
Comprex: In-Network Compression for
Accelerating IoT Analytics at Scale
Rafael Oliveira, Georgia Institute of Technology

Ada Gavrilovska, Georgia Institute of Technology

Abstract—To enable the Internet of Things (IoT) to scale at the level of
next-generation smart cities and grids, there is a need for a cost-effective
infrastructure for hosting IoT analytics applications. Offload and acceleration via
smartNICs have been shown to provide benefits to these workloads. However, even
with offload, long-term analysis on IoT data still needs to operate on a massive
number of device updates, often in the form of small messages. Despite offloading,
the ingestion of these updates continues to present server bottlenecks. In this
paper, we present domain-specific compression and batching engines that leverage
the unique properties of IoT messages to reduce the load on analytics servers and
improve their scalability. Using a prototype system based on InnovaFlex
programmable smartNICs and several representative IoT benchmarks, we
demonstrate that these techniques achieve up to 7× improvement over existing
offload approaches.

T he number of IoT devices and applications is
growing exponentially, spanning diverse industry
verticals, from different wearables and smart

city applications, distributed agriculture and smart
infrastructure, to ultra-low-latency industrial automa-
tion and mission-critical control. In response of this
trend, commercial cloud (e.g., Amazon AWS, Google,
Microsoft) and network (e.g., Deutsche Telecom, SK
Telecom, China Mobile, AT&T) operators, are increas-
ingly offering IoT-based hosting services, ranging from
programming APIs to fully-operated infrastructure for
hosting third-party IoT applications. The scalability and
efficiency of this infrastructure tier, is, thus, relevant to
a large number of stakeholders. This is expected to be
further exacerbated by proliferation of 5G technologies,
where ultra-reliable and ultra-low latency capabilities
of commercial and private 5G networks are enabling
new types of IoT ecosystems with even more stringent
end-to-end performance requirements [9].

To understand the requirements for this server
infrastructure, we first look at the unique characteristics
of IoT. These applications are commonly characterized
by massive arrays of heterogeneous sensors, gener-
ating periodic updates in the form of small messages.
IoT devices are limited in their computational, energy,
and communication resources, so applications rely
on remote servers, in the cloud or in future edge

XXXX-XXX © IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

datacenters [9], to aggregate and process sensor
updates. The applications’ end-to-end performance
requirements include high sustained throughput for the
aggregate sensor updates, ability to tolerate unexpected
bursts, and low and predictable processing latency for
actuation or notification events in response to online
analyses of sensor data.

Offload and acceleration to emerging programmable
smartNICs are techniques which have been proven
effective for delivering low and predictable latency and
high throughput for request processing across many
domains, including for IoT [3], [5]. However, while
these prior solutions make it possible to configure
the NIC’s compute resources for in-network packet
processing of IoT messages, they do not consider that
IoT applications include long term data aggregation,
analysis and modelling. The compute and storage
requirements of these operations, coupled with the
complexity of their legacy software stacks, implies that
this functionality remains executed on general-purpose
host CPUs. As a result, even with smartNIC offload and
acceleration, the scalability of the IoT analytics server
systems is bottlenecked by the host’s packet processing
capabilities, due to known limitations of general-purpose
CPUs and network stacks to deal with large number of
small messages.

By analyzing several real-world IoT applications, we
make the following observation. First, IoT applications
commonly consist of distinct critical-path and long-term
analytics components. By decomposing applications
into their two components, it is possible to extract

Published by the IEEE Computer Society 1

efficiency through in-network offload and acceleration of
the critical-path operations. Performing the acceleration
in-network helps achieve low and predictable latency.
Second, IoT applications and their messages are built
around the topic construct, which provides semantic
information regarding the message types and formats to
the underlying processing runtime. This further allows
for application-specific batching and compression to
be deployed, but outside of the critical path, thereby
not impacting critical-path latencies, while scaling the
sustainable throughput of the analytics path.

Motivated by these observations, we design Com-
prex – a set of domain-specific batching and com-
pression engines specialized for smartNIC offload and
acceleration of IoT. This new topic-aware batching and
compression can be integrated with existing smartNIC
offload solutions to address the scalability limitations of
the smartNIC-host application interface, and to provide
significant benefits to IoT analytics. The outcome is a
server framework that achieves low and predictable
latency for accelerated critical-path IoT operations,
with increased throughput scalability of the long-term
modeling and aggregation tasks executed via general-
purpose CPUs.

The engines are integrated with a smartNIC proto-
type system based on the Mellanox InnovaFlex smart-
NICs, equipped with a Xilinx XCKU060 FPGA. Using
four representative IoT benchmarks [2], we show that
the use of application-specific batching and compres-
sion allow Comprex to improve the stable throughput
(messages processed per second) by 11× compared
to just offload approaches, while not degrading latency
for critical-path operations. For a fixed load, it reduces
the host’s per-core CPU utilization by up to 8×, freeing
up those resources to scale the analytics components
or to host more applications. The benefits persist even
when co-running all four IoT benchmarks to emulate
multi-tenant setting.

IoT Acceleration Opportunities and
Challenges

IoT Workload Characteristics
While the term IoT refers to a wide range of applications,
most IoT applications are characterized by ingesting
large volumes of sensor data, analyzing them, and
delivering updates to one or more subscribers. Sensor
data processing involves a common set of steps, as
shown in Figure 1. The boxes in red form a critical
path composed of compute kernels that often comes
with stringent real-time latency constraints varying from
250 µs to 100 ms, followed by a long-term analytics

FIGURE 1. A Common IoT application dataflow.

TABLE 1. IoT application workload and evaluated kernels.
MLR is Multivariable Linear Regression.

App Name
Number
of Fields

Size in
bytes

Topic
Size

Compute Kernels in Critical Path

CITY 9 123 35

Raw, ASCII

Range Filter,
Bloom Filter

Kalman,
Average,
Max, Min,

Count

Decision
Tree

TAXI 27 144 47 MLR
GRID 3 80 30 Range Filter,

String Filter
Threshold

FIT 17 153 32 MLR

path (Analytics and Database), composed of compute
kernels that operate at much longer time scales. Typical
sensors generate small updates of 10s to 1000s of
bytes, with existing IoT protocols designed for 20-1600
byte message sizes.
Motivation for in-network acceleration. Handling
these message rates and processing latency require-
ments with general-purpose server systems is not
sustainable, particularly given the small message sizes
common in IoT. Realizing a scalable and performant in-
frastructure for IoT will therefore have to seek efficiency
through in-network acceleration.

IoT Modules and Kernels
IoT applications are very modular. They are frequently
expressed in a static pipeline of high level compute
kernels that goes from parsing data coming from
sensors, in a byte format, to server-side friendly format
like JSON, to training machine learning models and
storing data in persistent memory for future analysis.

These compute kernels are commonly connected in
a dataflow format using popular cloud services such as
Amazon Kinesis and Lambda functions or Google Cloud
functions. The operations shown in the red boxes in Fig-
ure 1 form a closed-loop flow capable of detecting and
responding to events, near real-time, without any human
intervention. In addition, the operations represented in
these classes of functionality have already been shown
amenable to offload and acceleration [3], [5]. The last
two functions operate across aggregates of IoT updates
over different spatial and temporal scales, and rely on
conventional compute and storage infrastructure on
general-purpose servers.

2

Topic, Publisher and Subscriber
Content of an IoT message. An IoT device serves
as a publisher of messages with sensor values, or as
a subscriber to messages with actuation commands.
A message has the format shown in Figure 1, and
consists of a network header and IoT-specific payload.
The IoT payload is structured based on one of the
common IoT protocols, such as MQTT and CoAP, and
it includes a number of fields such as device identifiers
(device name, user ID), sensor types (e.g., temperature,
luminosity, etc., depending on the sensors available on
the device) and sensor data (represented in a well-
defined format).
The topic structure. Topic is a key abstraction that
connects publishers (IoT devices generating data)
and subscribers (control processes and alert systems
consuming IoT updates), and is used by the message
broker component responsible for distributing data. It
is commonly implemented as a string that expresses
the hierarchical relationship between the application
components.

Existing smartNIC Acceleration for
IoT

In-network acceleration approaches. Existing in-
network accelerators can be grouped into two different
categories: Pipeline-of-Offloads NICs (NICA) [3], and
re-configurable match-action (RMT) NICs (PANIC) [5].
Figure 2 illustrates the main components present in
an in-network accelerator. As packets arrive in the
accelerator, they are mapped to an entry in the flow
table and scheduled across different offload kernels.
The flow table is used to store data regarding how to
process the incoming packet. The difference between
in-network accelerators can be simplified into how
these main components operate in relation to one
another. NICA groups offload kernels into a static
pipeline that flows can be mapped to. PANIC’s offload
kernels are connected via crossbar with bi-directional
communication, allowing pipelines of kernels to be
dynamically created.
Limitation. The smartNIC compute elements can be
used to execute the offloaded kernels, at line rate, for
each IoT message, process the critical path, and, with
low latency, send anomaly notifications to subscribers.
However, IoT messages must also be ingested by the
host-side analytics path for long(er) term modeling
and optimizations. Figure 3 exposes the problem of
processing high message rates of small-sized packets.
In this microbenchmark, all 5 CPU cores were at 100%
utilization. We notice that, with the same number of
cores, the throughput can be increased by almost 5x

Host CPU
Offload
kernelsScheduler

Fr
o

n
t

e
n

d

In

Out

K V

0 A

1 B

Flow Table

P
C

Ie

FIGURE 2. Key components of a generic representation of
in-network accelerators.

48 128 1024

FIGURE 3. Throughput vs. message size on a no-touch flow.

over the minimum size packet. Above 1024 bytes, the
number of ingested messages per second, not the mes-
sage size, becomes the bottleneck. Current smartNIC
acceleration solutions provide scalability to host-side
analytics by freeing up host resources via offload, but
do not explicitly consider the scaling limitations of the
large number of IoT messages that still need to be
delivered and processed in the analytics data path.

Accelerating the IoT Analytics Path
Given the richness of the IoT space, the operations
in the analytics path vary significantly, ranging from
database load/store and queries, to machine learning
training. As such, they rely on the host-side runtime
CPU for their execution. We use two insights to scale
up the analytics path on the host-side runtime CPU.
First, at high message loads, the host-side runtime
CPU becomes a bottleneck for even the basic pro-
cessing needed to extract individual IoT messages
from network packets, underutilizing both the available
network bandwidth and PCIe bandwidth. Second, the
analytics path is throughput-oriented and does not have
strict requirements on latency, unlike the critical path.
Leveraging the two insights, we propose Comprex, a
NIC-side engine that compresses and batches together
a large number of IoT messages to fill out pre-allocated
(MTU-sized) buffers that are then passed to the host-
side CPU runtime.
Compression and Batching of IoT messages. Fig-

3

DMA
[44, 48], [58, 62], [69, 74], [81, 85], [103, 106]

Parse
Comp.

Diff

“{latitude:12345,longitude:12345,temperature:43.1,humidity:95.2,light:26282,dust:5188.21,airquality_raw:363}”

“{latitude:12345,longitude:12345,temperature:39.2,humidity:84.0,light:16222,dust:5455.21,airquality_raw:441}”
Message 1

Message …n

Hash Table

Hash Table

In
-n

e
tw

o
rk

A

c
c

e
le

ra
to

r

FIGURE 4. Compress Engine and Batch Engine used for
accelerating the transfer of IoT messages from the network
card to the host CPU.

43.1 95.2 26282 5188.21 363

“{latitude:12345,longitude:12345,temperature:43.1,humidity:95.2,light:26282,dust:5188.21,airquality_raw:363}”

Message 1

Message 2
“{latitude:12345,longitude:12345,temperature:39.2,humidity:84.0,light:16222,dust:5455.21,airquality_raw:441}”

000000

“{latitude:12345,longitude:12345,temperature:43.1,humidity:95.2,light:16282,dust:5322.37,airquality_raw:358}”
Message 3

26282 5188.21 363110000

“{latitude:12345,longitude:12345,temperature:39.2,humidity:84.0,light:16222,dust:5455.21,airquality_raw:441}” 111 bytes

29 bytes

21 bytes

hash
key

Bit
mask

dynamic
region

FIGURE 5. Compress Engine region elimination.

ure 4 illustrates how data flows from the in-network
accelerator to the Compress and Batch engines. The
Compress Engine receives its trigger to start execution
when an IoT message is processed by the in-network
accelerator that handles the critical path. After compres-
sion, the Batch Engine combines multiple compressed
IoT messages to construct a batch of messages and
push them to the batch queue.

There are three cases where the message is pushed
to the Real-Time Queue: 1⃝ the message bypassed
the accelerator using the Bypass path, 2⃝ the in-
network accelerator did not fully handle the real-time
requirement of the message or 3⃝ as explained in the
next section, the Compress Engine detected an error
and the message was not compressed. The Bypass
path is used for messages that are not accelerated.

Comprex Compression
IoT messages are too small to benefit from generic com-
pression techniques like Snappy and LZ4 (see Table 1).
In fact, as shown in Figure 7, both LZ4 and Snappy
increase the overall data volume. However, we observe
that a large portion of IoT messages remain unchanged
across the two endpoints – the sensors publishing to a
certain topic and the application server. For instance,
a geolocation of a fixed sensor in CITY, or of a taxi
waiting for a client in TAXI, user and device ids in FIT
and GRID etc., are common examples of parameters

Hash Table

Detect.Diff

Internal BufferCompress
Controller Remove Region

Internal Buffer

Encode

Internal Buffer

In
-N

e
tw

o
rk

A
cc

e
le

ra
to

r

Index-Offsets & Static Regions
Start
Signal

Index-offset Static Region

FIGURE 6. Compress Engine components.

SnappyLZ4 Comprex

FIGURE 7. Compression gain comparison between Comprex
IoT specific compression and generic compression techniques.

that can remain unchanged across messages. However,
the device telemetry (temperature, CO2 levels, energy
consumption) present in the message body changes
more frequently. We refer to the regions of the IoT
message that remain unchanged and the regions that
change more frequently as static and dynamic regions.
Topic and static regions. A device source IP is rarely
static and does not provide information on message
structure patterns between devices. The topic in the
pub-sub model, however, not only remains the same
between messages, it indicates that messages pub-
lished in the same topic have the same format [2]. This
allows Comprex to detect static regions more reliably
between multiple end-points while greatly reducing the
memory footprint, since the resources grow with the
number of topics and not with devices.
Software-hardware co-processing. Detecting the
static and dynamic regions of a sequence of messages
is not trivial, and it requires that every character in a pair
of messages be compared. Unlike the previous version
of Comprex [8], where the Compress Engine is used
only to remove static regions from messages, this new
version of Comprex’s Compress Engine is capable of
performing string-compare. As such, the host performs
the initial analyzes of the static and dynamic regions
before offloading the process to the Compress Engine.
Pre-computing these regions beforehand yields great
hardware optimizations since strings can be parsed in
parallel using techniques such as loop-unroll without
the additional cost added by a naive implementation of

4

divide-and-conquer.
When the host server receives a message, it

checks to see if there is an entry in the Hash Table
that corresponds to the message’s topic. If the entry
does not exist, a function that computes the dynamic
region (Comp.Diff) marks the entire message as
dynamic and adds the new topic to the Hash Table. As
more messages for the same topic arrive, Comp.Diff
begins to identify the regions of the message that
have remained unchanged (static regions) between
consecutive messages.

The host-side runtime then loads the Hash Table
on the FPGA NIC with the static regions, as well as the
index and offsets of the dynamic regions. The Compress
Engine uses this information to remove static regions
from upcoming messages in the same topic, sending
only dynamic regions to the host. Furthermore, the
Compress Engine stores a number of messages on
the same Hash Table entry. If Comp.Diff detects any
variation in the static region, it instructs the Compress
Engine to dump its stored messages into the upcoming
packet, which goes into the Real-Time Queue, and the
process starts over.

Listing 1. Host side Python source-code sample for processing
Comprex messages

1 def process (mesg) :
2 t o p i c = HT. ge t_ top i c (msg . t o p i c)
3 i f t o p i c i s None :
4 Comp. D i f f (msg)
5 e lse :
6 i f t o p i c .N > t o p i c .MAX_N:
7 i f I s _ D i f f (top ic , msg) :
8 Comp. D i f f (top ic , msg)
9 t o p i c .MAX_N = −1
10 else :
11 increment (t o p i c .MAX_N)
12 t o p i c .N+=1
13 Compose(top ic , msg)
14 Upload (msg)

Processing a Compressed Message. Listing 1 is a
simplified source code that highlights the steps involved
in processing a Comprex message. In lines 1-3, a new
topic entry is created in case it does not exist. Lines
6-12 illustrate how Comprex relies on the message
structure for performance. A topic’s N and Max_N, in
line 6, are used to determine how many messages
can be processed before invoking Comp.Diff, which
prevents it from becoming a bottleneck. When N
becomes greater than Max_N, the Compress Engine
sends the full message to the host side to be processed
by Comp.Diff. In line 7, if the static regions have
changed, the regions need to be recomputed (line 8)
and the confidence (Max_N) that the static regions
will not change becomes negative (line 9). However, if
the static regions remained unchanged, the confidence

increases (line 11) until it reaches a user-imposed limit.
Lines 13-14 the received message is reconstructed and
uploaded to a queue shared with the IoT application
that owns the message.

Compress Engine
Once Comprex builds confidence in the static regions of
a message, the static regions, the index-offsets and the
Max_N are added to the in-network accelerator Hash
Table and used by the Compress Engine thereafter.
Figure 6 illustrates the Compress Engine component
pipeline. When the message arrives at the in-network
accelerator, it sends a copy of the message to the
Compress Engine and signals the Hash Table unit,
which triggers the transfer of the index-offsets and static
regions for the message being processed.

The Compress Controller uses the index-offsets to
extract regions of the original message, pairs them
with their corresponding static regions, and transfers
them to the Detect.Diff. Since the sizes of the regions
are known beforehand and the goal of this process is
to know whether or not a static region has changed,
the Detect.Diff stage is capable of processing pairs of
64 bytes per cycle. This is achieved by setting all 64
bytes to 0 and modifying only the 64 − size region. For
example, if a 50 byte static region remains unchanged,
comparing the remaining 14 bytes will not alter the
result.

If no change is detected in the static regions, the
Remove Region stage removes them from the message
and sends the dynamic parts to the Compose stage,
which encodes the dynamic regions using the Comprex
format. Comprex was designed to work with-and-without
the Detect.Diff stage. As such, we refer to Comprex
equipped with the Detect.Diff stage as ComprexDD.

Figure 5 illustrates the process of eliminating du-
plicated regions from the message payload. All the
messages in this example come from the same device,
bound to the same topic. When Message 1 arrives in
the Compress Engine, no entry for the topic exists
and the whole message is transferred to the host.
When Message 2 arrives, Comp.Diff maps the static
regions and loads the accelerator’s Hash Table. Even
dynamic regions can become static for a short period
of time. For example, a stationary vehicle that reports
its speed will report the same speed and geolocation
in multiple messages. This is illustrated in messages
2 and 3. Eliminating duplicates in dynamic regions is
accomplished by adding a 16 bit mask to the message
payload that allows the runtime to track the dynamic
regions that were eliminated in the Remove Region
stage.

5

Batching
After compression, the Batch Engine combines multiple
compressed IoT messages to construct a single large
UDP message. The implementation of the Batch Engine
is straightforward. It keeps track of the size of the current
load, and checks to see if the next message coming
from the Compress Engine fits. If it fits, the compressed
message is added to the load, and the load size is
updated. Otherwise, the current load is transferred to
the host-side runtime and a new load is created.

Comprex re-uses the functionality for the network
interface packet buffer management on our in-network
accelerator SmartNIC, and thus uses maximum size
1500 byte UDP-over-Ethernet network packet buffers
for the SmartNIC-host-side runtime communication.
Once the batch is received by the host-side runtime,
it processes the protocol stack once for the entire
batch, decompresses the message by adding the
deleted regions, and passes the individual messages
to the application. No modifications are required in the
application to ingest and process the messages.

One could argue that Snappy and LZ4 will demon-
strate better results if used after batching. However,
this would impact the number of messages in the batch
and require costly variable-length string manipulation
operations [1]. Leveraging the well-formed structure of
IoT messages allows Comprex to simplify the compres-
sion and decompression process by copying data from
fixed offsets. It also opens up opportunities for future
optimizations such as pre-initializing message buffers.
Software Managed Queues. The current implemen-
tation for our prototype uses two different queues to
send processed UDP packets to the host-side runtime
CPU: (1) a high-priority queue that holds IoT topics
that are either not accelerated or not successfully
compressed on the SmartNIC; and (2) a low-priority
queue that holds the combined large compressed and
batched messages. The priorities of the two queues are
managed by the Comprex runtime system to ensure
fairness and to avoid starvation for different types of
queues.

Evaluation

Methodology
To evaluate the impact of domain-specific compression
and batching on extending the benefits of SmartNIC of-
fload alone, we use four representative IoT applications,
summarized in Table 1, and described in [8]

We use two servers equipped with Intel Xeon
X3430 processors running at 2.4 GHz and 16 GB of
RAM to emulate IoT traffic at scale. The servers are

connected using two 40 Gbps Mellanox Innova Flex
SmartNICs, each comprising a Mellanox ConnectX-4 Lx
EN ASIC NIC and a Xilinx Kintex UltraScale (XCKU060)
FPGA. The first server emulates IoT publishers and
subscribers, while the second server hosts the IoT
applications.

All results for Baseline and Baseline plus Batch use
an in-house C-based server application that operates on
top of a light-weight UDP-over-Ethernet protocol. Base-
line accepts a single IoT publisher message at a time
from the NIC, processes the message to generate and
send responses to all subscribers. For Baseline plus
Batch, we use the SmartNIC to combine multiple IoT
messages from different topics into a single 1500 Byte
batch. For Offload, we use the SmartNIC to completely
subsume the operations for the critical path in each
topic of the evaluated applications. Offload plus Batch
further performs batching. Finally, Comprex performs
compression and batching to fit a larger number of IoT
messages in a single batch. We measure the latency
of the critical path as the time from publishing an IoT
message to the time when the last IoT notification is
received by subscribers.

The reported stable throughput corresponds to a
level where message loss does not exceed a current
threshold of 0.1% for a duration of 10 minutes. More
specifically, for each measurement in this section, we
increase the throughput until the host-side becomes
unstable. As such, throughput measurements are calcu-
lated for messages that have the critical and non-critical
sides properly handled by the system.

Experimental Results
Increase in sustained throughput. Figure 8 com-
pares the throughput in messages-per-second, across
different configurations. Baseline plus Batch shows a
geomean 1.3× increase in throughput from batching
multiple IoT messages into a single network packet, at
the cost of ≈ 2× increase in latency, as we show in
Figure 9. Further, hardware acceleration alone does
not provide a significant improvement in throughput.
Offload provides a 2.1× improvement in throughput
over Baseline and a 1.6× improvement in throughput
over Baseline plus Batch.

By combining the benefits from hardware accelera-
tion and offload with optimizations for domain-specific
batching and compression of IoT messages on-the-fly,
Offload and Comprex provide a geomean 10.6× and
13.5× increase in performance over Baseline. Unlike
the CPU-only Baseline plus Batch, neither Offload plus
Batch nor Comprex show a significant increase in la-
tency since the entire critical path is accelerated on the

6

ComprexOffload + BatchOffloadBaseline + batchBaseline

FIGURE 8. Throughput comparison.

ComprexOffload + BatchOffloadBaseline + batchBaseline

FIGURE 9. Latency comparison.

SmartNIC to generate a reply before applying batching
and compression. FIT sees the highest increase in
throughput of 14.5× with Comprex since the size of the
IoT message is highest in that benchmark. GRID sees
the lowest throughput improvement of around 12.8×
with Comprex since this benchmark does not benefit
significantly from compression.
Scalability of Host Resources. We evaluate the end-
to-end impact on the scalability of the host resources.
For Baseline, we measure the CPU-side requirements
to execute the critical path operations on the host and
to pass the data to the long-term analytics component.
In the Comprex case, the critical path is executed on
the SmartNIC using a pipeline-like accelerator similar to
NICA [3]; the host-side runtime component receives the
compressed messages and performs decompression
before delivering them to the rest of the application.
In order to avoid measuring bottlenecks related to our
current database or machine learning components, in
these measurements the application is an in-memory
log. When comparing Baseline and Comprex with
respect to the per-core CPU utilization, at the same
level of sustained throughput, Baseline utilizes 91-99%
CPU, whereas Comprex requires only 11-12%. This is
an 8× improvement in CPU efficiency.
Decompression performance. To compare the per-
formance of the Comprex and Snappy decompression
parts, we created two dump files with four million com-
pressed messages from the four IoT applications. Only
one CPU core was used for this micro-benchmark. As
illustrated in Figure 10, Comprex and ComprexDD are
heavily penalized by cold start during which Comp.Diff
is executed for every message. As messages for the
same topic start to repeat over time and static regions
remain unchanged, calls to Comp.Diff are reduced,
resulting in a ≈ 2× higher throughput compared to

Interval in millions of messages

M
ill

io
n

M
es

sa
ge

s
pe

r S
ec

on
d

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3

Comprex ComprexDD Snappy

FIGURE 10. Decompression throughput comparison between
Comprex, Comprex with offloaded Detect.Diff (DD) and
Snappy.

Maximum n allowed

M
ill

io
n

D
ec

om
pr

es
si

on
 p

er
 s

ec
on

d

0.0

0.5

1.0

1.5

2.0

2.5

Max_N 0 Max_N 10 Max_N 20 Max_N 30

FIGURE 11. Performance measurement for different caps on
how much N (interval in number of messages) can grow before
Comp.Diff is executed.

Snappy. The wavy behavior of the Comprex throughput
can be attributed to the overhead of detecting a change
in the static region. It not only resets the Max_N for
the given topic, but also forces the Compress Engine
to transfer previously stored messages to the host side.
However, if the Compress Engine is equipped with
Detect.Diff, no cap is added to Max_N which allows

7

the confidence in the static regions to grow indefinitely.
Furthermore, since Detect.Diff can detect drifts in

the static regions on a per-message basis, no previous
messages need to be stored and transferred to the host.
This greatly reduces the impact of slight variations in
messages by reducing the number of calls to Comp.Diff.
Lastly, if a topic does not have static regions that remain
unchanged for at least five messages, Comprex reduces
the frequency at which Comp.Diff is executed until topic
is completely removed from consideration.
Throughput and Lossiness. Figure 11 illustrates the
impact of different caps imposed on N. If Max_N is
0, Comp.Diff is executed on every message, greatly
reducing the benefits of Comprex. When Max_N is set
to 10, Comprex can perform more than 1M decom-
pression per second. Above Max_N 30, the benefits
are negligible. As seen earlier, Max_N also indicates
how many messages must be stored in the SmartNIC
DRAM for Comprex to be lossless.
Comprex vs ComprexDD. Since ComprexDD checks
every message for variations on static regions, achiev-
ing lossless compression requires storing only one
full message per topic. As such, while both versions
achieve comparable throughput, Comprex consumes
Max_N times memory per topic compared to Com-
prexDD.

Comprex allows users to determine how much
Max_N can drift from Max_Store before the SmartNIC
dumps stored messages at the host’s request. For the
microbenchmark in Figure 10, no data were lost with
Max_N and Max_Store set to 30 and 10 respectively,
even without the Detect.Diff stage.
Reduction in Average Latency. Figure 9 compares the
reduction in the average latency of Baseline, Baseline
plus Batch, Offload, Offload plus Batch, and Comprex
compared to Baseline for each of the benchmarks. As
shown in the figure, batching has an adverse impact on
the latency for the critical path and increases the critical
path latency. Offload, Offload plus Batch, and Comprex
all use the SmartNIC to yield a significant reduction
in latency by completely offloading the operations of
the critical path. The FIT benchmark sees the highest
reduction in critical path latency from offload since this
benchmark has the highest number of parameters used
for computations of the critical path. The GRID and
TAXI benchmarks see the lowest reduction in latency
since these benchmarks have fewer parameters that
are processed for the critical path. Nevertheless, all
benchmarks see more than 28.8× reduction in latency.

None of the benchmarks show a significant degra-
dation in latency from batching in Offload plus Batch
and batching+compression in Comprex, compared to
Offload, since batching is performed outside of the

FIGURE 12. Latency for critical path when running a single
vs. multiple applications.

critical path of the message latency. This illustrates
how Comprex significantly raises end-to-end stable
throughput while not having a negative impact on
latency for the critical path.
Co-running multiple applications. Figure 12 shows
the impact of accelerating multiple applications with our
system. Isolated execution accelerates only the topics
for a single application, shown on the x-axis. Each
application (eg. CITY) consists of 5, 000 topics, where
each topic performs the exact same computations. Co-
running execution accelerates multiple applications by
randomly interleaving messages from topics in all four
benchmarked applications.

As Figure 12 shows, there is no noticeable degrada-
tion in latency when co-running multiple IoT applications.
The slight variation in latency reported in the figure
stems from the networking stack and software over-
heads when measuring latency. The actual variation in
latency within the SmartNIC measured via simulations
is less than a tenth of a µs (∼ 10 cycles @150MHz)
between the application with the most computations
FIT, and the application with the least computations
TAXI.
FPGA utilization. We are able to support all four
applications using around 2% LUTs and 3% BRAMs
resources available in the Xilinx XCKU060 FPGA on
the Mellanox SmartNIC.

Related Work
IoT Specific Compression and Batching Several
works have demonstrated the benefits of compressing
and batching IoT messages at the edge [7]. How-
ever, naive adoption of these techniques for acceler-
ated SmartNIC-based IoT applications puts the de-
compression and batching operations in the critical
path, making them not suitable for IoT applications
with real-time processing requirements. While Comprex
[8] Compress Engine is only capable of removing
static regions, ComprexDD leverages pre-computed
information done by the host side to perform string-
compare on the in-network accelerator at line-rate. This
not only greatly reduces memory footprint but also
offloads computations to specialized hardware.

8

SmartNIC acceleration frameworks. A number of
related efforts have explored the benefits of in-network
acceleration or developed programming interfaces for
computation offload to SmartNICs. NICA [3] provides
a framework for general server application acceleration
on FPGA-based SmartNICs. It uses a low-level socket
interface for steering traffic to accelerators. sPIN [4]
and INCA [10] provide programming models for in-
line message processing in HPC systems. INCA uses
tag-matching for selecting instructions, analogously
to Comprex topic abstraction. COPA [6] presents a
generic architecture for integration of inline or lookaside
accelerator cores with the SmartNIC packet processing
path.

The work presented in this paper is complementary
to those efforts, as it focuses on further amplifying
the benefits of SmartNIC offload via more effective
compression and batching, as shown by the differences
between Comprex and offload measurements in Fig-
ure 8.

Conclusion
The rapid increase in the number of IoT devices and
the real-time ultra-low latency requirements of new 5G
applications challenges IoT service providers. Solutions
that combine offload to SmartNICs and acceleration of
common latency critical operations present in these
workloads, provide significant benefits. We present
a solution that amplifies those benefits through use
of an IoT-specific compression and batching engine,
that further improves the efficiency and scalability of
the IoT analytics server platforms. Our results with 4
real-world applications enable offloads to SmartNIC to
reduce critical path latency by 43× while increasing
the stable throughput 13.5×, and show 8× increase
in CPU efficiency. The solution also paves the way
for integration of other, potentially lossy, compression
techniques which leverage the IoT message structure
to provide further benefits.

Acknowledgent
We thank the anonymous reviewers for their valu-
able feedback. Hardik Sharma, Haggai Eran, Hadi
Esmaelizadeh and Mark Silberstein helped in various
stages of this project. This work was partially supported
by NSF awards SPX-1822972 and CNS-2016701, and
by the ADA and PRISM centers, via the joint SRC and
DARPA JUMP programs.

REFERENCES
1. B. Abali and B. B. et al, “Data Compression Ac-

celerator on IBM POWER9 and z15 Processors :
Industrial Product,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture
(ISCA), 2020, pp. 1–14.

2. S. Anshu, C. Shilpa, and S. Yogesh, “Riotbench: A
real-time iot benchmark for distributed stream
processing platforms,” TPCTC, 2016. [Online].
Available: https://arxiv.org/pdf/1701.08530.pdf

3. H. Eran, L. Zeno, M. Tork, and M. Silberstein, “NICA:
An infrastructure for inline acceleration of network
applications,” atc, 2019.

4. T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant,
and R. Brightwell, “sPIN: High-performance stream-
ing processing in the network,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM,
2017, p. 59.

5. B. E. S. Jiaxin Lin, Kiran Patel, “Panic: A high-
performance programmable nic for multi-tenant net-
works,” USENIX, 2020.

6. V. Krishnan, O. Serres, and M. Blocksome, “Con-
figurable Network Protocol Accelerator (COPA) - An
Integrated Networking/Accelerator Hardware/Software
Framework,” in Hot Interconnects’20, 2020.

7. T. Lu, X. Zou, Q. Xia, and W. Xia, “Adaptively
compressing iot data on the resource-constrained
edge,” hotedge, 2020.

8. R. Oliveira and A. Gavrilovska, “In-network com-
pression for accelerating iot analytics at scale,”
in 2023 IEEE Symposium on High-Performance
Interconnects (HOTI), 2023, pp. 15–24.

9. M. Satyanarayanan, “The emergence of edge com-
puting,” Computer, vol. 50, no. 1, pp. 30–39, 2017.

10. W. Schonbein and R. E. e. a. Grant, “INCA: in-
network compute assistance,” in Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019,
pp. 1–13.

Rafael Oliveira is a PhD candidate in the School
of Computer Science at Georgia Tech, specializing
in system support for in-network acceleration of IoT
applications.

Ada Gavrilovska is associate professor in the School
of Computer Science at Georgia Tech. Her research
is supported by the National Science Foundation, the
US Department of Energy, the JUMP programs by the
Semiconductor Research Corporation and DARPA, and
a number of industry grants.

9

https://arxiv.org/pdf/1701.08530.pdf

	IoT Acceleration Opportunities and Challenges
	IoT Workload Characteristics
	IoT Modules and Kernels
	Topic, Publisher and Subscriber

	Existing smartNIC Acceleration for IoT
	Accelerating the IoT Analytics Path
	Comprex Compression
	Compress Engine
	Batching

	Evaluation
	Methodology
	Experimental Results

	Related Work
	Conclusion
	Acknowledgent
	REFERENCES
	REFERENCES
	Biographies
	Rafael Oliveira
	Ada Gavrilovska

