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Abstract

We propose an Efficient Inexact Learned Descent-type Algorithm (ELDA) for a class of
nonconvex and nonsmooth variational models, where the regularization consists of a sparsity
enhancing term and non-local smoothing term for learned features. The ELDA improves the
performance of the LDA in Chen et al. (STAM J Imag Sci 14(4), 1532-1564,2021) by reduc-
ing the number of the subproblems from two to one for most of the iterations and allowing
inexact gradient computation. We generate a deep neural network, whose architecture follows
the algorithm exactly for low-dose CT (LDCT) reconstruction. The network inherits the con-
vergence behavior of the algorithm and is interpretable as a solution of the varational model
and parameter efficient. The experimental results from the ablation study and comparisons
with several state-of-the-art deep learning approaches indicate the promising performance of
the proposed method in solution accuracy and parameter efficiency.
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1 Introduction

Computed Tomography (CT) is one of the most widely used imaging technologies for medical
diagnosis. CT employs X-ray measurements from different angles to generate cross-sectional
images of the human body [23, 38]. As high dosage X-rays can be harmful to human body
[10, 11, 78], substantial efforts have been devoted to image reconstruction using low-dose
CT measurements [32, 48, 79]. There are two main strategies for dose reduction in CT scans:
one is to reduce the number of views, and the other is to reduce the exposure time and the
current of X-ray tube [39], both of which will introduce various degrees of noise and artifacts
and then compromise the subsequent diagnosis. Here we focus on the second type however
our method is not specific to a particular scanning mode. We formulate the problem as an
optimization problem which will be solved with our Efficient Learned Descent Algorithm
(ELDA).

The classic analytical method to reconstruct CT images from projection data, Filtered
Back-Projection (FBP), leads to heavy noise and artifacts in the low dose scenario. The
remedy for this problem have been sought from three different perspectives: pre-processing
the sinograms [44, 65, 71], post-processing the images [88], or the hybrid approach with
iterative reconstructions that encode prior information into the process [29, 98, 119].

The advent of machine learning methods and its success on various real-world applications,
including the image processing [3-9, 17, 100, 110-113, 116, 121, 129], classification and
detection [12, 50, 51, 53, 54, 62, 85, 86, 89-97, 114, 123], health care [41, 52, 63, 66-70,
122], chemistry [75], industry [81, 83, 84] and beyond [27, 35-37, 42, 58, 61, 64, 101, 102,
105, 106, 118, 120, 124—-128], have naturally led to incorporation of deep models into all of
the above approaches and produced a better performance than analytical methods [80]. For
instance, CNN methods [13, 26, 31, 60, 104], that have been applied to sparse view [40, 43,
57,104, 117] and low dose [13, 31, 46, 60, 107] data. It is also applied in projection domain
synthesis [56, 57], post processing [13, 14, 43, 47, 104], and for prior learning in iterative
methods [15, 99, 109, 115].

Recently, a number of learned optimization methods have been proposed and are proven
very effective in CT reconstruction problem, as they are able to learn adaptive regularizer
which leads to more accurate image reconstruction in a variety of medical imaging appli-
cations. However, existing works model regularizers using convolutional neural networks
(CNNs) which only explore local image features. This limits the representation power of
deep neural networks and is not suitable for medical imaging applications which demand
high image qualities. Moreover, most of existing deep networks for image reconstruction
are cast as black-boxes and can be difficult to interpret. Last but not least, deep neural net-
works for image reconstruction are also criticized for lacking mathematical justifications and
convergence guarantee.

In this work, we leverage the framework developed in [16] and propose an improved
learned descent algorithm ELDA. It further boosts image reconstruction quality using an
adaptive non-local feature regularizer. More importantly, compared to [16], ELDA is more
computationally efficient since the safeguard iterate is only computed when a descent condi-
tion fails to hold, which happens rarely due to allowance of inexact gradient computation in
our algorithmic design. As a result, our model retains convergence guarantee and meanwhile
also improves reconstruction quality over existing methods. The main contributions of this
work are summarized as follows.

— We propose an efficient learned descent algorithm with inexact gradients, to solve the
non-smooth non-convex optimization problem in low-dose CT reconstruction. Inexact
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gradients improve our model in comparison with LDA [16] in two major ways: First, it
reduces computational cost by allowing the gradient to be inexact. Second, it increases
the capacity of the network and thus improves accuracy. We also provide comprehensive
convergence and iteration complexity analysis of ELDA.

— ELDA adopts efficient update scheme which only computes safeguard iterate when the
desired descent condition fails to hold, and hence is more computationally economical
than LDA developed in [16]. In particular, we show that in 99.6% of the cases, our
proximal candidate is selected and extra computations for the plain gradient descent is
avoided. This is in contrast with LDA where the descent conditions holds for 86.2% of
the cases and therefore extra computational cost is paid more frequently for the alternate
candidate.

— We designed a novel non-local smoothing regularization which along with the sparsity
enhancing regularizer, further improve image quality, and enable faster convergence.
As a result our largest model uses only 19 iteration blocks and has about 20 times less
parameters than the nearest competing model [103].

— We conduct comprehensive experimental analysis of ELDA and compare it to several
state-of-the-art deep-learning based methods for LDCT reconstruction.

In Sect.2, we present the related works in the literature that associate with our problem.
Then in Sect.3, we present our method by first defining our model and each of its compo-
nents, and then stating the algorithm and details of network training. After that in Sect.4,
we state our lemma and theorem regarding the output of the network. Section5 presents
the numerical results including parameter study, ablation study and comparison with other
competing algorithms.

2 Related Works

A natural application of neural networks in CT reconstruction, has been in noise removal in
either the projection domain [56, 57] or the image domain [13, 14, 43, 47, 104]. In particular,
Residual Encoder—Decoder Convolutional Neural Network (RED-CNN) proposed by Chen
et al. [14], is an end-to-end mapping from low-dose CT images to normal dose which uses
FBP to get low-dose CT images from projections and restrict the problem to denoising in the
image domain. And yet another attempt is FBPConvNet by Jin et al. [43] which is inspired
by U-net [77] and further explores CNN architectures while noting the parallels with the
general form of an iterative proximal update.

Model Based Image Reconstruction (MBIR) methods attempt to model CT physics, mea-
surement noise, and image priors in order to achieve higher reconstruction quality in LDCT.
Such methods learn the regularizer and are able to improve LDCT reconstruction significantly
[18, 29, 109, 119], however their convergence speed is not optimal [19]. Later, researchers
adopted NN in other aspects of the algorithm and formed a new class of methods called
Iterative Neural Networks (INN). INNs seek to enjoy the best of both world of MBIR and
denoising deep neural networks, by employing moderate complexity denoisers for image
refining and learning better regularizers [20, 21, 82, 108].

INNs have network architectures that are inspired by the optimization model and algo-
rithm and this learning capacity enables them to outperform the classical iterative solutions
by learning better regularizer while also being more time efficient. For example, recently
BCD-Net [21] improved the reconstruction accuracy compared to MBIR methods and NN
denoisers. It showed that it generalizes better than denoisers such as FBPConvNet which lack
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MBIR modules, and also its learned transforms help to outperform state-of-the-art MBIR
methods. Further research in this area has been devoted to improving time efficiency of
the algorithm with the image quality. Recently, Chun et al. [20] proposed Momentum-Net,
as the first fast and convergent INN architecture inspired by Block Proximal Extrapolated
Gradient method using a Majorizer. It also guarantees convergence to a fixed-point while
improving MBIR speed, accuracy, and reconstruction quality. Momentum-Net is a general
framework for inverse problems and its recent application to LDCT [108] showed it improves
image reconstruction accuracy compared to a state-of-the-art noniterative image denoising
NN. Convergence guarantee is one of the main challenges in the design of INNs and beside
its theoretical value, it is highly desirable in medical applications. LEARN[15] is another
model that unrolls an iterative reconstruction scheme while modeling the regularization by a
field-of-experts. And yet another similar attempt is Learned Primal-Dual [1] which unfolds
a proximal primal-dual optimization method where the proximal operator is replaced with
a CNN. Their choice of iterative scheme is primal dual hybrid gradient (PDHG) which is
further modified to benefit from the learning capacity of NNs and then used to solve the TV
regularized CT reconstruction problem.

In all of the previous works, the architecture is only inspired by the optimization model,
and in order to improve their performance they introduce components in the network that does
not correspond to steps of the algorithm. Also, the choice of regularization limits the network
to only learn local features and as we will empirically demonstrate, it limits the performance
of these networks. One model that attempts to learn non-local features is MAGIC [103]. It is
also a deep neural network inspired by a simple iterative reconstruction method, i.e. gradient
descent. However MAGIC breaks the correspondence between architecture and algorithm
in order to extract non-local features [49, 87]. They manually add a non-local corrector
in iteration steps which is only intuitively justified, and does not directly correspond to a
modified regularizer in the optimization model.

In [16], a Learned Descent Algorithm (LDA) is developed. The LDA architecture is fully
determined by the algorithm and thus the network is fully interpretable. As interpretability and
convergence guarantee is highly desirable in medical imaging, this framework is a promising
method for inverse problems such as LDCT reconstruction. Compared to [16], the present
work proposes a more efficient numerical scheme of LDA, leading to comparable network
parameters, lower computational cost, and more stable convergence behavior. We achieve
this by developing an efficient learned inexact descent algorithm which only computes the
safeguard iterate when a prescribed descent condition fails to hold and thus substantially
reduces computational cost in practice. Additionaly, we propose a novel non-local smoothing
regularizer that further confirms the heuristics in optimization inspired networks such as
MAGIC [103] but leads to a fully interpretable network and allows us to provide convergence
guarantee of the network.

3 Method

In this section, we introduce the proposed inexact learned descent algorithm for solving the
following low-dose CT reconstruction model:

x((f) = argmin {¢(x; b, 0) := F(x; b)) + r(x; 6)}, eY)

where f is the data fidelity term that measures the consistency between the reconstructed
image x and the sinogram measurements b, and r is the regularization that may incorporate
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prior information of x. The regularization r (-; 0) is realized as a highly structured DNN with
parameter 0 to be learned. The optimal parameter 6 of r is then obtained by minimizing
the loss function £, where £ measures the (averaged) difference between xés)-the minimizer
of ¢(; b, 0), and the given ground truth %@ for every s € [N], where N is the number
of training data pairs. For notation simplicity, we write f(x) and r(x) instead of f(x; b"®)
and r (x; 0) respectively hereafter. We choose f(x) = %H AX — b||? as the data-fidelity term,
where A is the system matrix for CT scanner. However, our proposed method can be readily
extended to any smooth but (possibly) nonconvex f.

3.1 Regularization Term in Model (1)

The regularization term r in (1) consists of two parts. One of them enhances the sparsity of the
solution under a learned transform and the other one smooths the feature maps non-locally:

r(x) 1= r(x) + Ar(x), 2)

where X is a coefficient to balance these two terms which can be learned.

3.1.1 The Sparsity-Enhancing Regularizer

To enhance the sparsity of x under a learned transform g, we propose to minimize the /5 ;
norm of g(x). If g is a differential operator, then the /> | norm of g(x) reduces to the total
variation of x. That is,

FX) = 8@z =) lg®l, 3
i=1

where each g;(x) € R? can be viewed as a feature descriptor vector at the position i, as
depicted in Fig. 1 (up). In our experiments, we simply set the feature extraction operator g to
a vanilla /-layer CNN with nonlinear activation function o but no bias, as follows:

g(X) =W %0 - 0(W3*0(W2 %0 (W *X))), “

where {w, }f]: | denote the convolution weights consisting of d kernels with identical spatial
kernel size (3 x 3), and * denotes the convolution operation. Here, the componentwise
activation function o is constructed to be the smoothed rectified linear unit as defined below

0, ifx < -3,
o) = Hx2+ix+ 4, if —§<x <3, 5)
X, if x >4,

where the prefixed parameter ¢ is set to be 0.001 in our experiment. Besides the smooth o,
each convolution operation of g in (4) can be viewed as matrix multiplication, which enable
g to be differentiable, and Vg can be easily obtained by Chain Rule where each qu can be
implemented as transposed convolutional operation [28].

As 7(x) defined in (3) is nonsmooth and nonconvex, we apply the Nesterov’s smoothing
technique [73] to get the smooth approximation and the detail is given in [16]:

0 =Y 5 I + Y (ool - 5). ©

iely iel
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Fig.1 The feature matrix g € RAxm (up) and the folded feature matrix g € RKA* ¥ (bottom) reshaped from
the feature maps obtained from the last convolution of the CNN defined in (4). The folding rate « is 4 for g in
this illustration

where Ip = {i € [m] | ||gixX)|| < €}, I} = [m]\ Ip. Here the parameter ¢ controls how
close the smoothed 7¢(x) is to the original function 7(x), and one can readily show that
Fe(X) < F(X) < Fe(x) + % for all x in R”. From (6) we can also derive V7, (x) to be

T g&®x
g )]’

Vi = Y v Y 4 v

iely iel

where Vg;(x) € R4 ig the Jacobian of g atx.

3.1.2 The Nonlocal Smoothing Regularizer

Since convolution operations only extract the local information, each feature descriptor vector
g; can only encode the local features of a small patch of the input x (i.e. receptive field)
[55]. So here we seek to incorporate an additional non-local smoothing regularizer 7 that
enables capturing of the underlying long-range dependencies between the patches of the
feature descriptor vectors. To this end we form the folded feature descriptor vectors {g;} as
described in Fig. 1 (bottom) by folding the adjacent « feature descriptors together, and define
7 by:

)= Wyllg ) — & ]2, ™
@, ))

o . . o 1§ (0—8, )| .
where the similarity matrix WV is defined by Wi; = exp( — =——3——), and § is the
standard deviation, which is estimated by the median of the Euclidean distances between the

folded feature descriptor vectors in the model.
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Additionally, 7 can also be written in the quadratic form [2] as 7(X) = fr (X)L &(x) "),
where tr() is the trace operator, L = D — W, and D is the diagonal matrix with D;; =

Zj?:l Wij, and L is positive semidefinite. And its gradient is computed by

V() =2 Wi (V& (x) — V&;(x)) T (& () — & (%)
@.J)
kd
=2 VEIx)LEX),
q=1

where V§7(x) € R%*" is the Jacobian of §7(x). And £ = D — W, D;; = Zle W;;j and

~ &: 5. 2
Wij = Wi x)(1 — w). Each g7 (x) represents the g-th row of the folded feature
matrix g(x) as illustrated in Fig. 1.

3.2 Inexact Learned Descent Algorithm

Now we present an inexact smoothing gradient descent type algorithm to solve the nonconvex
and nonsmooth problem (1) with the smooth approximation of r(x) defined by r.(x) :=
e (X) + A7 (x). The proposed algorithm is shown in Algorithm 1. In each iteration k, we solve
the following smoothed problem (9) with fixed ¢ = g, in Line 3-14. And Line 15 is aimed
to check and update ¢4 by a reduction principle.

min {e (x; b, 0) := f(x: b)) + re(x: 6)}. ©)

As the regularization term r, is learned via a deep neural network (DNN), some common
issues of the DNN have to be taken into consideration when designing the algorithm, such
as gradient exploding and vanishing problem during training [34]. Substantial improvement
in performance has been achieved by ResNet [33] which introduces residual connections to
alleviate these issues. As in (9) only the second term r,(x; 6) is learned, we desire to have
individual residual updates for this term in our algorithm. To this end, we use the first order
proximal method to solve the smoothed problem (9) by iterating the following steps

Zky1 = Xk — oV f (Xe), (10a)
Xi+1 = ProXe,,, (Zk+1), (10b)
where prox,, (z) := arg min, inx — 7 + r(x).

From our construction of r¢,, it is hard to get the close-form solution to subproblem in
(10b). Here we propose to linearize the “nonsimple” term r,, by

o0 = iy () + (Vs (). X =) + =zl (D)
With this approximation, instead of solving (10b) directly, we update by the following step

W1 = Proxg,, (Zs1), (12)
which has a closed-form solution giving the residual update

W = Zpy1 — Tk Vg (Zkt1), (13)

where Vry, = Vig, + AVF and 7 = aikf/gk )
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From the optimization perspective, with the approximation in (11), if we update X;4+1 =
uy41 then the algorithm can not be guaranteed to converge. In order to ensure convergence,
we check whether uy | satisfies

L
IVoe, X < cllugyr —x¢ll and e (ugy1) — ¢ (Xx) < —Elluk+1 —x; ||, (14)

where ¢ and ¢ are prefixed constant numbers. If the condition (14) holds, we take Xx.+1 = W41
otherwise, we take the standard gradient descent v4; coming from

. 1
Vi1 = argmin(V £ (x), X — Xg) + (Vrg (Xp), X — X¢) + 2lellX —xl* (15)
X

which has the exact solution

Vigl =Xk — oV f(Xg) — o Vg, (Xg). (16)

To ensure convergence, we need to find ¢y through line search such that v satisfies

G (Vir1) — b, (i) < —T (Vi1 — xe %, (17)

where 7 is a prefixed constant. Lemma 2 proves the convergence of lines 3—14 Algorithm 1,
including the termination of its line search (lines 9—13) in finitely many steps.

Inspired by [16], the proposed algorithm boasts numerous modifications that enhance its
efficiency and suitability for deep neural networks. One key contrast lies in the handling of
the two candidate updates, ug1 and vi1. While [16] computes both candidates at every
iteration and select the one yielding a lower function value, we introduce a new criterion (14)
for updating x¢1. This potentially eliminates the need to calculate v altogether, leading
to significant computational savings. Furthermore, the descending condition in Line 5 of
Algorithm 1 mitigates the frequent switching between the candidate updates as the algorithm
progresses (see Sect. 5.2 for details). This not only contributes to enhanced stability but also
allows us to leverage inexact gradient descent, augmenting the network’s capacity.

The learned inexact gradient

To further increase the capacity of the network, we employ the learned transposed convolution
operator, i.e. we replace qu by a transposed convolution

W, with relearned weights, where ¢ denotes the index of convolution in (4). To approxi-

mately achieve W, ~ qu, we add the constraint term Lcopnstraine = ﬁ 23:1 Wy — qu ||%r

to the loss function in training to produce the data-driven transposed convolutions. Here N,
is the number of parameters in learned transposed convolutions and || - || ¢ is the Frobenius
norm. In effect, the consequence of this modification is only to substitute Vr, by the inexact
gradient @Vrgk equipped with learned transpose at Line 4 in Algorithm 1. This can further
increase the capacity of the unrolled network while maintaining the convergence property.

3.3 Network Training

We allow the step sizes o and 7 to vary in different phases. Moreover, all {ox, rk}le and
initial threshold g are designed to be learned parameters fitted by data. Here let 6 stand for the
set of all learned parameters of ELDA which consists of the weights of the convolutions and
approximated transposed convolutions, step sizes {ag, T} ,le and threshold gg, parameter A.
Given N training data pairs {(b®®), X))} ;VZI of the ground truth data %) and its corresponding
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Algorithm 1 The Efficient learned Descent Algorithm (ELDA) for the Nonsmooth Noncon-

vex Problem

1: Imput: Initial X9, 0 < p, y < 1,and &g, o0, ¢, ¢, T > 0. Set maximum iteration K or tolerance €, > 0 and
select @ > 0.

2:fork=0,1,2,...,K do

30 Zhq1 =X, — oV f(Xg), (initialize oy S.t. g > @)

40wy = 2y — T Vg, (Zg41), (possibly inexact)

5. if condition (14) holds then

6.

7

8

SEUXf ] = Wkt 1»
else
: Vit = Xk — aiV [ (Xg) — Ve, (Xp),
9: if condition (17) holds then

10: Set Xk41 = V41,

11: else

12: update oy <— poy, then go to 8,
13: end if

14:  endif

15 if [|Vée kDIl < oyeg, setegy1 = ye; otherwise, set ey = k.
16:  if oer < €], terminate.

17: end for

18: Output: x4 |.

measurement b®), the loss function £(6) is defined to be the sum of the discrepancy loss
Ldiscrepancy and the constraint 10sS Leonstraine:

N 4
1 s

L£O) ==Y IxK =12+ > IW, —w, I3,
N; 0 Nw; ¢ T4l (18)

cdt:crep(mcy Lcon:rrainl

where Lyjscrepancy measures the discrepancy between the ground truth %) and Xé( which is
the output of the K -phase network. Here, the constraint coefficient ¥ is set to 1072 in our
experiment.

4 Convergence Analysis

According to the problem we are solving, we make a few assumptions on f and g throughout
this section.

(A1) : f is differentiable and (possibly) nonconvex, and V f is L ¢-Lipschitz continuous.

(A2) : Every component of g is differentiable and (possibly) nonconvex, Vg is L,-Lipschitz
continuous, and supy, y [|Vg(X)|| < M for some constant M > 0.

(A3) : ¢ is coercive, and ¢* = mingey ¢ (X) > —00.

With the smoothly differentiable activation o defined in (5) and boundedness of ¢’ as well
as the fixed convolution weights in (4) after training, we can immediately verify that the first
two assumptions hold, and typically in image reconstruction ¢ is assumed to be coercive
[16].

As the objective function in (1) is nonsmooth and nonconvex, we utilize the Clarke
subdifferential[22] to characterize the optimality of solutions. We denote D(x;Vv) :=
limsup,_,, 0l(f(z+1v) — f(2)/t].
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Definition 1 (Clarke subdifferential) Suppose that f : R" — (—o0, +0¢] is locally Lips-
chitz, the Clarke subdifferential d ' (x) of f at x is defined as

0f(x) = [x eR"| (x,v) < D(x;V),Vv e R”}.
Definition 2 (Clarke stationary point) For a locally Lipschitz function f, a point x € R" is
called a Clarke stationary point of f if 0 € 9 f(x).

Lemma 1 The gradient of ¥ is Lipschitz continuous.

Proof From equation 6 in the paper, it follows that

(%) —g; (] (%) —g; 0]
Veor =3 2exp( - i (x el | )a - i (x Gf-’(x) I (Ve ) — Vg 00) T i 00 — g5 0.
@,J)

We only need to show one of the terms under the sum is Lipschitz, i.e. we need f(u) =
2 2
exp ( — ”U“—ﬂ)(l — H;’—Q)(Vu)-'—(u) to be Lipschitz, where u = g; (x) —g;(x) € R?. We show
S (u) is Lipschitz by showing its derivative is bounded:

2
IVl <||exp(—@)(——Nuﬂu))n(l 10, vl

2

exp (= ) 1~ 2w @) 1w il
2

tlep (- 1] )(I—Mnu(v2 )l

|| ||2 lu?
+ lexp 1 - 7)IIIVHII
Note thatu = g; (x) —g;(x) is Llpschltz in X since supyc y IVE(X)|| < M, therefore ||Vu|| <
M. Also since Vg is L, Lipschitz, we get V2| < 2Lg. Also, a polynomial in ||ul| times
exp ( ”“” ) is bounded so we get:

IVfl < (4[;1722 +Lg+M*)C. 19)
where C is some constant that bounds all the instances of polynomial in |lu| times
exp ( — ”g#) occurring above. Therefore Vx)7 is Lipschitz with constant L, = 2m? (41:7’1—22 +
L, +M*)C. |

The following Lemma?2 considers the case where ¢ is a positive constant, which corre-

sponds to an iterative scheme that only executes Lines 3—14 of Algorithm 1.

Lemma2 Letes,c,t,t > 0,0 < p < 1 and arbitrary initial xo € R". Suppose {X;} is the
sequence generated by repeating Lines 3—14 of Algorithm I with fixed e, = €, oy > a, where
a > 0 is a constant in user’s choice and ¢* = mingegn ¢ (X). Then ||V (xx)|| — 0 as
k — oo.

Proof In each iteration, we compute U4 by Zg+1 — Tk Vre (Zgt1), and put Xg1 = W only
if the condition {||e (x¢)[| < cllugy1 — Xell and @e(ues1) — pe (i) < — 5 luepr — xc [} is
satisfied, from which it is easy to get

2 2
Ve (xi)1* < %((ps(xk) — ¢ (Wet1))- (20)
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If ui 4 fails to satisfy the above condition, we compute v through line search until the
criteria

bee Vit 1) — e, (k) < —T[IVir1 — xi 12 Q1)

is satisfied and then set Xx1 = Vit1.

We will now demonstrate that the line search requires only a finite number of steps. To
achieve this, we reformulate the scheme for computing v, with line search. Let £; denote
the number of line search steps required to satisfy the condition in Eq.(21) with the initial
step size ok, then

Ukl = Xk — o p Ve (xi). (22)

From Lemma 3.2 in [16] we have that the gradient Vr, is Lipschitz continuous with
constant ﬂLg + MTZ And V7 defiend in (7) is also Lipschitz continuous with constant
L, . Furthermore, in (A1) we assumed V f is L y-Lipschitz continuous. Hence putting L, =

Ly+/mLy+ MTZ + L,, we get that V@, is L,-Lipschitz continuous, which implies

L
G (Vit1) < e (Xi) + (Ve (Xk), Vir1 — Xk) + 78||Vk+1 —xi 1% (23)
Then, the combination of (22) and (23) gives
L, 5
e (Vir1) — G (X)) = — | —— — 5 ) Ve — xl”. (24)
pkay 2
Hence, for any k = 1,2,..., if m — % > 1, the (21) is met. This shows that there

is a finite upper bound of the maximum search steps ¢,,,, required for having (21) satisfy

pz""’x o < #/2 From the discussion above, we can have
€

e (Vi) =g (x0) < —T[Ves1 =%k [> = —2 (0% a0)* Ve %) |* < —T (0" @) [ Vepe (%10 1%

(25)
here the first inequality is from (21), the equality is from (22), and the last inequality uses
the fact that £; < €,,,x and 0 < p < I and oy > «. Rearranging this inequality, we get

IV (x0) 1> < (P (Xk) = e (Vit1))- (26)

T (pzmax &)2

Hence, in either case Xg4+| = W41 OF Xgt1 = Vg4, from (20) and (26) we have

Ve (x> < C e (Xk) — de (Xe1)), 27)

2 L
where C = max{m, 2%}, which is independent of k.

Summing up (27) fork =0, ..., K, we have

K
S IV (x011% < C(ge(x0) — be (Xg+1))- (28)

k=0

Combining with the fact ¢¢ (x) > ¢ (x) — %5° > ¢* — %57, we have

K
> IVe: 0l = C(@e(x0) = 6"+ ). (29)

k=0
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The right hand side is finite, and thus by letting K — oo we conclude ||V¢.(xx)|| — O,
which proves the lemma. O

Next we consider the case where ¢ varies in Theorem 1. More precisely, we focus on the
subsequence {Xy,+1} which selects the iterates when the reduction criterion in Line 15 is
satisfied for k = k; and gy, is reduced.

Lemma 3 Suppose that the sequence {Xy} is generated by Algorithm 1 and any initial X.

Then for any k > 0 we have

MmeEj41
2

mey
5>

mey
¢)5k+1 (Xk-l-l) + = ¢é‘k (Xk-H) + T = ¢8k (Xk) + (30)
Proof The proof of this lemma is similar to Lemma 3.4 of [16]. The second inequality is

immediate from (27). So we focus on the first inequality. For any ¢ > 0 and x, denote

1, 2 )
o) :={28||gl(x>||, if g (0| < e. o

lgi GOl — 5, if llgi )l > e.

Since ¢, (x) = Z;”zl re.i(X) + A¥(X) + f(x), to prove the first inequality it suffices to show
that

Ek
5
If ex4+1 = &k, then the two quantities above are identical and the first inequality holds. Now
suppose €x+1 = Y&k < &k. We then consider the relation between ||g; (Xkx+1) |, x+1 and &
in three cases:

Ek+1
Feeer i (it 1) + T* < rei(ps1) + (32)

1. If ||gi Xk+1) |l > &k > €k+1, then by the definition in (31), there is

Ek+1 &k
Teppri (Xk1) + - = g e+ DIl = rep,i Xee1) + >
2. If e > |lgi (Xe+1)1l > €x+1, then (31) implies
e ((Xk+1) (K1) (kD2 i (Xk41)
ot (i) + k2+1 = g (e )l = llgi ;H I n llgi é<+1 I !ﬁ;.(i:_:_ll)ln llgi §+I Il
1)

< llgi k-4 D11 Lk

=re,i Xp+1) + =
2ex 2 e 2

. 2
The second lines follows from the fact that w +

decreasing for all € > ||g; (Xk+1) ||
3. If ex > ex+1 > |18 (Xx+1)]l, then again the previous fact and (31) imply (32).

§—as a function of e—is non-

Therefore, in either of the three cases, (32) holds and hence

m m

még41 Ek+1 Ek mej

Tepy Xe+1) + 2+ = E (rsk+1,i(xk+1)+ 7; )S E (rsk,i(xk+l)+ ?) =rsk(Xk+1)+T ,
f .

i= i=

which implies the first inequality of (30). O

Theorem 1 Suppose that {xy} is the sequence generated by Algorithm I with any initial Xq
and ax > o as in Lemma 2. Let {Xy, 11} be the subsequence where the reduction criterion
&k+1 = Y&k in line 15 is met fork = k; andl = 1,2, .... Then, {Xy,+1} has at least one
accumulation point, and every accumulation point of (X, 11} is a Clarke stationary point of

(1).
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Proof By the Lemma 4.2 and the definition of Clarke subdifferential, this theorem can be
easily proved in the similar way to Theorem 3.6 in [16].

Due to Lemma3 and ¢ (x) < ¢.(X) + mTE for all ¢ > 0 and x € X, we know that
mee _ meo

> - < ey (X0) + —— < 0.

& (Xk) < g (X)) + >

Since ¢ is coercive, we know that {x;} is bounded. Hence {xy, 1} is also bounded and has at
least one accumulation point.

Note that x;,11 satisfies the reduction criterion in Line 15 of Algorithm 1, i.e.,
||V¢€k] X+l < oyey = oeoy't! — 0as — oo. For notation simplicity, let {x;;1}
denote any convergent subsequence of {x;, 11} and ¢; the corresponding &; used in the
iteration to generate X;41. Then there exists X € X such that x;1; — X, &; — 0, and
V¢s,~ (Xj4+1) — Oas j — oo.

Note that the Clarke subdifferential of ¢ at X is given by 3¢ (x) = 97 (x)+AVF(x)+V f(x):

T & X
g

IPR) = { D Ve ® Wi+ ) Va®)

i€l iel

+AVFR) + V&) | 1T (wi; C(Vgi (%) < 1, Vi € Ip}, (33)

where Ip = {i € [m] | ||g;(X)|| = 0} and I} = [m] \ Iy. Then we know that there exists J
sufficiently large, such that

I . . 1 A . .
£j < ;min{lg®[ i€} = Zlg®l = g0l Vj=J. Viel,

where we used the facts that min{||g;(X)|| | i € I;1} > 0 and &; — 0 in the first inequality,
and x| — X and the continuity of g; for all i in the last inequality. Furthermore, we denote

gi (Xj41) .
1 iflel <
Sji = g (Xjy1)

e x0T if llgi X+l > ¢€;.
Then we have

T g&Xjt1)

Ve, (Xj11) = ZVgi (Xj+l)TSj,i+Z Vgi(Xj+1) T

iely i€l

HAVE(Xj+1)+V f(Xj41).

(34)
Comparing (33) and (34), we can see that the last two terms on the right hand side of (34)
converge to those of (33), respectively, due to the facts that x; {1 — X and the the continuity
of g;, Vg;, +Vr, V f. Moreover, noting that [|[I7(s; ;; C(Vgi X))l < [Is; ;]| < 1, we can
see that the first term on the right hand side of (34) also converges to the set formed by the
first term of (33) due to the continuity of g; and Vg;. Hence we know that

dist(Vepe; (xj11), 99 (X)) — 0,

as j — 0. Since V¢, (x;+1) — 0 and 9¢ (X) is closed, we conclude that 0 € 3¢ (X). O

From Theorem 1, we conclude that the output of our network converges to a (local) min-
imizer of the original regularized problem (1).
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5 Experiments and Results

Here we present our experiments on LDCT image reconstruction problems with various
dose levels and compare with existing state-of-the-art algorithms in terms of image quality,
run time and the number of parameters etc. We adopt a warm start training strategy which
imitates the iterating of optimization algorithm. More precisely, first we train the network with
K = 3 phases, where each phase in the network corresponds to an iteration in optimization
algorithm. After it converges, we add 2 more phases and we continue training the 5-phase
network until it converges. We continue adding 2 more phases until there is no noticeable
improvement.

As computing the similarity weight matrix W is high-cost in time and memory, we also
experiment with approximation of W computed on the initial reconstruction xo without updat-
g x0)—g; (Xo)Hz)

52
Vi(x)=2- ZZ: Vgl (x)T £ 87 (x). In the approximation scenario we compute £ once and

ing in each iteration, i.e. W;; ~ exp ( . Thus 7(x) can be differentiated as

use it for all the phases, but in the other case we have an extra O(m?) computation in each
phase, every time we compute V¢. As shown in the Sect.5.2, this approximation does not
exacerbate the network performance much but can increase the running speed.

All the experiments are performed on a computer with Intel i7-6700K CPU at 3.40 GHz,
16 GB of memory, and a Nvidia GTX-1080Ti GPU of 11GB graphics card memory, and
implemented with the PyTorch toolbox [76] in Python. The initial x( is obtained by FBP
algorithm. The spatial kernel size of the convolution and transposed convolution is set to be
3 x 3 and the channel number is set to 48 with layer number / = 4 as default. The learned
weights of convolutions and transposed convolutions are initialized by Xavier Initializer [30]
and the starting &y is initialized to be 0.001. All the learnable parameters are trained by the
Adam Optimizer with 81 = 0.9 and B, = 0.999. The network is trained with learning rate
1le-4 for 200 epochs when phase number K = 3, followed by 100 epochs when adding more
phases.

We test the performance of ELDA on the “2016 NIH-AAPM-Mayo Clinic Low-Dose CT
Grand Challenge” [72] which contains 5936 full-dose CT (FDCT) data from 10 patients,
from which we randomly select 500 images and resize them to the size 256 x 256. Then we
randomly divide the dataset into 400 images for training and 100 for testing. Distance-driven
algorithm [24, 25] is applied to simulate the projections in fan-beam geometry. The source-to-
rotation center and detector-to-rotation center distances are both set to 250 mm. The physical
image region covers 170mm x 170mm. On detector there are 512 detector elements each
with width 0.72 mm. There are 1024 projection views in total with the projection angles are
evenly distributed over a full scan range. Similar to [59], the simulated noisy transmission
measurement / is generated by adding Poisson and electronic noise as

I = Possion(Ipexp (—b)) + Normal (0, 62), (35)

where [y is the incident X-ray intensity and oez is the variance the background electronic
noise. And b represents the noise-free projection. In this simulation, Iy is set to 1.0 x 10°
for normal dose and 03 is prefixed to be 10 for all dose cases. Then the noisy projection
b is calculated by taking the logarithm transformation on II—U In low dose case, in order to
investigate the robustness of all compared algorithms, we generated three sets of different
low dose projections with Iy = 1.0 x 10°, 5.0 x 10* and 2.5 x 10* which correspond to 10%,
5% and 2.5% of the full dose incident accordingly. We use peak signal to noise ratio (PSNR)
and structureal similarity index measure (SSIM) to evaluate the quality of the reconstructed
images.
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Table1 The reconstruction results associated with different depths of convolution kernels and different number
of convolutions in each phase with dose level 10%

Depth of conv. kernels 16 32 48 64
PSNR (dB) 47.11 47.51 47.73 47.75
Number of parameters 14,152 55,912 125,320 222,376
Average testing time (s) 1.139 1.231 1.411 1.539
Number of convolutions 2 3 4 5
PSNR (dB) 47.27 47.60 47.73 47.71
Number of parameters 42,376 83,848 125,320 167,656
Average testing time (s) 1.117 1.258 1.411 1.530
Fig.2 The reconstruction PSNR
of ELDA across various phase o 47.5

2 47.0
numbers on dose level 10% 465

% 46.0

o 455

45.0

3 5 7 9 11 13 15 17 19 21 23
Phase Number K

Table 2 Comparison of different

algorithms on the LDCT Algorithms Plain-GD AGD LDA ELDA
reconstruction performance with PSNR (dB) 45.47 45.95 46.29 46.35
dose level 10% .

Average testing time (s) 0.602 0.605 1.338 1.239

5.1 Parameter Study

The regularization term of our model is learned from training samples, yet there are still a
few key network hyperparameters need to be set manually. Specifically, we investigate the
impacts of some parameters of the architecture, which includes the number of convolutions
(), the depth of the convolution kernels (d) and the phase number (K'). The influence of each
hyperparameter is sensed by perturbing it with others fixed atd = 48,/ = 4and K = 19. The
setting includes all factors/components listed in Table 3 and all following results are trained
and tested with dose level 10%.

5.1.1 Depth of the Convolution Kernels
We evaluate the instances of d = 16, 32, 48 and 64. The results are listed in Table 1.
It is evident that the PSNR score raises with growing depth of the kernels, but the profit

gradually reduces. On the contrary, the number of parameters and running time grow greatly
in the meantime.

5.1.2 Number of Convolutions

We evaluate the cases of different number of convolutions [ = 2, 3,4 and 5. The corre-
sponding results are reported in Table 1. We can observe that more convolutions contribute
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Table 3 Comparison of the

. . . ELDA Factors/Components
influence of various design

factors or componf:nts on the Inexact Transpose? X v v v

LDCT reconstruction -

performance with dose level 10% Non-local regularizer? X X v v
Approximated Matrix WW? X X X 4
PSNR (dB) 46.35 46.74 47.75 47.73
Average testing time (s) 1.239 1.247 3.703 1.411

Reference FBP (36.20) TGV (43.40) FBPConvNet (41.65) RED-CNN (43.84)

Learned PD (43.90) LEARN (44.31) LDA (45.01) MAGIC (46.42) ELDA (47.14)

Fig.3 Representative CT images of AAPM-Mayo data reconstructed by various methods with dose level 5%.
The display window is [-160, 240] HU. PSNRs (dB) are shown in the parentheses. The regions of interest are
magnified in red boxes for better visualization

to better reconstructed image quality. But the increase of PSNR score is insignificant from 4
convolutions to 5 while the parameter number and the test time rise significantly.

5.1.3 Phase Number K

As shown in Fig. 2, the PSNR increases with the phase number K. And the plot approaches
nearly flat after 19 phases.

To balance the trade-off between reconstruction performance and network complexity, we
take d = 48,1 = 4, K = 19 when comparing with other methods.

5.2 Ablation Study

In this section, we first investigate the effectiveness of the proposed algorithm in ELDA.
To this end, we compare ELDA with unrolling the standard gradient descent iteration of
(1), and an accelerated inertial version by setting Xx+1 = Xx — 0, Vo (Xg) + O (Xx — Xx—1)
where 6 is also learned. Here these two algorithms are named as Plain-GD and AGD,
respectively. In addition, to show the superiority of the new descending condition (14)&(17)
over the competition strategy in LDA [16], we compare the result with LDA here as well.
The comparison of different algorithms are shown in Table 2, where the experiments follow
the default parameter configuration as Sect. 5.1 without the additional components listed in
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Reference FBP (31.09) TGV (39.65) FBPConvNet (38.27) RED-CNN (39.49)

Learned PD (39.60) LEARN (40.11) LDA (40.79) MAGIC (41.27) ELDA (42.41)

Fig.4 Representative CT images of NBIA data reconstructed by various methods with dose level 2.5%. The
display window is [-160, 240] HU. PSNRs (dB) are shown in the parentheses. The regions of interest are
magnified in red boxes for better visualization

Table 3. It is quite obvious that all AGD, LDA and ELDA achieve higher PNSRs than Plain-
GD, where ELDA achieves the best. With the new descending condition it achieves average
0.06 dB PSNR better than LDA and about 0.1 s faster. Furthermore, we have also computed
the ratios that the candidate ug | is taken instead of v 1, and found it to be 86.2% for LDA
and 99.6% for ELDA respectively. That indicates that the proposed descending condition
(14) can effectively avoid the frequent candidate alternating compared to the competition
strategy used in LDA.

Moreover, we check the influence of some essential factors/components of our ELDA
model, i.e. the inexact transpose, the nonlocal smoothing regularizer and the approximated
weight matrix W. The results are summarized in Table 3. It is remarkable that the inexact
transpose and the nonlocal smoothing regularizer can effectively increase the network perfor-
mance by a large margin. And with the approximated weight matrix W there is no significant
decreasing of the PSNR. As the initial xo obtained by FBP is not far from x; in each itera-
tion, the ¥V approximated by X¢ can provide a good estimation to the true one. Thus, in the
following sections we will keep all these features in Table 3 when comparing ELDA with
other methods.

5.3 Comparison with the State-of-the-Art

In this section, we benchmark the ELDA against several state-of-the-art methods using two
widely recognized datasets: the AAPM-Mayo and the National Biomedical Imaging Archive
(NBIA).

5.3.1 AAPM-Mayo

In this section, we compare our reconstruction results on the 100 AAPM-Mayo testing images
with several existing algorithms: two classic reconstruction methods, i.e., FBP [45] and TGV
[74] and six approaches based on deep learning, i.e., FBPConvNet [43], RED-CNN [14],
Learned Primal-Dual [1], LDA [16], LEARN [15] and MAGIC [103]. For fair comparison,
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Table 6 Comparison of the
LDCT reconstruction

performance on different PSNR (dB) 41611  41.606 41.602 41.598  41.595
Gaussian noise levels

Noise Level 062 5 10 20 30 40

all deep learning algorithms compared here are trained and evaluated on the same dataset, dose
levels and evaluation metrics. The experimental results on various dose levels are summarized
in Table4 and the representative qualitative results on dose level 5% are shown in Fig. 3.
These results show that ELDA reconstructs more accurate images using relatively much
fewer network parameters and decent running time.

5.3.2 NBIA Data

To demonstrate the generalizability of the proposed method, we validate our model on another
dataset NBIA. We randomly sampled 80 images from the NBIA dataset with various parts
of the human body for diversity. For fair comparison, all deep learning based reconstruc-
tion models compared here are trained on the same dataset identical to Sect.5.3.1. Figure 4
visualizes the reconstructed images obtained by different methods under dose level 2.5%. It
can be seen that ELDA preserves the details well, avoids over-smoothing and reduces arti-
facts, which gives the promising reconstruction quality in Fig. 4. The quantitative results are
provided in Table 5.

5.4 Examination of Robustness Against Noise

To assess the proposed ELDA model’s robustness, we conducted tests by introducing Gaus-
sian noise at various levels (062 € {5; 10; 20; 30; 40} in Eq. (35) with Ip = 2.5 x 10%). The
model was trained on the 400 images mentioned in Sect.5, with a single Gaussian noise
level of 2 = 10. We used the NBIA data mentioned in Sect.5.3.2 as the test set, applying
diverse levels of Gaussian noise. Table 6 presents the results, demonstrating that the LDCT
performance remains consistent across various noise levels, highlighting ELDA’s robustness.

6 Conclusion

In brief, we propose an efficient inexact learned descent algorithm for low-dose CT recon-
struction. With incorporating the sparsity enhancing and non-local smoothing modules in the
regularizer, the proposed ELDA outperforms several existing state-of-the-art reconstruction
methods in accuracy and efficiency on two widely known datasets and retains convergence

property.
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