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1 INTRODUCTION

Documentation is critical to software maintenance and to software engineering at large [41, 61,
81]. Reading source code on its own is time-consuming, thus, software developers rely on natural
language descriptions of code to both convey and understand its meaning [72]. Code summaries
are one such example of natural language descriptions, in which the meaning of code is distilled
into a short phrase [89]. For instance, ‘removes an entry from the database’ can help a developer
grasp the purpose of a code snippet without reading each detail. From another perspective, writing
a concise summary such as this demonstrates an insightful understanding of the code.

Accordingly, researchers have studied how humans interpret code and condense it into a sum-
mary, and have used eye-tracking to record programmers’ gaze as they write summaries [5, 70].
Those studies have shed light on where programmers look in code as they write summaries, yet
software developers typically read code with accompanying documentation [7, 35, 61]. Informally,
if we consider summary writing to be an active, generative process, is this form of comprehension
different from that when a summary is present? Research into code comprehension has been ongo-
ing for over 40 years and has developed several models for how programmers understand source
code, such as bottom-up and top-down comprehension [88]. However, there is limited research
into whether programmers’ purpose for reading source code has any influence on their compre-
hension strategies (i.e., reading code to generate documentation or reading code with the help
of pre-written documentation). This has resulted in educational practices that may be imprecise
around reading code in different contexts [20] and automated techniques trained on data from
one type of comprehension for the role of another [70]. Uncovering nuances in code comprehen-
sion related to programmers’ purpose will not only advance our foundational understanding [88]
but can also provide guidance to educators teaching students to derive meaning from code [13]
and can help advise programmers on how to write code summaries for those who will later read
them [36, 43, 66]. This information can also help in developing methods for automated code sum-
marization to better tailor their output for developers reading code with a summary [70, 89].

Previous studies in code summarization have attempted to investigate human attention pat-
terns on the semantic level, but they have only considered four categories: the method declaration,
the method body, control flow elements, and method calls [5, 70]. Those studies on student pro-
grammers and professional developers present slightly different interpretations from one another.
However, by considering only these four categories, the finer details of programmer attention that
reveal more nuance may have been overlooked. For instance, during code summarization tasks,
it is currently unknown how programmers attend to variables, arguments, parameters, literals,
or other semantic categories (see Table 2). Furthermore, those studies did not analyze semantics
within the sequences of programmer attention (i.e., scan path) [69], which can be informative of
deeper cognitive processes during code comprehension [19, 42].
In this article, we present results from a human study using eye-tracking from 27 undergraduate

and graduate computer science (CS) students, totaling 35.68 hours of eye-tracking data for 1,657
Java summarization tasks and 6,848,501 eye-tracking data points. Participants read real-world Java
methods under two conditions: Reading — participants were given pre-written summaries and
asked to evaluate their quality using validated criteria [39] andWriting — participants generated
their own code summaries. To understand programmer attention patterns in sharper detail, we
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categorized each “word”, or token, in the Java methods as one of 19 semantic categories [71]. We
analyzed semantics in the ordered sequence (i.e., scan path) of what programmers read in the code
for a deeper look into programmer cognition during code comprehension tasks. Finally, whereas
current work in code comprehension has examined programmer attention in raw code [20, 63],
we present, to the best of our knowledge, the first analysis of human attention on the Abstract
Syntax Tree (AST), which is an underlying structural representation of code. We hope this ap-
proach can inspire future work, especially considering artificial intelligence (AI) models that seek
to automate code summarization using the AST [46, 51, 83]. In our analyses, we find that student
programmers’ focus can be mediated by expertise, other demographic factors, and the comprehen-
sion task (Reading orWriting). We also find that some broader reading patterns are stable between
the two tasks, as well as some intriguing patterns from the AST mappings. These results have im-
plications for our understanding of code comprehension and for CS Education, tool design, and
automated code summarization methods.
Specifically, we found the following: (1) in the Writing condition, programmers focus more on

parameters, variable declarations, and method calls; (2) programmers look more at the code when
they are reading it to formulate their own summaries; (3) cognitive load increases as a function of
code complexity; (4) novices consistently look more at variable declarations and conditional state-
ments when summaries are provided but not when programmers write their own summaries; (5)
regardless of the comprehension task, programmers consistently look between the same semantic
categories (method declarations ⇄ variable declarations, loop bodies ⇄ conditional statements,
method declarations ⇄ conditional statements); (6) programmers’ attention patterns are signifi-
cantly different on the raw code between Reading and Writing but not on the AST; (7) experts’
and novices’ attention patterns are significantly different on the raw code for Reading but not on
the AST. For Writing, their patterns are significantly different on the raw code and even more so
on the AST.
Our contributions are as follows.

— A controlled human study with 27 participants performing code summarization tasks: one
in which they are given a summary, and one in which they generate their own summary.

— A semantic-level comparison and traditional eye-tracking comparison of programmer atten-
tion when they are given a pre-written summary and when they write their own.

— An analysis of the semantic categories that CS students commonly look between during code
summarization tasks.

— A novel analysis mapping human attention to the AST and contrasting to human attention
on raw code.

— A detailed comparison between experts and novices, including semantic categories, reading
sequences, and AST mappings.

— Publicly available data and code here.

2 BACKGROUND AND RELATEDWORK

In this section, we discuss prior literature on eye-tracking in software engineering and code

summarization.

2.1 Eye-Tracking

Eye-tracking is a non-invasive technology that records visual attention and cognitive load [75].
The technology has its roots in the 1800s and has been used to study gaze patterns in mar-
keting research [87], natural language reading [67], and even fields such as aviation [64]. Eye-
tracking is particularly useful for software engineering, in which researchers can closely monitor
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programmers’ code reading patterns and behavior in realistic work conditions [40], especially with
the development of such tools as iTrace [73]. Researchers have used other cognitivemeasures, such
as neuroimaging, to gain insights into the cognitive processes of coding. For instance, researchers
have compared patterns of brain activity and connectivity between coding and other cognitive
skills, such as mental rotation and prose writing [45, 49, 50]. Those methods are expensive and are
different from eye-tracking in that they have a lower temporal resolution and require researchers to
make inferences about programmers’ internal state. Eye-tracking, by contrast, measures humans’
external visual behaviors at a high temporal resolution.
For eye-tracking, researchers typically rely on fixation data extracted from the raw data to mea-

sure cognition. A fixation is defined as a spatially stable eye gaze that lasts for 100 to 300 ms [76].
Most processing of visual information happens during fixations [48] and begins at the start of
the fixation according to the immediacy assumption [48]. By calculating the amount of fixations,
or the fixation count, and the time span of these fixations (i.e., fixation duration), researchers can
roughly measure humans’ cognitive effort and information processing [76]. Humans also make
rapid eye movements or large jumps in their visual field, called saccades, which typically last for
40 to 50 ms. There is little cognitive processing that occurs during saccades [67]; thus, researchers
use fixations to investigate cognitive load and visual attention patterns [75]. Humans will occa-
sionally fixate on an area they have previously seen. These regressions occur when participants
review prior information and also indicate higher cognitive effort [75].

There are also more complex eye-tracking metrics, such as the scan path, that offer insight into
deeper cognitive patterns in humans. A scan path is simply an ordered sequences of fixations, but
it reveals the order in which humans process information [76]. By nature, the scan path as an or-
dered sequence is suitable for interdisciplinary analyses. For instance, researchers have used an
algorithm for comparing DNA sequences to study the similarities between scan paths [19, 26, 54].
In Software Engineering, researchers have applied depth-first search to scan paths from require-
ments comprehension [74] and have used edit distances to measure the similarity between pro-
grammer scan paths (i.e., reading strategies) [28]. In this article, we treat participants’ scan paths
like documents in the context of Natural Language Processing (NLP), where there are contin-
gencies between consecutive words. To study programmers’ strategies for code summarization, we
analyzed patterns of consecutive semantic categories (i.e., N-Grams) in participants’ scan paths. In
addition to scan paths, we analyzed fixation counts and durations as well as regressions to com-
pare both facets of code summarization: reading code with a pre-written summary and reading
code to generate one.

2.2 Code Summarization and Comprehension

Code summarization is a complex cognitive task in which programmers must synthesize distant
pieces of code into a cohesive summary [70]. Previous research has studied humans as they write
code summaries [4, 5, 69, 70], but the automation of this process is also an active area of re-
search [89]. Automating this process is challenging because of the numerous (and fascinating)
deviations of source code from natural language [70].

Researchers initially attempted to treat source code as natural language and applied text summa-
rization techniques to code [38, 57]. However, there is not a one-to-one mapping between “words”
in code and words in natural language. Researchers revised their approaches and attempted to
find the key words or phrases within code that summaries should include [70, 82]. Rodeghero et al.
used eye-tracking in this context tomeasure where 10 human developers looked in the code as they
wrote summaries [70]. In studying where programmers focus, those researchers primarily consid-
ered method declarations, the method body, control flow elements, and method calls. They found
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that programmers look more closely at the method header than the method body but do not focus
more on method calls or control flow elements. Abid et al. conducted a similar eye-tracking study
to Rodeghero et al., in which 18 student developers summarized Java methods in an integrated
development environment (IDE) [5]. These researchers examined programmer attention on these
same four categories, finding that programmers look more at the method body than the method
declaration, focusing their attention on method calls and control flow elements. Based on these
slightly different interpretations, it is unclear whether programmers attend more to the method
declaration or the method body. In this study, we compared human attention between two dif-
ferent code summarization tasks and considered 19 semantic categories in an attempt to uncover
more nuance.
To improve automated source code summarization, Rodeghero et al. designed their study to

investigate where programmers focus as they summarize code and then incorporated this infor-
mation into an automated model [68, 70]. We hope to similarly inform today’s state-of-the-art
methods for automated code summarization. Recently, Deep Learning techniques have proliferated
to automate code summarization, with top-performing models using Transformers [8, 86]. These
models typically perform well by incorporating structures of the code, such as call graphs [11] or
ASTs [46, 51], into the training process. Thus, in this study, to further explore programmers’ atten-
tion patterns and inspire future AI design for code summarization, we conducted an exploratory
analysis by mapping the scan path onto the AST, and compared this with traditional metrics on
the raw code (Section 5.2).

3 STUDY DESIGN

To investigate student programmers’ attention patterns during both facets of code summarization,
we designed our experiment to include two conditions: Reading andWriting.

Reading: Participants were given code with pre-written summaries, and asked to evaluate the
summary quality.
Writing: Participants read Java methods and generated their own summaries.
Participants completed both conditions, all while their visual behavior was recorded us-

ing eye-tracking. In the remainder of this section, we discuss participant recruitment, the
study materials used in the task (i.e., Java methods, eye-tracking), the task design, and the
experimental protocol.

3.1 Participant Recruitment

Participants were recruited from Vanderbilt University and the University of Notre Dame to take
part in the experiment. The two R1 universities are comparable in terms of CS curricula, and
both teams obtained institutional review board approval at their respective institutions. The same
recruitment procedure was followed in both locations, where students were invited to participate
via in-class presentations, flyers, class forum posts, andmailing-list advertisements. To be included
in the experiment, programmers needed to be at least 18 years old, have taken Data Structures or
the equivalent, have at least 1 year of experience with Java, and no history of epileptic seizures [2].
In total, we recruited 29 undergraduate and graduate CS students across Vanderbilt University
(n = 19) and the University of Notre Dame (n = 10). All participants were compensated $60 at
both institutions. Due to protocol error in one case and a software malfunction in another, data
from two participants was excluded, leaving 27 participants’ data in the final dataset. Of the 27
participants, the average age was 23.81, 8 were women, 15 were graduate students, and 14 spoke
English as a first language. Select demographic information for these 27 participants included in
the final dataset can be found in Table 1.
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Table 1. Demographic Information of the Participants in

Our Final Data Sample

Demographic Number of Participants

Gender
Men 19
Women 8

Expertise
<= 4 years 10
5 – 6 years 8
>= 7 years 9

Program
Undergraduate 12
Graduate 15

During data analysis, participants were separated into three
groups based on their programming experience in years.

3.2 Study Materials

In this section, we discuss specifics related to the origin of the Java methods as well as the eye-
tracking hardware, software, and setup.

Java Methods The Java methods and associated summaries used in this study originate from
the publicly available FunCom dataset of 2.1 million Java methods collected from open-source
projects [11, 52]. This dataset has been used, filtered, and refined in previous research [10, 39]; we
continue this lineage using a sample of 205 methods employed in prior human studies [12, 39]. For
this study, we indented and formatted these 205methods according to Java coding conventions [58].
To fit the screen constraints, we omitted methods that either exceeded 26 lines of code or contained
lines of code that wrapped onto the next line. The final dataset after cleaning based on these
characteristics consisted of 162 Java methods. Before filtering, the average method length in the
dataset was 12.37 lines of code (σ = 4.72), with an average line length of 27.38 characters (σ = 27.25).
In terms of cyclomatic complexity, methods in this pre-filtered dataset had an average complexity
of 2.53 (σ = 1.59), where each count is the number of linearly independent paths through a method.

After filtering, the average method length in the dataset was 11.72 lines of code (σ = 4.26),
with an average line length of 26.52 characters(σ = 26.31). The average method complexity in
our final sample was 2.59, with a standard deviation of 1.56. The shortest method was 5 lines of
code, whereas the longest was 26 lines of code. The simplest methods had a complexity of 1, and
the most complex method in our sample had a complexity of 11. Method summaries ranged from
3 to 13 words long (i.e., “refresh tree panel”), with an average of 8.29 and a standard deviation
of 2.78 words. These methods were randomly assigned to either the Reading condition or Writing
condition, ensuring that eachmethod could only be used for one condition (i.e., methods used in the
Reading condition were not reused in theWriting condition). With data collection for eye-tracking
in mind, we ensured that the selection of Java methods follows the best practices in Software
Engineering for participant fatigue as well as constraints for hardware and software [76].

Eye-tracking Eye-tracking data was recorded using a Tobii Pro Fusion eye-tracker mounted on a
24" computer monitor (1920 × 1080 resolution) with a refresh rate of 60 Hz [2]. The eye-tracking
model is accurate down to 0.1 to 0.2 in on the screen (0.26–0.53 cm). We developed a task interface
to run locally using Python Flask that presented Java methods and recorded participant input.
An example of this can be seen for both conditions in Figure 1. To record eye-tracking data, we
integrated the Tobii-Pro Software Developer Kit into the task [1]. The Javamethodswere presented
at font size 14, without syntax highlighting. To improve data quality for eye-tracking, participants
were asked to wear contact lenses instead of glasses when possible. We ensured that the materials
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Fig. 1. Example stimuli used in the task. In both conditions, the code was displayed on the le�, and the sum-

maries, pre-wri�en or participant generated, were located in the top right. In the Reading condition, Likert-

scale questions for assessing summary quality were presented on the right below the pre-wri�en summary.

and methodology were consistent across both institutions and followed a script when interacting
with participants.

3.3 Task Design

We used a within-subjects experimental design: each participant completed both the Reading and
the Writing conditions, but whether a participant started in Reading or Writing was randomized.
The entire pool of 162 Java methods was randomly split between Reading and Writing so that
participants would see a given method in only one context. For each experimental session (i.e., for
each participant), 65 Java methods of the 162 were randomly selected and presented. Methods were
presented as stimuli; each stimulus consisted of one method and a summarization task specific to
that condition (i.e., writing a summary, rating a pre-written summary). Of these 65 stimuli, 40 were
presented in Reading and 25 in Writing.
Tomaximize both the variety and amount of eye-tracking data collectedwith respect to our stim-

uli, we purposefully ensured that 60% of the stimuli were seen among all participants, whereas the
other 40% was taken from the larger pool (reserved for that condition). Before we began collecting
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eye-tracking data, we randomized which stimuli comprised the 60% seen by all participants and
which made up the larger pool from which the remaining 40% was sampled for each experimental
session. During the experimental sessions, the order in which the stimuli were presented was also
randomized. In total, 89 Java methods were covered in the Reading condition, of which 24 were
seen by everyone. In the Writing condition, 67 Java methods were covered, with 15 of those being
seen by every participant. Thus, 156 of the 162 methods were covered during data collection.
Three breaks were built into the task, both for participants to rest, and for the researchers to

recalibrate the eye-tracker (for data quality). There was no time limit for breaks. Participants were
notified of breaks via “rest” slides built into the interface. These were placed in the following lo-
cations: one halfway through the Reading condition, one in between the two conditions, and one
halfway through the Writing condition. For example, if participants started with the Writing con-
dition, they would first complete 13 stimuli, take a break, then finish the remaining 12. Before
starting the Reading condition, they would take a second break. Now in Reading condition, partic-
ipants would finish 20 stimuli, then take their third break. They would then finish the remaining
20 stimuli of the Reading condition.
In the Reading condition, participants were shown Java methods on the left side of the screen

and the corresponding summary in the upper-right. Likert-scale questions were located below the
pre-written summary. ForWriting, a text box for participants’ summaries was located in the upper
right of the screen. Example stimuli can be seen in Figure 1. Pre-written summaries in the Reading
condition were either human written and from the original dataset of Java methods from open-
source projects [52] or generated via Deep Learning [11, 39]. We discuss quality control for these
summaries below. To ensure that this summarization task was treated as a code comprehension
task, participantswere given four Likert-scale questions for each stimulus requiring them to closely
read both the summary and the code. Questions 1 to 3 were previously validated [39], whereas the
fourth was added for the purposes of this current study. The questions were on a scale of 1 to 5,
ranging from Strongly Disagree to Strongly Agree, and based on the following criteria:

(1) Summary accuracy
(2) Whether the summary is missing information
(3) Whether the summary contains unnecessary information
(4) Summary readability

Quality Control The quality of pre-written summaries could potentially influence programmer
attention on the code. Thus, we removed data associated with egregiously low-quality summaries.
The summaries were previously validated as well [11], but we implemented further checks to
bolster the data quality for the current study. Specifically, using a 1 to 5 scale, we excluded data
from summaries that had an average score of 4 or greater for questions (2) and (3) above, and an
average score of 2 or below on questions (1) and (4). In other words, we removed data associated
with pre-written summaries if, on average, participants agreed it was missing information and
contained unnecessary information and disagreed that it was accurate and readable. In total, data
associated with 4 pre-written summaries was removed.
Likewise, participant-written summaries that do not match the code indicate poor comprehen-

sion. Here, we assume that participants formed mental models of the code based on information
they saw. If participants’ understanding of a method was malformed, this may be reflected in their
eye-tracking data as well. While we wanted a variety of comprehension types and skill levels
within the dataset, we also sought to ensure that the eye-tracking data represents a base level of
comprehension. For example, we excluded eye-tracking data from a summary that included “to be
honest, I am not entirely sure what this function is doing.”Therefore, two of the authors of this ar-
ticle rated and subsequently filtered participant summaries using the same Likert-scale questions
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mentioned above [25]. The two researchers (8 years of Java experience, 5 years of Java experience)
first rated participants’ summaries independently. The researchers then resolved any rating con-
flicts together (i.e., a valence mismatch: Agree/Disagree, Strongly Disagree/Agree, Neutral/Agree),
obtaining an Inter-Rater Reliability (IRR) of 1 [53]. Using these ratings, eye-tracking data as-
sociated with 5 participant summaries was excluded. Informally, if we consider one participant’s
eye-tracking data for one stimulus as a single data point, the final dataset contained 996 samples
for the Reading condition and 661 samples for the Writing condition. We discuss how this eye-
tracking data was analyzed to compare both forms of code comprehension in Section 4.

Statistical Power Using the effect sizes of results in previous research as a guideline [78], we
evaluated the statistical power of data collected in this study. Sharif et al. conducted a study with
15 participants, comprised of undergraduate and graduate students as well as two faculty members.
That study used a within-subjects study design, and reported small to moderate Cohen’s d effect
sizes, with a minimum of 0.15, a maximum of 0.57, and an average effect size of 0.27. In this study,
we used a within-subjects design for comparing between Reading and Writing, and a between-
subjects design for comparing based on different demographics. Using G-Power, we calculated
that we would need 150 total data points in comparing Reading and Writing to obtain sufficient
statistical power to detect the average effect size of 0.27 with an alpha of 0.05 [32]. In other words,
we would need at least 75 samples in both conditions. As previously mentioned, we obtained 996
samples for the Reading condition and 661 samples in the Writing condition.
For analyzing differences between groups based on demographic factors, we would need be-

tween 68 samples (d = 0.15) and 963 samples (d = 0.57) in both groups, or 298 samples in both for
an effect size of 0.027. In this study, we compared participants based on years of experience, gen-
der, and native language. For expertise, we did not include all participants’ data in our analyses,
and instead split the participants into three groups, only comparing between participants with the
lowest amount of experience with those with the highest. Based on our sample of students, we
considered participants to be novices if they had 4 years of experience or less (n = 10), and experts
if they had more than 7 years of experience (n = 9). We excluded data from the middle group in
our comparison to yield a starker contrast between experts and novices. For theWriting condition,
we obtained 215 and 242 samples from experts and novices, respectively. In the Reading condition,
we collected 336 and 370 samples from experts and novices, respectively.

Our sample is sufficiently powered for comparing based on gender and native language but is
not ideal due to other characteristics of the dataset. For gender, only one woman in our sample
is in the expert group and, with respect to native language, only two native English speakers are
in the expert group. To ensure that the samples were not biased towards experts, we excluded all

experts in our analyses, comparing student programmers based on gender and native language.
We collected 270 samples from women (n = 7) in the Reading condition and 174 samples in the
Writing condition. From men (n = 11), we collected 390 samples in the Reading condition and 272
samples in the Writing condition. Next, we compared native English speakers (n = 12) and non-
native English speakers (n = 6). From the former, we collected 460 samples for Reading and 295 for
Writing. From the latter, we collected 200 samples for Reading and 151 forWriting. As an additional
consideration, the remaining non-native English speakers represent 5 other languages, which may
introduce additional variables in the comparison.We nonetheless analyzed these factors to explore
potential differences and understand their influence on the larger dataset. We present preliminary

analyses based on gender and native language in Section 5.4.

3.4 Experimental Protocol

Programmers were recruited to take part in the experiment via in-class presentations, flyers, forum
posts, and mailing list advertisements. Individuals who contacted the researchers completed the
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consenting and prescreening processes electronically (the experimental session was in person).
After programmers gave their consent, they completed a prescreening questionnaire to ensure
that they were eligible for the study. Individuals were eligible for the study if they were at least
18 years old, had taken Data Structures or the equivalent, had at least 1 year of Java experience,
and no history of epileptic seizures [2]. In addition, we gave programmers a prescreening question
to test their basic Java understanding, following previous work [11]. We asked them to briefly
describe the purpose of an obfuscated Java method (i.e., in-order tree traversal). All participants
included in the current study met our eligibility criteria and wrote accurate descriptions.
Participants completed the summarization tasks in person, in an office with natural lighting.

At the beginning of each experimental session, participants completed a pre-task survey contain-
ing questions related to age, gender, native language, and classes taken. The pre-task survey was
limited in scope to reduce any priming effects [56]. The researcher would then give participants
scripted instructions for the experiment and calibrate the eye-tracker using the Tobii Pro Eye
Tracker Manager [2]. The eye-tracker itself may have introduced observer bias, as participants
might change their behavior knowing their gaze was being recorded [84]. While a certain amount
of experimental bias is unavoidable [21], we as researchers attempted to minimize observer bias by
leaving the room while participants completed the task. Participants were instructed to alert the
researcher once they reached the breaks (Section 3.3). After each break, the researcher recalibrated
the eye-tracker.
After finishing the experimental session, participants completed a post-task survey. The post-

task survey asked participants about their preferred coding languages, coding experience, and per-
sonal criteria for high- and low-quality summaries. Experimental sessions lasted about 90 minutes.
The summarization tasks alone (i.e., Reading, Writing, breaks) lasted roughly 75 minutes.

4 DATA ANALYSIS

In this section, we discuss the methodology used for data preprocessing and analysis. Our over-
arching goal through this process was to extract the semantics of what programmers read during
code summarization tasks. To accomplish this, we broke down the problem into the following
steps:

(1) Map participants’ eye-tracking data to the Java code on the monitor. We achieved this via
bounding boxes around each token in the methods.

(2) Assign all tokens in the Java methods to semantic categories. We developed a strategy for
this based on prior literature and the semantics of Java, and used ASTs.

(3) Calculate eye-tracking metrics with respect to these semantic categories and the ASTs.

Bounding Boxes Raw eye-tracking data consists of x and y coordinates on the screen as well
as timestamps for these gaze points. However, this does not indicate what participants actually
read at a given moment. For our purposes, we sought to map these x and y gaze coordinates to
tokens in the Java methods. We calculated the pixel-coordinate boundaries, or bounding boxes, of
each token on the screen [37]. To generate these bounding boxes, we first captured screenshots
of each of the Java methods, then used the opencv-python library to compute the contours and
coordinates of the tokens within the images. Because these were images, information about the
actual code within the bounding boxes was lost at this stage. To recover information about the
code, we used the easyocr library to identify the characters within each bounding box. The output
from optical character recognition did not always align with the original code. Thus, we used the
difflib library to match predicted strings with the closest token in the original code. Finally,
the researchers did a manual pass to ensure that strings associated with bounding boxes matched
tokens in the original code.
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Fig. 2. For a Java method in our dataset, assigning tokens to semantic categories based on their context in

the Abstract Syntax Tree. All semantic categories can be found in Table 2. Punctuation was not analyzed.

Inmany cases, the same tokens appearmultiple times in the samemethod. For instance, consider
the line of code ‘int n = n + 1’. Here, we need a means of differentiating the first occurrence
of ‘n’ from the second, both to specify which token a programmer was examining and to assign
the appropriate semantic categories. In these cases, we notated repeated tokens with incremented
numbers. Based on our implementation, the tokens in the above example would be notated as
int.0, n.0, =.0, n.1, +.0, 1.0. After this process with the bounding boxes was complete, we
could localize participants’ gaze coordinates to tokens on the screen, but we still lacked semantic
information for the code they read.

Semantic Categories and Abstract Syntax Trees Using bounding boxes, we could determine
that programmers read Token Amore than Token B. However, informally, is Token A a variable? Is
Token B involved in exception handling? To draw broader conclusions about where programmers
focus during code summarization tasks, we still needed generalized semantic information for to-
kens in the Java methods (Section 3.2). To obtain this information, we abstracted tokens according
to their AST context and assigned them to semantic categories. Specifically, we used srcML to
parse Java methods into ASTs [22], then recursively walked through the trees to derive tokens’
structural context. For example, each of the four tokens in the line String s = ‘hello world’

would be labeled ‘variable declaration’ because these are children of ‘declaration statement’ and
‘initialization’ nodes according to srcML’s parsing. Initially, each token could be classified as one
of 25 categories, which are listed in Table 2 (we discuss how this was reduced to 19 below and
further filtered in Section 5.1). We formulated these categories by referring to Chapters 1 to 6 of a
standard Java textbook [71] and show an example of these semantic categories in Figure 2.
In some cases, multiple labels might apply to a single token. For example, consider the first line

of code from Figure 2:
public void genSql() throws PositionedError. In this line, ‘void’ is part of the method

declaration, but it is also the return type. Similarly, ‘genSql’ is in the method declaration, but it is
also the method name. To resolve these label conflicts, we created an order of precedence, as shown
in Table 2. In these conflicts, a token would be given the abstract label with the higher precedence
(i.e., method declaration for void, genSql based on our criteria). Informally, we emphasize that
this list is not absolute and may be refined in future work. It was designed for our purposes in the
current study based on the semantics of Java [71].

This order of precedence was decided based on prior literature [5, 14, 70] to achieve high granu-
larity while preserving meaningful semantics. For example, the pair of tokens ‘ref.getFile()’ in
Line 4 of Figure 2 consists of an externally defined variable followed by a method call, but it is also
an argument. We contend that ‘argument’ is a more meaningful semantic category for this pair of
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Table 2. List of Categories Considered for Each Token in the Code, with a

Count of their Occurrences within Our Dataset

Precedence Category Amount in Dataset

1 Comment 78
2 Method Declaration 465
3 Parameter 349
4 Return 362
5 Conditional Statement 807
6 Exception Handling 197
7 Loop Body 650
8 Conditional Body 461
9 Variable Declaration 937
10 Argument 601
11 Variable Name 126
12 Method Call 277
13 External Class 59
14 External Variable/Method 216
15 Assignment 74
16 Operation 16
17 Literal 9
18 Operator 16
19 Index Operation 1
NA ‘This’ Keyword 0
NA Assignment 0
NA Type 0
NA Return Type 0
NA Method Name 0
NA Constructor Call 0
Multiple labels may apply to one token. For these conflicts, the token was given
the label with higher precedence (i.e., higher priority based on previous research).
We originally started with 25 categories, but only 19 remained after labeling
conflicts were settled. For example, ‘Return Type’ and ‘Method Name’ were always
superseded by ‘Method Declaration.’

tokens considering their context within the method [59]. Previous code summarization research
examines the method declaration, control flow elements, and method calls. Thus, these semantic
categories were given higher priority in our list of precedence [5, 70]. We also note that higher
precedence does not always mean higher importance. For instance, ‘Comments’ are given a high
position on the list, whichmay be counterintuitive. However, whereas labeling a token ‘Loop Body’
or ‘Variable Name’ may be debatable, a comment is unambiguously a comment. In addition, the
list is relative in that some categories do not conflict with one another (e.g., ‘Return’ and ‘Method
Declaration’).
We inspected return statements and values because prior code comprehension research demon-

strates the relevance of program output for programmers’ attention [14]. Furthermore, parameters,
arguments, and variables were given higher precedence to gain insight into how the output evolves
throughout the method [15]. To summarize, we originally considered 25 semantic categories for
each token, but after settling label conflicts using this order of precedence, only 19 unique la-
bels remained. We further filtered these categories based on where participants focused most and
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provide more details in Section 5.1. After this process was complete, we obtained generalized se-
mantic information for tokens in the Java code. At this stage, we could both localize programmers’
gaze to tokens in the code and link this to broader semantic information about the code. The next
step in the analysis was calculating eye-tracking metrics with respect to these semantic categories.

Eye-tracking Metrics To compare human attention during both facets of code summarization,
we analyzed eye-tracking data with respect to the semantic categories detailed above. We use the
following metrics in our comparison.

— Fixations: Researchers use fixations as a proxy to measure cognition [76], but fixations
first need to be distinguished from saccades within the eye-tracking data. Fixations are spa-
tially stable eye-gazes, whereas saccades are rapid eye movements during which little cogni-
tive processing happens [67]. Current algorithms for discerning fixations from saccades rely
on the velocity of the eye-movement [60]. If an eye-movement exceeds a certain threshold,
it is considered a saccade. Following best practices in our implementation of a Velocity-

Threshold Identification (I-VT) algorithm [16], we classified a gaze point as a saccade
if it exceeded 400 px/100 ms. We both counted the gaze points identified as fixations and
calculated their average durations. Our purpose for using these fixation counts and fixa-

tion durations was to measure differences in programmer attention between the Reading
and Writing conditions. To this end, we compared cumulative fixation counts and durations
between both conditions and compared fine-grained differences related to the semantic cate-
gories. We performed statistical tests, namely, Welch’s t-tests corrected for multiple compar-
isons, between fixation data from both conditions and between experts and novices. These
results are detailed in Sections 5.1 and 5.4.

— Scan Path: The scan path, or the ordered sequence of fixations, is informative of deeper
cognitive processes [75, 76]. To develop our understanding of human attention and cog-
nition during code summarization tasks, we replaced raw tokens in the scan path with
their semantic categories, giving us abstract scan paths. For example, the raw scan path in
Figure 3 contains the sequence printCUnit −→ SqlcPrettyPrinter −→ spp. The corre-
sponding abstract scan path would be Method Call −→ External Class −→ Variable

Declaration. Thus, by creating abstract scan paths, we could examine generalized patterns
of programmer attention during code summarization tasks. We explored these patterns us-
ing analyses inspired by NLP, treating the abstract scan paths as documents. Specifically,
we calculated the most common sequences within participants’ abstract scan paths using
N-Gram analyses, which we describe in Section 5.2.
We also leveraged the scan path to explore another novel representation of programmer

attention during code comprehension. To provide some background, previous research has
measured the distances between programmers’ consecutive fixations [19], noting that ex-
perts typically look farther. In the current study, we implemented a similar distance metric to
measure the clustering of programmer attention during code summarization tasks. However,
whereas prior research measured these distances in the raw gaze coordinates, we measured
these as distances between nodes on the AST. We then compared these distances with those
on the raw code. Previous research used Euclidean distance, but our measure on raw code
is based on the order of the tokens within methods to make an equivalent comparison with
the AST distances. For example, consider again the first line of code from Figures 2 and 3,
with notations of the token order:
(1) public (2) void (3) genSql (4) throws (5) PositionedError.

In this example, the absolute distance in raw code between ‘(1) public’ and ‘(4) throws’
would be 3. The Java methods in our dataset were not uniform in length; thus, the dis-
tances between consecutive fixations in larger methods may be farther than those in shorter
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Fig. 3. An illustration of one participant’s scan path through the genSql method. The actual scan path is

shown below the code, with colors matching those of the arrows above. The abstract scan path is also shown,

which illustrates the participant’s flow of a�ention between semantic categories. The genSqlmethod is the

same method depicted in Figure 2.

methods. Likewise, a far jump in a shorter method may appear relatively minor in a larger
method. For this reason, we normalized scan path distances based on the farthest possible
distance permethod and separately for the raw code andASTs.We used these normalized dis-
tance metrics to compare code reading patterns between both facets of code summarization
and between experts and novices, which we describe in more detail in Sections 5.3 and 5.4.

— Regression: Prior research defines regressions as backwardsmovements in the text [19].We
follow the same definition in the current study with respect to code. That is, if participants
look from Token A to Token B and Token B is located earlier in the method, we consider that
a regression. Regressions in eye-tracking data are informative of code reading patterns [19]
and indicative of greater cognitive effort [76]. We use this metric to explore both cognitive
effort and code reading patterns related to code summarization tasks in the current study.
We report details about regressions in Section 5.2.

5 EXPERIMENTAL RESULTS

In this study, we analyzed differences between two code comprehension tasks using both facets of
code summarization: reading code with a pre-written summary, and reading code to generate one.
Accordingly, we frame our investigations with the following research questions:

— RQ1. How do attention patterns compare between code comprehension tasks — reading
code with a pre-written summary and reading code to generate one?

— RQ2.Does the comprehension task influence programmers’ sequences of attention between
semantic categories?

— RQ3. What can we learn about code comprehension by mapping gaze data onto another
representation of code (i.e., the AST)?

— RQ4. Do experience and other demographic factors mediate programmers’ attention pat-
terns during code comprehension tasks?

5.1 RQ 1: Comparison Among Summarization Tasks

In the current study, student programmers completed an experiment testing both facets of code
summarization: reading code with a pre-written summary and reading code to generate one.
We used eye-tracking to compare these two forms of code comprehension, first considering
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cumulative differences in time taken and eye-tracking metrics. Second, we calculated differ-
ences in programmer attention on semantic categories.

5.1.1 Cumulative Differences. When we looked at the time these programmers spent reading
just the code in the two conditions, we found that participants read each method for longer in the
Writing condition compared with the Reading condition (p < 0.0001), averaging 26.54 seconds and
11.64 seconds per method, respectively. Moreover, we found that participants had higher fixation
counts when writing summaries compared with when they were given summaries (p < 0.0001), av-
eraging 94.92 fixations and 38.99 fixations on the code in each method, respectively. This suggests
that undergraduate and graduate programmers invest more time and effort in understanding the
code when they generate their own documentation. We found this trend for fixation durations as
well, where each fixation on the code was longer, on average, when participants wrote summaries
(0.11s) compared with when they were given a summary (0.1s). However, the difference did not
reach statistical significance (p = 0.06).

5.1.2 Trends in Gaze Behavior. Total fixation counts and durations are informative, but we next
sought to determine whether similar trends could be seen between participants based on the
method characteristics. To explore this question, we used linear regression to analyze how eye-
tracking metrics are affected by cyclomatic complexity. That is, do fixation counts or durations
increase, decrease, or stay the same as code complexity increases? For each method, we calculated
both the mean fixation counts for all participants who encountered it in the task and their mean
average fixation durations for that method. To then compare results between Reading andWriting,
and between fixation counts and fixation durations, we normalized the eye-tracking metrics to be
within 0 and 1. The results are shown in Figure 4, but we can see in all cases that the slope (m)
is positive, meaning that fixation counts and durations increase as a function of code complexity.
Participants’ average fixation durations increased more drastically than the counts for both Read-
ing (m = 0.008) and Writing (m = 0.028), suggesting that the more complex methods elicit more
focus and cognitive load from student programmers. In addition to the steeper slope for fixation
durations in Writing, we can also see that the y-intercepts (b) are higher for Writing (b = 0.36, b
= 0.293) compared with those in Reading (b = 0.266, b = 0.257). This suggests that the baseline
level of cognitive load in the Writing condition is higher than that in the Reading condition. These
results are intuitive and lay a foundation for more detailed comparisons we conducted between
conditions and demographics.

5.1.3 Semantic Categories. Next, to form a fine-grained understanding of programmer atten-
tion in both summarization tasks, we considered fixation counts and average fixation durations

on the semantic categories. Notably, we had 19 semantic categories for the tokens, but not every
method contained all 19 categories. We thus concentrated our analyses on the categories in which
programmers focused the most in the Reading and Writing conditions.

Inspired by the measurement of term importance in NLP, we calculated the weight (Wsc ) of
each semantic category (sc) separately for the two conditions, based on participants’ abstract scan
paths and the frequency of semantic categories therein. Informally, the weights here represent how
frequently a semantic category received attention from programmers. Theweights were calculated
as follows, where we first concatenated the scan paths for each method, Mi :

Mi (i ∈ {1, 2, . . . ,m}), (1)

wherem is the number of methods for a condition (Reading (m = 89) or Writing (m = 67)), and
from each participant, Pi, j , who engaged with methodMi in the experiment:

Pi, j (j ∈ {1, 2, . . . ,ni }), (2)
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Fig. 4. Linear regression results calculated between eye-tracking metrics and method complexity. Specifi-

cally, we used cyclomatic complexity and considered its effect on fixation count in Reading and Writing,

depicted in (a) and (c), and averaged between participants. In (b) and (d), we fit a line between cyclomatic

complexity and average fixation durations, averaged between participants. In all subfigures, each datapoint

represents averaged metrics across participants for one method. To compare slopes and intercepts between

the two conditions and metrics, we normalized the fixation counts and durations to be within 0 and 1.

where ni is the number of participants who engaged with methodMi . Because of task randomiza-
tion, ni ∈ {1, 2, . . . , 27}. For method Mi and participant Pi, j , the symbol spi, j refers to the partici-
pant’s scan path for that method. From here, we collected all scan paths SPi , which is a collection
of all spi, j specific to methodMi from all participants:

SPi = {spi,1, spi,2, . . . , spi,ni }. (3)

Thus, the total set of scan paths for all methods from all participants in either Reading or Writing
can be denoted as SP :

SP = {SP1, SP2, . . . , SPm}. (4)
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For each method Mi , we calculated the weight wsc,i for each of the 19 semantic categories (sc)
by first totaling the occurrences of all semantic categories (SCi ) in scan paths SPi :

SCi =

19
∑

k=1

i f sck ∈ SPi . (5)

For each semantic category sc , we calculated its weight (wsc,i ) within method Mi as a ratio,
where the numerator is its occurrences (fsc ) in all scan paths for Mi (i.e., SPi ). The denominator
is the occurrences of all semantic categories (SCi ) within method Mi . The log term measures the
number of scan paths (SPi ) in which the semantic category sc is present, slightly scaling the first
term based on the category’s rarity:

wsc,i =
fsc

SCi
× log

(

|SP |

1 + |{SPi ∈ SP : sc ∈ SPi }|

)

(6)

This formula would give a scaled measure of semantic category sc’s prevalence in scan paths SPi
for methodMi . The final weight for each semantic categoryWsc was then obtained by averaging
its weights across all methods:

Wsc =
1

m

m
∑

i=1

wsc,i . (7)

To determine a subset of categories to consider for our analyses, we used the average weights
Wsc , reported in Table 3, and cross-referenced the categories with previous literature. We found
that the top 8 semantic categories for both conditions include those reported by previous re-
search, while also refining their classification. Specifically, prior code summarization research ref-
erenced the importance of the method declaration, method body, method calls, and control flow
elements [5, 70]. Code comprehension research has noted the impact of elements that contribute to
code complexity on neurological activity [62], suggesting that these might receive more attention.

In our list in Table 3, we see that these top 8 semantic categories for Reading andWriting contain
those previously described in the literature, while also expanding upon them. We therefore used
these top 8 semantic categories and considered the subset of Java methods containing these cate-
gories in subsequent analyses. The semantic categories we considered were the following: variable
declaration, method declaration, conditional statement, parameter, method call, argument, condi-
tional block, and loop body. Concentrating on this subset yielded eye-tracking data from 15 meth-
ods, totaling 2,850 eye-tracking data points. We note that choosing this subset involved a degree
of subjectivity despite our best efforts and discuss this further in Section 7.
To compare fixation metrics between the conditions, Reading and Writing, we used the sub-

set of methods containing these top semantic categories. Previous research highlights the impact
of control flow complexity on attention and cognition [5, 62]; thus, we investigated conditional
blocks and loop bodies separately. We scaled fixation counts based on the condition, Reading or
Writing, because participants had higher fixation counts in the Writing condition. By contrast, we
left the average fixation durations unaltered since this aggregate statistic is consistent across both
conditions. We used Welch’s t-test to compare fixation metrics because some samples had equal
variance with their counterparts, while others did not [29]. We also performed false delivery rate

(FDR) correction for multiple comparisons and report the corresponding q-values.
Comparing the two conditions then, we find that programmers writing a summary have higher

fixation counts on parameters (t = 3.09, d = 0.5, p < 0.01, q < 0.05) and method calls (t = 2.8, d =

0.46, p < 0.01, q < 0.05). We find that, on average, programmers writing a summary fixate longer
on parameters (t = 4.1, d = 0.66, p < 0.0001, q < 0.001), variable declarations (t = 3.23, d = 0.52,
p < 0.01, q < 0.01), and method calls (t = 2.28, d = 0.37, p < 0.05, q < 0.05). This illustrates that
programmers focus significantly more on parameters, method calls, and variable declarations to
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Table 3. Weights for Each Semantic Category Based on Where

Participants Focused Most (Frequency in Scan Paths)

Semantic Category Reading Writing

Variable Declaration 0.287 0.247
Method Declaration 0.264 0.251
Conditional Statement 0.226 0.236
Parameter 0.201 0.205
Argument 0.196 0.186
Method Call 0.170 0.167
Conditional Block 0.152 0.151
Loop Body 0.147 0.150
External Variable/Method 0.118 0.112
Return 0.106 0.136
Exception Handling 0.086 0.115
External Class 0.085 0.066
Variable 0.063 0.041
Comment 0.047 0.089
Assignment 0.030 0.035
Operator 0.025 0.007
Index Operation 0.007 NA
Operation NA 0.018
Literal NA 0.014

The frequency for each semantic category was scaled by its frequency in
scan paths from all methods. Not every method contained all 19 semantic
categories, so we examined the subset of methods containing the top
categories (those in bold).

understand the code when writing a summary. We can contextualize these findings using partici-
pants’ post-task survey data. We asked participants the following: “When writing a code summary,
what are 1 to 3 details of the code you think are the most important to write about?” Out of 27
participants, 18 mentioned either parameters or inputs, and 5 mentioned a description of how the
inputs change. We see this pattern reflected in their eye-tracking data, where programmers pay
particular attention to elements associated with the input. We further discuss the implications of
this in Section 6.
Interestingly, when participants were given pre-written summaries, we find they had compar-

atively higher fixation counts but lower fixation durations on method declarations, variable dec-
larations, conditional statements, and arguments. None of these differences rises to the level of
statistical significance. However, this suggests that programmers do not expend as much effort to
understand these semantic categories when documentation is present.

5.1.4 Loops. Next, we considered only the subset of methods within our larger subset that
contain loops (9 methods, 1,482 data points). Intriguingly, we find that participants do not fo-
cus more on the body of the loop itself; rather, they focus more intently on other components
of the code. Specifically, in the Writing condition, participants had even higher fixation counts
on parameters (t = 4.48, d = 1.16, p < 0.0001, q < 0.001) and method calls (t = 3.77, d = 0.98,
p = 0.001, q < 0.01). This trend is more pronounced for fixation durations, where participants
again fixate longer on parameters (t = 5.4, d = 1.39, p < 0.0001, q < 0.0001) and method calls

(t = 4.54, d = 1.11, p < 0.0001, q < 0.001). All values for these comparisons and those in the
previous section can be found in Table 4.
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Table 4. Differences in Fixation Counts and Average Fixation Durations between

the Two Conditions, Reading and Writing

Subset of Methods Subset of Methods with Loops

Category Metric Reading Writing Delta Reading Writing Delta

Method Declaration
Fixation Count 0.078 0.052 0.026 0.077 0.063 0.014

Fixation Duration 0.053 0.060 0.007 0.057 0.056 0.001

Parameter
Fixation Count 0.027 0.053 0.026** 0.013 0.064 0.051****

Fixation Duration 0.031 0.066 0.035**** 0.015 0.081 0.066****

Variable Declaration
Fixation Count 0.107 0.095 0.012 0.127 0.112 0.015

Fixation Duration 0.086 0.140 0.054**** 0.120 0.129 0.009

Conditional Statement
Fixation Count 0.065 0.041 0.024 0.068 0.050 0.018

Fixation Duration 0.052 0.073 0.021 0.052 0.053 0.001

Method Call
Fixation Count 0.026 0.061 0.035** 0.017 0.097 0.080***

Fixation Duration 0.026 0.041 0.015* 0.015 0.058 0.043****

Argument
Fixation Count 0.027 0.020 0.007 0.036 0.038 0.002

Fixation Duration 0.030 0.035 0.005 0.031 0.054 0.023

Loop Body
Fixation Count 0.081 0.114 0.033

Fixation Duration 0.090 0.125 0.035

Fixation counts are normalized per condition. Comparisons are also shown for only methods that contain loops.
Average fixation durations are an aggregate metric, and are therefore not normalized. (*p < 0.05, **q < 0.05,
***q < 0.01, ****q < 0.001).

Using fixations as a proxy for cognitive load, we see that student programmers devote more
effort to understanding parameters and method calls when loops are present. This may be attrib-
uted to programmers tracing the program inputs through the methods and evaluating how they
change. This appears to be more difficult when loops are present. As before, this hypothesis is fur-
ther supported by participants’ post-task survey data, where 18 out of 27 mention the importance
of parameters and inputs, and 5 mention the importance of describing how inputs change.

5.1.5 Conditional Blocks. We next considered only methods of the larger subset that contain
conditional blocks to study the impact of this control flow element on programmer attention (6
methods, 1,052 data points). Here, we find that participants have slightly higher fixation counts
in the Writing condition on the conditional blocks themselves (t = 2.19, d = 0.82, p = 0.041, q =

0.15) and method calls (t = 2.39, d = 1.018, p = 0.03, q = 0.15). Looking at fixation durations when
conditional blocks were present, we see that participants fixated longer in the Writing condition
on variable declarations (t = 3.43, d = 1.48, p < 0.01, q < 0.05), conditional statements (t = 2.33, d =
0.91, p < 0.05, q = 0.08), and conditional blocks (t = 2.25, d = 0.69, p < 0.05, q = 0.07).
In calculating cyclomatic complexity, both loops and standard conditional blocks increase the

program complexity. However, we find that these two semantic categories have divergent impacts
on human attention; conditional blocks do not intensify programmer attention to the same degree
as loops do. We discuss this in Section 6 as well, but we found this interesting in the context
of a recent study into the neural correlates of code complexity. Specifically, Peitek et al. found
no correlation between an increased cyclomatic complexity and brain activity [62]. Based on our
results, it is possible that these two semantic categories have different effects on cognition, even
though a loop and an if-statement have an equivalent impact on cyclomatic complexity.

Student programmers focus more intently on parameters, variable declarations, andmethod

calls when writing their own code summaries. In the post-task survey, 18 of 27 participants
mention the importance of inputs or parameters in a good code summary. We also examined the
influence of complexity on human attention, and find that loops intensify programmers’ focus
on parameters and method calls. Conditional blocks have a lesser impact.
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5.2 RQ2: Pa�erns of A�ention Sequences

From results in the previous research question, we have a better understanding of what semantic
categories students focus on in both facets of code summarization: reading code with a pre-written
summary and reading code to generate one. However, code comprehension is a complex cognitive
task in which programmers relate disparate parts of code to one another [38]. We cannot explore
sequences of attention by measuring only where programmers focus most.

To study programmers’ deeper cognitive patterns during code comprehension tasks, we ana-
lyzed programmers’ abstract scan paths from both code summarization conditions, Reading and
Writing. Scan paths can be quite long and, therefore, inconsistent between participants and diffi-
cult to interpret [76]. As an alternative means of studying scan paths, we used analyses inspired by
NLP to calculate common sub-sequences within them. We treated participant scan paths as docu-
ments, and calculated the most common transitions (i.e., N-Grams) that participants made between
semantic categories. Specifically, we calculated the most common bigrams and trigrams, composed
of two and three consecutive semantic categories, respectively. The most common bigrams are de-
picted in Figure 5. To illustrate bigrams within an abstract scan path, we can consider the following
sequence: Method Call −→ External Class −→ Variable Declaration. Example bigrams would
be Method Call −→ External Class, and External Class −→ Variable Declaration. Based
on our implementation of semantic categories, adjacent tokens on the same line of code may be
classified as the same semantic category. We excluded bigrams and trigrams that contained repeat
categories to better understand transitions between categories.
Whereas the fixation data accentuates differences between Reading and Writing, here we find

high agreement between them.We also find a high rate of vacillation, where student programmers
frequently look between the same two semantic categories. For instance, participants looked most
frequently from method declaration −→ variable declaration (Reading: 1585, Writing: 2593).
We then see the reverse with the second highest frequency: variable declaration −→ method

declaration (Reading: 1530, Writing: 2533). This coupling pattern continues for the next two tran-
sitions on both tasks, where participants frequently looked from conditional statement −→ loop

body (Reading: 802, Writing: 2179), then the opposite (Reading: 765, Writing: 2189). Next, in both
conditions, participants frequently looked from conditional statement −→method declaration

(Reading: 717, Writing: 1615), then back (Reading: 714, Writing: 1588) (Figure 5). Supporting these
results, we also find a high rate of regressions in participant scan paths. We counted a regression
every time a participant looked backwards in the code at a token that came previously. In theWrit-
ing condition, 47% of transitions in the scan path were regressions. In the Reading condition, 45%
of these transitions were regressions.
The fixation data alone suggests that attention patterns can be influenced by the summarization

condition, but we see that some broader code reading strategies are remarkably consistent between
the two conditions. Upon closer inspection of Table 4, we see that method declarations and variable
declarations have the highest fixation counts and fixation durations in both conditions. However,
the differences between conditions are not significant. Programmers may commonly look between
these categories to understand the relationship between the method declaration and the method
body. These results and the high rate of regressions may also clarify the differing interpretations
reported in previous studies on students and professional developers [5, 70]. Specifically, it is un-
clear whether programmers focus more on the method declaration or the method body. In the
current study, inspecting fine-grained semantic information in scan paths, we find that program-
mers commonly vacillate between them. Based on the current findings, it may be more meaningful
to consider the connections between the method header and the method body. We also note the
prevalence of conditional statements in the most common transitions. Again considering cyclo-
matic complexity, we find evidence that control flow elements act as a sink for programmers’
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Fig. 5. Bigram frequency representing common gaze transitions between semantic categories during the

Writing and Reading conditions.

attention as they read code. We note that our participant sample consists of undergraduate and
graduate students, which may not generalize to professional developers. We discuss this further
in Section 7.
We also calculated the most common trigrams, or transitions between three semantic categories,

for the Reading and Writing conditions. Regardless of the condition, participants most frequently
looked from variable declaration −→method declaration −→ parameter (Reading: 109, Writing:
171). Participants diverged from here, depending on the condition. For the Reading condition, the
next two most frequent trigrams were method declaration −→ parameter −→ variable declaration
(90), and parameter −→ method declaration −→ variable declaration (67). In the Writing condition,
the second most frequent trigram was method declaration −→ conditional statement −→ conditional
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block (146), followed by parameter −→ method declaration −→ variable declaration (138). We again
see the importance of variable declarations to programmer attention in both conditions, which was
previously unreported. These results also suggest that programmers seek to relate variables within
the method with the parameters entering the method. These trigrams also have lower frequencies
compared with the bigrams, which suggests the high variability between participants’ reading
strategies.

Comparing both facets of code summarization, student programmers consistently look between
the same semantic categories, with a high rate of vacillation. Student programmers most com-
monly look between the method declaration ⇄ variable declaration, followed by condi-

tional statement ⇄ loop body and conditional statement ⇄method declaration.

5.3 RQ3: Human A�ention on the Abstract Syntax Tree

In this study, we examined patterns of human attention to compare two forms of code compre-
hension. We, along with prior research, have only considered human attention on raw code so far.
However, Java has a rich underlying structure, the Abstract Syntax Tree (AST). Exploring human
attention on the AST offers another avenue through which we can study and understand code
comprehension. While programmers may not interpret the AST directly, they may implicitly com-
prehend some of the information therein. For instance, ‘parameter list’ nodes in the AST specify
the parameters and their types for the compiler. A human developer can infer the parameters from
looking at contextual clues in the source code without looking at the AST. In this study, we consid-
ered the reading distance that programmers traveled from one token to the next. We used distance
to measure the general clustering of programmer attention during both code summarization tasks.
Using the previous example about parameter lists, if programmers focus intently on elements of
a parameter list, the distances between consecutive tokens will be smaller than if they frequently
switch their attention from parameters to return statements, for example.
Previous code comprehension research measured the Euclidean distance between consecutive

fixations [19]. We implemented a similar distance metric, but analyzed consecutive tokens in the
scan path. That is, we calculated the distance from one token to the next as two nodes on the
AST. We also compared these AST distances to raw code distances, as described in Section 4. We
measured the AST distances between consecutive tokens in the scan path using Breadth-First
Search, and calculated the raw code distances using the tokens’ order within the methods. As
mentioned, the Java methods in our dataset were not uniform in length, which may influence
both the AST distances and raw code distances. To generalize both of these distance metrics, we
normalized each distance by the farthest possible path in its method, and separately for raw code
and ASTs. We should note that in the previous research question, we analyzed abstract scan paths,
but here we considered scan paths on raw tokens.
After calculating AST distances and raw code distances using scan paths, we first compared the

two metrics with one another to explore the relationship between the two. In other words, using
the same scan paths, are distances generally farther in the code, or farther in the AST? In total,
we had 163,384 data points from raw code distances and AST distances. Combining both types of
distances, there were 56,500 data points in the Reading condition and 106,884 data points in the
Writing condition. The data was not normally distributed; thus, we usedMann-Whitney U-tests for
our calculations.We did not correct the following statistical tests for multiple comparisons because
theywere individual isolated tests [3].We find that AST distances are significantly farther than raw
code distances (U = 869, 986, 484.0, d = 1.72, p < 0.0001), which may not be surprising considering
the verbosity of AST representations.
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Next, to compare patterns of attention clustering between the two forms of code summarization,
we analyzed differences between the two conditions, Reading and Writing. Looking at raw code
distances, we find that participants looked farther, on average, between consecutive tokens in
the Writing condition (U = 839, 092, 048.5, d = 0.1, p < 0.0001). Surprisingly, when we compared
both forms of comprehension using AST distances, we found no significant difference (U =

910,543,439.0, d = 0.004, p = 0.745). This null result was unexpected and may demonstrate the
potential disconnect between human attention on these two representations of the same code. As
a possible explanation, we can re-examine the results from Section 5.2. To reiterate them here, we
found that regardless of the condition, participantsmade consistent patterns of attention sequences
between semantic categories. Perhaps student programmers look between equivalent semantic
categories whose locations may vary in the raw code. However, it is possible their locations are
more stable in the ASTs. Regardless, further study is needed to contextualize these results.

We examined the distances between consecutive tokens in participants’ scan paths using both
AST and raw code distances. We find that AST distances are significantly farther than the latter.
Comparing Reading and Writing, raw code distances are farther between consecutive tokens
when programmers write summaries. However, there is no significant difference between the
conditions in terms of AST distances.

5.4 RQ4: Differences Mediated by Experience and Other Demographics

Software Engineering research regularly aims to identify factors differentiating experts from
novices [5, 33, 34, 47]. By isolating the effective behaviors of experts, we can ideally help guide
novices toward these practices [79]. Accordingly, we conducted an in-depth comparison between
experts and novices within our participant pool of undergraduate and graduate CS students. We
also present preliminary analyses based on gender and native language. We considered the top
third, or tercile, of our participants as experts (n = 9, >= 7 years coding experience), and roughly
the bottom tercile as novices (n = 10, <= 4 years). We did not include the middle tercile of our
participants in our comparisons to make a clearer distinction between experts and novices. Fol-
lowing a similar framework as previous sections, we first present a comparison between the two
groups based on their cumulative differences in time and fixations. We then compare how the
two groups focus on semantic categories for both conditions, Reading and Writing. We then ex-
amine differences between the groups’ attention on the AST and conclude with comparisons

based on gender and native language.

5.4.1 Cumulative Differences. To understand general differences between novices and experts,
we first compared the amount of time each group spent reading the code in both forms of code
comprehension. We found that experts spent an average of 7.66 seconds reading just the code in
the Reading condition compared with novices, who spent an average of 14.3 seconds (p < 0.0001).
In the Writing condition, we found that experts spent an average of 21.65 seconds reading just the
code, whereas novices spent an average of 30.87 seconds (p < 0.0001). We find that novices spent
almost double the amount of time as experts did when pre-written summaries were provided and
about 40% more time when programmers wrote their own summaries.
Next, we compared the groups based on their fixation data, which followed the same trend.

Novices had higher average fixation counts (55.59, p < 0.0001) and durations (0.1, p < 0.0001) on
each method in the Reading condition compared with experts’ average fixation counts (23.56) and
durations (0.06s). We see this pattern in the Writing condition as well: novices had higher average
fixation counts (106.61, p < 0.01) and durations (0.12s, p < 0.0001) on each method compared with
experts’ average fixation counts (81.69) and durations (0.09s). From these results alone, it appears
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Fig. 6. Comparison between experts’ and novices’ fixation counts (a, c), and fixation durations (b, d) during

both conditions, Reading and Writing. We initially considered 19 semantic categories, but not every method

contained every category. We therefore filtered the categories based on which participants focused the most

(Section 5.1) and examined programmer a�ention with respect to these. Fixation counts were normalized

based on the condition, Reading or Writing, whereas the average fixation durations were not (*p < 0.05,
**q < 0.05, ***q < 0.01, ****q < 0.001).

that experts expend less time and effort to read the code regardless of whether they are given a
pre-written summary or generating their own.

5.4.2 Semantic Categories. We next investigated where in the code the groups focus in both
facets of code summarization. To this end, we compared experts’ and novices’ attention with re-
spect to the semantic categories during the Reading and Writing conditions. As before, we had
19 semantic categories, but not all methods contained every category. We used the same calcula-
tions as those in Section 5.1 to focus on the semantic categories that received the most attention:
variable declarations, method declarations, parameters, arguments, conditional statements, and
method calls. This yielded data from 15 methods and 396 eye-tracking data points.
The results are illustrated in Figure 6, and we also detail the notable findings here. Most

strikingly, we see that when programmers were given a pre-written summary, novices had
higher fixation counts and fixation durations for each of the categories we considered. However,
when programmers wrote their own summaries, there were no significant differences between
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experts’ and novices’ fixation counts on these semantic categories. In fact, when writing sum-
maries, experts had higher fixation counts than novices did on arguments, but this did not rise
to the level of statistical significance. We note that these null results appear to conflict with those
reported above in Section 5.4.2. It is possible that the groups’ attention differed on other categories
outside of our subset, accounting for the significant differences above in Section 5.4.2. We discuss
this in Section 7. With respect to the figure, we also observe a general pattern in which program-
mers had higher fixation counts when they were given pre-written summaries (µReadinд = 0.067,
µWritinд = 0.051), but longer fixation durations when they were writing their own summaries
(µReadinд = 0.044, µWritinд = 0.065). These differences do not rise to the level of significance (p
= 0.36, p = 0.16, respectively) but are intuitive in that programmers may frequently look at certain
semantic categories if a pre-written summary is provided. However, they may not need to invest
the same amount of attention and cognitive effort as if they were writing their own summaries, as
we can see from their fixation durations.

Looking at results from each condition in more detail, we see in the Reading condition (Figure 6)
that novices had significantly higher fixation counts on variable declarations (t = 3.66, d = 0.98, p <
0.001, q < 0.01), parameters (t = 3.21, d = 0.86, p < 0.01, q < 0.01), and conditional statements (t = 3.01,
d = 0.81, p < 0.01, q < 0.01). In the same condition, novices had significantly longer average fixation
durations on variables declarations (t = 3.11, d = 0.83, p < 0.01, q < 0.01), method declarations (t
= 2.59, d = 0.68, p < 0.05, q < 0.05), parameters (t = 3.01, d = 0.80, p < 0.01, q < 0.01), conditional
statements (t = 2.81, d = 0.75, p < 0.01, q < 0.05), and method calls (t = 3.35, d = 0.91, p < 0.01, q <

0.01). In terms of where the two groups focusedmost, we see in the Reading condition that novices
fixated the most and for longest on variable declarations. By contrast, experts fixated the most
(i.e., fixation count) on method declarations, and the longest (i.e., fixation duration) on variable
declarations. These results suggest that when a pre-written summary is provided, experts can
sufficiently understand the code by focusing on the method declaration and variable declarations,
perhaps focusing on beacons in the code that are key to comprehension [27]. Novices, however,
appear to expendmore effort to understand internal components of the methods. This is supported
by our observation that novices fixated significantly more and for longer than experts did on
variable declarations and conditional statements.

As previously mentioned, when participants wrote summaries, there were no significant differ-
ences between the groups’ fixation counts on the semantic categories we considered (Figure 6). We
do see that novices fixated for significantly longer on certain semantic categories: variable declara-
tions (t = 2.45, d = 0.66, p < 0.05, q < 0.05), method declarations (t = 2.56, d = 0.72, p < 0.05, q < 0.05),
parameters (t = 3.66, d = 0.97, p < 0.001, q < 0.01), and conditional statements (t = 3.61, d = 0.96, p
< 0.001, q < 0.01). Interestingly, when participants wrote summaries, we see that both groups at-
tended most to variable declarations. These results together indicate that when programmers are
reading code to generate their own summaries, novices may still fixate for longer on some seman-
tic categories, but regardless of their expertise, programmers appear to devote similar amounts of
cognitive effort into reading the code.

5.4.3 A�ention on the Abstract Syntax Tree. We next tested whether we could uncover differ-
ences between experts and novices when we map their attention onto another representation of
code, the AST. Following the same procedure as above in Section 5.3, we calculated the distances
between consecutive tokens in experts’ and novices’ scan paths. In total, we had 42,554 data points
for the Reading condition and 71,474 data points for the Writing condition. Each distance measure
was scaled per method using the longest path in the tree or farthest positional distance in the raw
code. Because the data is not normally distributed, we used Mann-Whitney U-tests to compare
between code distances and AST distances.
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In the Reading condition and on raw code, novices looked slightly farther between consecutive
tokens, on average, than experts did (U = 55,473,559.5, d = 0.05, p < 0.001). However, in AST dis-
tances, there was no significant difference between the groups (U = 56,630,433.5, d = 0.02, p = 0.22).
In the Writing condition, this relationship was flipped in both respects. Experts looked slightly
farther between consecutive tokens in the raw code (U = 192,818,739.5, d = 0.001, p < 0.01), and
this difference wasmagnified for AST distances (U = 201,802,465.5, d = 0.13, p < 0.0001). We see
that mapping programmer attention onto the AST does not always have the same outcome (i.e.,
more significant), and does not necessarily match attention patterns on raw code. In the Reading
condition, we see that AST distances are more muted than raw code distances, but they are more
pronounced in the Writing condition. These puzzling results may indicate that experts are more
fixed and methodical in how they read code, whereas novices may be more haphazard.
Previous studies may provide some insights. Researchers have examined code reading patterns,

in particular, whether programmers focus on beacons in the code or read code based on its execution
order [19, 27]. A beacon is a feature in the code that is key for facilitating comprehension of the pro-
gram. Crosby et al. performed an eye-tracking study and found that novices do not discriminate be-
tween different areas of the code, whereas experts tend to identify and focus on these beacons [19,
27]. Based on our study, it is possible that experts are drawn to these beacons regardless of the com-
prehension task. Researchers have also tested whether programmers read code from one token to
the next in a linear fashion orwhether they read the code based on its flow of execution. Researchers
hypothesize that experts read code closer to its execution order. That study Busjahn et al. [19] re-
ported that novices actually read code closer to its execution order but also notes that the code
snippets read by novices in their experiment were more linear by nature, which may have been a
confounding factor. Based on these theories for code comprehension, it is possible that more expe-
rienced programmers read code in a more structured way, which may be observable in the AST.

5.4.4 Comparisons Based on Gender and Native Language. Our participants in this study were
diverse in terms of experience, gender, and native language. While our sample is suitable for com-
parison based on years of experience, which we detail above, it is not ideal for comparison based
on gender and native language. We nonetheless conducted preliminary analyses based on these
factors to understand their influence on the dataset. These results may lack generalizability and
warrant thorough validation in future study. For gender, only one woman is in our expert group,
meaning the men’s data is biased towards the experts. Similarly, 7 of the 9 experts are in the non-
native English speakers group. With an imbalanced sample, any significant differences between
the groups may be attributable to the differences in expertise and not the variable in question [31].
We therefore excluded all experts in comparing these groups.

After excluding experts, there was no significant difference between men (n = 11) and women (n
= 7) in their years of experience (µ = 4.5 years, µ = 3.5 years, respectively). Similarly, there was no
significant difference between native English speakers (n = 12) and non-native English speakers
(n = 6) in their years of coding experience after excluding experts from both groups (µ = 4.25
years, µ = 4.17 years, respectively). As an additional consideration, non-native English speakers
in our sample are heterogeneous in that they do not all share the same native language: these 6
participants represent 5 other languages. Furthermore, in comparisons based on native language,
all participants are students at R1 universities in the United States, where admission is contingent
on English speaking and comprehension ability, and classes are taught in English. For both gender
and native language, we present preliminary results on cumulative fixations, fixations with respect
to semantic categories, and distances in raw code and on the AST.

Gender Analyzing differences between men and women students then, we first considered cu-
mulative fixation differences. We found that women fixated with significantly higher frequency
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(52.35,p < 0.01) and longer (0.11 s,p < 0.01) on code in the Reading condition, compared with men’s
fixation counts (43.02) and average durations (0.09 s). In the Writing condition, by contrast, we see
that men had significantly higher fixation counts (111.06, p < 0.01) compared with those of women
(90.5). Women had slightly higher fixation durations (0.123 s) for the Writing condition compared
with those of men (0.117 s), but this did not rise to the level of statistical significance. These re-
sults on cumulative fixations suggest differences in how men and women read code, implying that
women invest more attention and effort in understanding the code when there is accompanying
documentation. This is supported by previous eye-tracking research in Software Engineering, in
which women were found to focus on all answer options in a study on identifier style [77]. Here,
our results suggest that women spend more time and effort checking whether code matches ac-
companying documentation.
This is not necessarily supported by our results comparing fixations on the top semantic cat-

egories, where we found no significant differences between men and women. This was true for
both Reading and Writing, and the subset of methods containing loops, and the subset containing
conditional blocks. It may be possible that differences between men’s and women’s fixations re-
late to semantic categories we did not analyze in this study. However, considering the potential
influence of demographics on the larger dataset, these results suggest that participants in both
groups are similar in how they fixate on semantic categories of the code. Interestingly, when we
compared men and women based on the code and AST distances, men looked significantly far-
ther for Reading on both the raw code (U = 57,422,118.5, d = 0.046, p < 0.001) and the AST (U =

57640685.0, d = 0.046, p < 0.001). By contrast, women looked significantly farther for Writing on
both the raw code (U = 169,771,038.5, d = 0.057, p < 0.001) and the AST (U = 170,753,340.0, d = 0.055, p

< 0.0001). Here, we can see that the distances in both conditions align with the fixation data, where
women had higher fixation counts and durations in the Reading condition, and shorter distances
looked from one token to the next. In the Writing condition, men had higher fixation counts and
looked shorter distances from one token to the next compared with women. This suggests that
women may read code more thoroughly when documentation is present, whereas men may read
the code more closely when generating their own summaries. This gender difference has not been
previously reported in eye-tracking research within Software Engineering [44, 77] and warrants
further study to understand the basis for these findings. Our preliminary results suggest that men
and women comprehend code to different degrees depending on the circumstances.

Native Language In our analyses comparing native English speakers with non-native English
speakers, we first considered cumulative differences. In the Reading condition, we found that na-
tive English speakers’ average fixations were significantly longer (0.11 s, p < 0.01) compared to
those of non-native English speakers (0.09 s). That being said, there was no significant difference
in the groups’ fixation counts in Reading. In the Writing condition, native English speakers had
significantly higher fixation counts (113.27, p < 0.0001), on average, compared with those of non-
native English speakers (83.06), but there was no significant difference between the groups in their
fixation durations in this condition. Based on these results, we see a trend in which native Eng-
lish speakers in the sample invested more effort to read the code in both the Reading and Writing
conditions. This is also supported by results below related to distances looked on the raw code
and on the AST. Similar to the comparison between men and women, we also found no significant
differences in where the two groups focus based on the top semantic categories. This was also true
for the subsets of methods with loops and those with conditional blocks. These null results also
suggest that native language does not influence student programmers’ attention with respect to
the semantic categories.
While we did not find significant differences in terms of fixations on semantic categories, we

found significant differences between these two groups in their average distances looked on raw
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code and on the AST. In the Reading condition, we found that non-native English speakers looked
significantly farther than native English speakers did on both the raw code (U = 48,280,575.5, d

= 0.041, p < 0.0001), and on the AST (U = 45,746,143.0, d = 0.175, p < 0.0001). This was also the
case in the Writing condition for distances on both the raw code (U = 138,773,451.5, d = 0.062,

p < 0.0001) and the AST (U = 139,679,166.0, d = 0.067, p < 0.0001). From the cumulative fixation
results, we see that native English speakers tend to fixate more on the code, and the distances they
look from one token to the next are subsequently shorter. More research would be necessary to
contextualize these preliminary findings, but since code primarily uses English key words, it is
possible that native English speakers read code more linearly than non-native English speakers.
This may contribute to the higher fixations and the shorter distances from one token to the next.
If non-native English speakers are less familiar with the language, perhaps they are less restricted
in their reading patterns.

Novices spend more time and effort focusing on the code in both forms of code comprehension,
attending themost to variable declarations, method declarations, and conditional statements.We
find one caveat: when experts and novices write their own summaries, there are no significant
differences in their fixation counts, at least on the categories we considered. Mapping human at-
tention onto the AST, novices look farther in the raw code when they are given a summary, but
this is not significant in terms of AST distances. Experts look farther in the raw code in the Writ-
ing condition, which is even more pronounced in the AST distances. Preliminary results suggest
that women read code more thoroughly when a summary is present, whereas men read code
more thoroughly when generating their own documentation. In addition, native English speak-
ers fixate more on the code in both conditions. Preliminary results suggest that demographic
factors do not influence attention with respect to semantic categories.

6 DISCUSSION

Based on the results from analyzing the eye-tracking data, we present the following interpreta-
tions and future directions. Specifically, we discuss and contextualize the results comparing these

two forms of code comprehension (i.e., Reading and Writing), implications for eye-tracking
methodology, and findings from mapping human attention onto the AST.

6.1 Comparing Two Forms of Comprehension

We set out to understand the differences between code comprehension tasks by looking at both
facets of code summarization, Reading and Writing. In this context, reading code to write a sum-
mary can be considered a more active, generative process. Based on the fixation data, we consis-
tently find that writing a summary demands more attention to the code from student program-
mers. We also see that writing a summary somewhat equalizes experts and novices, where we
find no significant differences in their fixation counts in the Writing condition on the categories
we considered. Comparing Reading andWriting more generally, we see that student programmers
writing summaries will focus comparatively more on parameters (q < 0.001), variable declarations
(q < 0.001), and method calls (q < 0.001). To consider why these semantic categories differentiate
the two forms of comprehension, we can look at what the programmers said themselves. Over
60% of our participants mentioned the importance of inputs for understanding the overall purpose
of a method. A smaller percentage mentioned the importance of describing how inputs change
throughout the method. We then see this trend reflected in the eye-tracking data, where program-
mers appear to focus on the input and how it changes. If a pre-written summary is provided, our
results suggest that programmers do not need to follow these elements as intently, and instead
follow the high-level features.
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Considering differences between experts and novices more explicitly, we see from Figure 6 that
these groups generally align in where they focus (i.e., method declaration, variable declarations).
Novices simply tend to focus more on these categories. However, we consistently see across the
conditions that novices pay attention significantly more to conditional statements (q < 0.001).
Perhaps experts are quicker to discern the meaning of conditional statements, but it is also possible
that a deep understanding of the conditions is not crucial for these comprehension tasks. We note
that the samewould not be true if wewere testing debugging tasks. In support of this, we asked our
participants in the post-task survey “What are 1 to 3 examples of unimportant details in the code
that don’t need to be mentioned in a code summary?” Out of 27 participants, 5 mentioned the logic
or conditions specifically. For code summarization, these results together suggest that conditional
statements are an area where novices could save time and effort. Furthermore, our results have
implications for tool design [6, 55], where static analysis might give novices more context for
the semantic categories where they focus most: variable declarations (q < 0.001), parameters
(q < 0.05), conditional statements (q < 0.001), and the method declaration (p < 0.01).
The results based on fixations illustrate the differences between these forms of code comprehen-

sion, but looking at more complex patterns of attention reveals notable parallels between them.We
see that regardless of the condition, student programmers commonly vacillate between the same
semantic categories. That is, in both conditions, students commonly look between method dec-
laration ⇄ variable declarations, loop bodies ⇄ conditional statements, method declarations ⇄
conditional statements. It is somewhat unexpected that variable declarations are so prominent in
student programmers’ attention, especially since this semantic category has not yet been reported
in code summarization literature [5, 70]. Previous studies presented different interpretations as to
whether programmers focus more on the method declaration or the method body. Our results pro-
vide another interpretation, in which programmers in our sample commonly make connections
between the method body and the method declaration. This suggests that the link between them is
critical. Very informally, if we think of the method name as a book title, the method body would be
the story, and variables would be the main characters. In this analogy, it is important to understand
the role of the variables with respect to the method’s purpose. Thus, can we determine whether
these forms of code comprehension are distinct? It appears that there are nuances in where student
programmers’ focus but stable consistencies in how they read the code.
Practical Implications In light of these findings, how can we benefit from a more nuanced

understanding of code comprehension? The implications can extend from CS education to model
training for automated code summarization and tool design for IDEs. In this study, we see dif-
ferences in how students read source code depending on their purpose for doing so and specific
strategies employed by more expert programmers. We see an overarching story forming from the
fixation data where students focus on how program inputs become outputs, from parameters to
variable declarations and method calls. This pattern is more pronounced when students are sum-
marizing source code themselves, which provides concrete evidence for educators to guide new
programmers’ attention to these components of methods on tasks requiring a deep understand-
ing of the code. By contrast, when students are reading code through the lens of a pre-written
summary, our fixation and bigram results suggest that they pay particular attention to method
and variable declarations, perhaps just “skimming” or “checking” the high-level components of
the code.
This can be informative for educators and tool design for IDEs alike, where programmers can

be specifically directed to these elements if they are forming a high-level understanding of docu-
mented code. These results suggest that variable declarations andmethod declarations in particular
should be contextualized for student programmers reading code with additional documentation.
For deep learning models, it is possible that the (publicly available) gaze data from this study can
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be directly used to improve automated methods for code summarization using human attention.
Here, we also see an opportunity for novices, where experts fixate significantly less on conditional
statements during these summarization tasks. If programmers need to form a rapid understanding
of a method, results from our experts suggest that a more cursory look at conditional statements
may be sufficient. Though it does not rise to level of statistical significance, we also see that experts
in our sample fixate comparatively more on arguments when they are writing a summary, suggest-
ing that the information conveyed by arguments can be helpful for comprehension. Overall, results
from this study offer a precise look at code comprehension behaviors in student programmers and
can be informative in situations in which code comprehension is taught, analyzed, and facilitated.

6.2 Eye-Tracking Methodology

In this experiment, we relied upon the scan path in particular to study reading patterns during
code summarization tasks. We leveraged analyses inspired by NLP to expose patterns within this
ordered sequence of attention. Fixation data alone is informative and can reveal details aboutwhere
humans focus. However, the scan path as a sequence of these fixations can elucidate deeper cog-
nitive patterns [75]. Despite its potential, there are implicit challenges that come with analyzing
the scan path. First and foremost, scan paths can become quite long and can vary widely between
participants, becoming unwieldy and difficult to interpret [76]. Previous studies have tackled this
problem by comparing the similarity between scan paths as a whole [19, 26], visualizing scan
paths [68], and encoding the behavior of the developer at different time points in the scan path
(i.e., debugging, coding) [5]. In this study, we attempted to dissect and analyze the scan path by
taking advantage of the semantic categories.
By creating abstract scan paths based on the tokens’ semantic categories, we could examine gen-

eralized patterns of attention within the scan path. The insight then came from treating these ab-
stract scan paths as documents, which then frames the analyses as Information Retrieval tasks in the
context of NLP [80]. First, we used this insight to calculate the categories on which programmers
focus most in Section 5.1. We examined the categories’ frequency in scan paths for one method and
compared this to their prevalence in scan paths from all other methods. This may have been accom-
plished using raw fixation data, but an analysis for this purpose is already typical in NLP [9, 65].
Second, in Section 5.2, we used N-Gram analyses to enumerate common transitions programmers
made between semantic categories. By using bigrams and trigrams, we could identify the predom-
inant clusters of student programmers’ reading patterns. While N-Gram analyses are usually an
early step in NLP tasks [18], we used them as a final step to uncover sub-sequences within scan
paths. Using these foundational NLP metrics, we demonstrate the efficacy of treating scan paths as
documents for Information Retrieval. Moreover, because these metrics are foundational, this sug-
gests exciting new directions for analyzing the scan path using more advanced NLP techniques.

6.3 Human A�ention on the Abstract Syntax Tree

In this study, we also explored human attention on an alternative representation of code, the AST.
Human programmers may not interact with the AST directly but implicitly derive the same in-
formation (i.e., variable types, arguments). Therefore, we can gather detailed information about
programmer focus by considering their visual attention in the context of the AST. We conceptu-
alized this type of mapping as analogous to Fourier transformation for audio, in which a complex
signal is disassembled and compressed into meaningful features. We find exciting and puzzling
results, suggesting the potential for this type of mapping in future research. More specifically,
we find inconsistent patterns between how far programmers look in the raw code and how far
they look in the AST. First, in the Writing condition, students look significantly farther between
consecutive tokens in raw code but not significantly farther in terms of AST distances. Second,
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comparing experts and novices in our sample, we find in the Reading condition that novices look
farther between consecutive tokens in the raw code but not significantly so in the AST. The oppo-
site is true for Writing, in which experts look significantly farther in the raw code and even more
so in the AST. We see that AST distances do not always match raw code distances, which suggests
that these two types of information are revealing, yet not necessarily equivalent.
Previous research has examined programmers’ code-reading order [19] as well as comprehen-

sion strategies: bottom-up versus top-down [63, 85]. Those studies reported that experts read code
less linearly and may be better with top-down comprehension [19, 63], in which they form a pre-
conceived understanding of the code based on higher-level features [63]. There is a related vein of
research into beacons in the code, which are features that are key to comprehension [27]. Crosby
et al. [27] conducted an eye-tracking study. They found that experts are able to recognize these fea-
tures and subsequently focus more attention on them. By contrast, that study found that novices’
attention is more distributed over the program. Based on those studies’ findings, it is possible that
experts read code in a more structured way, which may be observable on the AST. If experts do
read code more deliberately, this could perhaps explain why their AST and raw code distances
agree in the Writing condition and why novice distances do not demonstrate an enduring pattern
in the Reading condition.
Furthermore, prior research examined human attention during code summarization to inform

and improve methods for automated code summarization [70]. We continue this trend with the
current study bymapping human attention onto theAST.More specifically, current top performing
models for automated code summarization include structural information from the AST during
training [46, 51, 83, 89]. In their study, Rodeghero et al. [70] aimed to align the output of automated
methods with human priorities. In the current study, we aim to extend this by measuring the paths
programmers take through the AST as they perform code summarization tasks. We measured the
distance between consecutive tokens in the scan path to explore the clustering of programmers’
attention. Subsequently, we find intriguing initial results from comparing experts and novices
and code comprehension types. That being said, the raw AST may be limited as a vehicle for
studying code comprehension. Using a previous example, if programmers glance from a parameter
to a return value, there will likely be intermediate information in the tree that is unnecessary for
understanding this attention switch from parameter to return. Here, the programmers’ attention
may represent a “short cut” in the AST, which warrants more refined metrics for studying code
comprehension on the AST. Informative and perhaps limited, our results suggest fertile ground
for future research to explore other metrics of attention on the AST to better understand code
comprehension.

7 THREATS TO VALIDITY

In this section, we consider potential threats to validity in our study. We primarily group these
into two categories. First, we discuss the possible limits to the generalizability of our findings,
such as the use of Java and our participants’ level of experience. Second, we discuss conceivable
sources of noise and random effects, such as running the study in two locations and the quality
of pre-written summaries.
Generalizability There are a few factors that may limit the applicability of our findings more

broadly. Here, we discuss our sample size, participants’ demographics, and the selection of the
Java methods and their summaries. First, we draw conclusions about student programmers at large
based on the data from 27 participants. While this sample may not be entirely representative, our
participants are diverse in age, gender, native language and experience. We also collected data
from students at two universities. Furthermore, the quantity of data we collected has sufficient
statistical power to confidently detect differences between the comprehension tasks and between
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experts and novices (relative within our sample). Related to this, we classified programmers in
our study as novices if they had 4 years of programming experience or fewer (bottom tercile) and
experts if they had 7 or more years of experience (top tercile). Based on these criteria, our experts
may still be relatively inexperienced. Nonetheless, experts in our study were all graduate students,
and we excluded the middle third of participants from our comparison to give a sharper contrast
between the two groups. The significant differences found between experts and novices in our
sample might extend to even larger experience gaps in industry. However, further study would be
needed to validate the hypothesis. We also conducted preliminary analyses based on gender and
native language, but our sample was not ideally suited for this task due to the uneven distribution
of experts within these groups. We excluded experts from these analyses so that any significant
differences were not due to imbalances in expertise. We sought to explore the influence of other
demographics on our data and recommend future validation of these results.
Lastly, the selection of Java as our target language and of the particular Java methods and associ-

ated summaries we used may inherently affect the generalizability of our findings. Specifically, the
analyses on Java’s semantic categories may not scale to other programming languages. By nature,
the semantics of Java are similar to other object-oriented programming languages, and we first
selected Java as our target language because of its prevalence in CS education and real-world soft-
ware projects [17, 23, 24]. However, further study would be required to truly test language-specific
visual attention. In addition, the summaries used in this study may not be a representative sample
of all summaries, which may have influenced participants’ attention to the code. This was a consid-
eration for previous research [12, 39, 52], which sourced the methods from open-source projects
and refined them for research purposes, including automated code summarization and human stud-
ies. Next, our interface was designed for the current study without elements such as scrolling or
syntax highlighting; therefore, they may lack realism. These decisions were consciously made for
the benefit of other study factors, such as eye-tracking data quality. Nonetheless, we attempted
to improve our task’s generalizability by using the FunCom dataset, which consists of real-world
Java methods [52]. We sought to further increase the robustness of our collected data by present-
ing a wide variety of randomized methods to our participants. Lastly, we asked participants in the
Reading condition to rate the quality of code summaries using Likert-scale questions, which would
not likely be asked in a real-world scenario. Even though programmers outside of an experimental
setting may not explicitly assign values to the accuracy and readability of a summary, for instance,
they may be making these judgements implicitly.
Noise and Random Effects Next, we consider factors that may have had an unintended in-

fluence on the study. Here, we discuss the two study locations, the content of the pre-written
summaries, participants’ self-reported experience, and decisions made during data analysis. For
data collection, the human studies were run in two separate locations, which may have led to
slight differences in how participants completed the tasks. Both institutions are similarly sized
private universities and have comparable CS curricula, but we attempted to further limit this pos-
sibility by synchronizing our experimental procedure and equipment. We used a script during
experimental sessions to ensure that all participants received the same information in the same or-
der. Researchers also reduced observer effects by leaving the experimental roomwhile participants
completed the task, though some effect may have persisted due to the presence of the eye-tracker.

Next, the quality of pre-written summaries in the Reading condition may influence how pro-
grammers subsequently read the code. The summaries were previously used in human stud-
ies [12, 39] and in studies involving automated code summarization [11, 52]. However, to further
mitigate this risk, we implemented quality control checks and removed data associated with egre-
giously low-quality summaries. We implemented similar measures of quality control for partici-
pant summaries, in which data associated with low-quality participant summaries was excluded,
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as this demonstrates poor comprehension and may be reflected in the gaze data. In addition, our
results may have been influenced by decisions made during the analysis stage. For instance, we
concentrated our analyses on only a subset of the 19 semantic categories that we originally consid-
ered (Section 5.1), which could have caused a streetlight effect [30]. In other words, we may have
focused our search to the point at which we ignored other possibilities.

The consequence of this may be present in Section 5.4, where we found that experts and novices
had significantly different cumulative fixation counts but not with respect to the subset of cat-
egories we considered. Previous research has found that novices’ attention is more distributed,
which may have influenced the cumulative differences in this study [27]. To curb the impact of
this decision, however, we combined prior research with a data-driven approach. Specifically,
we ranked the semantic categories based on their frequency in programmers’ scan paths and
cross-referenced the top resultant categories with those examined by previous code summariza-
tion [5, 70] and code comprehension research [62]. Finally, we rely on participants’ self-reported
measures of their experience in making our comparison between experts and novices. We have
no reason to believe that participants were untruthful, but slight inaccuracies in reported exper-
tise could conceivably add noise or outliers to our novice or expert groups. This possibility was
mitigated by only comparing the top and bottom terciles of participants and excluding the middle
tercile from this stage of our analyses.

8 CONCLUSION

In this study, we used eye-tracking to compare two forms of code comprehension: reading code
with a pre-written summary and reading code to generate one. To form a better understanding
of code summarization in both contexts, we analyzed the fine-grained semantics of where partic-
ipants focused using 19 categories based on the semantics of Java. We also examined common
attention sequences between these semantic categories using the scan path. Inspecting fixation
data, we found that writing a code summary influences where programmers focus in the code
and for how long. Using scan paths, we found parallels between the two conditions in terms of
programmers’ attention sequences between semantic categories. Furthermore, to explore human
attention on another representation of code, we mapped participants’ gaze data onto the AST. We
found that programmers’ visual behavior on raw code does not always match that on the AST. This
disconnect between human attention on raw code and the AST suggests the potential for further
research into mapping human attention onto the AST. Lastly, we found numerous differences be-
tween novices and experts in their visual behavior during these code comprehension tasks: novices
generally fixate more and for longer on the code, with some notable exceptions. By analyzing hu-
man attention using fine-grained semantic information and the AST, we find both consistencies
and discrepancies between two forms of code comprehension.
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