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Abstract

This paper attempts to discover communica-
tion patterns automatically within dog vocal-
izations using a data-driven approach, which
breaks the barrier that exists in previous meth-
ods that heavily rely on human prior knowledge
of limited data. We present a self-supervised
approach with HuBERT, enabling the accurate
classification of phones, and an adaptive gram-
mar induction method that identifies phone se-
quence patterns suggesting a preliminary vo-
cabulary within dog vocalizations. Our results
show that a subset of this vocabulary has sub-
stantial causal relations with certain canine ac-
tivities, suggesting signs of stable semantics
associated with these “words.”

1 Introduction

The concept of “animal language” hinges on the
intricate ways through which non-human species
communicate, revealing a spectrum of vocaliza-
tions, gestures, and behavioral cues that resemble
humans’ capabilities to convey information and
emotions. The study of animal communication has
captivated researchers across numerous disciplines,
from biology to linguistics (Rutz et al., 2023; Pala-
dini, 2020; Robbins, 2000; Pardo et al., 2024).

While it is commonly accepted that most animals
lack a language system comparable to human lan-
guages, recent advancements in natural language
processing have opened up new avenues for investi-
gating the patterns and structures embedded within
animal vocalizations (Huang et al., 2023; Wang
et al., 2023; Sharma et al., 2024). The study of ani-
mal language abilities, therefore, not only broadens
our understanding of the animal kingdom but also
deepens our insights into the evolution and func-
tions of communication systems across species.

Despite observable acoustic variations in canine
vocalizations that hint at potential patterns of com-

* These authors made equal contribution.
† Corresponding authors.

munication, asserting that dogs possess a language
is fraught with limitations. The absence of iden-
tifiable phones and structured syntax in their vo-
calizations challenges traditional linguistic frame-
works (Holdcroft, 1991). While dogs exhibit a
range of sounds that vary in pitch, duration, and
intensity, as illustrated in Figure 1 (sound clips ex-
tracted from Audioset (Gemmeke et al., 2017)), six
distinct dog barking sounds are identified. How-
ever, these variations alone do not constitute a lan-
guage. The lack of a structured, consistent phonetic
system and the inability to form complex ideas
through their sounds significantly limit the compar-
ison of their vocalizations to human language.

Figure 1: Spectragrams of six different dog barking
sounds from AudioSet (Gemmeke et al., 2017).

Nevertheless, undertaking the challenge of ex-
ploring the concept of animal language is a daunt-
ing task. Unlike well-researched human language,
the frequency range and phonetic variations re-
main underexplored, rendering the classification
approach based on sound amplitude inadequate for
discerning the fundamental phones of dog vocal-
izations. The difficulty lies not only in interpret-
ing the acoustic variations but also in identifying
meaningful patterns within the vast array of ani-
mal sounds. This complexity is compounded by



the need to distinguish between mere noise and
significant vocalizations that could indicate some
form of structured communication. The endeavor
requires innovative methodologies and a departure
from traditional linguistic analysis.

Our approach to navigating these challenges in-
volves leveraging advanced signal processing tech-
niques and self-supervised learning models. By
focusing on the acoustic features of dog vocaliza-
tions, we aim to uncover underlying patterns that
suggest an elementary form of phonetics. This
involves a systematic process of audio cleanup,
sentence extraction, phone recognition, and com-
bination across vocalizations from different indi-
vidual dogs. Given the lack of prior knowledge of
dog vocalizations, we apply a self-supervised ap-
proach, HuBERT (Hsu et al., 2021), for representa-
tion pretraining and phone identification. HuBERT
can effectively reference the contextual information
of the audio and generate vector representations,
which provides robustness when faced with vocal-
izations that have slight variations in context.

Utilizing the precise sequences of phones ac-
quired from various dog vocalizations, we explored
the feasibility of creating a vocabulary of frequently
occurring subsequences of phones, which we call
“words” here 1. We identify these words by apply-
ing an adaptor grammar induction algorithm (Zhai
et al., 2014) on a simple but universal syntax. We
assess the validity of a word by evaluating the sta-
tistical correlation between its occurrence and the
dog activities before, during, and after the utter-
ance of the word, which serves as an indication of
consistent lexical semantics. Our analysis revealed
that a sizable portion of the vocabulary possesses
semantics.

Our contributions lie in three aspects:

1. We developed a first-of-its-kind automatic
pipeline for transcribing dog vocalizations
into a sequence of phones (with unique la-
bels) and further parsing it into a sequence of
words with semantics;

2. Utilizing a shallow grammar, we were able
to discover a vocabulary of words without
supervision that covers 91.89% of phones in
more than 34,000 dog “sentences”;

1For ease of discussion, we are reusing the terms “phone”,
word”, and “sentence” in a similar way as we do for human
languages, despite the lack of universal agreement on the
linguistic capability of dogs. We provide the definitions of
“phone”, “word”, and “sentence” in Sec. 3.1, Sec. 3.2, and
Sec. 2.2, respectively.

3. By classifying the dog activity events sur-
rounding the dog vocalizations and computing
the causal strength between words and sur-
rounding activities, we validated that 87.1%
of the discovered words carry meanings.

2 Data Collection and Segmentation

In this section, we detail our workflow2 (Figure 2),
including audio cleanup by AudioSep, sentence ex-
traction, dataset preparation, phone recognition,
word discovery, and semantics discovery. The
first three parts are primarily intended to gather
large amounts of high-quality data on dog barking,
while the last three parts aim to investigate potential
phones and words in dog vocalizations.

Figure 2: A workflow to discovery phones and words in
canine vocals.

2.1 Audio Clean-up by AudioSep
A mixture of dog sounds and noises will inevitably
occur due to the use of videos from public social
media. These noises can include background mu-
sic edited in by the video uploader, human speech,
toy noises, etc. We expect a cleaner dataset, so
we need to separate dog sounds from all mixed
audio. In this work, we use AudioSep (Liu et al.,

2The code and dataset are available at https://github.
com/UTA-ACL2/canineLexical

https://github.com/UTA-ACL2/canineLexical
https://github.com/UTA-ACL2/canineLexical


2023), a foundation model for open-domain audio
source separation with natural language queries.
AudioSep is pre-trained on large-scale multimodal
datasets, including the AudioSet (Gemmeke et al.,
2017), VGGSound (Chen et al., 2020), and Audio-
Caps (Kim et al., 2019) datasets, etc. We apply
AudioSep, using “Dog” as the input text query, to
separate dog sounds from all audio. After this step,
we will be working with higher-quality dog vocals.

2.2 Sentence Extraction

After the separation of dog sounds, the audio
will contain mostly barking, silence, and a small
amount of noise that cannot be removed. Next,
we segment the dog vocalization audio clips into
“sentences,” each containing a sequence of dog
vocals using an approach similar to Huang et al.
(2023), which defines a sentence as a continuous se-
quence of dog barks with no more than 0.5 seconds
of silence in between. We apply PANNs (Kong
et al., 2020) pretrained on the large-scale AudioSet
dataset to extract dog sentences. In order to acquire
higher quality data, we initially manually labeled
some dog barking data from our dataset. The data
consisted of 1,483 dog barking audio clips with a
total duration of more than 9,597 seconds. We uti-
lized this data to fine-tune the pre-trained PANNs
model and achieved an F1 score of 0.69. Then,
consecutive clips less than 0.5 seconds apart are
combined to form a dog “sentence.”

To further reduce noise, sentences that meet one
of the following conditions will be removed: (1)
“Dog” label score less than 0.1; (2) One of the top
10 sound event tags is not related to dogs and has
a score greater than the score for the dog tag, or
the difference between the score and the score for
the dog tag is less than 0.7. With this process, we
obtain more and cleaner sentences than Huang et al.
(2023).

To verify the effectiveness of AudioSep and
to confirm that it did not have a significant im-
pact on sound quality, we manually labeled 1,467
seconds (1,137 seconds for training and 330 sec-
onds for testing) of dog barking audio to fine-tune
PANNs. The results (Table 1) show that AudioSep
can effectively reduce noise interference without
significantly impacting the quality of dog sounds.
The setting with the highest F1 score is adopted
for all subsequent experiments and analyses.

Train Data Test Data F1 Score
- - 0.6916
! - 0.6797
- ! 0.77550.77550.7755
! ! 0.7709

Table 1: The result of PANNs. Those with a! mark
use AudioSep.

2.3 Dataset
Our raw dataset contains more than 6.8k YouTube
videos of various types of dogs, including those
from Huang et al. (2023) and AudioSet (Gem-
meke et al., 2017). After the sentence extraction
in our workflow, we obtained 37,919 dog “sen-
tences”(more than 23 hours) from more than 1,300
users. Compared to previous studies(Huang et al.,
2023; Abzaliev et al., 2024; Yin and McCowan,
2004), our dataset significantly exceeds them in
terms of dog barking duration and the number of
dogs.

Obviously, mispronunciation problems can arise
in human speech datasets due to various reasons,
such as non-native speakers, speech disorders, or
simply errors in articulation. This might also
be the case with our dog dataset or other dog
datasets (Huang et al., 2023; Abzaliev et al., 2024;
Yin and McCowan, 2004). With the largest amount
of high-quality dog data compared to previous stud-
ies, we can mitigate the impact of mispronunciation
problems. Furthermore, our dataset may be easily
extended.

3 Phonetic and Lexical Discovery

In this section, we detail our approach in training a
model to identify canine phones from the above seg-
mented data and discover possible semantic units.

3.1 Phone Recognition
After extracting clean dog vocaliztions, we en-
deavor to discover minimal sound units (referred
as phones) from these clips. In our study, we
have meticulously isolated distinct vocalizations
from dogs, aiming to identify the fundamental
sound components, which we refer to as phones,
within these recordings. To achieve this, we
have employed HuBERT (Hsu et al., 2021), a
self-supervised learning technique that assimilates
acoustic and linguistic data from ongoing audio
streams. Since there is no established phone set
for canine vocalizations, it is difficult to manually
label each audio clip with designated phone labels.



Such a self-supervised method has been instrumen-
tal in our analysis of canine vocalizations. The
research by Hsu et al.’s (2021) has already estab-
lished HuBERT’s proficiency in delineating the
nuances of human speech, where it is posited that
the output classes from HuBERT could be analo-
gous to phones (or sub-phones) in the context of
human languages, serving as carriers of phonetic
information.

Specifically, we pretrain a Dog-HuBERT using
all sequences of dog vocalizations, which total
more than 20 hours of dog sentences. We used
100 clusters at the first stage and 150 clusters at
the second stage, a learning rate of 0.0001, and
80k training steps at the first stage and 60k training
steps at the second stage. The other settings are
the same as those in Hsu et al. (2021). Then, we
used features from the 11th transformer layer of the
second-stage model to train a K-Means model with
140 clusters. Figure 3 illustrates the clusters, indi-
cating dog phones and noise labels, respectively.
The clusters are determined based on the sum of dis-
tances from each sample to its cluster center for dif-
ferent clusters (Figure 4). It is a good choice when
the curve flattens out, allowing for enough clusters
without adding too many noise labels. Clearly, the
cluster centers are evenly distributed, and the noise
phones are mainly concentrated in one corner of
the image, indirectly indicating the reliability of
the phone discovery results.

Figure 3: t-SNE plot of 140 different phones from Dog-
HuBERT.

We regard the distinct classes produced by Dog-
HuBERT as the basic units of canine vocal expres-
sion. Consequently, we define these output classes
as the fundamental components within a dog’s bark,
dubbing them the dog’s “phones.” This terminol-

Figure 4: Inertia under different number of clusters K.
140 is picked as the optimal number of clusters due to
the “Elbow Method.”

ogy aligns with the concept of phones in linguistics,
signifying the smallest units of sound that carry
meaning.

3.2 Word Discovery

We define a “word” as the smallest sequence of
phones that consistently appears in one or more
specific situations. In our proposed pipeline, af-
ter the phone recognition step, we acquire a set
of phones and can transcribe each sentence into a
phone sequence. We continue to explore the poten-
tial words from these sentences.

The lack of prior knowledge in animal language
prevents us from using discriminative deep learn-
ing methods (Baevski et al., 2021), while brute-
force methods fail to capture the language struc-
ture. Adaptor Grammar (Johnson et al., 2006) can
statistically learn recurrent sequence segments and
build context-free grammar (see Appendix ?? for
more discussion about Probabilistic Context-Free
Grammars (PCFGs)). Following a previous well-
performing method, we adopt Hybrid Variational-
MCMC Inference (Zhai et al., 2014) to train the
parameters of the Adaptor Grammar, ultimately
obtaining a candidate vocabulary.

We use Si = {pj |1 ≤ j ≤ Ji} to denote a
sentence, or a series of phones, where a phone
pj ∈ P, in which P is a set of integers, and Ji
stands for the length of sentence i.

To discover the latent hierarchical linguistic
structures in canine sentences, we use underlines
to indicate adapted non-terminals and use + to
indicate right-branching recursive rules for non-
terminals.



Sentence → Word+

Word → Phone+

Phone → p for p ∈ P

We treat the nonterminal Word as an adapted non-
terminal, learning the relationship between Word
and observation segments during training. We
parse the entire training data using the trained
model, as shown in Figure 5, obtaining the parse
results for each utterance. By calculating the occur-
rence counts of each word across all sentences, we
ultimately obtain a ranked list of candidate words.

Figure 5: Parsing a sentence.

3.3 Semantics Discovery
To thoroughly understand dog vocalization, we
need to obtain complete contextual information
such as weather, environment, and the vocaliza-
tion target, since these factors could be reactions
to or causes of changes in the context. It is very
challenging to obtain complete contextual infor-
mation; however, we can obtain partial context to
explore the coarse-grained semantics behind that
dog barking sound (Berthet et al., 2023).

We believe the meaning of a word is determined
by a causal relation between the context and the
word. Specifically, if a contextual event causes a
word to be uttered, this usually means that the word
is a reaction to the event. On the other hand, if
a word causes an event to occur, this means that
the word is a request for the event. We broadly
categorize the dog events into 14 different dog ac-
tivities (Table 2), following Wang et al. (2023). We
implemented a method for recognizing canine ac-
tivities in three distinct phases: before, during, and
after the utterance of a word. For each isolated seg-
ment of a dog’s vocalization, which we refer to as
a “sentence,” we expanded the analysis to include

a 5-second window both before and after the vo-
calization. To ascertain the dog’s activities within
these time frames, we employed a video under-
standing model called Temporal Segment Network
(TSN) (Wang et al., 2016), one of the state-of-the-
art models designed for video analysis.

To enhance the model’s performance, we supple-
mented it with manually labeled 2,534 clips with a
balanced number in each category, which allowed
us to fine-tune the pre-trained TSN model. This
process resulted in an improvement in accuracy,
achieving 0.61 for top-1 accuracy and 0.92 for top-
5 accuracy. Subsequently, the identified canine
“words” were categorized into specific time seg-
ments using an activity position classification al-
gorithm (Algorithm 1). This approach ensures a
comprehensive understanding of the dog’s activity
before, during, and after its vocalizations, provid-
ing insights into the context and triggers of barking
incidents.

Type Categories

Activity Standing, Walking, Sitting, Laying down,
Eating, Sleeping, Running, No dog, Tak-
ing a shower, Sniffing, Playing with human,
Playing with a toy, Swimming, Begging for
food

Table 2: The categories of dog’s activities.

Algorithm 1 Activity Position Classification Algo-
rithm
Input: activity_start, activity_end,word_start, word_end
Output: activity position
len1← word_start− activity_start;
len2← activity_end− activity_start;
len3← activity_end− word_end;
len4← word_end− word_end;
if len3 ≤ 0 ∥ len1 ≤ 0 then

if len1/len2 ≥ 0.5 then return "before";
else if len3/len2 ≥ 0.5 then return "after";
end if
return "during";

end if
if len4 ≥ len1 && len4 ≥ len3 then return "during";
end if
if len1/len2 ≥ 0.3 && len3/len2 ≥ 0.3 then

return ("before", "during", "after");
end if
if len1/len2 ≥ 0.3 && len3/len2 ≤ 0.3 then return "before";
end if
if len1/len2 ≤ 0.3 && len3/len2 ≥ 0.3 then return "after";
end if

To compute the causality strength (CS) between
an activity and a word, we adopt the following
approach.

CS(a⇝ w) =
count(a → w)

count(w)
− count(a)∑︁

a count(a)

where a → w denotes activity a is before word w.



CS(w ⇝ a) =
count(w → a)

count(w)
− count(a)∑︁

a count(a)

where w → a denotes activity a is after word w.
If any candidate word has a strong enough causal

relationship with an activity, we say that this word
is genuine.

4 Evaluation

In order to investigate: (1) whether the phones after
Dog-HuBERT are distinct and accurate, and (2)
whether the words discovered are complete and
semantically consistent, we evaluate our models’
performances on phone recognition accuracy and
vocabulary discovery.

4.1 Phone Evaluation
Setup A successfully classified phone should
possess the following two properties: (1) the same
phones should sound very similar, and (2) distinct
phones should sound different (Twaddell, 1935).
We verify the reliability of the phones we obtained
by comparing consecutive identical phone audio
samples. To assess the similarity of phones iden-
tified as the same, we randomly sampled 2 audio
clips from different users for each phone, forming
a test set of 140 pairs. To verify the differences
between different phones, we selected 50 pairs of
different phones with the closest cluster centers and
randomly sampled 3 audio segments from different
users for each phone, with each segment consisting
solely of that phone, forming a test set of 150 pairs.
In total, there are 290 pairs.

The consistency among testers and the results of
distinguishing identical or distinct phones are indi-
cators for measuring the reliability of the phones.

The testers are two college students majoring in
engineering who love small animals and partici-
pated in the experiment as volunteers.

Results The phone evaluation results are shown
in Table 3. Under the condition where the testers’
agreement rate is greater than 71%, they can be
considered capable of accurately distinguishing the
same or different phones from an acoustic perspec-
tive.

For the internal consistency of each phone, an
accuracy of at least 62% indicates that the instances
of the same phone are indeed similar. Additionally,
testers reported that the audio of canine calls was
generally similar, whereas the differences between

noises belonging to the same noise label were rela-
tively large.

For the external differences between different
phones, we selected the 50 pairs of phones with the
smallest Euclidean distance between their cluster
centers, which significantly increased the difficulty
of distinguishing these phones. An accuracy rate
exceeding 50% would indicate that these phones
are distinct from each other.

Table 4 shows the average duration, median du-
ration, and standard deviation of the dog phones
and noise labels. The shorter average duration of
noise labels and the longer average duration of dog
phones further demonstrate the accuracy of phone
recognition.

Tester AP SPP DPP
Tester 1 58.28% 62.86% 54.00%
Tester 2 60.00% 66.43% 54.00%
Agreement 71.38% 75.00% 68.00%

Table 3: Accuracy and agreement result on testing the
reliability of phonem discovery. AP: all pairs, SPP:
same phone pairs, DPP: different phone pairs.

Dog Noise All
Mean 60.5 ms 37.3 ms 52.5 ms
Median 40 ms 20 ms 40 ms
Std 65.5 ms 35.3 ms 58.0 ms

Table 4: The durations of dog phones and noise labels.

Overall, we have obtained reasonably accurate
phone discovery, both in terms of the internal con-
sistency of instances within the same phone and
the differentiation between phones. These phones
provide a foundation for further exploration into
“words” in canine language.

4.2 Lexical Evaluation

Setup To measure the potential semantics within
the candidate words we discovered, we select the
200 words with the highest occurrence counts in
the sentences after excluding words that contain
more than half noise phones. We also calculated
the sentence coverage rate and word length using
the top 100 and top 200 candidate words to measure
the importance of the latter 100 candidate words.

In addition to the properties of the candidate
words themselves, we also calculate the reaction
CS score and request CS score for the top 200
candidate words in relation to each activity. The
higher the CS score, the stronger the association
between the word and the activity. Conversely,



the closer the CS score is to zero, the weaker the
association between the word and the activity. A
negative CS score indicates a negative correlation
between the word and the activity.

Figure 6: The distribution of word lengths in our dictio-
nary.

Results We first look at the top 100 and 200 can-
didate words obtained through adaptor grammar
induction. Figure 6 shows the distribution of dis-
covered candidate words over the word length (i.e.,
number of phones in a word). We can see that
most candidate words are unigrams, but there is
a significant number of bigrams and trigrams in
the discovered vocabulary. The average duration
of the top 100 candidate words is 0.064 seconds,
while that of the top 200 candidate words is 0.072
seconds. The variance in duration for the top 100
candidate words is 0.0037 seconds, and for the top
200 candidate words, it is 0.0047 seconds.

Sentences (%) Phones (%)
Top 100 89.57 80.18
Top 200 90.75 91.89

Table 5: The coverage of sentences and phones by top
words in our vocabulary.

Next, we look at the coverage of our entire cor-
pus by these top-ranked candidate words. Table
5 shows that they cover 90% of the sentences and
also the majority of the phone sequences in the
corpus.

Table 6 shows a set of words that have a causality
strength greater than or equal to 0.07 with each
activity. These words are considered genuine by
the framework. Most of these words are bigrams or
trigrams. One interesting word is 116-46-3, which
is a reaction to “eating” but requests “laying down.”
After checking against the raw videos, we realize
that the eat - bark - lay down procedure occurs
with a number of dogs, and from the videos, we
speculate that 116-46-3 expresses something like
“I’m full.”

Activity Word React/Request
Standing 59-124-11 Both
Walking 125 Both
Sitting 92-36 Both
Laying down 7-42-22 React

116-46-3 Request
Eating 116-46-3 React

31-105 Request
Sleeping 126-104 Both
Running 25 React

59-74-139 Request
Taking a shower 81-4-81 Both
Sniffing 124-11-104 Both
Playing(Human) 34 Both
Playing(Toy) 38-135 Both
Swimming 113-4-59 React

43-25-9 Request
Begging for food 92-36 React

128 Request

Table 6: Activity and their most associated words

Then, they look at the flip side of the experiment,
and Table 7 shows the top activities associated with
the top 35 words. It is interesting to see that there is
a strong correlation between sitting and begging for
food, which suggests that dogs tend to beg for food
while sitting, rather than standing. We also find
that there are many bigrams, trigrams, and even
4-grams among the top 35 words.

Finally, we assess the accuracy of the top 35
words through human evaluation. Appendix B
shows the causal strength of all activities with re-
spect to these words. We employ three human
judges to examine these graphs and label each word
as either plausible or not plausible based on their
reasoning regarding the relationship between the
peak activities in each graph. Specifically, if a
graph contains a single significant peak, or if the
graph contains multiple peaks that have a strong
semantic connection, then the word is considered
plausible. The annotated results indicate that 87.1%
of the top 35 words are plausible.

5 Related Work

To decode a dog’s language, it is necessary to ana-
lyze its basic sound units, linguistic structure, lexi-
con, meaning, and more. The past few years have
seen a surge of interest in using machine learning
(ML) methods for studying the behavior of nonhu-
man animals (Rutz et al., 2023). Much of the past
work has primarily focused on dog behavior (Abza-
liev et al., 2024; Ide et al., 2021; Ehsani et al., 2018)
and the meaning of dog sounds (Molnár et al., 2008;
Hantke et al., 2018; Larranaga et al., 2015; Hantke
et al., 2018; Pongrácz et al., 2006). Most of these



Word Activities
59-124-11 standing
113-59-124 standing
124-11-104 standing
27-91 standing, sitting
110-31 standing
124-11 standing, walking
59-124-74 standing
11-104 standing
7-42-22 laying down
91-131 standing
59-124 standing
27 standing
46-3 laying down
116-46-3 laying down
128 sitting, begging for food
92-36 sitting, begging for food
7-42-51 laying down
34 playing with human
81-4-81 sitting, taking shower
61-70 begging for food
125 walking
36 sitting, begging for food
5-70 sitting, begging for food
38-135 laying down
113-59-83-17 laying down
59-74-130 standing
57-92 sitting, begging for food
56 sitting, playing with human
51-22 laying down
12-36 sitting
98 playing with human
136 standing
126-4-126 playing with human
66 standing
83-9-16 begging for food

Table 7: Top 35 words (CS > 0.07) and their associated
activities

studies only classify the audio of dog sounds into
multiple categories, including activities, contexts,
emotions, and ages. They did not study the sound
units of the dog’s language.

Several researchers (Hagiwara, 2023; Abzaliev
et al., 2024) have shown that self-supervised meth-
ods are equally adept at analyzing and character-
izing the vocalizations of animals. Specifically,
the work by Hagiwara et al.’s (2024) has utilized
HuBERT to establish a phonetic alphabet that tran-
scends species, facilitating the transcription of ani-
mal sounds.

The above work illustrates the existence of mul-
tiple distinct sound units in dog language. Many
species that appear to use only a handful of basic
call types may possess rich vocal repertoires (Rutz
et al., 2023). Numerous studies demonstrate the di-
versity of animal sounds (Paladini, 2020; Robbins,
2000; Bermant et al., 2019). Huang et al. (2023)
and Wang et al. (2023) conducted fine-grained stud-
ies of dog sound units. However, using a priori

knowledge of human language directly may not be
applicable. Hagiwara et al. (2024) and Hagiwara
(2023) also conducted fine-grained studies of dog
sound units, but they did not explore the possible
meanings of these units.

Conducting unsupervised lexicon discovery on
speech without any prior knowledge is a very chal-
lenging task (Park and Glass, 2007). Lee et al.
(2015) achieved end-to-end human lexicon discov-
ery from audio by jointly training Hidden Markov
Models (HMMs)(Schwartz et al., 1984) for phone
discovery and Adaptor Grammar(Johnson et al.,
2006) for lexicon discovery. However, the accu-
racy of their lexicon discovery remains low. In this
paper, we use an improved approach to train the
parameters for Adaptor Grammar.

6 Conclusion

In this paper, we present a method to parse and
understand canine vocalizations. In contrast to pre-
vious work, this approach uses a self-supervised
method instead of relying on human language
knowledge to explore sound units in canine lan-
guage. This is better suited for examining fine-
grained phonetics and semantics in a language with
no prior linguistic knowledge. We then use Hybrid
Variational-MCMC Inference to train the parame-
ters of the Adaptor Grammar, ultimately obtaining
a candidate vocabulary. By simultaneously consid-
ering dog activity events surrounding the vocaliza-
tions, we find that some words in the vocabulary
have strong correlations with certain activities.

Limitation

The discovery of dog sound units heavily relies
on the quality of the dataset. Even though we
have implemented multiple measures to enhance
the dataset’s quality, noise may still be present due
to various factors, including the recording equip-
ment, background noise, and added noise from
video uploaders. Discovering words in an unfamil-
iar human language presents a challenging problem
due to noise, mispronunciation, and other factors.
The same difficulties exist with dogs. One possible
solution to achieve better results is to acquire more
datasets and consider the broader context of the
dog barks.
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A Probabilistic Context-Free Grammars
and Adaptor Grammars

Probabilistic Context-free Grammars
(PCFGs) (Manning and Schutze, 1999) are
an extension of context-free grammars that assign
a probability to each production rule, providing
a probabilistic framework for generating strings.
A PCFG is defined as a tuple (N,Σ, R, S, P )
where N is a set of non-terminal symbols, Σ is a
set of terminal symbols, R is a set of production
rules of the form A → β, S is the start symbol,
and P (A → β) is the probability associated
with the production rule A → β such that∑︁

β P (A → β) = 1 for all A ∈ N .
The adapted tree distributions Hn is generated by

using a Pitman-Yor process (Pitman and Yor, 1997),
a generalization of Dirichlet process (Ferguson,
1973). A draw Hn ≡ (πn, zn) is formed by the
stick breaking process (Sudderth and Jordan, 2008)
parametrized by scale parameter a, discount factor
b, and base distribution Gn:

π′k ∼ Beta(1− b, a+ kb), zk ∼ Gn

πk ≡ π′k
∏︁j=1

k−1(1− π′j), H ≡
∑︁

kπkδzk (1)

Algorithm 2 Parse Algorithm
1: For nonterminals e ∈ N , draw rule probabilities pe ∼ Dir(αn) for

PCFG G
2: for adapted nonterminal n do
3: Draw Hn ∼ PYGEM(an, bn, Gn) according to Equation 1, where

Gn is defined by the PCFG rules R.
4: end for
5: For i ∈ 1, ..., D, generate a hierarchical structure tree ts,i using the

PCFG rules R(e) at non-adapted nonterminal e and the Hc at adapted
nonterminals n.

6: The yields of trees t1, ..., tD are observations x1, ..., xD .

B Causal strength of top 35 words

Here are the causal strength for the top 35 words
and activities.

http://www.jstor.org/stable/522070
https://api.semanticscholar.org/CorpusID:16938966
https://api.semanticscholar.org/CorpusID:16938966
https://api.semanticscholar.org/CorpusID:16938966
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Figure 7: Causal strength of top 35 words (part 1).
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Figure 8: Causal strength of top 35 words (part 2).
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