order structure hiding in whole transcriptome space over 2D/3D spatial
coordinates requires modeling and detection of interpretable high-order elements and components for further functional analysis and interpreta-
tion. This paper presents a new method GraphTucker—graph-regularized Tucker tensor decomposition for learning high-order factorization in ST
data. GraphTucker is based on a nonnegative Tucker decomposition algorithm regularized by a high-order graph that captures spatial relation
among spots and functional relation among genes. In the experiments on several Visium and Stereo-seq datasets, the novelty and advantage of
modeling multiway multilinear relationships among the components in Tucker decomposition are demonstrated as opposed to the Canonical
Polyadic Decomposition and conventional matrix factorization models by evaluation of detecting spatial components of gene modules, cluster-
ing spatial coefficients for tissue segmentation and imputing complete spatial transcriptomes. The results of visualization show strong evidence

that GraphTucker detect more interpretable spatial components in the context of the spatial domains in the tissues.
Availability and implementation: https://github.com/kuanglab/GraphTucker.

1 Introduction

In high-throughput spatial transcriptomics (ST) RNA se-
quencing, spatial gene expressions are profiled from a contig-
uous population of cells from a tissue. Many ST technologies
such as those based on in situ capturing (ISC) allow
transcriptome-wide capturing, making it useful for analyzing
spatial gene expression patterns with a high coverage of the
whole transcriptome (Stdhl et al. 2016; Asp et al. 2020). One
major complication to ISC-based technologies is that many
RNA molecules are failed to be captured due to limitations in
the capturing technology, resulting in much sparser gene
expressions than what is actually present in the cells.
Additionally, identifying spatial patterns can be difficult due
to the high dimensionality and high-order organization of the
data with complex relations among genes in 2D/3D spatial
coordinates. Methods for deciphering these high-order struc-
tures and complex relations are, therefore, important for per-
forming functional analyses of ST data.

Linear matrix factorization models have been successfully
shown to offer thorough functional interpretation of ST data
(Bergenstrdhle ez al. 2020). Nonnegative spatial factorization
(NSF) is a recently developed probabilistic spatial-aware non-
negative matrix factorization (NMF) model that has been
demonstrated to identify important spatial components
across ST datasets (Townes and Engelhardt 2024). NSF and
NMF-related models are limited however in their usage of
matrix representation of the data, as they collapse the spatial
components into a single joint-dimension without capturing
higher-order relationships.

Tensor decomposition models do not suffer from this issue
as they allow for separate representations of spatial coordi-
nates and genes for capturing higher-order structures. FIST is

one such tensor model that finds a linear tensor decomposition
of a ST data tensor graph-regularized by a protein-protein in-
teraction network and spatial graphs along x and y dimensions
(Li et al. 2021). One drawback of FIST is its use of the canoni-
cal polyadic decomposition (CPD) which restricts component
interactions across the modes to be a one-to-one match. This
restriction not only over-simplifies the high-order structure
with a strong assumption across the modes but also signifi-
cantly reduces the interpretability of the detected components,
such that the interpretations of the CPD model learned on ST
data rely on the imputation of the whole tensor for other anal-
yses (Li et al. 2021; Song et al. 2023).

In this work, we present GraphTucker, a graph-regularized
Tucker decomposition model which offers a novel approach
for higher-order interpretation of ST data allowing multiway
relations among the components across the spatial modes
and the gene mode. As outlined in comparison with other fac-
torization models in Fig. 1, GraphTucker finds a Tucker ten-
sor decomposition with a nonnegative factorization
algorithm which simultaneously reconstructs the tensor and
exploits relationships among the spatial coordinates and
genes. The component matrices and the core tensor in the
Tucker decomposition can be aggregated to derive interpret-
able spatial components that capture important higher-order
spatial gene expression activity maps as well as reconstruct-
ing the ST data. In the experiments, we demonstrate
GraphTucker is an effective and scalable method for applica-
tion to 10x Genomics Visium data and high-resolution
Stereo-seq data.

Note that deep-learning models for resolving spatial tran-
scriptomes have been growing in popularity, with methods
such as STAGATE, Tangram, ST-Net, Hist2ST, stPlus, and
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Figure 1. Overview of factorization of ST data with graph regularization. (A) Factorization of spatial gene expression tensor using four different methods.
These include two matrix factorizations, (A1) Nonnegative matrix factorization (NMF), (A2) Nonnegative matrix tri-factorization (NMTF), and two tensor
decomposition methods, (A3) Canonical polyadic decomposition (CPD) and (A4) Tucker decomposition. (B) The Cartesian product is computed between
spatial graphs in the xand y coordinates, and a PPl network. This product graph is used to apply graph regularization to the Tucker decomposition
optimization. (C) Spatial components are constructed using the core tensor and the xand y factor matrices. - denotes matrix multiplication, © denotes

component-wise outer product, and X, denotes the n-mode tensor product.

GNTD being used with varying types of neural-network
models (He et al. 20205 Biancalani et al. 2021; Shengquan
et al. 2021; Dong and Zhang 2022; Zeng et al. 2022; Song
et al. 2023). Although these methods have been shown to
perform well in their respective contexts, none of the deep
neural-network models provide interpretation of the struc-
tures in the original ST data such as spatial components or
spatial context for gene modules.

2 Methods

In this section, we first introduce the GraphTucker model
and its nonnegative factorization algorithm, and then, the
derivation of the spatial components from the Tucker factori-
zation. Note that while the formulations are only shown for
three-way tensors for conciseness, they can be directly gener-
alized to higher orders.

2.1 Preliminaries

GraphTucker consists of two main components, a Tucker
tensor decomposition (Fig. 1A) and Cartesian product graph
regularization (Fig. 1B), which are reviewed below. A more
complete background review is also given in Section S1 in
Supplementary Materials for readers’ interest.

2.1.1 Tucker decomposition
Given a third order tensor X € R/*/*X  the Tucker decompo-
sition seeks to approximate X in the following form:

R. Ry Re¢
X~ [G:A,B,C] =
i1 j=1 k=1

o
8ijk @i°bj” ek,

where R;, Ry, and R, are the number of components/columns
in the factor matrices A,B and C, respectively, such that
AeRXR Be RI¥Ro and C e R®ORe) and G e RRXRxRe

The Tucker decomposition allows for factor matrices to have
different number of components, and we notate this by say-
ing X has rank = (R,;, Ry, R,). G is known as the core tensor,
and contains values indicating the multiway interactions
among the components from each of the factor matrices.

2.1.2 Cartesian graph regularization

Cartesian product graph regularization has been previously
shown to improve spatial gene expression imputation (Li
et al. 2021). In this setting of ST data factorization, the
Cartesian product graph G(x,y,g) is calculated as the
Cartesian product of three graphs: a protein-protein interac-
tion (PPI) network Gy, and two unweighted, undirected chain
graphs G, and G, which correspond to the x and y compo-
nents of the grid. To compute the Laplacian £(x,y,g) of the
Cartesian product graph we take the Kronecker sum of the
Laplacians of each of the three graphs, i.e.
L(x,y,8) = Ly@®L,®L,, where each Laplacian matrix L; of a
graph G; is calculated as L; = D; - W; with D; and W, being
the degree and adjacency matrices of G, for i € {x,y,g}.
This Laplacian of the product graph can impose a high-order
regularization on a Tucker decomposition X as,

Vec(X)TE(x, Y, p)VeC(X)y

where vec(X) denotes vectorization of a tensor X. This regu-
larization term helps enforce two assumptions about how the
data is laid out in the tensor: co-expressed (or the same) genes
should share similar expression levels at adjacent spots.

2.2 GraphTucker: graph-regularized Tucker
decomposition

Given a ST tensor, T € R?anmg where 7y, 7, and 7, denote
the number of spots along y-coordinate and x-coordinate and
the number of genes respectively, GraphTucker solves the fol-
lowing minimization problem:
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1 - N .
min | Mo (T—T)|\%+§vec(T)TLCvec(T)

{G,A, A A} (1)
s.t. G. A, Ay, Ag>0,
where T= [G: Ay, Ax Agll € R Xt Xtg is the

rank—(ry, 7y, 7¢) Tucker decomposition of the original data
tensor T, A, € R?X”,Ax € R are the x and y factor ma-
trices, Ay € R is the gene component factor matrix, G €
R:ﬁxy"xrg is the core tensor as defined in the Tucker model,
Me R%’_T]’l"'xng is a binary mask tensor for selecting observed
entries in both spatial gene expression tensors, and L. =
L(g,y,x) =LBL,®L, is the Laplacian matrix of the
Cartesian product of a PPI graph and each spatial chain
graphs in the x and y modes.

We propose an iterative algorithm GraphTucker in
Algorithm 1 that updates the factor matrices and core tensor
in succession, computing the partial derivatives for one while
fixing all others. GraphTucker takes in four main inputs: the
incomplete spatial gene expression tensor T, a binary mask
tensor M for selecting observed entries in T, PPI network Gg,
and hyperparameter A for controlling the influence of the
graph regularization on the imputation. The output is the
Tucker decomposition of T composed of Ay, A, A, and G.

GraphTucker minimizes the optimization problem in
Equation (1) using a multiplicative updating (MU) approach
to maintain nonnegativity. GraphTucker starts by first com-
puting the gradient of Equation (1) w.r.t. A, while fixing
A., A, and G. The MU rule is derived based on the positive
and negative components of the gradient which are then used
to update A,. This updating process continues similarly by
finding MU rules for Ay, A,, and then, G, in that order.
Complete derivations of MU rules for the factor matrices and
core tensor are provided in Equations S2(12)—(28) in the
Supplementary Materials. GraphTucker runs either until con-
vergence or a maximum number of iterations has been
reached, which we set to 5000. Convergence is determined if
the residuals between iterations is less than 107*.

To improve interpretability and convergence, a normaliza-
tion step is performed at the end of every iteration: the sums
of each column in each factor matrix are multiplied in the
corresponding entries in the core tensor to represent the mag-
nitude of each multiway interaction and then each column in
each factor matrix is normalized to sum to 1 [Supplementary
Equation S3(29)].

2.3 Spatial component construction

Using the resulting regularized Tucker decomposition found
by GraphTucker, we define the spatial components tensor
G,y as shown in Fig. 1C:

ny = G)(leXsz7 (2)

where Gy, contains r, spatial components which each corre-
spond to a gene component in A,, meaning each spatial com-
ponent is composed of all combinations of interactions
between a particular gene component [A,]. ; and all compo-
nents of A, and A,. Spatial components and their coefficients
therefore indicate activities of each gene component at the
locations in a tissue. To analyze strong multiway interactions,
as indicated by large values in the core tensor, a sparse core
tensor can also be constructed by keeping the largest n% of
entries and setting all other entries to zero. To only use the
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strong interactions, the spatial components can then be con-
structed by replacing G with G” in Equation (2), where #
indicates the top 7% of entries kept in the core tensor.

3 Experiments

In the experiments, we measure GraphTucker’s performance by
evaluating its ability to estimate missing or holdout gene expres-
sion entries and capture known tissue structures by the spatial
components and the spatial coefficients of the gene modules on
several human and mouse 10x Genomics Visium and Stereo-seq
datasets. Multiple linear factorization models and a CPD model
are compared against GraphTucker as baselines.

3.1 Data preparation

The datasets used in this study are listed in Table 1 with spec-
ifications of the size, density, annotation, platform, and
source of each dataset. The MBSA, MBSP, and BRCA1 data-
sets were downloaded from 10x Genomics website https://
www.10xgenomics.com/products/spatial-gene-express. The
BRCAT1 data was manually annotated into 20 tissue regions
(Xu et al. 2024). The DLPFC Human Brain dataset was gen-
erated and annotated in the spatialLIBD project (Maynard
et al. 2021; Pardo et al. 2022; Huuki-Myers et al. 2023).
Two Stereo-seq mouse embryo datasets were dowloaded
from MOSTA with anatomical regions annotated based on
cell segmentation with nucleic acid staining image followed
by unsupervised spatial clustering and analysis of known spa-
tially variable marker genes (Chen ez al. 2022).

Given the hexagonal grid structure of the Visium protocol,
the datasets were adjusted by shifting odd-numbered rows by
half a spot to give a square grid. All gene expressions from a
tissue are then arranged into a three-way tensor
T € R™*" Extremely lowly expressed entries (less than 3
UMI counts) are set to 0. Low density genes with total UMI
counts less than 4 were also removed for better computa-
tional efficiency in the datasets used in the imputation experi-
ment and the larger Stereo-seq datasets used in the case
study. Rows and columns of all empty spots were also
cropped out and removed. Each entry in the tensor was then
log-transformed as Ty, < log(Tyxe+1). The size of the
processed data is given in Table 1.

Version 4.4.226 Homo sapien and Mus musculus PPI net-
works were acquired from BioGRID and used for human and
mouse datasets, respectively (Stark et al. 2006). PPI networks
were overlapped with each dataset based on intersection be-
tween the genes remaining after preprocessing and the genes
connected in the network.

3.2 Compared methods

We used three methods based on the factorizations shown in
Fig. 1A as well as NSFH as baseline comparisons, focusing
on linear methods that are able to extract spatial components
in spatial transcriptomics data so that they can be used for
direct quantitative and visual comparison to GraphTucker.

* Nonnegative Matrix Factorization (NMF) factorizes a
matrix Y into two matrices W, H such that Y= WH
(panel A1 in Fig. 1A). The number of columns in W and
rows in H is denoted as the rank, which can be tuned
according to the needed approximation accuracy. We ap-
ply NMF by flattening the spatial gene expression tensor

Ny XnyXng . . Mg XNy My . .
T € RY7™7 into a matrix Y € Ri*7 7, and factorize it
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into a gene component matrix W € Rigxr and spatial
component coefficient matrix H € R7™"™ where 7 is the
rank. We use the MATLAB function nnmf (), which is an
implementation of the algorithm in Berry et al. (2007),
for testing NMF.

* Regularized Nonnegative Matrix Tri-Factorization

(RNMTF) is a regularized Nonnegative Matrix Tri-

Algorithm 1 GraphTucker

Inputs:
Spatial gene expression tensor T € R, binary mask
tensor M € R(;}1”™ for selecting observed entries, PPI
network Gg, hyperparameter 4.
Initialize:
Randomly initialize A, € RY", A, € R, Ag € R
and G e R™ ™ Construct spatial chain graphs Gy
and G,.

while not converged do

], [,
ovec . ovec .
[vec(Gg)l; < [vec(Gyg))l; et

i i

AyU_1 ANV AgW_l]] // normalization

end while
Return: A A Ay, G

Broadbent et al.

Factorization (NMTF), which is an altered NMF that
allows for multiway interactions between gene and spatial
components through the addition of a core matrix S, such
that Y = WSH (panel A2 in Fig. 1A). This also allows W
and H to have their own ranks 7w and ry, such that
S e RW*™ . We adopted RNMTF (Hwang et al. 2012) to
include regularization to NMTF by introducing graph
regularization into the optimization, where W can be
seperatedly regularized by a PPI network and H by a x/y
spatial graph. These regularizations have corresponding
hyperparameters y and p, which we tuned to minimize ap-
proximation error.

Nonnegative spatial factorization (NSF) is a new method
that extends NMF to be both probabilistic and spatially
aware by modeling Gaussian processes across spatial
data, and was demonstrated for recovering spatial factors
in ST data (Townes and Engelhardt 2024). NSF factorizes
a matrix Y = FW, where F is the spatial factors matrix
with L components that models a Gaussian Process prior
over the factors, and W is the loadings matrix. A hybrid
version (NSFH) was also created that allows the separa-
tion of spatial factors into nonspatial and spatial ones.
We only use the spatial factors as we do not expect non-
spatial factors to provide useful components for spatial
component analysis. We followed the same preprocessing
and postprocessing experimental setup as used in their
experiments to obtain the spatial factors (components) us-
ing the top 2000 genes as determined by Poisson deviance.
We also run NSFH with the number of inducing points
(IPs) equal to the number of observations (spots) in each
tested dataset for the full resolution.

Fast Imputation of Spatially resolved transcriptomes by
graph-regularized Tensor completion (FIST) is a recently
developed method that uses the CPD for finding a regular-
ized tensor decomposition of spatial transcriptomics data
(panel A3 in Fig. 1A) (Li et al. 2021). FIST differs from
GraphTucker mainly in its ability to find multilinear rela-
tionships between its components. FIST spatial compo-
nents are computed by taking the outer product between
the rank-r pairs of components in its x and y fac-
tor matrices.

! oF, 1Tyl or 17T ) _ . . .
Fvec(Gg) vec(Gg) A note is that running FIST with 1 =0 is equivalent to
(Eq. S1. (28)) computing the nonnegative CPD of the given tensor without
regularization. Similarly, running GraphTucker with 1 = 0 is
equivalent to computing the nonnegative Tucker decomposi-
[G:A, A AT — [Gx;Ux,VxsWs tion without regularization. We tested both settings to dem-
AR (83.(29)) onstrate the importance of including graph regularization.

3.3 Imputation by spotwise cross-validation

We evaluated the generalization of GraphTucker, RNMTF,
and FIST by running 5-fold cross-validation across three

Visium datasets: MBSA, MBSP, and BRCA1. Cross-

Table 1. Summary of datasets.

Dataset Size (ny, ny, ng) Density Annotation Platform

Mouse Brain Section 1, Sagittal-Anterior (MBSA) (66,59,11327) 0.1239 NA 10x Visium [12]
Mouse Brain Section 1, Sagittal-Posterior (MBSP) (67,62,11285) 0.0987 NA 10x Visium [12]
Human Breast Cancer, Block A Section 1 (BRCA1) (60, 77,12 125) 0.1204 20 regions 10x Visium [12]
DLPFC Human Brain 151673 (59,76,17 891) 0.0134 7 layers 10x Visium [14, 15, 16]
Mouse Embryo E.9.5 E1S1 (Day 9.5) (80,107, 9687) 0.0703 11 organs Stereo-seq [17]
Mouse Embryo E.11.5 E1S1 (Day 11.5) (187,264,10 023) 0.0392 18 organs Stereo-seq [17]
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validation was performed spotwise where 20% of spots are
held out for testing by setting their entries equal to 0, with
the remaining 80% of spots used for training. Spots which
contain zero gene expression across all genes were not se-
lected for testing. In FIST and GraphTucker, test spots and
all-zero spots were excluded from training by using the mask
tensor. NMF was not compared against in this experiment
since the removal of whole spots completely prevents any im-
putation in its factorization. NSFH was also not compared
since its setting was only on 2000 genes in all the experiments
in the original study (Townes and Engelhardt 2024).

3.4 Spatial component analysis

We analyzed GraphTucker’s spatial components by compar-
ing them against ground-truth annotated regions in two
Visium datasets, BRCA1 Human Breaset Cancer dataset and
DLPFC Human Brain dataset, expecting good spatial compo-
nents can reveal detailed domain structures for biological in-
terpretation of spatial augmentations corresponding to the
annotations. First, after running each method on both data-
sets, we matched each annotated region to a corresponding
spatial component by calculating the Area Under the receiver
operating Curve (AUC) and Euclidean Distance (ED) pair-
wise between every region and spatial component. Matches
were selected by choosing the pairing with the lowest ED.

3.5 Spatial domain detection

In addition, we also performed k-means clustering on each
method’s spatial components across the spots using k =7
and k£ =20 to match the number of regions on the BRCA1
and DLPFC datasets, respectively. We then compared the
resulting clusterings to the ground-truth annotations to mea-
sure how closely each method’s spatial components captured
the annotated regions.

3.6 Evaluation metrics

Three metrics were used to evaluate cross-validation perfor-
mance: mean absolute error (MAE), mean average percent er-
ror (MAPE), and coefficient of determination (R?)
[Supplementary Equation S4(30)]. We use MAE and MAPE
to measure how accurate each method approximates missing
gene expression values, and R is used to measure how im-
puted expressions correlate with the original expressions
across a spot.

AUC was calculated by binarizing the annotated region on
the tissue, such that every spot in the region has a value of 1
and 0 everywhere else. AUC was then calculated by thresh-
olding a spatial component using the binary annotation as
labels for each spot. Euclidean distance (ED) was calculated
by normalizing both the binary annotation and spatial com-
ponent to length 1, and then, computing the Euclidean dis-
tance between the two. AUC and ED are used to measure
how closely a spatial component corresponds to a region,
with an AUC of 1 and ED of 0 indicating a perfect represen-
tation of the region.

In the clustering experiments, we computed the Adjusted
Rand Index (ARI) between these clusterings and the original
clusterings [Supplementary Equation S4(31)]. An ARI closer
to 1 indicates the spatial component clusterings better match
the original clusters.
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3.7 Parameter tuning

In the imputation experiments, we chose to use rank= 50 for
factorization with RNMTEF, FIST, and GraphTucker since
previous extensive experimentation with decomposition
analysis of the datasets showed that 50 components are suffi-
cient for achieving good imputation and using higher ranks
do not lead to consistent improvement (Song et al. 2023).
GraphTucker was run with rank = (50, 50, 50) for a high res-
olution in x/y coordinates. FIST and GraphTucker were both
tuned with and without graph regularization, and we report
the results for 1 = 0.1 as it gave stable performance across all
the datasets as previously observed (Li et al. 2021; Song et al.
2023). We also tuned y and p for RNMTF, but observed best
performance with p=0 and y=10.1,1,10] for MBSA,
MBSP1, and BRCA1, respectively.

For the spatial component analyses, each method was run
with the number of gene components equal to the number of
regions. GraphTucker was run with rank= (30,30,7) and
rank= (30,30,20) on the human brain and breast cancer
datasets, respectively, as we observed that 30 x/y components
provides a sufficient resolution for detecting the low number
of gene components. Specifically, on the human brain data-
set, NMF was run with rank=7, RNMTF with rank =
(7,50), and NSFH with L =7. Similarly on the breast cancer
dataset, NMF was run with rank =20, RNMTF with rank =
(20,50), NSFH with L =20. We also tested NMF, RNMTF
at other ranks around the number of ground-truth regions.
The detected components are not significantly different and
thus, we only show the results for ranks 7 and 20 on the two
datasets, respectively. Since FIST is inflexible in choosing
rank in each mode, we tested a larger rank = 50 and reported
the lower average ED in the comparison. We tuned 4 for both
GraphTucker and FIST and found 2 =1 to give the best
results for both AUC and ED. RNMTF was run with p =
0,y = 0.1 the same optimal parameters in the imputation
experiments.

In the case study on the two Stereo-seq mouse embryos, we
ran GraphTucker with rank= (64,64,64),4 = 0.1 for the
higher resolution of the spot grid, and complex annotations
of the organs in the mouse embryos, around 50 annotated
regions depending the developmental day. We, then, manu-
ally analyzed the resulting spatial components to look for vi-
sual matches to any of the annotated regions.

4 Results
4.1 GraphTucker imputes missing spatial gene
expressions in Visium data more accurately

We benchmarked GraphTucker against the baseline methods
to evaluate its performance in cross-validation experiments
across three 10x Genomics Visium datasets including mouse
brain sagittal-anterior (MBSA) and sagittal-posterior (MBSP)
datasets, and a human breast cancer (BRCA1) dataset. All
methods were evaluated by three performance metrics, MAE,
MAPE, and R? across all datasets as shown in Table 2.

In terms of MAE and MAPE, GraphTucker outperforms
both RNMTF and FIST across all three datasets. As expected,
GraphTucker and FIST perform better using graph regulari-
zation than without, with GraphTucker achieving improved
approximation over FIST when using A = 0.1. This difference
in performance is less pronounced on the BRCA1 dataset, al-
though GraphTucker is still slightly better. RNMTF performs
significantly worse than FIST and GraphTucker, which is
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Table 2. Spotwise cross-validation results across three Visium datasets.?

Broadbent et al.

MBSA MBSP BRCAL1
Methods MAE  MAPE R? MAE  MAPE R? MAE  MAPE R?

RNMTF, rank = (50,50) 1.19 0.69 -2.12 1.07 0.64 -1.77 1.08 0.64 -1.67
FIST, rank = 50, 1 = 0 0.33 0.21 0.61 0.35 0.22 0.39 0.31 0.20 0.61
FIST, rank =50, 1 = 0.1 0.30 0.19 0.68 0.33 0.21 0.41 0.30 0.19 0.68
GraphTucker, rank = (50,50,50), 1 = 0 0.34 0.21 0.56 0.36 0.23 0.32 0.31 0.19 0.61
GraphTucker, rank = (50,50,50), 4 = 0.1 0.29 0.18 0.71 0.31 0.20 0.49 0.30 0.18 0.70

2 The best results for each metric are marked in bold.

expected as it was not originally developed for generalization
in a spotwise cross-validation context.

GraphTucker similarly outperforms FIST in terms of R?,
demonstrating it can better impute missing values that corre-
late more closely to missing gene expressions. In datasets
with highly sparse expressions across even a small number of
genes, a poor generalization for these genes can result in very
low and sometimes negative R* as seen in RNMTF.

4.2 GraphTucker detects spatial components that
capture known tissue regions in annotated
Visium data

To analyze the GraphTucker’s components, we evaluated
how closely its spatial components captured known tissue
regions in the two annotated Visium datasets from the human
brain tissues consisting of seven regions, and the human
breast cancer tissue with twenty regions. The results are visu-
alized in Figs 2 and 3 for the two datasets, respectively. We
also found that using the top 10% and 5% of core tensor
entries in the human brain and breast cancer datasets respec-
tively gave lower ED and and higher AUC on average across
matched spatial components as shown in Supplementary
Figs. S1 and S2. Despite using such a small amount of entries
in the core tensor, they accounted for 0.835 and 0.684 of to-
tal interactions respectively for the two datasets.

As shown in Table 3, GraphTucker using the top 10% and
5% of core tensor entries had the best average AUC and ED
of its region-spatial component matches on the human brain
and BRCAT1 datasets. This suggests GraphTucker can suffi-
ciently capture a wide variety of regions in its components,
even with a high number of closely packed regions such as in
the breast cancer tissue. Furthermore, these results indicate
that many of these spatial domains can be captured by a rela-
tively low number of component interactions of high impor-
tance, which GraphTucker excels at finding.

In the human brain dataset, GraphTucker achieves the
highest AUC and lowest ED in regions L3 and L6, as well as
the highest AUC in L1 and L4 and lowest ED in WM, as
shown in Fig. 2. NSFH has the best performance for the L5
region, and highest AUC for the WM. Lastly, NMF best cap-
tures the L2 region. An important note is that GraphTucker’s
and NSFH’s spatial components are noticeably smoother
compared to NMF due to their respective usage of graph reg-
ularization and Gaussian Process prior.

In the breast cancer dataset, we report visualizations and
metrics for eight of the twenty regions in Fig. 3. GraphTucker
achieves the highest AUC and lowest ED in six of the shown
regions, DCIS-LCIS1, DCIS-LCIS 4, IDC 2, IDC 5, IDC6,
and IDC7, as well as the highest AUC in DCIS-LCIS 3. NSFH
best captures IDC 4 and FIST achieves the lowest ED in

DCIS-LCIS 3. Complete results for all twenty regions are pro-
vided in Supplementary Fig. S3. An important note is that
some regions are captured best by the same component,
which we observed in regions IDC 6 and IDC 7, as both
NMF, FIST, and GraphTucker captured these regions in the
same spatial component.

On the Human Brain dataset, we obtained a curated layer-
specific marker gene list from Maynard ef al. (2021) and
compared the top genes in the matched gene components of
GraphTucker, NMF, RNMTF, and FIST. We excluded WM
and L1 regions in this analysis since they only have five
marker genes each. We found significant overlap in all the
other five regions L2-L6. NSFH is not applicable in this
analysis as only 25 of the 126 marker genes were present in
the 2000 genes pre-selected for training. Supplementary Fig.
S3 shows that GraphTucker is able to highly rank layer-
specific marker genes in its gene components, and overall
finds these genes better than the other methods. On a region-
by-region basis, in some cases NMF and FIST have slightly
larger overlap (see P-values in Supplementary Tables S2-S4).
Regardless, these results provide additional evidence that
GraphTucker gene components capture the layer-specific
expressions by recovering many marker genes known in
the literature.

For the six tumor edge regions, we observed only three
GraphTucker spatial components to match to these six
regions, with four regions being best captured by a single
component. Since each component alone was not sufficiently
visualizing any one region, we combined all three compo-
nents using all core tensor entries and averaged them to deter-
mine how well the tumor edges were captured as a whole,
which is shown in Fig. 4. These averaged components provide
a significantly better visualization of the tumor edge regions
than when separated. Although the spatial components con-
structed from the top 5% of core tensor entries can approxi-
mate most of the tumor edge regions, using more entries gives
a better overall segmentation of the combined regions, espe-
cially for capturing tumor edge regions. Given that the
regions were annotated based on morphological features
rather than regional gene expressions, every region might not
be separable based on their spatial gene expression. In fact,
our results suggest that these tumor edge regions might share
more similar expression patterns as detected by the three spa-
tial components.

Lastly, we ran k-means clustering on each method’s spatial
components and compared the clusterings against the
ground-truth annotations for both datasets, as shown in the
first columns of Figs 2 and 3. In the human brain tissue, none
of the methods is able to completely delineate the L1-L5
regions; however, GraphTucker does achieve the highest ARI
and correctly captures the L6 region, which only NSFH is
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Table 3. Region-spatial component matching.?

Broadbent et al.

Human brain (7 regions)

BRCAT1 (20 regions)

Methods Avg. AUC Avg. ED Methods Avg. AUC Avg. ED
NMF rank =7 0.740 1.007 NMF rank =20 0.865 1.073
RNMTF rank=(7,50) 0.734 1.007 RNMTF rank=(20,50) 0.817 1.146
NSFHL=7 0.825 0.921 NSFH L=20 0.862 1.033
FIST rank =7, =1 0.684 1.038 FIST rank =50, A=1 0.791 1.033
GraphTucker rank=(30,30,7), 1=1 0.826 0.926 GraphTucker rank=(30,30,20), A=1 0.893 1.008
GraphTucker'% rank= 0.871 0.906 GraphTucker’” rank= 0.903 0.976
(30,30,7), =1 (30,30,20), =1

2 The best metrics are marked in bold. GraphTucker”” indicates using 7% sparse core tensor.

able to capture with a similar structure, albeit not as smooth
and slightly shifted. GraphTucker also achieves the highest
ARI on the breast cancer dataset and has significantly
smoother clusters compared to NSFH and NMF, the next
two best methods. We also repeated spot clustering using
sparse core tensors but observed that ARI was not improved
when using less entries while still being better than all the
baseline methods.

4.3 GraphTucker identifies important early
developmental regions in high-resolution Stereo-
seq mouse embryos

To understand how GraphTucker may generalize to different
datasets, we used two Stereo-seq mouse embryo datasets
(Chen et al. 2022) as a case study to analyze how
GraphTucker may identify known annotated regions in high-
resolution data. The two embryos are from days 9.5 and 11.5
in the embryonic stage and have annotations of several im-
portant developmental regions.

We observed in both datasets that GraphTucker was able
to accurately identify eleven regions in the day 9.5 embryo
and ten in the day 11.5 embryo, shown in Fig. 5. Several of
the spatial components correlate highly to the annotated
regions, for example, the dermomyotome, heart, and liver in
both embryos, and the neural crest and notochord in the day
9.5 embryo. Some regions, such as the brain, were captured
by more than one spatial component, though we chose to
present the spatial component that best captured the region
as a whole. The blood vessel, connective tissue, inner ear, jaw
and tooth, lung primordium, meninges, spinal cord, and sur-
face ectoderm regions in the Day 11.5 embryo are not
reported as we identified no spatial components that clearly
matched to these regions.

4.4 Runtime analysis shows GraphTucker is
scalable to Visium and Stereo-seq data

Empirical runtimes were measured on a server with a config-
uration of Intel® Xeon® ES52687W v3 3.10 GHz, 25M
Cache, and 256GB of memory. We measured the time needed
for 50 iterations on each of the datasets. We report the aver-
age time needed for one iteration, and do not observe any sig-
nificant deviance at later iterations. A full table of ranks used
for runtime testing are provided in Supplementary Table S6.
The runtime for each method across each dataset are pro-
vided in Supplementary Fig. S35.

Running GraphTucker on the four Visium datasets and
MOSTA 9.5 dataset took between one to two hours to finish
1000 iterations using around 20GB memory. Although
GraphTucker was run using 5000 maximum iterations to

Tumor edges

Averaged Spatial Components

Figure 4. Comparison of six tumor edge regions with spatial components
found by GraphTucker. The combined component was averaged from
three spatial components, one of which matched to four tumor

edge regions.

ensure sufficient convergence in our experiments, we observe
similar results for spatial components when running with
1000 iterations that produces visually identical spatial com-
ponents in significantly reduced total runtime.

GraphTucker and the MATLAB NMF implementation are
both several times slower than FIST and RNMTF on both
Visium and Stereo-seq data. Since runtime is significantly
dominated by the 7, term, with relatively low ranks ry,7,,
and rg, runtime is not significantly affected by the size of the
tissue 7, and 7, unless using very high-resolution spatial tran-
scriptomics data. We observe this substantial increase on the
Stereo-seq Day 11.5 mouse embryo, as running GraphTucker
with rank= (64, 64,64),4 = 1 on the dataset with 1000 itera-
tions took 6 hours using 81GB memory. This large increase
also occurs in NMF as shown in Supplementary Fig. S5.

NSFH was not directly comparable as we observed a high
variance in its runtimes and numerical stability. NSFH was
tested on the BRCA1 dataset with maximum inducing points
and rank L =20, and ran five times using 2000 or 10,000
genes. Run times in both scenarios were inconsistent and var-
ied between 2 and 5 hours. In comparison, the run time for
GraphTucker on BRCA1 with rank=(50, 50,20),1 = 0.1 for
1000 iterations is around 1.5 hours. Thus, the runtime of
NSFH and GraphTucker is similar on the Visium data.

5 Discussion

In the experiments, we demonstrated GraphTucker as not
only an improved imputation method, but also as a high-
order factorization method for finding spatial components
that delineate complex spatial regions across tissues. These
components are able to capture highly irregular regional
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Figure 5. Developmental regions across Days 9.5 and 11.5 mouse embryo tissue and matched spatial components from GraphTucker. Regions in the

Day 11.5 embryo with no clear matching component are not shown.

structures due to their multilinear relationships and smooth-
ness from PPI and spatial graph regularization. A significant
aspect of GraphTucker shown in the spatial component
analysis is its ability to identify the most important compo-
nent interactions, as we observed that selecting only a top
fraction of core tensor entries can lead to improved perfor-
mance for spatial domain detection. This suggests that the
majority of spatial variation in gene expression can be cap-
tured with a few components, and considering too many
interactions may be detrimental. The option of investigating
the sparse structure in its core tensor offers flexibility in iden-
tifying the most important interactions, depending on
the analysis.

In our case study on two Stereo-seq mouse embryo, we
sought to understand how GraphTucker can generalize on
higher resolution datasets. Despite the lack of ground-truth
annotation, we were still able to manually identify several re-
gional matches among GraphTucker’s spatial components.
Several spatial components uniquely highlight certain
regions, such as the heart and liver in both embryos, suggest-
ing that the corresponding gene components are highly spe-
cific to these developmental regions.

6 Conclusion

GraphTucker is a novel, high-order, multilinear method for
spatial transcriptomics data factorization that employs a
graph-regularized Tucker decomposition model for gene ex-
pression imputation and gene and spatial component analy-
sis. Cross-validation experiments across three Visium
datasets demonstrate GraphTucker’s improvement in impu-
tation over existing methods. Visualization and quantitative
analysis of GraphTucker’s components on annotated human
brain and human breast cancer tissues further exemplify the
correctness and significance of its spatial components. Lastly,
our case study on two mouse embryo datasets show potential
for GraphTucker’s use for generalization and downstream
analysis of gene components. Further research should be con-
ducted to analyze GraphTucker gene components as they

may contain important gene modules that can reveal new cell
and gene functionalities corresponding to their regional loca-
tions as indicated in the spatial components. In addition, fur-
ther application of GraphTucker on 3D datasets once they
can be generated could provide even more insight into the
spatial distribution of cells and their gene expressions in full
3D space.

Supplementary data

Supplementary data are available at Bioinformatics online.
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