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Abstract

Reconstructing ancient Chinese pronunciation
is a challenging task due to the scarcity of
phonetic records. Different from historical
linguistics’ comparative approaches, we refor-
mulate this problem into a temporal predic-
tion task with masked language models, digi-
tizing existing phonology rules into ACP (An-
cient Chinese Phonology) dataset of 70,943 en-
tries for 17,001 Chinese characters. Utilizing
this dataset and Chinese character glyph infor-
mation, our transformer-based model demon-
strates superior performance on a series of
reconstruction tasks, with or without prior
phonological knowledge on the target histori-
cal period. Our work significantly advances
the digitization and computational reconstruc-
tion of ancient Chinese phonology, providing a
more complete and temporally contextualized
resource for computational linguistics and his-
torical research. The dataset and model train-
ing code are publicly available'.

1 Introduction

A human language is comprised of a pronunciation
system and a writing system, both evolving and
changing over time. An important part of histori-
cal phonology is about reconstructing the historical
pronunciation system and its pattern of evolution,
sometimes as drastic as the three examples in Table
12. Studies on Chinese historical phonology using
modern comparative methods began in 1915 (Karl-
gren, 1915), followed by various attempts to recon-
struct MiddleTang Chinese (Karlgren, 1922; Sagart,
1991; Wang, 2012). These studies reveal the causes

* These authors contributed equally to this work.

¥ Corresponding authors.

"https://github.com/KaguraRuri/
Ancient-Chinese-Phonology

Pronunciations in this paper are all transcribed
with International Phonetic Alphabet (IPA). See
https://www.internationalphoneticalphabet.org/ipa-
sounds/ipa-chart-with-sounds/ for IPA characters and
sounds.

Char T L S Y Q M
i [deiuin] [ziuon] [giuon] [eyon] [sun] [suon]
JE [ziek] [ziok] [sit] [si] [si] [ei]
z [bivep]  [viuep] [fap] [fau] [fa] [fa]

Table 1: Reconstructed pronunciations (in IPA) of three
characters over 6 Chinese historical periods: Middle-
Tang - T, LateTang - L, Song - S, Yuan - Y, MingQing
- Q and Modern - M. See Figure 3 for corresponding
timeline.

and trends of language evolution and contribute to
the study of ancient literature resources.

Historical scripts are often preserved in tangi-
ble forms, yet the transmission of pronunciation
through successive generations is more suscepti-
ble to variation and distortion. Across linguistic
domains, the systematic evolution of phonetics fre-
quently eludes precise documentation. In the realm
of Sinological phonology inquiry, even though the
characters’ glyph information can provide some
insight into phonetic attributes, their pronuncia-
tions cannot be deterministically inferred from their
orthographic form. (See Figure 1). Therefore,
unlike phonograms in many other common lan-
guages, Chinese characters are considered logo-
graphic, meaning each phoneme or syllable does
not correspond to a specific character.
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Figure 1: (a) and (b) show that one character may have
different pronunciation in different words; (b) and (c)
show different characters with same glyph component
may share same pronunciation.

When attempting to reconstruct the Chinese
phonological system for a certain historical period,
only limited resources of pronunciation records are
provided. Current studies are based on a rhyming



dictionary Guangyun (Chen, 1936) published in
AD 601. From then on, Chinese linguists in differ-
ent dynasties inherited the taxonomy of character
pronunciations in Guangyun, and used the com-
parative method to group similar-sounding charac-
ters into the same category. Combined with xeno-
Chinese transliteration® , modern dialect pronunci-
ation, etc., the Chinese pronunciation system can
be partially reconstructed (Zhao, 2015).

Given ample attempts and combining different
linguistic discoveries, the rule-based reconstruc-
tion method has its inherent limitations. First, the
pronunciation is reconstructed within each cate-
gory but not for each character, making the result
neither intuitive nor easy to search. Second, cur-
rent reconstruction results cannot cover all Chi-
nese characters’ pronunciation over all historical
periods. Chinese language system’s evolution is
not strictly under the taxonomy of Guangyun (See
Sec. 2), making it impossible to always apply rule-
based change patterns on a whole category*. Third,
current results are not fully digitized but only in
printed versions. As a matter of fact, the process
of character-wise pronunciation reconstruction is
complex, encompassing the entirety of Chinese
characters across various historical eras, and ne-
cessitates prior knowledge in linguistics, thereby
calling for further refinement.

Recently, several computer-assisted methods
have been proposed to reconstruct ancient Chi-
nese pronunciation, including Chang et al. (2022)’s
comparative Chinese dialect dataset and Kim et al.
(2023)’s approach of applying transformer model
on this dataset to rebuild ancient Chinese pronun-
ciation. However, the reconstruction results are
limited to a specific historical period, i.e., Middle-
Tang Chinese pronunciation. Hence, we attempt
to build a time-aware dataset and use a temporal
factor-embedded model to complete the reconstruc-
tion at an arbitrary time point.

The contribution of this paper is as follows:

* We build a chronological ACP (Ancient
Chinese Pronunciation) dataset by combin-
ing and digitizing the Guangyun-based Chi-

3Translation materials between Chinese and foreign lan-
guages in a specific period, e.g. Translation of Sutras pub-
lished in MiddleTang can correspond Sanskrit (phonographic
language) to MiddleTang Chinese (logographic language).

*For the reconstruction of the intermediate dynasties (Yuan,
Ming and Qing dynasties), the linguistic reconstruction we
use can only cover some of the Chinese characters for which
rhyming patterns can be hypothesized based on the available
documentary materials.

nese character taxonomy and the existing an-
cient Chinese reconstruction results in linguis-
tics, offering 70,943 pronunciation entries for
17,001 Chinese characters (Sec. 2).

* Aiming to interpolate and extrapolate the re-
construction result to any time point, we pro-
pose a transformer-based pronunciation recon-
struction model (Sec. 3). With additional lan-
guage features encoded, our model achieves
the best accuracy score on random-split, pho-
netic distinction, and reduced training data
evaluations compared to baseline models (Sec.
4), showing its ability to refine incomplete
phonological reconstruction results of tradi-
tional linguistics.

* By using a chronological dataset, our time-
aware model also has the ability to reconstruct
the pronunciation for a given period when the
information for training is sparse or even com-
pletely missing in the current ACP dataset.

2 ACP Dataset Construction

Our ACP (Ancient Chinese Pronunciation) dataset
offers character-wise chronological data of ancient
Chinese pronunciation, combining two kinds of
data: the digitized Guangyun data (KanjiDatabase-
Project, 2004) and the phonological reconstruction
result of Wang (2012). For a given character, the
former informs us the category it belongs to, and
the latter tells us the pronunciation reconstruction
results on each category.

Guangyun is a thyme dictionary using a special
sound annotation called Fangie. Chinese characters
are monosyllabic, i.e. all Chinese character’s pro-
nunciation correspond to one syllable, each com-
prised of an initial and a final (Duanmu, 2007).
According to Fangie, each Chinese character’s pro-
nunciation is described as a combination of two
representative characters, one for its initial and an-
other for its final as shown in Figure 2.
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Figure 2: Method of Fangie: “7:” belongs to category
“f&>([t]) for initial and to category “£L.”([ug])for final.
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Under this taxonomy, there are 38 categories
of initials and 298 categories of finals. The aim
of phonological reconstruction is to attach the ex-
act pronunciation (denoted by IPA phoneme) onto



each initial and final category for targeted period.
These information can be found in Wang (2012)’s
reconstruction results of Chinese phonology, which
includes the evolution of Chinese pronunciation
system from PreQin (-206 BC) to modern Chi-
nese (AD 1912-) at 9 different representative time
points. We have only selected results for 6 his-
torical periods from MiddleTang dynasty and be-
yond: MiddleTang, LateTang, Song, Yuan,
MingQing and Modern, represented by the begin-
ning each historical period (AD 581, AD 836, AD
960, AD 1279, AD 1368, AD 1912), since these
reconstruction results are more consistent among
different linguists (Tang, 2011; Wang, 2012). See
Figure 3 for the Chinese history timeline.

When constructing ancient Chinese pronuncia-
tion for each character in ACP dataset, 4 possible
cases are presented. Concrete examples for differ-
ent cases of reconstruction can be found in Table
2.

Direct determination of pronunciation If the
exact pronunciation is directly given for one cate-
gory, then the given IPA phoneme is attached onto
each character within this category. For example,
“J}” belongs to initial category of “#5” and [p]
is attached to category “#”, then the initial IPA
of “I%” is [p]. This is the case for pronunciation
system of MiddleTang since all characters strictly
belongs to its category denoted in Guangyun.

Rule-based determination of pronunciation If
there exists several possible pronunciations for the
same category, then the linguistic rules given by
Wang are applied to help choose the correct one.
Rules on initials’ pronunciation are usually based
on finals’ category, and rules on finals’ pronun-
ciation are usually based on the articulation in-
formation recorded in Guangyun . For exam-
ple, “ff ="F"+“J&> and “B =%5"+“3" both
belongs to initial category of “”, but given the
linguistic rule that “7%” represents [f] only under
the case when final category is J&, and represents
[p] in other cases, we attach [f] as f#’s initial IPA
and [p] as fif’s initial IPA. This is the case for Late-
Tang and Song period since a small amount of cat-
egories’ pronunciation has encountered rule-based
change.

Arbitrary determination of pronunciation Ifa
category-wise pronunciation reconstruction is no

5The articulation information is only vaguely recorded in
Guangyun.

given due to the complexity of the language sys-
tem’s evolution, then we manually digitize Wang’s
example on several representative characters’ pro-
nunciation. This is the case for Yuan and MingQing
pronunciation system since the overall categoriza-
tion has significantly changed compared to Middle-
Tang phonology system.

Converted pronunciation For modern Chinese
language system, we take Mandarin as its repre-
sentative. Since Mandarin is a living language, we
directly convert the pronunciation to IPA represen-
tation.

Following these IPA symbols and conditions,
we manually attach the initials and finals, take all
the available records as single entries and left the
unknown entries blank. Meanwhile, another artic-
ulation information, the tone, is much more com-
plicated to trace since rhyme dictionaries focus on
initials’ and finals’ taxonomy and only give vague
description on tone (Wang, 2012). The linguistic
reconstructions have no consistent results (Yuchi,
1986; Shi, 1983; Pan, 1982), thus neither encoded
into ACP dataset for any of the time period.

According to the articulation feature, we further
divide the final part into Medial, Nucleus and Coda
as shown in Figure 4. The medial is an optional
part of the final, usually has short and soft sound-
ing, connecting initial and final. The nucleus is
the main and non-empty vowel in final. The coda
is attached to nucleus which can only be conso-
nant or empty. Finally, each single entry in our
dataset is composed of 4 parts: Initial-I, Medial-M,
Nucleus-N and Coda-C, either empty (denoted by
“-") or non-empty (denoted by one IPA phoneme).
Example of complete and incomplete sets of pro-
nunciations for one character in the dataset can be
found in Table 3. The final dataset contains 17,001
entries for each of the 17,001 Chinese characters in
MiddleTang, LateTang, Song and Modern histori-
cal period. Meanwhile, only 1,402 entries for Yuan
and 1,519 entries for MingQing is provided while
other filled with [UNK] due to the inherent incom-
pleteness in linguistic reconstruction (see Table 4).

3 Pronunciation Reconstruction Model

In this section, we introduce the architecture of
our pronunciation reconstruction model, centered
around Figure 5. By utilizing an embedding layer
and a transformer encoder layer, our model is capa-
ble of learning complex patterns and relationships
within both the phonetic data and the glyph infor-



Case Character Initial Final Rule Initial IPA
direct K 5 X #=[p] and K.=[ua] [p]
B ~
rule-based % 2“15 % if(initial=%% and final=%) then [f] else [p] [[E]
arbitrary Ji ;ﬁg‘ FH - (f]
converted 54 2 =1 - [p]

Table 2: Five different examples of reconstruction in four different cases constructing our ancient Chinese pro-
nunciation dataset for each category. For an identical initial category, different rules applied can lead to different

reconstruction result for initial IPA.

MiddleTang LateTang Song

Yuan Ming&Qing Modern

[_H_H_H_H A > A .

AD 581 AD 836 AD 960

AD 1279 AD 1368

AD 1912 now

Figure 3: China history timeline. The 6 pronunciation systems represents the overall spoken language form in a

certain period of time.

#e [teian]

Initial [t¢] Final [iap]
Medial [i] Nucleus [a]
\ \

@ M) N ©)

Coda [n]
\

Figure 4: The phoneme sequence is split into initial,
medial, nucleus and coda, where initial, medial and
coda are optional.

mation, enabling accurate reconstructions across
different historical periods.

3.1 Model Architecture

As shown in Figure 5, our glyph and temporal en-
hanced (GTenhanced) pronunciation reconstruc-
tion model consists of an embedding layer and a
transformer encoder layer.

First, in order to capture the phonetic informa-
tion delivered by Chinese character glyph, we build
upon the approach of Lyu et al. (2021). Specif-
ically, using the Han Ideographs structure files®,
we follow the methodology outlined by Ke and
Hagiwara (2017)7 to generate glyph trees for all
Chinese characters in our dataset. Each glyph tree
is then converted into a sequence format using a
depth-first algorithm, as described by Nguyen et al.
(2019). As shown in Figure 6, the input sequence
comprises two distinct token types: leaf nodes (po-
sitions 3, 4, 5) representing components of Chinese
characters, and internal nodes (positions 1, 2) repre-

https://github.com/tomcumming/chise-ids
7https://github.com/yuanzhiKe/Radical_CR_
Encoder

senting structural operators (e.g., left-right). These
token types will be utilized for glyph type embed-
ding. The positions of these tokens (0, 1, 2, 3, 4, 5)
denote the sequence order in the input and will sub-
sequently be utilized for glyph position embedding,
as shown in Figure 5.

Next, for the feature representation of Chinese
character pronunciations, we segment the syllable
of a Chinese character into four parts, as mentioned
in Sec. 2. The entire input sequence consists of the
character glyph sequence, the temporal sequence,
and the sequences of phonetic changes over time
for each part of the syllable. For example, the final
sequence representation for the character “#” can
be serialized as shown in Figure 5.

3.2 Embedding Layer

The model input embedding is the combination
of token, type, position, and character
segmentation embeddings, as shown in Figure 5.
Token Embedding encodes glyph, temporal and
phoneme features in different segments started by
token [CHAR], [YEAR] and [IPA] and followed
by glyph, temporal and phoneme information. Ad-
ditionally we use [MASK] to mask the phoneme
tokens, use [UNK] to fill in the unknown Yuan and
MingQing phoneme data.

Type Embedding distinguishes token types: for
glyph feature tokens, “CHAR” denotes the char-
acter tag [CHAR], “STC” and “CPN” represents
the structure and component type; for temporal fea-
tures, “YEAR” marks the period tag [YEAR] and
“NUM?” signifies the numerically encoded year in-
formation; for phoneme tokens, “IPA” labels the
phoneme tag [IPA], while “PHO” designates the



Charact MiddleTang LateTang Song Yuan MingQing Modern
et 1M N C I M N C I M N C I M N CIMNC I M N C
&f d i om - d¢ i ou - t¢ i ou - t¢ i ou - § - oSU - t& - ou -
% T u 9 T i u 9 j i u g UNK i -y 9 j - u
B s - i k s i o9 k s - i ¢t UNK UNK c - i -

Table 3: Example of complete and incomplete sets in the dataset.
] T L S Y Q M 3.4 Training Target
Entries 17,001 17,001 17,001 1,420 1,519 17,001

Coverage 100% 100% 100% 8.25% 8.93% 100%

Table 4: The statistics of ACP dataset. Abbreviations:
T - MiddleTang, L - LateTang, S - Song, Y - Yuan, Q -
MingQing, M - Modern.

phoneme.

Position Embedding assigns a number starting
from O to each token within the same feature, help-
ing the model understand token positions in their
respective sequences.

Segmentation Embedding identifies different fea-
tures, helping the model distinguish between
character glyph, historical periods, and phonetic
changes. All the embedding have the same dimen-
sion d.

3.3 Masked Transformer Encoder

We utilize the multi-head self-attention network as
the foundational structure. Given a sequence of
tokens represented by X € R™*d where n denotes
the number of tokens in the sequence and d repre-
sents the dimension of each token, the process of
masked self-attention can be formulated as follows:

(XWO)(XWH)T
Vdy,
X = Softmax(A + M)(XWV)7

A=

where W@ WE WV c R4 serve as learnable
parameters, while Ml € R™*" denotes the attention
mask matrix (Liu et al., 2020). We derive M by
setting M;; to O when z; is visible to x;, and to
—oo when z; is invisible to x;. Specifically, all to-
kens within the same feature are mutually visible to
each other; additionally, the special tags [CHAR],
[YEAR], and [IPA] are also mutually visible to
each other. The Softmax function is applied to the
attention scores to normalize them into a probabil-
ity distribution, ensuring that the weights sum to
one.

Inspired by the training methodology of BERT (De-
vlin et al., 2018), we randomly mask 15% of the
phoneme tokens in the input sequence. Within this
15%, 80% are replaced by the mask token [MASK],
10% are randomly replaced by a token belonging to
the same token type, and 10% remain unchanged.
Consequently, the model is trained to predict the
original phoneme tokens based on the modified
input, as illustrated in the top-right of Figure 5(b).

4 Evaluations

In this section, we comprehensively evaluate the
performance of GTenhanced Transformer across
various evaluation tasks in our dataset.

4.1 Experimental setup

In this subsection, we provide an overview of
5 tasks designed to test various aspects of the
model’s reconstructive capabilities compared to
several baseline models.

4.1.1 Baselines

We compare our model to four baseline models.
The random daughter and majority constituent
method are from Chang et al. (2022) but we use
an improved version. For each part of the sylla-
ble (Initial, Medial, Nucleus and Coda), a random
phoneme (random daughter) or a most frequently
appearing phoneme (majority constituent) is cho-
sen from inputs of each available historical period
and then combined into a syllable as reconstruction
result. For decision tree classifier, the reconstruc-
tion is also done on each of the four parts. We
also adapted cognate transformer (Akavarapu and
Bhattacharya, 2023), which utilizes both row and
column attention to reconstruct the phoneme on
each position. Since this model was designed for
proto-word reconstruction task where all inputs are
contemporary pronunciations, time factor can be
embedded but meaningless for our chronological
language reconstruction.
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Figure 5: Architecture of glyph and temporal enhanced ancient Chinese pronunciation reconstruction model.
(a) Using a feature-differentiated block architecture, the model transmits attention between blocks through special
markers such as [CHAR], [YEAR], and [IPA]. (b) The embedding of glyph feature, temporal feature, initial feature,

medial feature, nucleus feature, and coda feature.
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Figure 6: The glyph tree of a Chinese character.

4.1.2 Evaluation Tasks

In this section, we describe the tasks designed to
evaluate the performance of GTenhanced Trans-
former, each testing different aspects of its recon-
structive capabilities.

Random Split Evaluation The dataset is ran-
domly split into training and testing sets with a
7:3 ratio. Due to substantial incomplete data for
the Yuan and MingQing periods, we first partition

the dataset into four subsets: characters missing
both Yuan and MingQing pronunciations, charac-
ters missing only Yuan pronunciations, characters
missing only MingQing pronunciations, and char-
acters with no missing data. Each subset is then
split into training and testing sets using the same
seed for randomization, ensuring a 7:3 ratio. The
subsets are then combined to form the final training
and testing datasets.

Phonetic Distinction Evaluation Characters
with phonetically same Modern pronunciations are
segregated to ensure they do not appear in both the
training and testing sets, increasing the difficulty
of the task. The dataset is first divided into four
subsets as in the Random Split Evaluation, then
split into training and testing sets while maintain-
ing phonetic distinction, and finally combined to
form the final datasets.



Evaluation with Reduced Training Data from
the Reconstructed Era This task involves de-
creasing the amount of training data from the recon-
structed era. For example, to reconstruct Modern
pronunciations, the training set may contain only a
fraction of the available Modern data or none at all.
The training and testing sets are split as in the Pho-
netic Distinction Evaluation, ensuring no overlap
of phonetically similar characters between sets.

Evaluation with Reduced Historical Training
Data We progressively reduce the historical pho-
netic data available for training to assess the
model’s performance under varying levels of data
scarcity. For example, to reconstruct Modern pro-
nunciations, we provide data from only the Middle-
Tang, LateTang, and Song periods, or fewer. The
training and testing sets are split as in the Phonetic
Distinction Evaluation.

Predict Future Pronunciation This task pre-
dicts possible future pronunciations using the
known pronunciations from six historical periods:
MiddleTang, LateTang, Song, Yuan, MingQing,
and Modern. The model’s predictions are purely
speculative due to the absence of ground truth data.
This exploration offers insights into the model’s ca-
pacity for extrapolation and generalization beyond
historical contexts.

4.2 Experiment Results

Random Split Evaluation Table 5 shows our
model’s superior performance in reconstructing
pronunciations across all historical periods in the
random split task. The results shown are averaged
over three runs. Despite significant data gaps in
the Yuan and MingQing periods, our model con-
sistently achieves an F1 score above 0.85. In con-
trast, the decision tree model’s performance suffers
due to extensive missing data during these periods,
highlighting our model’s robustness in handling
incomplete datasets.

Furthermore, compared to the Cognate Trans-
former model, our approach exhibits a slight advan-
tage in reconstructing pronunciations for the Yuan
and MingQing periods. This edge is attributed to
our model’s ability to effectively integrate glyph
and temporal features, enabling a nuanced under-
standing of phonetic evolution over time and fa-
cilitating accurate reconstructions in data-sparse
periods.

Model T L S Y Q M

RD 0.167 0.179 0.181 0.157 0.166 0.155
MC 0.175 0.179 0.196 0.194 0.207 0.219
DT 0947 0976 0953 0442 0.353 0.787
CT 0958 0965 0923 0.810 0.838 0.867
GTeT 0.961 0.980 0.972 0.852 0.873 0.876

Table 5: Model performance on random split evalu-
ation (Metrics: F1). Abbreviations: RD - Random
Daughter, MC - Majority Constituent, DT - Decision
Tree, CT - Cognate Transformer, GTeT - GTenhanced
Transformer.

Phonetic Distinction Evaluation Table 6 shows
that our model still maintains optimal performance
and a high F1 score even under the strict partition-
ing of the training and testing sets. The results are
also averaged over three runs. In this scenario, char-
acters with the same pronunciation do not appear
in both the training and testing sets simultaneously.
However, by leveraging glyph and temporal fea-
tures, our model can accurately reconstruct target
pronunciations from related phonetic information.
This demonstrates the model’s ability to general-
ize and infer pronunciations based on learned pat-
terns, even when direct phonetic similarities are not
present in the training data.

Model T L S Y Q M

RD 0.167 0.179 0.181 0.157 0.166 0.155
MC 0.175 0.179 0.196 0.194 0.207 0.219
DT 0.821 0.889 0.794 0.131 0.171 0.451
CT 0.863 0.928 0.855 0.613 0.574 0.500
GTeT 0931 0.942 0.933 0.702 0.652 0.728

Table 6: Model performance on phonetic distinction
evaluation (Metrics: F1).

Evaluation with Reduced Training Data from
the Reconstructed Era Figure 7 and Table 7 de-
pict the findings from our evaluation with reduced
training data from the reconstructed era. Here,
the decision tree model’s performance diminishes
linearly as training data decreases. In contrast,
attention-based models like the Cognate Trans-
former and our GTenhanced Transformer exhibit a
logarithmic decline in performance under reduced
training conditions, indicating their resilience to
data reduction.

Our GTenhanced Transformer notably maintains
a significant F1 score even when no training data
for M pronunciations is available. This resilience
stems from its ability to leverage character glyph
and temporal features, facilitating accurate recon-
structions based on related historical data. These



results underscore the robustness of our model in
handling sparse datasets, highlighting its practical
potential where complete data is often lacking.

As shown in Table 7, both the Decision Tree and
Cognate Transformer models exhibit zero perfor-
mance (F1 score of 0) when there is no training
data from the reconstructed era. The Decision Tree
model relies on patterns seen during training to
make reconstructions, rendering it ineffective with-
out target-era data. Similarly, the Cognate Trans-
former model’s use of row and column attention
fails without target-era training, hindering its abil-
ity to establish meaningful connections for accurate
reconstructions across historical periods.

Moreover, the decline in F1 scores with the re-
duction of target period data in the training set
further validates the effectiveness of our dataset.
The dataset’s richness in historical and phonetic
context is crucial for accurate pronunciation recon-
struction, and the model’s performance drop with
less data underscores this importance.
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Figure 7: Model performance on evaluation with re-
duced training data from the reconstructed era.

Evaluation with Reduced Historical Training
Data As shown in Figure 8, we progressively
reduce the historical context data when reconstruct-
ing Modern pronunciation. The F1 score decreases
more slowly compared to reconstructing Middle-
Tang pronunciation. Specifically, when reconstruct-
ing Modern pronunciation, the F1 score drops from
0.380 to 0.285 as we reduce the available historical
context from T+L+S+Y+Q to only T. On the other
hand, when reconstructing MiddleTang pronuncia-
tion, the F1 score drops from 0.682 to 0.283 as we
reduce the historical context from L+S+Y+Q+M to
only M. The F1 scores become nearly identical at
the final stages. This phenomenon stems from the
model’s heavier reliance on phonetic information
and attention weights from adjacent eras, partic-
ularly MiddleTang, LateTang, and Song periods,

which exhibit structured and rule-based phonetic
patterns.

Additionally, the decline in F1 scores also vali-
dates the effectiveness of our dataset. As we reduce
the historical context, the model’s performance
drops, indicating that the available historical pho-
netic information is crucial for accurate pronuncia-
tion reconstruction.

Training Data for MiddleTang PredictionM

L+S+Y+Q+MSHY+Q+M  Y+Q+M Q+M
S : : ;

—e— Modern
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o
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F1 Score
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THLESHYHQ THLESHY  T+L+S THL T
Training Data for Modern Prediction

Figure 8: Model performance on evaluation with re-
duced historical training data.

Predict Future Pronunciations Our model has
demonstrated robust performance, maintaining a
certain level of F1 score even in the absence of
training data for specific historical periods. To
further explore the capabilities of our model, we
conducted an intriguing experiment to predict the
pronunciation of Chinese characters in AD 23003

5 Related Work

Language models for phonetic reconstruction
A related task of phonological ancient language
reconstruction is proto-word reconstruction, which
takes set of words in different contemporary lan-
guages as input and the corresponding word in
their common ancestral language as result of su-
pervised reconstruction. Meloni et al. (2021)
and Akavarapu and Bhattacharya (2023) both eval-
uated neural networks’ performance on Romance
language family’s reconstruction task. Kim et al.
(2023) first introduced Transformer architecture
into proto-word reconstruction task and outper-
forms previous models on both Romance and
Sinitic dataset. While large language models
(LLMs) have recently demonstrated exceptional ca-
pabilities in understanding and generating contem-
porary languages, their proficiency in comprehend-
ing ancient Chinese, remains inadequate. Zhang
and Li (2023)’s research highlighted the limitations

8You can listen to the audio representations of future Chi-
nese pronunciations at: https://github.com/KaguraRuri/
Ancient-Chinese-Phonology.



Model 100% 75% 50% 25% 10% 1% 1%o 0
Decision Tree 0451 0326 0.239 0.153 0.077 0.011 0 0
Cognate Transformer 0.500 0.488 0.486 0.458 0421 0324 0.147 0
GTenhanced Transformer  0.728  0.714 0.705 0.693 0.671 0.594 0.498 0.380

Table 7: Model performance on Reduced Target Training Data Evaluation (Metrics: F1). The target of the model
reconstruction is Modern pronunciation. The value of the header represent the percentages of Modern pronunci-
ation data in the training set relative to the entire training set. The division between the training and testing sets

follows the phonetic distinction evaluation.

of LLMs in handling the complex ancient Chinese
phonetic information.

Chinese phonetic dataset In terms of Chinese
phonetic datasets, current digitization all organized
the ancestor language (Middle Tang Chinese) and
its daughter languages (modern Chinese dialects)
into a cognate set. Hou (2004) first collected 2,789
cognates of word-wise Chinese dialect pronuncia-
tion. Chang et al. (2022) expanded Hou’s dataset,
organize entries by characters instead of word. As
for chronological phonology dataset in Chinese,
existing resources are mainly from studies of his-
torical linguistics. Swedish sinologist Karlgren
first put forward the phonological reconstruction
of Middle Tang Chinese (Karlgren, 1922). Wang
(2012) provided a comprehensive analysis of Chi-
nese language phonological evolution. However,
these sources are not digitized to our knowledge.

6 Conclusion

We introduce an extensive ancient Chinese
pronunciation dataset with 70,943 entries for
17,001 Chinese characters, alongside an enhanced
transformer-based model integrating glyph and
temporal information to refine traditional phonolog-
ical reconstruction results. Our model outperforms
traditional methods across various ancient Chinese
pronunciation reconstruction tasks with superior
accuracy even under low-resource scenarios. De-
spite the incomplete phonetic data, it maintains
high performance for reconstructing and predicting
Chinese pronunciations. We offer a richer, tem-
porally contextualized resource for computational
linguistics and historical research. This study lays
a strong foundation for future research in phonetic
reconstruction and language evolution.

Limitations

Despite the significant advancements made by our
approach, several limitations remain. First, our
current dataset does not encode tone information
and its evolution, which may be beneficial crucial

for accurately reconstructing ancient Chinese pro-
nunciation and for educational purpose. Future
work will focus on enhancing the dataset by incor-
porating detailed tonal information. Furthermore,
the dataset currently lacks non-linguistic features
such as geographical, natural, and political factors
that could influence phonetic changes over time. In-
cluding these features could provide a more holistic
understanding of ancient Chinese phonetic recon-
struction and improve the model’s accuracy, espe-
cially on low-resource scenarios.

Addressing these limitations would enhance the
robustness and applicability of our methodology,
thereby advancing the field of computational recon-
struction of ancient Chinese phonology.
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