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Abstract

Reconstructing ancient Chinese pronunciation

is a challenging task due to the scarcity of

phonetic records. Different from historical

linguistics’ comparative approaches, we refor-

mulate this problem into a temporal predic-

tion task with masked language models, digi-

tizing existing phonology rules into ACP (An-

cient Chinese Phonology) dataset of 70,943 en-

tries for 17,001 Chinese characters. Utilizing

this dataset and Chinese character glyph infor-

mation, our transformer-based model demon-

strates superior performance on a series of

reconstruction tasks, with or without prior

phonological knowledge on the target histori-

cal period. Our work significantly advances

the digitization and computational reconstruc-

tion of ancient Chinese phonology, providing a

more complete and temporally contextualized

resource for computational linguistics and his-

torical research. The dataset and model train-

ing code are publicly available1.

1 Introduction

A human language is comprised of a pronunciation

system and a writing system, both evolving and

changing over time. An important part of histori-

cal phonology is about reconstructing the historical

pronunciation system and its pattern of evolution,

sometimes as drastic as the three examples in Table

12. Studies on Chinese historical phonology using

modern comparative methods began in 1915 (Karl-

gren, 1915), followed by various attempts to recon-

struct MiddleTang Chinese (Karlgren, 1922; Sagart,

1991; Wang, 2012). These studies reveal the causes

* These authors contributed equally to this work.
† Corresponding authors.
1
https://github.com/KaguraRuri/

Ancient-Chinese-Phonology
2Pronunciations in this paper are all transcribed

with International Phonetic Alphabet (IPA). See
https://www.internationalphoneticalphabet.org/ipa-
sounds/ipa-chart-with-sounds/ for IPA characters and
sounds.

Char T L S Y Q M

顺 [dýiuin] [ýiu@n] [Ciu@n] [Cy@n] [ùun] [ùu@n]

席 [zi5k] [zi@k] [sit] [si] [si] [Ci]
乏 [biu5p] [viuæp] [fap] [fau] [fa] [fa]

Table 1: Reconstructed pronunciations (in IPA) of three

characters over 6 Chinese historical periods: Middle-

Tang - T, LateTang - L, Song - S, Yuan - Y, MingQing

- Q and Modern - M. See Figure 3 for corresponding

timeline.

and trends of language evolution and contribute to

the study of ancient literature resources.

Historical scripts are often preserved in tangi-

ble forms, yet the transmission of pronunciation

through successive generations is more suscepti-

ble to variation and distortion. Across linguistic

domains, the systematic evolution of phonetics fre-

quently eludes precise documentation. In the realm

of Sinological phonology inquiry, even though the

characters’ glyph information can provide some

insight into phonetic attributes, their pronuncia-

tions cannot be deterministically inferred from their

orthographic form. (See Figure 1). Therefore,

unlike phonograms in many other common lan-

guages, Chinese characters are considered logo-

graphic, meaning each phoneme or syllable does

not correspond to a specific character.

畜
ɕy˥˧

牧牲
tʂʰu˥˧

畜 蓄
ɕy˥˧

意
(a) (b) (c)

Figure 1: (a) and (b) show that one character may have

different pronunciation in different words; (b) and (c)

show different characters with same glyph component

may share same pronunciation.

When attempting to reconstruct the Chinese

phonological system for a certain historical period,

only limited resources of pronunciation records are

provided. Current studies are based on a rhyming



dictionary Guangyun (Chen, 1936) published in

AD 601. From then on, Chinese linguists in differ-

ent dynasties inherited the taxonomy of character

pronunciations in Guangyun, and used the com-

parative method to group similar-sounding charac-

ters into the same category. Combined with xeno-

Chinese transliteration3 , modern dialect pronunci-

ation, etc., the Chinese pronunciation system can

be partially reconstructed (Zhao, 2015).

Given ample attempts and combining different

linguistic discoveries, the rule-based reconstruc-

tion method has its inherent limitations. First, the

pronunciation is reconstructed within each cate-

gory but not for each character, making the result

neither intuitive nor easy to search. Second, cur-

rent reconstruction results cannot cover all Chi-

nese characters’ pronunciation over all historical

periods. Chinese language system’s evolution is

not strictly under the taxonomy of Guangyun (See

Sec. 2), making it impossible to always apply rule-

based change patterns on a whole category4. Third,

current results are not fully digitized but only in

printed versions. As a matter of fact, the process

of character-wise pronunciation reconstruction is

complex, encompassing the entirety of Chinese

characters across various historical eras, and ne-

cessitates prior knowledge in linguistics, thereby

calling for further refinement.

Recently, several computer-assisted methods

have been proposed to reconstruct ancient Chi-

nese pronunciation, including Chang et al. (2022)’s

comparative Chinese dialect dataset and Kim et al.

(2023)’s approach of applying transformer model

on this dataset to rebuild ancient Chinese pronun-

ciation. However, the reconstruction results are

limited to a specific historical period, i.e., Middle-

Tang Chinese pronunciation. Hence, we attempt

to build a time-aware dataset and use a temporal

factor-embedded model to complete the reconstruc-

tion at an arbitrary time point.

The contribution of this paper is as follows:

• We build a chronological ACP (Ancient

Chinese Pronunciation) dataset by combin-

ing and digitizing the Guangyun-based Chi-

3Translation materials between Chinese and foreign lan-
guages in a specific period, e.g. Translation of Sutras pub-
lished in MiddleTang can correspond Sanskrit (phonographic
language) to MiddleTang Chinese (logographic language).

4For the reconstruction of the intermediate dynasties (Yuan,
Ming and Qing dynasties), the linguistic reconstruction we
use can only cover some of the Chinese characters for which
rhyming patterns can be hypothesized based on the available
documentary materials.

nese character taxonomy and the existing an-

cient Chinese reconstruction results in linguis-

tics, offering 70,943 pronunciation entries for

17,001 Chinese characters (Sec. 2).

• Aiming to interpolate and extrapolate the re-

construction result to any time point, we pro-

pose a transformer-based pronunciation recon-

struction model (Sec. 3). With additional lan-

guage features encoded, our model achieves

the best accuracy score on random-split, pho-

netic distinction, and reduced training data

evaluations compared to baseline models (Sec.

4), showing its ability to refine incomplete

phonological reconstruction results of tradi-

tional linguistics.

• By using a chronological dataset, our time-

aware model also has the ability to reconstruct

the pronunciation for a given period when the

information for training is sparse or even com-

pletely missing in the current ACP dataset.

2 ACP Dataset Construction

Our ACP (Ancient Chinese Pronunciation) dataset

offers character-wise chronological data of ancient

Chinese pronunciation, combining two kinds of

data: the digitized Guangyun data (KanjiDatabase-

Project, 2004) and the phonological reconstruction

result of Wang (2012). For a given character, the

former informs us the category it belongs to, and

the latter tells us the pronunciation reconstruction

results on each category.

Guangyun is a rhyme dictionary using a special

sound annotation called Fanqie. Chinese characters

are monosyllabic, i.e. all Chinese character’s pro-

nunciation correspond to one syllable, each com-

prised of an initial and a final (Duanmu, 2007).

According to Fanqie, each Chinese character’s pro-

nunciation is described as a combination of two

representative characters, one for its initial and an-

other for its final as shown in Figure 2.

东 = 德 + 红
t uŋ t ɤ x uŋ

Figure 2: Method of Fanqie: “东” belongs to category

“德”([t]) for initial and to category “红”([uN])for final.

Under this taxonomy, there are 38 categories

of initials and 298 categories of finals. The aim

of phonological reconstruction is to attach the ex-

act pronunciation (denoted by IPA phoneme) onto



each initial and final category for targeted period.

These information can be found in Wang (2012)’s

reconstruction results of Chinese phonology, which

includes the evolution of Chinese pronunciation

system from PreQin (-206 BC) to modern Chi-

nese (AD 1912-) at 9 different representative time

points. We have only selected results for 6 his-

torical periods from MiddleTang dynasty and be-

yond: MiddleTang, LateTang, Song, Yuan,

MingQing and Modern, represented by the begin-

ning each historical period (AD 581, AD 836, AD

960, AD 1279, AD 1368, AD 1912), since these

reconstruction results are more consistent among

different linguists (Tang, 2011; Wang, 2012). See

Figure 3 for the Chinese history timeline.

When constructing ancient Chinese pronuncia-

tion for each character in ACP dataset, 4 possible

cases are presented. Concrete examples for differ-

ent cases of reconstruction can be found in Table

2.

Direct determination of pronunciation If the

exact pronunciation is directly given for one cate-

gory, then the given IPA phoneme is attached onto

each character within this category. For example,

“波” belongs to initial category of “帮” and [p]

is attached to category “帮”, then the initial IPA

of “波” is [p]. This is the case for pronunciation

system of MiddleTang since all characters strictly

belongs to its category denoted in Guangyun.

Rule-based determination of pronunciation If

there exists several possible pronunciations for the

same category, then the linguistic rules given by

Wang are applied to help choose the correct one.

Rules on initials’ pronunciation are usually based

on finals’ category, and rules on finals’ pronun-

ciation are usually based on the articulation in-

formation recorded in Guangyun 5. For exam-

ple, “砩”=“帮”+“废” and “碑”=“帮”+“支” both

belongs to initial category of “帮”, but given the

linguistic rule that “帮” represents [f] only under

the case when final category is废, and represents

[p] in other cases, we attach [f] as砩’s initial IPA

and [p] as碑’s initial IPA. This is the case for Late-

Tang and Song period since a small amount of cat-

egories’ pronunciation has encountered rule-based

change.

Arbitrary determination of pronunciation If a

category-wise pronunciation reconstruction is no

5The articulation information is only vaguely recorded in
Guangyun.

given due to the complexity of the language sys-

tem’s evolution, then we manually digitize Wang’s

example on several representative characters’ pro-

nunciation. This is the case for Yuan and MingQing

pronunciation system since the overall categoriza-

tion has significantly changed compared to Middle-

Tang phonology system.

Converted pronunciation For modern Chinese

language system, we take Mandarin as its repre-

sentative. Since Mandarin is a living language, we

directly convert the pronunciation to IPA represen-

tation.

Following these IPA symbols and conditions,

we manually attach the initials and finals, take all

the available records as single entries and left the

unknown entries blank. Meanwhile, another artic-

ulation information, the tone, is much more com-

plicated to trace since rhyme dictionaries focus on

initials’ and finals’ taxonomy and only give vague

description on tone (Wang, 2012). The linguistic

reconstructions have no consistent results (Yuchi,

1986; Shi, 1983; Pan, 1982), thus neither encoded

into ACP dataset for any of the time period.

According to the articulation feature, we further

divide the final part into Medial, Nucleus and Coda

as shown in Figure 4. The medial is an optional

part of the final, usually has short and soft sound-

ing, connecting initial and final. The nucleus is

the main and non-empty vowel in final. The coda

is attached to nucleus which can only be conso-

nant or empty. Finally, each single entry in our

dataset is composed of 4 parts: Initial-I, Medial-M,

Nucleus-N and Coda-C, either empty (denoted by

“-") or non-empty (denoted by one IPA phoneme).

Example of complete and incomplete sets of pro-

nunciations for one character in the dataset can be

found in Table 3. The final dataset contains 17,001

entries for each of the 17,001 Chinese characters in

MiddleTang, LateTang, Song and Modern histori-

cal period. Meanwhile, only 1,402 entries for Yuan

and 1,519 entries for MingQing is provided while

other filled with [UNK] due to the inherent incom-

pleteness in linguistic reconstruction (see Table 4).

3 Pronunciation Reconstruction Model

In this section, we introduce the architecture of

our pronunciation reconstruction model, centered

around Figure 5. By utilizing an embedding layer

and a transformer encoder layer, our model is capa-

ble of learning complex patterns and relationships

within both the phonetic data and the glyph infor-



Case Character Initial Final Rule Initial IPA

direct 波 帮 戈 帮=[p] and戈=[uA] [p]

rule-based
砩 帮 废

if(initial=帮 and final=废) then [f] else [p]
[f]

碑 帮 支 [p]

arbitrary 方 帮 阳 - [f]

converted 比 帮 旨 - [p]

Table 2: Five different examples of reconstruction in four different cases constructing our ancient Chinese pro-

nunciation dataset for each category. For an identical initial category, different rules applied can lead to different

reconstruction result for initial IPA.

MiddleTang LateTang Song Yuan Ming&Qing Modern

AD 581 AD 836 AD 960 AD 1279 AD 1368 AD 1912 now

Figure 3: China history timeline. The 6 pronunciation systems represents the overall spoken language form in a

certain period of time.

枪 [ʨiɑŋ]
Initial [ʨ] Final [iɑŋ]

Medial [i] Nucleus [ɑ] Coda [ŋ]
(I) (M) N (C)

Figure 4: The phoneme sequence is split into initial,

medial, nucleus and coda, where initial, medial and

coda are optional.

mation, enabling accurate reconstructions across

different historical periods.

3.1 Model Architecture

As shown in Figure 5, our glyph and temporal en-

hanced (GTenhanced) pronunciation reconstruc-

tion model consists of an embedding layer and a

transformer encoder layer.

First, in order to capture the phonetic informa-

tion delivered by Chinese character glyph, we build

upon the approach of Lyu et al. (2021). Specif-

ically, using the Han Ideographs structure files6,

we follow the methodology outlined by Ke and

Hagiwara (2017)7 to generate glyph trees for all

Chinese characters in our dataset. Each glyph tree

is then converted into a sequence format using a

depth-first algorithm, as described by Nguyen et al.

(2019). As shown in Figure 6, the input sequence

comprises two distinct token types: leaf nodes (po-

sitions 3, 4, 5) representing components of Chinese

characters, and internal nodes (positions 1, 2) repre-

6
https://github.com/tomcumming/chise-ids

7
https://github.com/yuanzhiKe/Radical_CR_

Encoder

senting structural operators (e.g., left-right). These

token types will be utilized for glyph type embed-

ding. The positions of these tokens (0, 1, 2, 3, 4, 5)

denote the sequence order in the input and will sub-

sequently be utilized for glyph position embedding,

as shown in Figure 5.

Next, for the feature representation of Chinese

character pronunciations, we segment the syllable

of a Chinese character into four parts, as mentioned

in Sec. 2. The entire input sequence consists of the

character glyph sequence, the temporal sequence,

and the sequences of phonetic changes over time

for each part of the syllable. For example, the final

sequence representation for the character “皙” can

be serialized as shown in Figure 5.

3.2 Embedding Layer

The model input embedding is the combination

of token, type, position, and character

segmentation embeddings, as shown in Figure 5.

Token Embedding encodes glyph, temporal and

phoneme features in different segments started by

token [CHAR], [YEAR] and [IPA] and followed

by glyph, temporal and phoneme information. Ad-

ditionally we use [MASK] to mask the phoneme

tokens, use [UNK] to fill in the unknown Yuan and

MingQing phoneme data.

Type Embedding distinguishes token types: for

glyph feature tokens, “CHAR” denotes the char-

acter tag [CHAR], “STC” and “CPN” represents

the structure and component type; for temporal fea-

tures, “YEAR” marks the period tag [YEAR] and

“NUM” signifies the numerically encoded year in-

formation; for phoneme tokens, “IPA” labels the

phoneme tag [IPA], while “PHO” designates the



Character
MiddleTang LateTang Song Yuan MingQing Modern

I M N C I M N C I M N C I M N C I M N C I M N C

纣 d i ou - ć i @u - tC i @u - tC i @u - ù - @u - tù - ou -

雍 P i u N P i u N j i u N UNK j - y N j - u N

皙 s - i k s i @ k s - i t UNK UNK C - i -

Table 3: Example of complete and incomplete sets in the dataset.

T L S Y Q M

Entries 17,001 17,001 17,001 1,420 1,519 17,001
Coverage 100% 100% 100% 8.25% 8.93% 100%

Table 4: The statistics of ACP dataset. Abbreviations:

T - MiddleTang, L - LateTang, S - Song, Y - Yuan, Q -

MingQing, M - Modern.

phoneme.

Position Embedding assigns a number starting

from 0 to each token within the same feature, help-

ing the model understand token positions in their

respective sequences.

Segmentation Embedding identifies different fea-

tures, helping the model distinguish between

character glyph, historical periods, and phonetic

changes. All the embedding have the same dimen-

sion d.

3.3 Masked Transformer Encoder

We utilize the multi-head self-attention network as

the foundational structure. Given a sequence of

tokens represented by X ∈ R
n×d, where n denotes

the number of tokens in the sequence and d repre-

sents the dimension of each token, the process of

masked self-attention can be formulated as follows:

A =
(XW

Q)(XW
K)>

√
dk

X̃ = Softmax(A+M)(XW
V ),

where WQ,WK ,WV ∈ R
d×dk serve as learnable

parameters, while M ∈ R
n×n denotes the attention

mask matrix (Liu et al., 2020). We derive M by

setting Mij to 0 when xj is visible to xi, and to

−∞ when xj is invisible to xi. Specifically, all to-

kens within the same feature are mutually visible to

each other; additionally, the special tags [CHAR],

[YEAR], and [IPA] are also mutually visible to

each other. The Softmax function is applied to the

attention scores to normalize them into a probabil-

ity distribution, ensuring that the weights sum to

one.

3.4 Training Target

Inspired by the training methodology of BERT (De-

vlin et al., 2018), we randomly mask 15% of the

phoneme tokens in the input sequence. Within this

15%, 80% are replaced by the mask token [MASK],

10% are randomly replaced by a token belonging to

the same token type, and 10% remain unchanged.

Consequently, the model is trained to predict the

original phoneme tokens based on the modified

input, as illustrated in the top-right of Figure 5(b).

4 Evaluations

In this section, we comprehensively evaluate the

performance of GTenhanced Transformer across

various evaluation tasks in our dataset.

4.1 Experimental setup

In this subsection, we provide an overview of

5 tasks designed to test various aspects of the

model’s reconstructive capabilities compared to

several baseline models.

4.1.1 Baselines

We compare our model to four baseline models.

The random daughter and majority constituent

method are from Chang et al. (2022) but we use

an improved version. For each part of the sylla-

ble (Initial, Medial, Nucleus and Coda), a random

phoneme (random daughter) or a most frequently

appearing phoneme (majority constituent) is cho-

sen from inputs of each available historical period

and then combined into a syllable as reconstruction

result. For decision tree classifier, the reconstruc-

tion is also done on each of the four parts. We

also adapted cognate transformer (Akavarapu and

Bhattacharya, 2023), which utilizes both row and

column attention to reconstruct the phoneme on

each position. Since this model was designed for

proto-word reconstruction task where all inputs are

contemporary pronunciations, time factor can be

embedded but meaningless for our chronological

language reconstruction.



Figure 5: Architecture of glyph and temporal enhanced ancient Chinese pronunciation reconstruction model.

(a) Using a feature-differentiated block architecture, the model transmits attention between blocks through special

markers such as [CHAR], [YEAR], and [IPA]. (b) The embedding of glyph feature, temporal feature, initial feature,

medial feature, nucleus feature, and coda feature.

Figure 6: The glyph tree of a Chinese character.

4.1.2 Evaluation Tasks

In this section, we describe the tasks designed to

evaluate the performance of GTenhanced Trans-

former, each testing different aspects of its recon-

structive capabilities.

Random Split Evaluation The dataset is ran-

domly split into training and testing sets with a

7:3 ratio. Due to substantial incomplete data for

the Yuan and MingQing periods, we first partition

the dataset into four subsets: characters missing

both Yuan and MingQing pronunciations, charac-

ters missing only Yuan pronunciations, characters

missing only MingQing pronunciations, and char-

acters with no missing data. Each subset is then

split into training and testing sets using the same

seed for randomization, ensuring a 7:3 ratio. The

subsets are then combined to form the final training

and testing datasets.

Phonetic Distinction Evaluation Characters

with phonetically same Modern pronunciations are

segregated to ensure they do not appear in both the

training and testing sets, increasing the difficulty

of the task. The dataset is first divided into four

subsets as in the Random Split Evaluation, then

split into training and testing sets while maintain-

ing phonetic distinction, and finally combined to

form the final datasets.



Evaluation with Reduced Training Data from

the Reconstructed Era This task involves de-

creasing the amount of training data from the recon-

structed era. For example, to reconstruct Modern

pronunciations, the training set may contain only a

fraction of the available Modern data or none at all.

The training and testing sets are split as in the Pho-

netic Distinction Evaluation, ensuring no overlap

of phonetically similar characters between sets.

Evaluation with Reduced Historical Training

Data We progressively reduce the historical pho-

netic data available for training to assess the

model’s performance under varying levels of data

scarcity. For example, to reconstruct Modern pro-

nunciations, we provide data from only the Middle-

Tang, LateTang, and Song periods, or fewer. The

training and testing sets are split as in the Phonetic

Distinction Evaluation.

Predict Future Pronunciation This task pre-

dicts possible future pronunciations using the

known pronunciations from six historical periods:

MiddleTang, LateTang, Song, Yuan, MingQing,

and Modern. The model’s predictions are purely

speculative due to the absence of ground truth data.

This exploration offers insights into the model’s ca-

pacity for extrapolation and generalization beyond

historical contexts.

4.2 Experiment Results

Random Split Evaluation Table 5 shows our

model’s superior performance in reconstructing

pronunciations across all historical periods in the

random split task. The results shown are averaged

over three runs. Despite significant data gaps in

the Yuan and MingQing periods, our model con-

sistently achieves an F1 score above 0.85. In con-

trast, the decision tree model’s performance suffers

due to extensive missing data during these periods,

highlighting our model’s robustness in handling

incomplete datasets.

Furthermore, compared to the Cognate Trans-

former model, our approach exhibits a slight advan-

tage in reconstructing pronunciations for the Yuan

and MingQing periods. This edge is attributed to

our model’s ability to effectively integrate glyph

and temporal features, enabling a nuanced under-

standing of phonetic evolution over time and fa-

cilitating accurate reconstructions in data-sparse

periods.

Model T L S Y Q M

RD 0.167 0.179 0.181 0.157 0.166 0.155
MC 0.175 0.179 0.196 0.194 0.207 0.219

DT 0.947 0.976 0.953 0.442 0.353 0.787
CT 0.958 0.965 0.923 0.810 0.838 0.867
GTeT 0.961 0.980 0.972 0.852 0.873 0.876

Table 5: Model performance on random split evalu-

ation (Metrics: F1). Abbreviations: RD - Random

Daughter, MC - Majority Constituent, DT - Decision

Tree, CT - Cognate Transformer, GTeT - GTenhanced

Transformer.

Phonetic Distinction Evaluation Table 6 shows

that our model still maintains optimal performance

and a high F1 score even under the strict partition-

ing of the training and testing sets. The results are

also averaged over three runs. In this scenario, char-

acters with the same pronunciation do not appear

in both the training and testing sets simultaneously.

However, by leveraging glyph and temporal fea-

tures, our model can accurately reconstruct target

pronunciations from related phonetic information.

This demonstrates the model’s ability to general-

ize and infer pronunciations based on learned pat-

terns, even when direct phonetic similarities are not

present in the training data.

Model T L S Y Q M

RD 0.167 0.179 0.181 0.157 0.166 0.155
MC 0.175 0.179 0.196 0.194 0.207 0.219

DT 0.821 0.889 0.794 0.131 0.171 0.451
CT 0.863 0.928 0.855 0.613 0.574 0.500
GTeT 0.931 0.942 0.933 0.702 0.652 0.728

Table 6: Model performance on phonetic distinction

evaluation (Metrics: F1).

Evaluation with Reduced Training Data from

the Reconstructed Era Figure 7 and Table 7 de-

pict the findings from our evaluation with reduced

training data from the reconstructed era. Here,

the decision tree model’s performance diminishes

linearly as training data decreases. In contrast,

attention-based models like the Cognate Trans-

former and our GTenhanced Transformer exhibit a

logarithmic decline in performance under reduced

training conditions, indicating their resilience to

data reduction.

Our GTenhanced Transformer notably maintains

a significant F1 score even when no training data

for M pronunciations is available. This resilience

stems from its ability to leverage character glyph

and temporal features, facilitating accurate recon-

structions based on related historical data. These



results underscore the robustness of our model in

handling sparse datasets, highlighting its practical

potential where complete data is often lacking.

As shown in Table 7, both the Decision Tree and

Cognate Transformer models exhibit zero perfor-

mance (F1 score of 0) when there is no training

data from the reconstructed era. The Decision Tree

model relies on patterns seen during training to

make reconstructions, rendering it ineffective with-

out target-era data. Similarly, the Cognate Trans-

former model’s use of row and column attention

fails without target-era training, hindering its abil-

ity to establish meaningful connections for accurate

reconstructions across historical periods.

Moreover, the decline in F1 scores with the re-

duction of target period data in the training set

further validates the effectiveness of our dataset.

The dataset’s richness in historical and phonetic

context is crucial for accurate pronunciation recon-

struction, and the model’s performance drop with

less data underscores this importance.

Figure 7: Model performance on evaluation with re-

duced training data from the reconstructed era.

Evaluation with Reduced Historical Training

Data As shown in Figure 8, we progressively

reduce the historical context data when reconstruct-

ing Modern pronunciation. The F1 score decreases

more slowly compared to reconstructing Middle-

Tang pronunciation. Specifically, when reconstruct-

ing Modern pronunciation, the F1 score drops from

0.380 to 0.285 as we reduce the available historical

context from T+L+S+Y+Q to only T. On the other

hand, when reconstructing MiddleTang pronuncia-

tion, the F1 score drops from 0.682 to 0.283 as we

reduce the historical context from L+S+Y+Q+M to

only M. The F1 scores become nearly identical at

the final stages. This phenomenon stems from the

model’s heavier reliance on phonetic information

and attention weights from adjacent eras, partic-

ularly MiddleTang, LateTang, and Song periods,

which exhibit structured and rule-based phonetic

patterns.

Additionally, the decline in F1 scores also vali-

dates the effectiveness of our dataset. As we reduce

the historical context, the model’s performance

drops, indicating that the available historical pho-

netic information is crucial for accurate pronuncia-

tion reconstruction.

Figure 8: Model performance on evaluation with re-

duced historical training data.

Predict Future Pronunciations Our model has

demonstrated robust performance, maintaining a

certain level of F1 score even in the absence of

training data for specific historical periods. To

further explore the capabilities of our model, we

conducted an intriguing experiment to predict the

pronunciation of Chinese characters in AD 23008

5 Related Work

Language models for phonetic reconstruction

A related task of phonological ancient language

reconstruction is proto-word reconstruction, which

takes set of words in different contemporary lan-

guages as input and the corresponding word in

their common ancestral language as result of su-

pervised reconstruction. Meloni et al. (2021)

and Akavarapu and Bhattacharya (2023) both eval-

uated neural networks’ performance on Romance

language family’s reconstruction task. Kim et al.

(2023) first introduced Transformer architecture

into proto-word reconstruction task and outper-

forms previous models on both Romance and

Sinitic dataset. While large language models

(LLMs) have recently demonstrated exceptional ca-

pabilities in understanding and generating contem-

porary languages, their proficiency in comprehend-

ing ancient Chinese, remains inadequate. Zhang

and Li (2023)’s research highlighted the limitations

8You can listen to the audio representations of future Chi-
nese pronunciations at: https://github.com/KaguraRuri/
Ancient-Chinese-Phonology.



Model 100% 75% 50% 25% 10% 1% 1‰ 0

Decision Tree 0.451 0.326 0.239 0.153 0.077 0.011 0 0
Cognate Transformer 0.500 0.488 0.486 0.458 0.421 0.324 0.147 0
GTenhanced Transformer 0.728 0.714 0.705 0.693 0.671 0.594 0.498 0.380

Table 7: Model performance on Reduced Target Training Data Evaluation (Metrics: F1). The target of the model

reconstruction is Modern pronunciation. The value of the header represent the percentages of Modern pronunci-

ation data in the training set relative to the entire training set. The division between the training and testing sets

follows the phonetic distinction evaluation.

of LLMs in handling the complex ancient Chinese

phonetic information.

Chinese phonetic dataset In terms of Chinese

phonetic datasets, current digitization all organized

the ancestor language (Middle Tang Chinese) and

its daughter languages (modern Chinese dialects)

into a cognate set. Hou (2004) first collected 2,789

cognates of word-wise Chinese dialect pronuncia-

tion. Chang et al. (2022) expanded Hou’s dataset,

organize entries by characters instead of word. As

for chronological phonology dataset in Chinese,

existing resources are mainly from studies of his-

torical linguistics. Swedish sinologist Karlgren

first put forward the phonological reconstruction

of Middle Tang Chinese (Karlgren, 1922). Wang

(2012) provided a comprehensive analysis of Chi-

nese language phonological evolution. However,

these sources are not digitized to our knowledge.

6 Conclusion

We introduce an extensive ancient Chinese

pronunciation dataset with 70,943 entries for

17,001 Chinese characters, alongside an enhanced

transformer-based model integrating glyph and

temporal information to refine traditional phonolog-

ical reconstruction results. Our model outperforms

traditional methods across various ancient Chinese

pronunciation reconstruction tasks with superior

accuracy even under low-resource scenarios. De-

spite the incomplete phonetic data, it maintains

high performance for reconstructing and predicting

Chinese pronunciations. We offer a richer, tem-

porally contextualized resource for computational

linguistics and historical research. This study lays

a strong foundation for future research in phonetic

reconstruction and language evolution.

Limitations

Despite the significant advancements made by our

approach, several limitations remain. First, our

current dataset does not encode tone information

and its evolution, which may be beneficial crucial

for accurately reconstructing ancient Chinese pro-

nunciation and for educational purpose. Future

work will focus on enhancing the dataset by incor-

porating detailed tonal information. Furthermore,

the dataset currently lacks non-linguistic features

such as geographical, natural, and political factors

that could influence phonetic changes over time. In-

cluding these features could provide a more holistic

understanding of ancient Chinese phonetic recon-

struction and improve the model’s accuracy, espe-

cially on low-resource scenarios.

Addressing these limitations would enhance the

robustness and applicability of our methodology,

thereby advancing the field of computational recon-

struction of ancient Chinese phonology.
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