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Mathematicians have relied upon computers (human,
mechanical, or electronic) and machines to assist
them in their research for centuries (or even millen-
nia, if one considers early calculating tools such as the
abacus). For instance, ever since the early logarithm
tables of Napier and others, mathematicians have
known the value of constructing large data sets of
mathematical objects to perform computations and
to make conjectures. Legendre and Gauss used ex-
tensive tables of prime numbers compiled by human
computers to conjecture what is now known as the
Prime Number Theorem; a century and a half later,
Birch and Swinnerton-Dyer similarly used early elec-
tronic computers to generate enough data on elliptic
curves over finite fields to propose their own cele-
brated conjecture on these objects. And many read-
ers have undoubtedly taken advantage of one of the
broadest mathematical data sets of all, the Online
Encyclopedia of Integer Sequences, which has gener-
ated numerous conjectures and unexpected connec-
tions between different areas of mathematics, as well
as serving as a valuable mathematical search engine
for researchers looking for literature on a mathemat-
ical object which they do not know the name of, but
which they can associate with a sequence of integers.
In the twenty-first century, such large databases also
serve as crucial training data for machine learning
algorithms, which promise to automate, or at least
greatly facilitate, the process of generating conjec-
tures and connections in mathematics.
Besides data generation, another venerable use of
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computers has been in scientific computation, which
is heavily used nowadays to numerically solve differ-
ential equations and dynamical systems, or to com-
pute the statistics of large matrices or linear opera-
tors. An early example of such computation arose in
the 1920s, when Hendrik Lorentz assembled a team of
human computers to model the fluid flow around the
Afsluitdijk - a major dam then under construction in
the Netherlands; among other things, this calculation
was notable for pioneering the now-standard device
of floating point arithmetic. But modern computer
algebra systems (e.g., Magma, SAGEMath, Mathe-
matica, Maple, etc.), as well as more general-purpose
programming languages, can go well beyond tradi-
tional “number-crunching”; they are now routinely
used to perform symbolic computations in algebra,
analysis, geometry, number theory, and many other
branches of mathematics. Some forms of scientific
computation are famously unreliable due to round-
off errors and instabilities, but one can often replace
these methods with more rigorous substitutes (for in-
stance, replacing floating point arithmetic with inter-
val arithmetic), possibly at the expense of increased
runtime or memory usage.

A relative of computer algebra systems are satisfi-
ability (SAT) solvers and satisfiability modulo theo-
ries (SMT) solvers, which can perform complex log-
ical deductions of conclusions from certain restricted
sets of hypotheses, and generate proof certificates for
each such deduction. Of course, satisfiability is a NP-
complete problem, so these solvers do not scale past
a certain point. Here is a typical example of a result
proved using a SAT solver:

Theorem 0.1 (Boolean Pythagorean triples theo-
rem [HKM16]). The set {1, . . . , 7824} can be parti-
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tioned into two classes, neither of which contains a
Pythagorean triple (a, b, c) with a2+b2 = c2; however,
this is not possible for {1, . . . , 7825}.

The proof required 4 CPU-years of computation
and generated a 200 terabyte propositional proof,
which was later compressed to 68 gigabytes.
Computers are of course also used routinely by

mathematicians for mundane tasks such as writing
papers and communicating with collaborators. But
in recent decades, several promising new ways to use
computers to assist in mathematical research have
emerged:

• Machine learning algorithms can be used to dis-
cover new mathematical relationships, or gener-
ate potential examples or counterexamples for
mathematical problems.

• Formal proof assistants can be used to verify
proofs (as well as the output of large language
models), allow truly large-scale mathematical
collaborations, and help build data sets to train
the aforementioned machine learning algorithms.

• Large language models such as ChatGPT can
(potentially) be used to make other tools easier
and faster to use; they can also suggest proof
strategies or related work, and even generate
(simple) proofs directly.

Each of these types of tools has already found niche
applications in different areas of mathematics, but
what I find particularly intriguing is the possibil-
ity of combining these tools together, with one tool
counteracting the weaknesses of another. For in-
stance, formal proof assistants and computer al-
gebra packages could filter out the now notorious
tendency of large language models to “hallucinate”
plausible-looking nonsense, while conversely these
models could help automate the more tedious aspects
of proof formalization, as well as provide a natural
language interface to run complex symbolic or ma-
chine learning algorithms. Many of these combina-
tions are still only at the proof-of-concept stage of
development, and it will take time for the technol-
ogy to mature into a truly useful and reliable tool for
mathematicians; but the early experiments do seem

to be encouraging, and we should expect some sur-
prising demonstrations of new mathematical research
modalities in the near future; not the science-fiction
conception of a superintelligent AI that can solve
complex mathematical problems autonomously, but
a valuable assistant that can suggest new ideas, filter
out errors, and perform routine case checking, numer-
ical experiments and literature review tasks, allowing
the human mathematicians in the project to focus on
the exploration of high level concepts.

1 Proof assistants

The mere fact that a computation was performed us-
ing a computer does not, of course, automatically
guarantee it is correct. The computation could incur
numerical errors, such as that caused by replacing
continuous variables or equations with discrete ap-
proximations. Bugs can be inadvertently introduced
into the code, or the input data may itself contain
inaccuracies. Even the compiler that the computer
uses to run the code could be flawed. Finally, even
if the code executes perfectly, the expression that is
correctly computed by the code may not be the ex-
pression that one actually wanted for the mathemat-
ical argument.

Early computer assisted proofs experienced many
of these issues. For instance, the original proof of
the four-color theorem [AH89] by Appel and Haken
in 1976 revolved around a list of 1834 graphs that
needed to obey two properties, called “reducibility”
and “unavoidability”. Reducibility could be checked
by feeding each graph one at a time into a custom-
written piece of software; but unavoidability required
a tedious calculation comprising hundreds of pages of
microfiche – verified by hand through the heroic ef-
forts of Haken’s daughter Dorothea Blostein, which
ended up containing multiple (fixable) errors. In
1994, Robertson, Sanders, Seymour, and Thomas
[RSST96] attempted to make the computational com-
ponent of Appel–Haken proof fully verifiable by com-
puter, but ended up instead producing a simpler ar-
gument (involving just 633 graphs, and an easier pro-
cedure to verify unavoidability) that could be verified
much more efficiently by computer code written in
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any number of standard programming languages.
Proof assistants take this formalization one step

further, being a special type of computer language
that is designed not to perform purely computational
tasks, but to verify the correctness of the conclu-
sion of a logical or mathematical argument. Roughly
speaking, each step in a mathematical proof would
correspond to some number of lines of code in this
language, and the overall code would only compile if
the proof was valid. Modern proof assistants, such
as Coq, Isabelle, or Lean, intentionally try to mimic
the language and structure of mathematical writing,
although often substantially fussier in many respects.
As a simple example, in order to interpret a math-
ematical expression such as ab, a formal proof assis-
tant may require one to specify precisely the “type” of
the underlying variables a, b (e.g., natural numbers,
real numbers, complex numbers), in order to deter-
mine which exponentiation operation is being used
(which is particularly important for expressions such
as 00, which have slightly different interpretations un-
der different notions of exponentiation). Much effort
has been placed into developing automated tools and
extensive libraries of mathematical results to man-
age these low-level aspects of a formal proof, but in
practice the “obvious” parts of a mathematical ar-
gument can often take longer to formalize than the
“important” parts of the argument. To give just
one example: given three sets A1, A2, A3, a math-
ematician might work with the Cartesian products
(A1×A2)×A3, A1× (A2×A3), and

∏
i∈{1,2,3} Ai in-

terchangeably, since they are “obviously” the “same”
object; but in most formalizations of mathematics,
these products are not actually identical, and a for-
mal version of the argument may need to invest some
portion of the proof establishing suitable equivalences
between such spaces, and ensuring that statements
involving one version of this product continue to hold
for the other.
For this and other reasons, the task of converting

a proof written by a human mathematician - even
a very careful one - to a formal proof that compiles
in a formal proof assistant is quite time consuming,
although the process has gradually become more ef-
ficient over time. The aforementioned four-color the-
orem was formalized in Coq by Werner and Gonthier

in 2005 [Gon08]. The infamous Kepler conjecture on
the densest packing of R3 by unit balls was proven by
Hales and Ferguson in 1998 [Hal05] in a very compli-
cated (and computer-assisted) proof. In 2003, Hales
launched the Flyspeck project to formally verify the
proof, estimating that it would take twenty years to
do so, although it ended up that, through a collabo-
ration between Hales and 21 other contributors, this
was achieved in “only” eleven years [HAB+17]. More
recently, Scholze in 2019 launched the “liquid tensor
experiment” [Com22] to formally verify a fundamen-
tal theorem of himself and Clausen on the vanishing
of a certain Ext group of a “liquid vector space” in
the theory of condensed mathematics. The human-
written proof was “only” ten pages long, albeit with
an enormous amount of prerequisite material in con-
densed mathematics; nevertheless, the formalization
in Lean took about eighteen months in a large col-
laborative effort. I myself led a formalization effort
[Tao23] on the recent proof of Gowers, Green, Man-
ners and myself [GGMT23] of a conjecture in addi-
tive combinatorics; the human-written proof was 33
pages long, but largely self-contained, and a group
of about 20 collaborators was able to formalize it in
three weeks. Some fields of mathematics are more
challenging to formalize than others; Kevin Buzzard
has recently announced a project to formalize the
proof of Fermat’s Last Theorem, which he estimates
to take at least five years.
Given all the effort required, what is the value of

proof formalization efforts to mathematics? Most ob-
viously, it provides an extremely high level of confi-
dence that a given result is correct, which is partic-
ularly valuable for results that are controversial or
notorious for attracting false proofs, or for particu-
larly lengthy proofs in fields where willing referees
to verify such proofs line-by-line are in short supply.
(Theoretically there could still be a hidden bug in
the proof assistant compiler – which is deliberately
kept as small as possible to reduce this possibility –
or the definitions used in the formal statement of the
result may differ in subtle but important ways from
the human-readable statement, but such a scenario is
unlikely, especially if the formal proof tracks the hu-
man written proof closely.) The formalization process
typically uncovers minor issues in the human proof,
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and can sometimes reveal simplifications or strength-
enings of the argument, for instance by revealing that
a seemingly important hypothesis in a lemma was
in fact unnecessary, or that a low-powered but more
general tool can be used in place of an advanced but
specialized one. A formalization project in a mod-
ern language such as Lean will typically contribute
many basic mathematical results generated through
the course of the project to a common mathematical
library, which makes it easier for future formalization
projects to proceed.
But formal proof assistants can also enable new

modalities of mathematical education and collabora-
tion. Several experimental projects are underway to
take a formal proof and convert it into more human-
understandable forms, such as an interactive text in
which individual steps in the argument can be ex-
panded into more detail or collapsed into a high-level
summary; this could be a particularly suitable for-
mat for future mathematical textbooks. A traditional
mathematics collaboration rarely involves more than
five or so co-authors, in part due to the need for ev-
ery co-author to trust and verify the work of every
other; but formalization projects routinely involve
scores of people who may have had no prior inter-
action, precisely because the formal proof assistant
allows for individual subtasks in the project to be
precisely defined and verified independently of the
other subtasks. It is conceivable that these proof as-
sistants could also allow a similar division of labor for
the generation of new mathematical results, allowing
for highly parallelized and crowdsourced collabora-
tions at a far larger scale than previous online collab-
orations (such as the “Polymath” projects [Gow10])
which were limited by the need to have human mod-
eration of the discussion. In time, the large collabo-
rations that are already established practice in other
sciences, or in software engineering projects, may
also become commonplace in research mathematics;
some contributors may play the role of “project man-
agers”, focusing for instance on establishing precise
“blueprints” that break the project down into smaller
pieces, while others could specialize to individual
components of the project, without necessarily hav-
ing all the expertise needed to understand the project
as a whole.

Before this can happen, however, the formaliza-
tion process needs to become more efficient. The
“de Bruijn factor” (the ratio between the difficulty of
writing a correct formal proof and a correct informal
proof) is still well above one (I estimate ∼ 20), but
dropping. I believe there is no fundamental obstacle
to dropping this ratio below one, especially with in-
creased integration with AI, SMT solvers, and other
tools; this would be transformative to our field.

2 Machine learning

Machine learning refers to a broad array of tech-
niques for training a computer to perform a complex
task - such as predicting an output corresponding to
a given input drawn from a very broad class, or to
discern correlations and other relationships in a data
set. Many popular models for machine learning use
some form of a neural network to encode how the
computer will perform the task. These networks are
functions of many variables formed by composing to-
gether a large number of simpler operations (both lin-
ear and nonlinear); typically one assigns some sort of
reward function (or loss function) to such a network,
for instance by empirically measuring its performance
against a training data set, and then performs a com-
putationally intensive optimization to find choices of
parameters for this network to make the reward func-
tion as large as possible (or loss function as small
as possible). These models have countless practical
applications, for instance in image and speech recog-
nition, recommendation systems, or fraud detection.
However, they usually do not come with strong guar-
antees of accuracy, particularly when applied to in-
puts that are significantly different from the training
data set, or when the training data set is noisy or in-
complete. Furthermore, the models are often opaque,
in the sense that it is difficult to extract from the
model a human-understandable explanation of why
the model made a particular prediction, or to under-
stand the model’s behavior in general. As such, these
tools would appear at first glance to be unsuited for
research mathematics, where one desires both rigor-
ous proof and intuitive understanding of the argu-
ments.
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Nevertheless, there have been recent promising use
cases of a suitably chosen machine learning tool to
produce, or at least suggest, new rigorous mathemat-
ics, particularly when combined with other, more reli-
able techniques that can validate the output of these
tools. For instance, a fundamental problem in the
mathematical theory of fluid equations such as the
Euler or Navier–Stokes equations is to be able to rig-
orously demonstrate finite time blowup of solutions u
in finite time from smooth initial data. The most no-
torious instance of this concerns the incompressible
Navier-Stokes equations in three dimensions, the res-
olution of which is one of the (unsolved) Millennium
Prize problems; this still remains out of reach, but re-
cent progress has been made on other fluid equations,
such as the Boussinesq equations in two dimensions
(a simplified model for the incompressible Euler equa-
tions in three dimensions). One route to establishing
such a singularity lies in constructing a self-similar
blowup solution u, which is described by a lower-
dimensional function U that solves a simpler PDE. A
closed-form solution for this PDE does not seem to
be available; but if one can produce a sufficiently high
quality approximate solution Ũ to this PDE (which
approximately obeys certain boundary conditions),
it can be possible to then rigorously demonstrate an
exact solution U by an application of perturbation
theory (such as those based around fixed point theo-
rems). Traditionally, one would use numerical PDE
methods to try to produce these approximate solu-
tions Ũ , for instance by discretizing the PDE into
a difference equation, but it can be computationally
expensive to use such methods to obtain solutions
with the desired level of accuracy. An alternate ap-
proach was proposed in 2019 by Wang, Lai, Gómez-
Serrano, and Buckmaster [WLGSB23], who used a
Physics Informed Neural Network (PINN) trained to
generate functions Ũ that minimized a suitable loss
function measuring the extent to which the desired
PDE and boundary conditions are being approxi-
mately obeyed. As these functions Ũ are generated
through a neural network rather than a discretized
version of the equation, they can be faster to gen-
erate, and potentially less susceptible to numerical
instabilities. As it turned out, a contemporaneous
work by Chen and Hou [CH22] was able to estab-

lish finite time blowup for this equation using more
traditional numerical methods; however, the machine
learning paradigm shows great potential as a comple-
mentary approach to these sorts of PDE problems.
For instance, one could envisage a hybrid approach
in which a human mathematician first proposes a
blowup ansatz, which a neural network then tries to
find a rough approximate solution for, and then more
traditional numerical methods are used to refine that
solution to one that is accurate enough for the rigor-
ous stability analysis to be applied.
Another example of the use of machine learning in

mathematics is in the field of knot theory. Knots have
an extremely diverse set of topological invariants: the
signature of a knot is an integer associated to the
homology of a surface bounding the knot (a Siefert
surface); the Jones polynomial of a knot can be de-
scribed using the representation theory of braids; and
most knots (excluding torus knots) have a canonical
hyperbolic geometry on the complement that can be
used to describe a number of hyperbolic invariants,
such as hyperbolic volume; and so forth. A priori,
it is not obvious how these invariants coming from
very different areas of mathematics are related to
each other. However, in 2021, Davies, Juhász, Lack-
enby, and Tomasev [DJLT21] investigated this issue
through machine learning. By training a neural net-
work on an existing database of nearly two million
knots (together with a million randomly generated
additional knots), they were able to make this neural
network model predict the signature of a knot from
about two dozen hyperbolic invariants with high ac-
curacy. However, the prediction function generated
was quite opaque and did not initially reveal much in-
sight about what the precise relationship between sig-
nature and hyperbolic invariants was. Nevertheless,
it was possible to proceed further by a simple tool
known as saliency analysis, which roughly speaking
measured the influence each individual hyperbolic in-
variant had on the prediction function. This analysis
revealed that of the two dozen hyperbolic invariants
used, only three of them (longitudinal translation,
and the real and complex parts of meridional trans-
lation) had a significant effect on the prediction func-
tion. By visually inspecting scatterplots of the signa-
ture against these three invariants, the authors were
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able to conjecture a more comprehensible relation-
ship between these quantities. Further numerics dis-
proved their initial conjecture, but suggested a mod-
ified version of the conjecture which they were able
to prove rigorously. This interplay between machine-
generated conjectures and human verification (and
modification) using theory is a promising paradigm
that seems applicable to many other fields of mathe-
matics.
Many of the applications of machine learning re-

quire a large amount of training data, ideally rep-
resented in some standardized format (e.g., a vector
of numbers) so that existing machine learning algo-
rithms can be applied to it with relative ease. The
precise representation of data can be of critical im-
portance; a correlation between different components
of the data may be easily discoverable by machine
learning algorithms in one data representation, but
nearly impossible to find in another. While some
fields of mathematics are beginning to compile large
databases of useful objects (e.g., knots, graphs, or el-
liptic curves), there are still many important classes
of more vaguely defined mathematical concepts that
have not been systematically placed into a form us-
able for machine learning. For instance, to return to
the example of PDE, there are thousands of different
partial differential equations studied in the literature,
but often with large variability in notation and al-
gebraic arrangement of terms, and there is nothing
resembling a standard database of commonly stud-
ied PDEs together with their basic properties (e.g.,
whether they are elliptic, parabolic, or hyperbolic;
what is known about the existence and uniqueness of
solutions, conservation laws, etc.). Such a database
could potentially be useful to make conjectural pre-
dictions about the behavior of one PDE based on
results for other PDEs, or to suggest possible analo-
gies or reductions from one PDE to another; but
the lack of any canonical normal form to represent
such equations (or at least a “fingerprint” to identify
them [BT13]) makes it difficult at present to even
build such a database, let alone feed it into a neu-
ral network. It is conceivable in the future though
that advances in both proof formalization and artifi-
cial intelligence may make it more feasible to generate
and utilize such databases (which could contain both

“real-world” and “synthetic” sets of data).

3 Large language models

Large language models (LLMs), are a relatively re-
cent type of machine learning model that is suited
for training on extremely broad and large data sets
of natural language texts. A popular large language
model is the GPT (generative pre-trained trans-
former), which as the name suggests is built around
the transformer model - a variant of a neural net-
work designed to predict the next word (or “token”)
in a string of words, in which some long-term “at-
tention” to words early in the string is retained in
order to simulate the context of the sentence. By it-
erating this model, one can then produce a lengthy
text response to a given text prompt. When trained
on a small amount of data, the outputs of such mod-
els are unimpressive - not much more sophisticated
than trying to iterate the “autocomplete” text input
feature on a smartphone, for instance - but after ex-
tensive training on extremely large and diverse data
sets, the outputs of these models can be surprisingly
coherent and even creative, and can generate text
that is difficult to distinguish from human writing at
first glance, although on closer inspection the output
is often nonsensical and not connected to any ground
truth, a phenomenon known as “hallucination”.

One can of course attempt to apply such general-
purpose LLMs to try to attack mathematical prob-
lems directly. Occasionally, the results can be quite
impressive; for instance Bubeck et al. document
a case in which the powerful large language model
GPT-4 was able to provide a complete and correct
proof of a problem from the 2022 International Math-
ematical Olympiad, which was not in the training
data set for this model. Conversely, the model is
not well suited for performing precise calculations,
or even basic arithmetic; in one instance [BCE+23],
when asked to compute the expression 7 ∗ 4 + 8 ∗ 8,
GPT-4 promptly came up with the incorrect answer
of 120, then proceeded to justify the calculation with
a step-by-step procedure that returned the correct
answer of 92. When questioned about the discrep-
ancy, GPT-4 could only offer that its initial guess

6



was a “typo”. These issues can be somewhat com-
pensated for by using “plugins” for GPT-4, in which
it is trained to send specific types of queries, such as
mathematical calculations, to an external tool (such
as Wolfram Alpha) rather than to guess the answer
through its internal model, although the integration
between the tools are not seamless at present. In
a somewhat similar vein, a recent proof-of-concept
[RPBN+23] has shown that large language models
can be used to find examples in various problems in
combinatorics and computer science that outperform
previous human-generated examples, by asking those
models to generate a program to create such examples
rather than to try building the example directly, and
then executing that program in another language to
reliably verify the quality of the output, which is then
sent back to the original model to prompt it to im-
prove its guesses. There has also been recent progress
in using large language models to enhance existing
symbolic proof engines to attack narrow classes of
mathematics problems, such as Olympiad geometry
problems [TWL+24].
In my own experiments with GPT-4 (which

you can find at https://terrytao.wordpress.com/
mastodon-posts/), I have found the most produc-
tive use cases have been to generate basic computer
code in various languages (Python, SAGE, LaTeX,
Lean, regex, etc.), or to clean up messy and unorga-
nized sets of data (e.g., to arrange a pile of references
scraped from the internet into a coherent LaTeX bib-
liography, after providing GPT-4 with a few exam-
ples of the desired format for the bibliography items
to get it started). In such cases, it often produces
satisfactory or nearly-satisfactory output on the first
attempt, with only a small amount of revision needed
to obtain the type of output I was seeking. I have also
had some limited success in getting GPT-4 to sug-
gest relevant literature or techniques for an actual
math problem. In one test case, I asked it how one
would calculate the rate of exponential decay in the
tail probability of a sum of independent random vari-
ables, in order to assess whether it knew about the
relevant theorem in this regard (Cramér’s theorem)
without providing it with key words such as large
deviation theory. As it turned out, GPT-4 did not
exactly locate this theorem and instead produced a

string of mathematical nonsense, but curiously it did
manage to reference the logarithmic moment gener-
ating function, which is a key notion in the state-
ment of Cramér’s theorem, even if it did not seem to
“know” exactly how this function was relevant to the
problem. In another experiment, I asked GPT-4 for
suggestions on how to prove a combinatorial identity
I was working on. It gave a number of suggestions
that I had already considered (asymptotic analysis,
induction, numerics) as well as some generic advice
(simplify the expressions, look for similar problems,
understand the problem), but also suggested a tech-
nique (generating functions) that I had simply over-
looked, and ended up solving the problem fairly read-
ily. On the other hand, such a list of advice would
probably have been of little use to a novice mathe-
matician, who did not have enough sufficient experi-
ence to independently gauge the usefulness of each of
the proposed suggestions. Nevertheless, I see a role
for these tools in drawing out a user’s latent knowl-
edge in a problem, simply by being a good listener
and proposing reasonably relevant ideas that the user
is expert enough to evaluate.
Github Copilot is another GPT model that is in-

tegrated into several popular code editors. Being
trained on large data sets of code in different lan-
guages, it is designed to make autocomplete sugges-
tions for code that is partially written, utilising con-
textual clues such as informal descriptions of the task
to be performed elsewhere in the code. I have found it
works surprisingly well for writing mathematical La-
TeX, as well as formalizing in Lean; indeed, it assisted
in writing this very article by suggesting several sen-
tences as I was writing, many of which I retained or
lightly edited for the final version. While the quality
of its suggestions is highly variable, it can sometimes
display an uncanny level of simulated understanding
of the intent of the text. For instance, when writing
another expository LaTeX note on how to estimate
integrals, I described how the integral was to be bro-
ken up into three parts, and then gave the details of
how to estimate the first part; Copilot then promptly
suggested how to estimate the second part by a sim-
ilar method, changing the variables around in what
turned to be a completely correct fashion. The fre-
quency of these experiences has led to a small but
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noticeable speedup in my writing of both LaTeX and
Lean, and I expect these tools to become even more
useful in the future, as it becomes possible to “fine-
tune” these models on one’s personal writing style
and preferences.

4 Can these tools be combined?

The various technologies discussed above have very
diverse strengths and weaknesses, and none of them
at their present level of development is suitable as
general-purpose tools for mathematicians, on par
with ubiquitous platforms as LaTeX or the arXiv.
However, there are promising recent experiments in
creating more satisfactory tools by combining two or
more separate technologies together. For instance,
one plausible way to combat the hallucinatory nature
of large language models when generating proofs is to
require the model to format its output in the language
of a formal proof assistant, with any errors generated
by the assistant sent back to the model as feedback.
This combined system seems suitable for generating
short proofs of simple statements [YSG+23]; as such
tasks are often the limiting factor in efficiently for-
malizing proofs, this type of paradigm could greatly
accelerate the speed of such formalization, particu-
larly if these models become fine-tuned on formal
proofs in particular, as opposed to general text, and
are integrated with more traditional automated the-
orem proving methods, such as the deployment of
SMT solvers.

With their ability to take natural language inputs,
Large Language Models are also potentially a user-
friendly interface that allows mathematicians without
particular software expertise to use advanced tools.
As mentioned before, I and many others already rou-
tinely use such models to generate simple code in
various languages (including symbolic algebra pack-
ages), or to create intricate diagrams and images; it
seems reasonable to expect that in the near future,
one could also communicate through such models to
design and operate something as complex as a ma-
chine learning model using only high-level, conver-
sational instructions. More ambitiously, one could
hope eventually to be able to generate (first drafts

of) entire research papers, complete with formal ver-
ification, by explaining a result in natural language
to an AI, who would try to formalize each step of the
result and query the author whenever clarification is
required.
The human-intensive nature of formal proof veri-

fication in its current form means that it is not fea-
sible at present for a significant fraction of current
research papers to be fully formalized in real time.
However, it is plausible that many of the tools al-
ready used to verify specific computation-intensive
components of a research paper, such as a numer-
ical integration or PDE solver, a symbolic algebra
computation, or a result established using an SMT
solver, could be modified to produce formal proof cer-
tificates. Furthermore, the class of calculations that
could be formalized in this fashion could be greatly
expanded from where things stand in current prac-
tice. To give just one example, in the field of PDE, it
is common to devote pages of calculation to estimat-
ing some integral expression involving one or more
unknown functions (such as solutions to a PDE),
using bounds on such functions in various function
space norms (such as Sobolev space norms), together
with standard inequalities (e.g., the Hölder inequal-
ity and the Sobolev inequalities), as well as various
identities such as integration by parts or differentia-
tion under the integral sign. Such calculations, while
routine, can contain typos (such as sign errors) of var-
ious degrees of severity, and can be tedious to referee
carefully, with the calculations themselves providing
little insight beyond verifying that the final estimate
holds. It is conceivable that tools could be devel-
oped to establish such estimates in an automated or
semi-automated fashion, and the current lengthy and
unenlightening proofs of such estimates could be re-
placed by a link to a formal proof certificate. More
ambitiously, one might be able to ask a future AI
tool to produce the best estimate it can, given some
set of initial hypotheses and methods, without first
performing some pen-and-paper calculation to guess
what that estimate would be. At present, the state
space of possible estimates is too complex to be au-
tomatically explored in such a fashion; but I see no
reason why this sort of automation will not be achiev-
able as technology advances. When this becomes the

8



case, mathematical explorations become possible at
scales that are not currently feasible. Continuing the
example of PDE, papers in this field typically study
one or two equations at a time; but in the future one
may be able to study hundreds of equations at once,
perhaps working out an argument in full for just one
equation and letting AI tools then adapt the argu-
ments to large families of related equations, querying
the author as necessary whenever the extension of the
arguments is non-routine. Some hints of this type of
large scale mathematical exploration are beginning
to emerge in other areas of mathematics, such as au-
tomated exploration of conjectures in graph theory
[Wag21].

It is not clear at present which of these experiments
will end up being the most successful in bringing ad-
vanced computer assistance to the typical working
mathematician. Some proofs of concept are not cur-
rrently scaleable, particularly those that are reliant
on extremely computationally intensive (and often
proprietary) AI models, or require a large amount of
expert human input and supervision. However, I am
encouraged by the diverse efforts to explore the space
of possibilities, and believe that there will be many
further examples of novel ways to perform machine-
assisted mathematics in the very near future.

5 Further reading

The subject of machine assisted proof is quite diffuse,
distributed across various areas of mathematics,
computer science, and even engineering; while each
individual subfield has plenty of activity, it is only
recently that efforts have been made to build a
more unified community bringing together all of the
topics listed here. As such, there are few places
currently where one can find holistic surveys of these
rapidly developing modalities of mathematics. One
starting point is the proceedings [Kor23] of a June
2023 National Academies workshop on “AI to Assist
Mathematical Reasoning” (which the author was
a co-organizer of); as one of the outcomes of that
workshop, Talia Ringer led an effort to compile AI for
mathematics resources, the results of which may be
found at https://docs.google.com/document/d/

1kD7H4E28656ua8jOGZ934nbH2HcBLyxcRgFDduH5iQ0.
For instance, in that document is a link to the “Nat-
ural Number Game” that is an accessible and
interactive way to get acquainted with the Lean
proof assistant language. Many of the examples
discussed here were also drawn from a February 2023
IPAM workshop on “Machine assisted proof” (which
the author also co-organized), whose talks may be
found online.

We thank the anonymous referee for corrections
and suggestions.
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