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Abstract—To enable the Internet of Things (IoT) to scale at
the level of next generation smart cities and grids, there is a
need for cost-effective infrastructure for hosting IoT analytics
applications. Offload and acceleration via SmartNICs have been
shown to provide benefits to these workloads. However, even with
offload, long-term analysis on IoT data still needs to operate
on massive number of device updates, often in the form of
small messages. Despite offloading, the ingestion of these updates
continues to present server bottlenecks. In this paper, we present
domain-specific compression and batching engines, that leverage
the unique properties of IoT messages to reduce the load on
analytics servers and improve their scalability. Using a prototype
system based on the InnovaFlex programmable SmartNICs, and
several representative IoT benchmarks, we demonstrate that the
combination of these techniques achieves up to 14.5× improvement
in sustained throughput rates compared to a system without
SmartNIC offload, and up to 7× improvement over existing
offload approaches.

I. INTRODUCTION

The number of IoT devices and applications is growing expo-
nentially, spanning diverse industry verticals, from different
wearables and smart city applications, distributed agriculture
and smart infrastructure, to ultra-low-latency industrial au-
tomation and mission-critical control [1]. In response of this
trend, commercial cloud (e.g., Amazon AWS [5], Google [15],
Microsoft [6]) and network (e.g., Deutsche Telecom, SK
Telecom, China Mobile, AT&T) operators, are increasingly
offering IoT-based hosting services, ranging from programming
APIs to fully-operated infrastructure for hosting third-party IoT
applications. The scalability and efficiency of this infrastructure
tier, is, thus, relevant to a large number of stakeholders. This
is expected to be further exacerbated by advancements in
5G technologies, where ultra-reliable and ultra-low latency
capabilities of commercial and private 5G networks are enabling
new types of IoT ecosystems with even more stringent end-to-
end performance requirements [40].

To understand the requirements for this server infrastructure,
we first look at the unique characteristics of IoT. These
applications are commonly characterized by massive arrays
of heterogeneous sensors, generating periodic updates in the
form of small messages. IoT devices are limited in their
computational, energy, and communication resources, so appli-
cations rely on remote servers, in the cloud or in future edge
datacenters [40], to aggregate and process sensor updates. The
applications’ end-to-end performance requirements include high
sustained throughput for the aggregate sensor updates, ability to
tolerate unexpected bursts, and low and predictable processing

latency for actuation or notification events in response to online
analyses of sensor data.

Offload and acceleration to emerging programmable Smart-
NICs [19], [31]–[33] are techniques which have been proven
effective for delivering low and predictable latency and high
throughput for request processing across many domains [13],
[20], [24], [28], [29], including for IoT [13], [21]. However,
while these prior solutions make it possible to configure the
NIC’s compute resources for in-network packet processing
of IoT messages, they do not consider that IoT applications
include long term data aggregation, analysis and modelling. The
compute and storage requirements of these operations, coupled
with the complexity of their legacy software stacks, implies
that this functionality remains executed on general-purpose
host CPUs. As a result, even with SmartNIC offload and
acceleration, the scalability of the IoT analytics server systems
is bottlenecked by the host’s packet processing capabilities, due
to known limitations of general-purpose CPUs and network
stacks to deal with large number of small messages [23] [22].

By analyzing several real-world IoT applications, we make
the following observation. First, IoT applications commonly
consist of distinct critical-path and long-term analytics compo-
nents. By decomposing applications into their two components,
it is possible to extract efficiency through in-network offload
and acceleration of the critical-path operations. Performing
the acceleration in-network helps achieve low and predictable
latency. Second, IoT applications and their messages are built
around the topic construct, which provides semantic information
regarding the message types and formats to the underlying
processing runtime. This further allows for application-specific
batching and compression to be deployed, but outside of the
critical path, thereby not impacting critical-path latencies, while
scaling the sustainable throughput of the analytics path.

Motivated by these observations, we design Comprex –
a set of domain-specific batching and compression engines
specialized for SmartNIC offload and acceleration of IoT.
This new topic-aware batching and compression can be
integrated with existing SmartNIC offload solutions to address
the scalability limitations of the SmartNIC-host application
interface, and to provide significant benefits to IoT analytics.
The outcome is a server framework that achieves low and
predictable latency for accelerated critical-path IoT operations,
with increased throughput scalability of the long-term modeling
and aggregation tasks executed via general-purpose CPUs.

The engines are integrated with a SmartNIC prototype system



Fig. 1. A Common IoT application dataflow.

based on the Mellanox InnovaFlex [32] smart NICs, equipped
with a Xilinx XCKU060 FPGA. Using four representative
IoT benchmarks [3], we show that the use of application-
specific batching and compression allow Comprex to improve
the stable throughput (messages processed per second) by
11× compared to just offload approaches, while not degrading
latency for critical-path operations. For a fixed load, it reduces
the host’s per-core CPU utilization by up to 8×, freeing up
those resources to scale the analytics components or to host
more applications. The benefits persist even when co-running
all four IoT benchmarks to emulate multi-tenant setting.

II. IOT ACCELERATION OPPORTUNITIES AND CHALLENGES

A. IoT Workload Characteristics

While the term IoT refers to a broad range of applications, most
IoT applications are characterized by ingesting large volumes
of sensor data, analyzing it, and delivering updates to one or
more subscribers. Sensor data processing involves a common
set of steps, shown in Figure 1. These form a critical path
which often comes with stringent real-time latency constraints
varying from 250 µs to 100 ms [14], and a long-term analytics
path, which operates at much longer time scales.

Typical sensors generate small updates of 10s to 1000s of
bytes, with existing IoT protocols designed for 20-1600 byte
message sizes [45], [49], [53].

In IoT, data message rates range from hundreds per day for
air quality sensors, to tens of thousands per second for industrial
IoT, with very diverse frequency distributions [3], [38] even
within the same application. The massive number of devices,
coupled with the real-time latency requirements, impose a big
challenge on running these applications at a single location
(cloud or edge). For instance, a single natural gas facility houses
over 200k devices that monitor critical operations 24/7 [43]
and a single manufacturing line can produce as much as 10
million measurements a day [11].
Motivation for in-network acceleration. Handling these
message rates and processing latency requirements with general-
purpose server systems is not sustainable, particularly given
the small message sizes common in IoT. Realizing a scalable
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Fig. 2. A hierarchical representation of the City topics. A dataflow repre-
sentation of /CITY/REGION/ADDRESS/TELEMETRY and /CITY/REGION/AD-
DRESS/AIR QUALITY.

and performant infrastructure for IoT will therefore have to
seek efficiency through in-network acceleration.

B. IoT Modules and Kernels

IoT applications are very modular. They are frequently ex-
pressed in a static pipeline of high level compute kernels
that: 1) parse data coming from sensors in a byte format
to server-side friendly format like JSON (ETL in Figure 1);
2) filter data by range of max-min values, token, device id,
etc., so as to eliminate outliers, or to enrich data with filter
models such as Kalman Filter, Bloom Filter or interpolation
models that can fill in missing values (FILTER); 3) perform
statistical analytics such as average, max, min, count, aggre-
gation (STATS); 4) use trained machine learning models to
generate actions or to predict future events based on current
measurements (PRED); 5) and disseminate these as updates
to different types of subscribers (BROKER); 6) train machine
learning models to be used in the predictive analytics kernel
(ANALYTICS); and 7) store data in persistent memory for
future analysis (DATABASE).

These compute kernels are commonly connected in a
dataflow format using popular cloud services such as Amazon
Kinesis and Lambda functions [5] or Google Cloud functions
[15]. The first five functions form a closed-loop flow capable
of detecting and responding to events, near real-time, without
any human intervention. In addition, the operations represented
in these classes of functionality have already been shown
amenable to offload and acceleration [13], [21], [24]. The last
two functions operate across aggregates of IoT updates over
different spatial and temporal scales, and rely on conventional
compute and storage infrastructure on general-purpose servers.

C. Topic, Publisher and Subscriber

Content of an IoT message. An IoT device serves as a publisher
of messages with sensor values, or as a subscriber to messages
with actuation commands. A message has the format shown
in Figure 1, and consists of a network header and IoT-specific
payload. The IoT payload is structured based on one of the
common IoT protocols, such as MQTT [16] and CoAP [51], and
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TABLE I
IOT APPLICATION WORKLOAD AND EVALUATED KERNELS. MLR IS MULTI-VARIABLE LINEAR REGRESSION.

App Name Topic
size [B]

Message
size [B]

Number
of Topics Compute Kernels in Critical Path Number

of Fields

CITY 35 123 10,700 Raw,
ASCII

Range Filter,
Bloom Filter

Kalman, Avg,
Max, Min,Count

Decision Tree
Air Quality 10

TAXI 47 144 50,000 Raw,
ASCII

Range Filter,
Bloom Filter

Kalman, Avg,
Max, Min, Count

MLR
fare amount 27

SmartGRID 30 80 10,217,500 Raw,
ASCII

Range Filter,
String Match

Kalman, Avg,
Max, Min, Count

Threshold
Consumption 3

FIT 32 173 10,000 Raw,
ASCII

Range Filter,
String Match

Kalman, Avg,
Max, Min, Count

MLR
ecg 17

it includes a number of fields such as device identifiers (device
name, user ID), sensor types (e.g., temperature, luminosity, etc.,
depending on the sensors available on the device) and sensor
data (represented in a well-defined format). An application
is free to specify how these fields are interpreted: as part of
the metadata used to classify and route the message – i.e.,
its topic – or as the message data payload consisting of (the
remaining) multiple fields.
The topic structure. Topic is a key abstraction that connects
publishers (IoT devices generating data) and subscribers
(control processes, alert systems, etc., consuming IoT updates),
and is used by the message broker component responsible for
distributing data. It is commonly implemented as a string that
expresses the hierarchical relationship between the application
components. Figure 2.A illustrates how the topic string
/smartcity/region/block expresses the hierarchical relationship
of devices reporting telemetry at an address within a region
of a city. Figure 2.B Illustrates how sensor data is processed
separately, to report anomalous behavior, but is aggregated in
the parent /city/region topic in order to compute the air quality
of the region.
Flow and data aggregation. In IoT, a flow expresses a sequence
of execution and logical interactions between devices and
compute kernels that process and transform data in the flow,
typically implemented as microservices [44]. topics can be used
purely to match IoT messages to a flow. For example, the topic
“connectedcar/telemetry/vehicleId” in AWS Connected Vehicle
solution [48] is used for mapping car sensors to a collection of
cloud functions such as DynamoDB, Kinesis Analytics, etc., to
perform data aggregation. Data aggregation can happen within
and across flows. In City, the average temperature at an address
involves aggregation over all the reported temperature updates
from a sensor within the same flow, but an air quality of a
region invokes a classification function over the aggregated
values of multiple different sensors from multiple flows.

III. EXISTING SMARTNIC ACCELERATION FOR IOT
In-network acceleration approaches. Next we consider
existing state-of-the-art in-network accelerators. Existing in-
network accelerators can be grouped into three different
categories: Pipeline-of-Offloads NICs (NICA) [13], Manycore
NICs [33], and re-configurable match-action (RMT) NICs
(PANIC) [21]. Figure 3 illustrates the main components present
in an in-network accelerator. As packets arrive in the accelerator,
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Fig. 3. Key components of a generic representation of in-network accelerators.
A flow table maps packets to different combinations of offload kernels.

they are mapped to an entry in the flow table and scheduled
across different offload kernels. The flow table is used for
storing data regarding how to process the incoming packet. The
difference between in-network accelerators can be simplified
into how these main components operate in relation to one
another. NICA groups offload kernels into a static pipeline
that flows can be mapped to. PANIC’s offload kernels are
connected via cross-bar with bi-directional communication,
allowing pipelines of kernels to be dynamically created.

Oil Anomaly Detection In-network accell CPU
Clock Frequency 216Mhz 2.9GHz
Throughput 38.2M m/s 433K m/s
Latency 64us 840us

TABLE II
MICRO-BENCHMARK THROUGHPUT COMPARISON BETWEEN HARDWARE
AND SOFTWARE OF A SIMPLE OIL ANOMALY DETECTION IOT DATAFLOW.

Quantifying the opportunity. The previous section suggests
the opportunities to achieve low and predictable latency via in-
network offload and acceleration of the critical-path operations.
Table II illustrates the performance comparison for the critical
path part of a vehicle oil temperature anomaly detection. In this
simple IoT application, vehicles report their oil temperature in
a 6-byte string attached to a 64 byte UDP packet. The micro-
benchmark uses several kernels: string-to-float, threshold filter,
Kalman Filter, average and threshold control that generates
a notification every time a measurement is a certain value
above average. We implement and synthesize the compute
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kernels using Vivado HLS pipeline directive and deploy it on
a Mellanox® Innova™ Flex 4 Lx EN (1st gen.) SmartNIC,
equipped with a Xilinx XCKU060 FPGA that functions as a
bump-in-the-wire accelerator. The software implementation of
the kernels uses the same C++ code used in Vivado HLS except
for the HLS directives. The CPU is an Intel i5 (single core). On
the client side we used an AMD threadripper to generate the
IoT packets. The in-network accelerator has a throughput 88x
higher and a round-trip latency 13x smaller than a single CPU
core, making in-network acceleration a compelling approach
for handling the critical-path of IoT applications.

48                         128                                                  1024

Fig. 4. Throughput vs. message size on a no-touch flow. UDP packets received
by the SmartNIC are transferred to the host CPU with no modification to the
message.

Limitation. The SmartNIC compute elements can be used to
execute at line rates the offloaded kernels for each IoT message,
process the critical path, and with low latency send out to
subscribers messages like the anomaly notifications shown in
Figure 1. However IoT messages must also be ingested by
the host-side analytics path, for long(er) term modeling and
optimizations. Figure 4 exposes the problem of processing high
message rates of small-sized packets. In this microbenchmark,
all 5 CPU cores were at 100% utilization. We notice that, with
the same number of cores, the throughput can be increased by
almost 5x over the minimum size packet. Above 1024 bytes
the number of ingested messages per second, not the message
size, becomes the bottleneck. Current SmartNIC acceleration
solutions provide scalability to the host-side analytics by freeing
up host resources via offload but does not explicitly consider
the scaling limitations from the large number of IoT messages
that still need to be delivered to and processed in the analytics
data path.

IV. ACCELERATING THE IOT ANALYTICS PATH

Given the richness of the IoT space, the operations in
the analytics path vary significantly, ranging from database
load/store and queries, to machine learning training. As such,
we rely on the host-side runtime CPU for their execution. We
use two insights to scale up the analytics path on the host-side
runtime CPU. First, at high message loads, the host-side runtime
CPU becomes a bottleneck for even the basic processing needed
to extract individual IoT messages from network packets,

DMA
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Fig. 5. Compress Engine and Batch Engine used for accelerating the transfer
of IoT messages from the network card to the host CPU.

underutilizing both the available network bandwidth and PCIe
bandwidth. Second, the analytics path is throughput oriented
and does not have strict requirements on latency, unlike the
critical path. Leveraging the two insights, we propose Comprex,
a NIC-side engine that compresses and batches together a large
number of IoT messages to fill out pre-allocated (MTU-sized)
buffers that are then passed to the host-side CPU runtime.
The current implementation re-uses the functionality for the
network interface packet buffer management on our in-network
accelerator SmartNIC, and thus uses maximum size 1500 byte
UDP-over-Ethernet network packet buffers for the SmartNIC-
host-side runtime communication.
Compression and Batching of IoT messages. Figure 5 depicts
the design of the Compress Engine and the Batch Engine. The
Compress Engine receives its trigger to start execution when
an IoT message is processed by the pipeline of engines that
accelerate the critical path. IoT messages are too small to
benefit from generic compression techniques like Snappy [17]
and LZ4 [50] (see Table I). In fact, as shown is Figure 7, both
LZ4 and Snappy increase the overall data volume. However, we
observe that a large portion of IoT messages remain unchanged
across the two endpoints – the sensors publishing to a certain
topic and the application server. For instance, a geolocation
of a fixed sensor in CITY, or of a taxi waiting for a client in
TAXI, user and device ids in FIT and GRID etc., are common
examples of parameters that can remain unchanged across
messages.
Static and Dynamic regions The loop-like process of finding
and eliminating unchanged regions of the IoT message is
illustrated in Figure 5. The metadata used to compress and
decompress a message is grouped by the topic string with
the help of a Topic Table. When a host server receives a
message, it checks to see if there is an entry corresponding to
the message’s topic. If the entry does not exist, a function that
computes dynamic region (Comp.Diff) marks the entirety of
the message as dynamic. As more messages for the same topic
arrive, Comp.Diff starts to identify regions of the message that
have remained unchanged across a given number of messages.
The host-side runtime, then, loads the Diff Topic Table on
the FPGA NIC with the index and offsets of the dynamic
regions. The Compress Engine uses this information to remove
the static regions from upcoming messages to the same topic,
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43.1 95.2 26282 5188.21 363

“{latitude:12345,longitude:12345,temperature:43.1,humidity:95.2,light:26282,dust:5188.21,airquality_raw:363}”

Message 1

Message 2
“{latitude:12345,longitude:12345,temperature:39.2,humidity:84.0,light:16222,dust:5455.21,airquality_raw:441}”

000000

“{latitude:12345,longitude:12345,temperature:43.1,humidity:95.2,light:16282,dust:5322.37,airquality_raw:358}”
Message 3

26282 5188.21 363110000

“{latitude:12345,longitude:12345,temperature:39.2,humidity:84.0,light:16222,dust:5455.21,airquality_raw:441}” 111 bytes

29 bytes

21 bytes

hash
key

Bit 
mask

dynamic
region

Fig. 6. Example of 3 messages for the same topic arriving in the Compress
Engine. 1. the entirety of the message is transferred to host. 2. only the
dynamic regions are transferred, alongside the hash key and the bit mask. 3.
two dynamic regions are eliminated from the message since they remained
unchanged.

sending only the dynamic region to the host. Furthermore, the
Compress Engine stores n number of messages on the same
Topic Table entry. If the Comp.Diff detects any variation on
the static region, it instructs the Compress Engine to dump its
stored messages on the upcoming packet, which goes into the
Real-Time Queue, and the process starts over.
Dynamic region elimination. Even dynamic regions can
become static for brief period of time. A stationary vehicle
reporting its speed, for example, will report the same speed and
geolocation in multiple messages. Figure 6 illustrates how we
leverage this eventual duplication of data in the dynamic regions
to eliminate it from the message payload. This is accomplished
by adding a 16 bit mask to the message payload that allows
the runtime to track the dynamic regions that were eliminated
in the compression process. Additionally, we observe that the
topic string itself accounts for 41% in the FIT message payload
and as high as 76% in the Smart Grid, after static regions are
removed. Since the topic table is shared between the Vasado
SmartNIC and the host-side runtime and control drivers, only
a 4 byte hash key is added to the message payload, yielding a
higher compression rate.

After compression, the Batch Engine combines multiple com-
pressed IoT messages to construct a single large UDP message.
The implementation of the Batch Engine is straightforward. It
keeps track of the size of the current load, and checks to see
if the next message coming from the Compress Engine fits. If
it fits, the compressed message is added to the load, and the
load size is updated. Otherwise, the current load is transferred
to the host-side runtime and a new load is created.

Once the batch is received by the host-side runtime, it
processes the protocol stack once for the entire batch, decom-
presses the message by adding the deleted regions, and passes
the individual messages to the application. No modifications
are required in the application in order to ingest and process
the messages.

One could argue that Snappy and LZ4 will demonstrate better
results if used after batching. However, this would impact the
number of messages in the batch and require costly variable-
length string manipulations operations [2]. Leveraging the well-
formed structure of IoT messages allows Comprex to simplify

SnappyLZ4 Comprex

Fig. 7. Compression gain comparison between Comprex’s IoT specific
compression and generic compression techniques.

the compression and decompression process by copying data
from fixed offsets. It also opens up opportunities for future
optimizations such as to pre-initialize message buffer.
Software Managed Queues. The current implementation for
our prototype uses two different queues to send processed UDP
packets to the host-side runtime CPU: (1) a low-priority queue
that holds IoT topics that are either not accelerated or are only
partially accelerated on the SmartNIC; and (2) a high-priority
queue that holds the combined large compressed and batched
messages. The priorities of the two queues are managed by
the Comprex runtime system to ensure fairness and to avoid
starvation for different types of queues.

V. EVALUATION

A. Methodology

Benchmarks. To evaluate the impact of domain-specific com-
pression and batching on extending the benefits of SmartNIC
offload alone, we use four representative IoT applications,
summarized in Table I. The applications perform a diverse set
of operations in the critical path to process incoming messages
from publishers and to generate a response for subscribers.
CITY [9] is a crowd-source deployed application aimed at
monitoring urban air quality. Smart GRID [4] is an application
composed of sensors that report energy consumption to a pilot
smart GRID in Ireland. It has only one observation field, a
meter id and a timestamp. FIT [34] is a health application
that measures body movements and vital signs. TAXI [12] is a
smart transportation application that reports information of the
current trip.
Evaluation testbed. We use two servers equipped with Intel
Xeon X3430 processors running at 2.4 GHz and 16 GB of
RAM to emulate IoT traffic at scale. The servers are connected
using two 40 Gbps Mellanox Innova Flex SmartNICs [32], each
comprising a Mellanox ConnectX-4 Lx EN ASIC NIC and a
Xilinx Kintex UltraScale (XCKU060) FPGA. The first server
emulates IoT publishers and subscribers, while the second
server hosts the IoT applications.
Baselines. All results for Baseline and Baseline plus Batch use
an in-house C-based server application that operates on top of
a light-weight UDP-over-Ethernet protocol. We compare this
baseline against popular MQTT Mosquitto [16] and CoAP [51]
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ComprexOffload + BatchOffloadBaseline + batchBaseline

Fig. 8. Throughput comparison.

ComprexOffload + BatchOffloadBaseline + batchBaseline

Fig. 9. Latency comparison.

IoT servers and establish that our in-house baseline is an order
of magnitude faster than these systems. Baseline accepts a
single IoT publisher message at a time from the NIC, processes
the message to generate and send responses to all subscribers.
For Baseline plus Batch, we use the SmartNIC to combine
multiple IoT messages from different topics into a single 1500
Byte batch. For Offload, we use the SmartNIC to completely
subsume the operations for the critical path in each topic of
the evaluated applications. Offload plus Batch further performs
batching. Finally Comprex performs compression and batching
as described in Section IV to fit a larger number of IoT
messages in a single batch.
Latency and throughput metrics. We measure the latency
of the critical path as the time from the publishing of an IoT
message to the time when the last IoT notification is received
by subscribers. The reported stable throughput corresponds to
a level where message loss does not exceed a current threshold
of 0.1% for a duration of 10 minutes. More specifically, for
each measurement in this section, we increase the throughput
until the host-side becomes unstable. As such, throughput
measurements are calculated for messages that have the critical
and non-critical sides properly handled by the system.

B. Experimental Results

Increase in sustained throughput. Figure 8 compares the
throughput in messages-per-second, across different configura-
tions. Baseline plus Batch shows a geomean 1.3× increase in
throughput from batching multiple IoT messages into a single
network packet, at the cost of ≈ 2× increase in latency, as we
show in the Figure 9. Further, hardware acceleration alone does
not provide a significant improvement in throughput. Offload
provides a 2.1× improvement in throughput over Baseline and
a 1.6× improvement in throughput over Baseline plus Batch.

By combining the benefits from hardware acceleration
and offload with optimizations for domain-specific batching
and compression of IoT messages on-the-fly, Offload and
Comprex provide a geomean 10.6× and 13.5× increase in
performance over Baseline. Unlike the CPU-only Baseline
plus Batch, neither Offload plus Batch nor Comprex show a
significant increase in latency since the entire critical path is
accelerated on the SmartNIC to generate a reply before applying
batching and compression. FIT sees the highest increase in
throughput of 14.5× with Comprex since the size of the IoT
message is highest in that benchmark. GRID sees the lowest
throughput improvement of around 12.8× with Comprex since
this benchmark does not benefit significantly from compression.

Scalability of host resources. We evaluate the end-to-end
impact on the scalability of the host resources. For Baseline,
we measure the CPU-side requirements to execute the critical
path operations on the host and to pass the data to the long-term
analytics component. In the Comprex case, the critical path
is executed on the SmartNIC using a pipeline-like accelerator
similar to NICA [13]; the host-side runtime component receives
the compressed messages and performs decompression before
delivering them to the rest of the application. In order to
avoid measuring bottlenecks related to our current database
or machine learning components, in these measurements the
application is an in-memory log. When comparing Baseline
and Comprex with respect to the per-core CPU utilization,
at the same level of sustained throughput, Baseline utilizes
91-99% CPU, whereas Comprex requires only 11-12%. This
is an 8× improvement in CPU efficiency.

Decompression performance. To compare the performance of
the decompression part of Comprex and Snappy, we create two
dump files with four million compressed messages from all four
IoT applications. Only one CPU core was used on this micro-
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Fig. 10. Decompression throughput comparison between Comprex and
Snappy. For the first few thousand iterations, Comprex is heavily impacted
by Comp.Diff overhead. As static regions remained uncharged, Comp.Diff
overhead is greatly reduced. Notice that Snappy throughput is unchanged over
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Fig. 11. Performance measurement for different caps on how much n (interval
in number of messages) can grow before Comp.Diff is executed. As static
regions remain unchanged, n increases, incrementally, until it reaches the max
n allowed.

benchmark. As illustrated in Figure 10, Comprex is heavily
penalized by cold-start since it executes Comp.Diff for every
message. As messages for the same topic start to repeat over
time and static regions remain unchanged, calls to Comp.Diff
is reduced resulting in a ≈ 2× higher throughput compared
to Snappy. The wavy behavior of Comprex throughput can be
attributed to the overhead of detecting a change in the static
region. It not only resets the metadata for the given topic, but
forces the SmartNIC to transfer previously stored messages to
the host side. Lastly, if a topic does not have static regions
that remain unchanged for at least five messages, Comprex
reduces the frequency in which Comp.Diff is executed until
the topic is completely removed from consideration.
Impact of max n on throughput and lossiness. Figure 11
illustrates the impact of different caps imposed on n. If max
n is 0, Comp.Diff is executed on every message which greatly
reduces the benefits of Comprex. When max n is set to 10,
Comprex can perform over 1M decompression per second.

Fig. 12. Latency variation for Baseline. The figure shows minimum, 25th
percentile, 75th percentile, and maximum latency for each benchmarked
application. For the same workload Offload + Comprex 99th percentile latency
is less than 60 µs

Above max n 30 the benefits are negligible. As seen in
section IV, n indicates how many messages need to be stored on
the SmartNIC DRAM for Comprex to be lossless. For example,
if max n is set to 10 and Comp.Diff detects a change on static
region on the 11th message received, Comprex can still retrieve
the original messages. However, being over-cautious and storing
30x more messages than necessary might not be the best case
for IoT specific workloads. For instance, it is common to see
implementations [3] using interpolation to stipulate missing
values. To account for such scenarios, Comprex allows user
to determine how much max n can drift from max store
before the SmartNIC dumps stored messages at the Comp.Diff
request. For the microbench in Figure 10, no data was lost
with max n and max store set to 30 and 10 respectively.
Reduction in average latency. Figure 9 compares the reduction
in the average latency of Baseline, Baseline plus Batch, Offload,
Offload plus Batch, and Comprex compared to Baseline for
each of the benchmarks. As shown in the figure, batching
has an adverse impact on the latency for the critical path
and increases the critical path latency. Offload, Offload plus
Batch, and Comprex all use the SmartNIC to yield a significant
reduction in latency by completely offloading the operations of
the critical path. The FIT benchmark sees the highest reduction
in critical path latency from offload since this benchmark has
the highest number of parameters used for computations of
the critical path. The GRID and TAXI benchmarks see the
lowest reduction in latency since these benchmarks have fewer
number of parameters that are processed for the critical path.
Nevertheless, all benchmarks see more than 28.8× reduction in
latency. Furthermore, none of the benchmarks show a significant
degradation in latency from batching in Offload plus Batch
and batching+compression in Comprex, compared to Offload,
since batching is performed outside of the critical path of the
message latency. This illustrates how Comprex significantly
raises end-to-end stable throughput while not having a negative
impact on latency for the critical path.
Impact on tail latency. Interestingly, for the offload-based
cases, all the benchmarks show ≈60 µs latency, while latency
for the CPU baselines – Baseline and Baseline plus Batch –
exhibits high variability, from 600 µs to 12, 000 µs, depending
on the workload. Average latency for CPU baselines varies
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Fig. 13. Latency for critical path when running a single vs. multiple
applications.

from and 1, 800 µs (GRID) to 4, 200 µs (FIT). Figure 12
summarizes the variation in latency for the CPU Baseline for
the benchmarked applications. The CPU-only baseline has a
high variation in latency, with tail latency between 31× (GRID)
to 14× (TAXI) the minimum latency for the critical path. Cloud
IoT services often provide SLAs for the 99th percentile latency,
and limit the number of messages per second that can be
processed to not violate the SLAs. Offload plus Comprex, on
the other hand has a 99th percentile that is far more stable at
higher message rates and lower than the the CPU baselines by
completely circumventing the CPU and generating a response
directly in the FPGA-equipped NIC.
Co-running multiple applications. Figure 13 shows the
impact of accelerating multiple applications with our system.
Isolated execution accelerates only the topics for a single
application, shown in the x-axis. Each application (eg. CITY)
consists of 5, 000 topics, where each topic performs the exact
same computations. Co-running execution accelerates multiple
applications by randomly interleaving messages from topics in
all four benchmarked application. As Figure 13 shows, there is
no noticeable degradation in latency when co-running multiple
IoT applications. The slight variation in latency reported in the
figure stems from the networking stack and software overheads
when measuring latency. The actual variation in latency within
the SmartNIC measured via simulations, is less than a tenth of
a µs (∼ 10 cycles @150MHz) between the application with
the most computations FIT, and the application with the least
computations TAXI.
FPGA utilization. We are able to support all four applications
using around 2% LUTs and 3% BRAMs resources available in
the Xilinx XCKU060 FPGA on the Mellanox SmartNIC [32].

VI. RELATED WORK

IoT Specific Compression and Batching Several works have
demonstrated the benefits of compressing and batching IoT
messages at the edge [30] [35] [52]. However, naive adoption
of these techniques for accelerated SmartNIC-based IoT appli-
cations puts the de-/compression and batching operations in
the critical path, making them not suitable for IoT applications
with real-time processing requirements.
SmartNIC acceleration frameworks. A number of related
efforts have explored the benefits of in-network acceleration
or developed programming interfaces for computation offload
to SmartNICs [13], [18], [22], [24], [26], [27], [29], [36],
[39], [41]. NICA [13] provides a framework for general server

application acceleration on FPGA-based SmartNICs. It uses
a low-level socket interface for steering traffic to accelerators.
sPIN [18] and INCA [41] provide programming models for
in-line message processing in HPC systems. INCA uses tag-
matching for selecting instructions, analogously to Comprex
topic abstraction. FlexNIC [22] offers a SmartNIC design based
on reconfigurable match-action tables, and COPA [24] presents
a generic architecture for integration of inline or lookaside
accelerator cores with the SmartNIC packet processing path.
The work presented in this paper is complementary to those
efforts, as it focuses on further amplifying the benefits from
SmartNIC offload via more effective compression and batching,
as shown via the differences between the Comprex and offload
measurements in Figure 8.
Accelerators for IoT. Several works have demonstrated
accelerators that may be utilized for individual processing
steps of a typical IoT pipeline. Optimus Prime [37] accelerates
data format transformation, and NICA [13] includes an IoT
cryptographic message authentication engine. Previous work
has created sketch and statistics accelerators [25], [46], pre-
dictive engines [10], [42], [47], accelerators for AI-based IoT
device management [7], or for acceleration of other common
operators in the IoT critical path [8]. These engines can be
combined with Comprex as part of an IoT SmartNIC solution.

VII. CONCLUSION

The rapid increase in the number of IoT devices and the
real-time ultra-low latency requirements of new 5G applications
challenges IoT service providers. Solutions that combine offload
to SmartNICs and acceleration of common latency critical
operations present in these workloads, provide significant
benefits. This paper presents a solution that further amplifies
those benefits through use of an IoT-specific compression
and batching engine, that further improves the efficiency and
scalability of the IoT analytics server platforms. Our results
with 4 real-world applications enable offloads to SmartNIC to
reduce critical path latency by 43× while increasing the stable
throughput 13.5×, and show 8× increase in CPU efficiency.

The solution also paves the way for integration of other,
potentially lossy, compression techniques which leverage the
IoT message structure to provide further benefits. In addition,
beyond just as part of the SmartNIC-server interface, these
techniques can be relevant in general at the network interface
of distributed IoT infrastructure. Namely, leading IoT service
providers [5], [6], [15] sometimes split the application critical
and non-critical parts and run them separately – at the edge and
at the data center respectively. Domain-specific compression
and batching can be integrated at the network interfaces
between the edge and cloud, to reduce network load and
improve the infrastructure efficiency.
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