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A B S T R A C T

In this paper, we derive parameterized Chernoff bounds and show their applications for simplifying the analysis of some well-known probabilistic algorithms and 
data structures. The parameterized Chernoff bounds we provide give probability bounds that are powers of two, with a clean formulation of the relation between the 
constant in the exponent and the relative distance from the mean. In addition, we provide new simplified analyses with these bounds for hash tables, randomized 
routing, and a simplified, non-recursive adaptation of the Floyd-Rivest selection algorithm.
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 Introduction

Chernoff bounds [4,15] have been shown to be useful for ana-
zing a wide variety of different probabilistic algorithms and data 
ructures. Examples of their use can be found in textbooks by Alon 
d Spencer [1], Motwani and Raghavan [19], and Mitzenmacher and 
pfal [18]. Some of the most well-known Chernoff bounds provide a 
und on the probability that a sum, 𝑋 =

∑𝑛

𝑖=1𝑋𝑖, of independent ran-
m variables taking values in {0, 1} has a value sufficiently far away 
om its expected value 𝜇 =𝐸[𝑋]. The multiplicative form of a Chernoff 
und for such a random variable 𝑋 is commonly stated as follows.

eorem 1 (See [1,14,18,19]). For any 𝛿 > 0,

(𝑋 > (1 + 𝛿)𝜇) <
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇

.

lso, for any 0 < 𝛿 < 1,

(𝑋 < (1 − 𝛿)𝜇) <
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝜇

.

These formulas are often unwieldy to use in practice, however. 
ence, algorithmic analyses often use simpler Chernoff bounds, with 
e following being common.

eorem 2 (See [1,2,14,18,19,22]).

(𝑋 > (1 + 𝛿)𝜇) < 𝑒−𝛿
2𝜇∕(2+𝛿), for 𝛿 > 0, (1)

Corresponding author.

Pr(𝑋 < (1 − 𝛿)𝜇) < 𝑒−𝛿
2𝜇∕2, for 0 < 𝛿 < 1. (2)

As one example demonstrating how influential these bounds have 
been, we note that a paper in Information Processing Letters (IPL) by 
Hagerup and Rüb [14], which includes simple bounds like those in The-
orem 2, has been cited hundreds of times. Nevertheless, as simple as the 
above “simplified” Chernoff bounds are, they have the following draw-
backs with respect to algorithmic applications:

1. The probabilities in Theorem 2 are powers of Euler’s number, 
𝑒 ≈ 2.71828183 …, rather than of 2. In algorithmic applications, 
however, it is often preferred to express probabilities as powers 
of 2. Indeed, some algorithmic researchers will apply a simplified 
Chernoff bound, as in Theorem 2, and then convert the resulting 
probability to a power of two using the crude inequality, 2 ≤ 𝑒, 
which results in a loss of accuracy; e.g., see Elsässer and Sauer-
wald [10].

2. The probabilities in Theorem 2 involve annoying 𝛿2 terms, due in 
part to the need for the bounds to hold for values of 𝛿 very close 
to 0, whereas algorithmic analyses are generally indifferent to very 
small values of 𝛿. Indeed, Chernoff bounds are designed as upper 
bounds for the tails of random variables.

In this paper, we build on a recent IPL paper by Dillencourt and 
Goodrich [8], to derive simple parameterized Chernoff bounds, with 
the following goals:
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. Characterize probabilities as powers of 2, with a variable parame-
ter, 𝑥, in the exponent.1

. Avoid 𝛿2 terms where possible, for example by loosening the re-
quirement that the bounds hold for values of 𝛿 very close to 0.

1. Related prior work

In terms of prior work, there is a notable upper-tail Chernoff bound 
here the error bound is a power of two, from a book by Mitzenmacher 
d Upfal [18] and the paper by Hagerup and Rüb [14]:

eorem 3 (Mitzenmacher and Upfal [18] (p. 69) and Hagerup and 
b [14]).

(𝑋 >𝑅) < 2−𝑅, for 𝑅 ≥ 6𝜇.

In addition, Motwani and Raghavan [19] leave as an exercise to 
ove Pr(𝑋 > 𝑅) < 2−𝑅, for 𝑅 ≥ 2𝑒𝜇, which is a slightly better condi-
n, since 2𝑒 ≈ 5.43656. Although this Chernoff bound is useful, and 
partially satisfies the two goals given above for simplified Chernoff 
unds, it does not always result in the best bounds. It can be improved 
ith parameterized Chernoff bounds, as we show.
In more recent work, Shiu [22] derives tighter Chernoff bounds 

 the fashion of Theorem 2, but these bounds are not parameterized 
d do not satisfy either of the two goals outlined above for algo-
thmic applications. In addition, Dillencourt and Goodrich [8] derive 
me simplified Chernoff bounds that partially satisfy the two goals 
tlined above for algorithmic applications, but their bounds are not 
rameterized; hence, they are not applicable for the algorithm analy-
s applications we address in this paper.

2. Our results

In this paper, we derive parameterized Chernoff bounds with proba-
lity bounds that are powers of two and that, with one exception, avoid 
terms, for reasonable values of 𝛿 > 0, and are parameterized with a 
ngle parameter, 𝑥 > 0. We also provide algorithmic applications of 
r parameterized Chernoff bounds, but we believe these are just the 
 of the iceberg in terms of simplified analyses that are possible. We 
ress that the main contributions of this paper are for parameterized
ernoff bounds, and that none of our Chernoff bounds are tighter than 
ose given in Theorem 1. Instead, we argue and show by example that 
e type of parameterized Chernoff bounds provided in this paper are 
sier to use for algorithmic applications than the Chernoff bounds of 
eorem 1. Further, the Chernoff bounds provided in this paper are 
ten tighter than the bounds of Theorems 2 and 3.
In addition, we show how our parameterized Chernoff bounds can 

 used to provide new simplified analyses of hash tables. Also, we 
ovide a new simplified, non-recursive adaptation of the Floyd-Rivest 
lection algorithm, and show how to use our parameterized Chernoff 
unds to show that this randomized method for finding the 𝑘th small-
t of 𝑛 comparable items uses 𝑛 +min{𝑘, 𝑛 −𝑘} +𝑜(𝑛) comparisons with 
gh probability.

 The Lambert 𝑾 function

Since we will derive parameterized Chernoff bounds by making use 
 the Lambert 𝑊 function, we first review this function. The Lambert 
function is defined by the rule that 𝑊 (𝑧) =𝑤 if and only if 𝑤 satis-

s the following equation:

𝑒𝑤 = 𝑧,
2

In some cases, we may also derive bounds for specific values of 𝑥. ta
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g. 1. The two real branches of the Lambert 𝑊 function. Image Copyright © 
22 Michael Dillencourt; used with permission.

here 𝑧 is a complex number. See, for example, Corless, Gonnet, Hare, 
ffrey, and Knuth [5], Barry, Culligan-Hensley, and Barry [3], Corless, 
ffrey, and Knuth [6], or Iacono and Boyd [16].
Technically, 𝑊 is not a function. Hence its real-valued expression 

 partitioned into two branches, for 𝑥 ≥ −1∕𝑒: 𝑊0(𝑥), which is called 
e principal branch and is always greater than or equal to −1, and 
−1(𝑥), which is called the non-principal branch and is always less 
an or equal to −1. A plot of the two real branches is shown in Fig. 1. 
e two branches split at (− 1

𝑒
, −1). Thus, 𝑊0(𝑦𝑒𝑦) = 𝑦 for 𝑦 ≥ −1, and 

−1(𝑦𝑒𝑦) = 𝑦 for 𝑦 ≤ −1.
The Lambert 𝑊 function has several applications in algorithm anal-
is [5]. For example, if we define the function, 𝜆(𝑥), to be

𝑥) = −1

𝑊0

(
−1
2𝑥𝑒

) ,

en we can interpret the work of Devroye [7] and Reed [20] as show-
g that the expected height of a randomly-constructed binary search 
ee is 𝜆(1) log2 𝑛 +𝑂(1) ≈ 4.31107 log2 𝑛.
The Lambert 𝑊 function cannot be expressed in terms of elementary 
nctions [5]; hence, evaluating it typically requires the use of a nu-
erical algorithm [16]. For example, its principal branch, 𝑊0, has the 
llowing Taylor series expansion around 0 (see, e.g., Corless, Gonnet, 
are, Jeffrey, and Knuth [5]), for −1∕𝑒 < 𝑥 <∞:

0(𝑥) =
∞∑
𝑖=1

(−𝑖)𝑖−1

𝑖!
𝑥𝑖 = 𝑥− 𝑥2 + 3

2𝑥
3 − 8

3𝑥
4 + 125

24 𝑥
5 −⋯ .

 Parameterized Chernoff bounds

In this section, we derive some Chernoff bounds with probabilities 
at are powers of two and that are expressed using a parameter, 𝑥. 
terestingly, our parameterized Chernoff bounds provide another sur-
ising application of the 𝜆(𝑥) function defined above.

eorem 4. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking 
lues in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 𝜇 = 𝐸[𝑋] denote 𝑋 ’s expected 
lue. Then

(𝑋 >𝑅) < 2−𝑥𝑅,

r 𝑥 > 0 and 𝑅 ≥ 𝜆(𝑥)𝜇, where 𝜆(𝑥) = −1∕𝑊0(−1∕(2𝑥𝑒)) and 𝑊0(𝑧) is 
e principal branch of the Lambert 𝑊 function.

oof. From the general form of the Chernoff bound of Theorem 1, 

king 𝑅 = (1 + 𝛿)𝜇,
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(𝑋 >𝑅) = Pr(𝑋 > (1 + 𝛿)𝜇) <
(

𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇

.

 order for this probability to be at most 2−𝑥𝑅, for 𝑥 > 0, we need 
+ 𝛿 ≥ 2𝑥𝑒𝛿∕(1+𝛿). Setting 𝑧 = 1 + 𝛿, the breakpoint for this inequality 
curs for 𝑧 satisfying

= 2𝑥𝑒
𝑧−1
𝑧 ,

hich can be rewritten as
1
𝑧 = 2𝑥𝑒,

(1
𝑧

)
𝑒
− 1

𝑧 = −1
2𝑥𝑒

.

us, we have an equation in the form of the Lambert 𝑊 func-

n. To ensure 𝛿 > 0, we must have 𝑧 > 1 and hence −1∕𝑧 > −1. So 
e choose the principal branch of the Lambert W function to obtain 
1∕𝑧) =𝑊0(−1∕(2𝑥𝑒)), or 𝑧 = −1∕𝑊0(−1∕(2𝑥𝑒)), that is, 𝑧 = 𝜆(𝑥). □

If one desires a Chernoff bound expressed in terms of factors 𝑥 and 
 + 𝛿) times 𝜇, Theorem 4 can be restated as follows.

eorem 5. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking 
lues in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 𝜇 = 𝐸[𝑋] denote 𝑋 ’s expected 
lue. Then

(𝑋 > (1 + 𝛿)𝜇) < 2−𝑥(1+𝛿)𝜇,

r 𝑥 > 0 and 𝛿 ≥ 𝜆(𝑥) − 1, where 𝜆(𝑥) = −1∕𝑊0(−1∕(2𝑥𝑒)) and 𝑊0(𝑧) is 
e principal branch of the Lambert 𝑊 function.

oof. Let 𝑅 = (1 + 𝛿)𝜇 and apply Theorem 4. □

Since the Lambert 𝑊 function cannot be expressed in terms of el-
entary functions, most uses of Theorems 4 and 5 will likely be for 
ecific values of 𝑥 and 𝜆(𝑥). The following theorem contains some ex-
ples.

eorem 6. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking 
lues in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 𝜇 = 𝐸[𝑋] denote 𝑋 ’s expected 
lue. Then

(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕256, for 𝛿 ≥ 0.07735. (3)

(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕128, for 𝛿 ≥ 0.11172. (4)

r(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕64, for 𝛿 ≥ 0.16285. (5)

r(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕32, for 𝛿 ≥ 0.24063. (6)

r(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕16, for 𝛿 ≥ 0.36278. (7)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕8, for 𝛿 ≥ 0.56405. (8)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕6, for 𝛿 ≥ 0.68619. (9)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕4, for 𝛿 ≥ 0.92051. (10)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕3, for 𝛿 ≥ 1.15187. (11)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇∕2, for 𝛿 ≥ 1.62729. (12)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−(1+𝛿)𝜇, for 𝛿 ≥ 3.31107. (13)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−2(1+𝛿)𝜇, for 𝛿 ≥ 8.82044. (14)

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−3(1+𝛿)𝜇, for 𝛿 ≥ 19.72173. (15)
3

Pr(𝑋 > (1 + 𝛿)𝜇) < 2−4(1+𝛿)𝜇, for 𝛿 ≥ 41.48069. (16) fo
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In addition, we have the following parameterized Chernoff bound, 
hich provides an expression for its conditions in terms of elementary 
nctions of the parameter, 𝑥, and is also an improved bound over The-
em 3 for 𝑥 = 1.

eorem 7. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking 
lues in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 𝜇 = 𝐸[𝑋] denote 𝑋 ’s expected 
lue. Then

(𝑋 >𝑅) < 2−𝑥𝑅, for 𝑥 > 0 and 𝑅 ≥ (2𝑥𝑒− 1)𝜇.

oof. The proof follows from Theorem 4, provided we can show that, 
r 𝑥 > 0,

𝑒− 1 ≥ 𝜆(𝑥) = −1∕𝑊0(−1∕(2𝑥𝑒)).

r convenience, let 𝑧 = −1∕(2𝑥𝑒), and note that 𝑧 ∈ (−1∕𝑒, 0). We then 
ant to show that

1∕𝑊0(𝑧) ≤ −(1∕𝑧) − 1,

 equivalently

0(𝑧) − 𝑧∕(𝑧+ 1) ≤ 0.

e examine the Taylor expansions, around 0, recalling (see, e.g., [6,16,
])

0(𝑧) =
∞∑
𝑖=1

(−𝑖)𝑖−1

𝑖!
𝑧𝑖,

d

(𝑧+ 1) =
∞∑
𝑖=1

(−1)𝑖−1𝑧𝑖,

r 𝑧 ∈ (−1∕𝑒, 0). It follows that

0(𝑧) − 𝑧∕(𝑧+ 1) =
∞∑
𝑖=1

(−𝑖)𝑖−1 − (−1)𝑖−1(𝑖!)
𝑖!

𝑧𝑖.

e see that the coefficient of 𝑧𝑖 is 0 for 𝑖 = 1, 2. For larger 𝑖, the co-
cient is positive for odd 𝑖 and negative for even 𝑖, since 𝑖𝑖−1 > 𝑖!, 
r 𝑖 ≥ 3. As 𝑧 is negative, each term is negative; hence, we have 
0(𝑧) ≤ 𝑧∕(𝑧 + 1), as desired. □

Suppose instead of being mutually independent, the 𝑛 0-1 random 
riables in a sum, 𝑋 =

∑𝑛

𝑖=1𝑋𝑖, are only 𝑘-wise independent. We can 
rive a parameterized Chernoff bound in this case, provided 𝑘 is large 
ough:

eorem 8. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be 𝑘-wise independent random variables 
king values in {0, 1}, for 𝑘 ≥ ⌈𝛿𝜇⌉, for 𝛿 > 0. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 
=𝐸[𝑋] denote 𝑋 ’s expected value. Then the bounds of Theorems 4, 5, 6, 
d 7 hold for 𝑋.

oof. Schmidt, Siegel, and Srinivasan [21] show that the upper-tail 
unds of Theorem 1 hold for 𝑘-wise independent random variables if 
≥ ⌈𝛿𝜇⌉, for 𝛿 > 0. The bounds of Theorems 4, 5, 6, and 7 depend only 
 the formulation of the upper-tail bound in Theorem 1. □

 Additional Chernoff bounds for specific parameter values

The main results in this paper are for parameterized Chernoff 
unds in terms of a variable, 𝑥, but let us also provide some addi-
nal Chernoff bounds for specific parameter values.
For example, we have focused primarily on Chernoff bounds for val-
s of 𝛿 that are not too close to 0, but there are occasions in which 
ch Chernoff bounds are desired. For such occasions, one can use the 

llowing simplified Chernoff bounds, albeit with 𝛿2 terms.
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eorem 9. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking 
lues in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 𝜇 = 𝐸[𝑋] denote 𝑋 ’s expected 
lue. Then, for 0 < 𝛿 < 1 and 𝛾 = log2 𝑒,

(𝑋 > (1 + 𝛿)𝜇) < 2−1.5𝛾𝛿2𝜇∕(3+𝛿) < 2−2𝛿2𝜇∕(3+𝛿) and (17)

(𝑋 < (1 − 𝛿)𝜇) < 2−9𝛾𝛿2𝜇∕(18−6𝛿−𝛿2) < 2−2𝛿2𝜇∕(3−𝛿−𝛿2∕6). (18)

oof. These bounds follow from tightened Chernoff bounds of Shiu 
2]. □

Alternatively, in case one would like to find a specific bound for 
rger values of 𝛿 based on a desired simple probability bound using 
wers of two, Dillencourt and Goodrich [8] establish the following.

eorem 10 (Dillencourt and Goodrich [8]). Let 𝑋1, 𝑋2, … , 𝑋𝑛 be inde-
ndent random variables taking values in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 
=𝐸[𝑋] denote 𝑋 ’s expected value. Then

(𝑋 > (1 + 𝛿)𝜇) < 2−𝛼𝜇, (19)

lds for fixed 𝛼 > 0 when

≥ 𝑒
𝑊0

(
𝛼 ln 2−1

𝑒

)
+1 − 1. (20)

rther, if 𝛿 < 1, then

(𝑋 < (1 − 𝛿)𝜇) < 2−𝛽𝜇, (21)

lds for fixed 𝛽 > 0 when

≥ 1 − 𝑒
𝑊−1

(
𝛽 ln 2−1

𝑒

)
+1
. (22)

We can use Theorem 10 to derive parameterized Chernoff lower-tail 
unds for specific constant parameters, as exemplified in the following 
eorem.

eorem 11. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent random variables taking 
lues in {0, 1}. Let 𝑋 =

∑𝑛

𝑖=1𝑋𝑖 and let 𝜇 = 𝐸[𝑋] denote 𝑋 ’s expected 
lue. Then

r(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕2, for 1 > 𝛿 ≥ 0.7064. (23)

r(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕3, for 1 > 𝛿 ≥ 0.5974. (24)

r(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕4, for 1 > 𝛿 ≥ 0.5276. (25)

r(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕8, for 1 > 𝛿 ≥ 0.3863. (26)

r(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕16, for 1 > 𝛿 ≥ 0.2796. (27)

r(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕32, for 1 > 𝛿 ≥ 0.2008. (28)

 Revisiting balls-in-bins analyses for hash tables

In this section, we show some applications of parameterized Cher-
ff bounds to balls-in-bins problems for hash-table applications. We 
art with a simple proof of a well-known result, which has a textbook 
oof that uses Stirling’s approximation rather than a Chernoff bound 
d is arguably less simple, e.g., see Mitzenmacher and Upfal [18, 
100].

eorem 12. If 𝑛 balls are thrown independently and uniformly at ran-
m into 𝑛 bins, then the probability that the largest bin has more than 
log𝑛∕ log log𝑛 balls is at most 1∕𝑛 for sufficiently large 𝑛.

oof. Let 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 be a random variable for the number of balls 
rown into bin 1, where 𝑋𝑖 is a 0-1 random variable that is 1 if and 
4

ly if ball 𝑖 is thrown into bin 1. Thus, 𝐸[𝑋𝑖] = 1∕𝑛; hence, 𝜇 =𝐸[𝑋] = ci
Information Processing Letters 187 (2025) 106516

 Taking 𝑥 = log log𝑛 −log log log𝑛 and 𝑅 = 2𝑥3𝜇 > 2𝑥𝑒𝜇, we can apply 
eorem 7 as follows:

(𝑋 > 3 log𝑛∕ log log𝑛) = Pr(𝑋 >𝑅)

< 2−𝑥𝑅

= 2−(log log𝑛−log log log𝑛)3 log𝑛∕ log log𝑛

≤ 2−2 log𝑛

= 1
𝑛2

,

r suitably large 𝑛. The proof follows, then, by a union bound. □

In fact, we can prove something even stronger.

eorem 13. If 𝑛 balls are thrown independently and uniformly at random 
to 𝑛∕ log log𝑛 bins, then the probability that the largest bin has more than 
log𝑛∕ log log𝑛 balls is at most 1∕(𝑛 log log𝑛) for sufficiently large 𝑛.

oof. The proof is similar to that for Theorem 12. Let 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 be 
random variable for the number of balls thrown into bin 1, where 𝑋𝑖

 a 0-1 random variable that is 1 if and only if ball 𝑖 is thrown into bin 
 Thus, 𝐸[𝑋𝑖] = (log log𝑛)∕𝑛; hence, 𝜇 = 𝐸[𝑋] = log log𝑛. Taking 𝑥 =
g log𝑛 − 2 log log log𝑛 and 𝑅 = 2𝑥3𝜇 > 2𝑥𝑒𝜇, we can apply Theorem 7

 follows:

(𝑋 > 3 log𝑛∕ log log𝑛) = Pr(𝑋 >𝑅)

< 2−𝑥𝑅

= 2−(log log𝑛−2 log log log𝑛)3 log𝑛∕ log log𝑛

≤ 2−2 log𝑛

= 1
𝑛2

,

r suitably large 𝑛. The proof follows, then, by a union bound. □

We can also easily prove other interesting balls-in-bins results, with 
gligible probabilities,2 such as the following.

eorem 14. If 𝑛 balls are thrown independently and uniformly at random 
to 𝑛 bins, then the probability that the largest bin has more than 3 log𝑛
lls is negligible.

oof. The proof is similar to that for Theorem 12. Let 𝑋 =
∑𝑛

𝑖=1𝑋𝑖 be 
random variable for the number of balls thrown into bin 1, where 𝑋𝑖

 a 0-1 random variable that is 1 if and only if ball 𝑖 is thrown into bin 
 Thus, 𝐸[𝑋𝑖] = 1∕𝑛; hence, 𝜇 = 𝐸[𝑋] = 1. Taking 𝑥 = log log𝑛 and 
 = 2𝑥3𝜇 > 2𝑥𝑒𝜇, we can apply Theorem 7 as follows:

(𝑋 > 3 log𝑛) = Pr(𝑋 >𝑅)

< 2−𝑥𝑅

= 2−(log log𝑛)3 log𝑛

= 1
𝑛3 log log𝑛

.

e proof follows, then, by a union bound. □

Note that these theorems do not follow from a direct application of 
eorem 3.

Recall that a function is negligible if it tends towards 0 faster than the re-

procal of any polynomial.
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 Some algorithmic applications

In this section, we highlight some improved analyses that are im-
ied by the above bounds.

1. Randomized routing in a hypercube

A well-known “textbook” application of Chernoff bounds is for per-
utation routing in a hypercube; see, e.g., [18,19]. In this problem, ev-
y node in a hypercube with 𝑁 = 2𝑛 nodes starts with a packet, which 
 sent to another node in the hypercube. We assume each destination 
de also receives one packet, so we are routing a permutation. At most 
e packet can cross any edge at any time step. Valiant suggested rout-
g the permutation by using a two-phase randomized routing [24,25]: 
 a first phase, each packet is sent to a randomly chosen destination, 
d, in a second phase, each packet continues to its final destination. 
is randomized routing will route the permutation in 𝑂(𝑛) total time 
eps. We consider here the first phase, as the second phase is entirely 
milar to analyze.
We follow the framework of Mitzenmacher and Upfal [18], and refer 
ere for additional details. Each node is represented by an 𝑛-bit vector, 
1, 𝑥2, … , 𝑥𝑛). The packet is sent using the bit-fixing route; that is, in 
nding a packet from node (𝑥1, 𝑥2, … , 𝑥𝑛) to node (𝑦1, 𝑦2, … , 𝑦𝑛), we 
nsider the 𝑥𝑖 in order, and whenever 𝑥𝑖 ≠ 𝑦𝑖, the packet crosses the 
ge (𝑦1, 𝑦2, … , 𝑦𝑖−1, 𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑛) to (𝑦1, 𝑦2, … , 𝑦𝑖−1, 𝑦𝑖, 𝑥𝑖+1, … , 𝑥𝑛). 
e key goal is to show that for any possible packet path, 𝑃 , no more 
an 𝑐𝑛 distinct packets are active with sufficiently high probability. 
ere, active means that the packet reaches a vertex of 𝑃 and has the 
tential to cross an edge of 𝑃 ; that is, if 𝑃 reaches a node 𝑣 on path 
and the next node 𝑤 of 𝑃 differs from 𝑣 on the 𝑗th bit, then when 
e packet reaches 𝑣 the 𝑗th bit of the packet’s path cannot have been 
ocessed by the bit-fixing algorithm. With this bound, one can argue 
at the 𝑐𝑛 packets cross the edges of 𝑃 at most 𝑐′𝑛 times for some 
her constant 𝑐′ (since each packet leaves the path 𝑃 with probability 
 least 1∕2 at each vertex of 𝑃 ), and the result readily follows.
To start, for 𝑘 = 1, … , 𝑁 , let 𝐻𝑘 be a 0-1 random variable where 

𝑘 = 1 if the packet starting at node 𝑘 is active and 0 otherwise. The 
𝑘 are independent, and we let 𝐻 =

∑
𝐻𝑘. If neighbors 𝑣 and 𝑤 on the 

th differ in the 𝑗th bit, there are only 2𝑗−1 possible active packets, as 
 active packet must begin at a vertex that agrees with 𝑣 on bits 𝑗
rough 𝑛 of its address. Further, each such packet reaches 𝑣 with prob-
ility 2−(𝑗−1), since each such possible packet must choose a random 
stination that matches 𝑣’s first 𝑗 −1 address bits. Hence, the expected 
mber of active packets per vertex is 1, and accordingly, 𝐸[𝐻] ≤ 𝑛, as 
e path 𝑃 has at most 𝑛 vertices.
In the textbook by Mitzenmacher and Upfal [18], the Chernoff 
und

(𝐻 ≥ 6𝑛 ≥ 6𝐸[𝐻]) ≤ 2−6𝑛

 then applied. With some additional work, it is then shown that each 
ase takes at most 30𝑛 steps with probability at least 1 −𝑂(1∕𝑁), so 
e two phases complete in at most 60𝑛 steps with probability at least 
−𝑂(1∕𝑁). (There does not seem to have been effort to optimize the 
nstant 60.) We can improve this using Theorem 7 with 𝑥 = 0.8, to 
d that

(𝐻 ≥ 4𝑛) ≤ 2−3.2𝑛,

hich suffices for the rest of the proof given in Mitzenmacher and Up-
l [18] (as long as 𝑛 is sufficiently large, e.g. 𝑛 ≥ 10). To continue, let 𝑇
 the number of times the 𝐻 packets cross an edge of 𝑃 , which bounds 
e total time a packet could take to traverse 𝑃 . As each packet at a ver-
x of 𝑃 may leave 𝑃 with probability 1∕2, we see that, conditioned on 
≤ 4𝑛, the probability that packets cross an edge of 𝑃 more than 16𝑛
es is bounded by the probability that a fair coin flipped 20𝑛 times 
5

elds fewer than 4𝑛 heads. (Each time a packet at a vertex of 𝑃 has to 
Information Processing Letters 187 (2025) 106516

oss an edge, as its route is random, we model whether the bit flips in 
at dimension as a coin flip: if the coin is heads, the packet leaves the 
th and is no longer considered, and if the coin is tails, then the packet 
llows the edge of 𝑃 . After 4𝑛 heads, we are out of packets if 𝐻 ≤ 4𝑛, 
 the probability of at least 16𝑛 edge traversals on 𝑃 is bounded by the 
ven probability.) Let 𝑍 be the number of heads in 20𝑛 coin flips. By 
eorem 11, Equation (24), for 1 > 𝛿 ≥ 0.6, we have that

(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕3.

cordingly, for 20𝑛 coin flips, the number of heads 𝑍 satisfies

(𝑍 < 4𝑛) < 2−10𝑛∕3 < 2−3.3𝑛.

e therefore have for any path 𝑃 , when 𝑛 ≥ 10,

(𝑇 > 16𝑛) ≤ Pr(𝑇 > 16𝑛 | 𝐻 > 4𝑛) Pr(𝐻 > 4𝑛)

+ Pr(𝑇 > 16𝑛 | 𝐻 ≤ 4𝑛) Pr(𝐻 ≤ 4𝑛)

≤ Pr(𝐻 > 4𝑛) + Pr(𝑇 > 16𝑛 | 𝐻 ≤ 4𝑛)

≤ Pr(𝐻 > 4𝑛) + Pr(𝑍 < 4𝑛)

≤ 2−3.2𝑛 + 2−3.3𝑛

< 2−3𝑛.

There are at most 𝑁2 = 22𝑛 paths 𝑃 , so we have that the probability 
y path has a delay of more than 16𝑛 steps is at most 1∕𝑁 . It follows 
at this analysis, using the power-of-two Chernoff bounds, improves 
e bound for two-phase randomized rounding to 32𝑛 steps while ar-
ably simplifying the proof.

2. Analysis of a non-recursive adaptation of the Floyd-Rivest selection 
gorithm

The Floyd-Rivest selection algorithm is a randomized, recursive 
ethod for finding the 𝑘th smallest of 𝑛 comparable items using 
+ min{𝑘, 𝑛 − 𝑘} + 𝑜(𝑛) comparisons with high probability. Although 
e algorithm itself is simple, its published analyses are not; see, e.g., 
2,13,17]. For example, while the algorithm is simple enough to 
esent to undergraduates, we are not aware of lecture notes for its 
alysis; see, e.g., Eppstein [11].
In this subsection, we provide a simplified non-recursive adaptation 

 the Floyd-Rivest selection algorithm [12]. Our goal here is to provide 
 analysis that achieves an optimal number of comparisons for the 
lection problem, plus lower-order terms, which could be presented to 
dergraduates.

Our non-recursive adaptation of the Floyd-Rivest selection algo-
thm [12] is inspired by lecture notes of Eppstein [11] and pseudo-code 
 Kiwiel [17], but is nevertheless different from both of these methods. 
iven a set, 𝑆 , of 𝑛 distinct comparable elements, and 1 ≤ 𝑘 ≤ 𝑛, the fol-
wing algorithm returns the 𝑘th smallest element in 𝑆 , using a sample 
ze parameter, 𝑠, and gap-size parameter, 𝑔.
Select(𝑆, 𝑛, 𝑘, 𝑠, 𝑔):

. Choose a random subset, 𝑅, of 𝑆 of expected size 𝑠, by choosing 
each element of 𝑆 independently with probability 𝑠∕𝑛.

. Sort 𝑅.

. If 𝑘𝑠∕𝑛 − 𝑔 > 1, then let 𝑢 be the element of rank ⌊𝑘𝑠∕𝑛 − 𝑔⌋ in 
𝑅.

. If 𝑘𝑠∕𝑛 + 𝑔 < 𝑠, then let 𝑣 be the element of rank ⌈𝑘𝑠∕𝑛 + 𝑔⌉ in 
𝑅.

. If 𝑘 ≤ 𝑛∕2, then:
(a) Partition 𝑆 into 𝑆′, the elements less than or equal to 𝑣, and 

𝐺, the elements greater than 𝑣.
(b) If 𝑘𝑠∕𝑛 − 𝑔 > 1, then partition 𝑆′ into 𝐿, the elements less than 

𝑢, and 𝑀 , the elements greater than or equal to 𝑢. Otherwise, 

let 𝐿 = ∅ and 𝑀 = 𝑆′.
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Else:

(a) Partition 𝑆 into 𝐿, the elements less than 𝑢, and 𝑆′, the ele-
ments greater than or equal to 𝑢.

(b) If 𝑘𝑠∕𝑛 + 𝑔 < 𝑠, then partition 𝑆′ into 𝑀 , the elements less 
than or equal to 𝑣, and 𝐺, the elements greater than 𝑣. Other-
wise, let 𝐺 = ∅ and 𝑀 = 𝑆′.

. If |𝐿| < 𝑘 and |𝐿| + |𝑀| ≥ 𝑘, then sort 𝑀 and return the element 
of rank 𝑘 − |𝐿| in 𝑀 . Otherwise, repeat the entire algorithm from 
scratch.

eorem 15. One can choose 𝑠 and 𝑔 so that our non-recursive adapta-
n of the Floyd-Rivest selection algorithm uses 𝑛 + min{𝑘, 𝑛 − 𝑘} + 𝑜(𝑛)
mparisons, with high probability.

oof. W.l.o.g., let us assume that 𝑘 ≤ 𝑛∕2. Assuming our non-recursive 
aptation of the Floyd-Rivest selection algorithm doesn’t restart and 
e do the sorting steps with a worst-case optimal comparison-based 
rting algorithm, like heapsort or mergesort, then it is easy to see that 
e total number of comparisons the algorithm performs is 𝑛 + |𝐿| +
(|𝑅| log |𝑅|) +𝑂(|𝑀| log |𝑀|). Note that if 𝑘𝑠∕𝑛 − 𝑔 ≤ 1, then |𝐿| = 0, 
hich simplifies the analysis, so let us consider the more general case 
hen 𝑘𝑠∕𝑛 − 𝑔 > 1, that is, 𝑘 > (𝑔 + 1)𝑛∕𝑠.
Let us bound the probability for the bad outcomes that would cause 

restart of the algorithm. First, consider the bad outcome where |𝐿| ≥
 This would occur if 𝑢 has rank greater than 𝑘 in 𝑆 . That is, if we 
t 𝑋 denote the number of elements in 𝑆 with rank at most 𝑘 in 𝑆
at are chosen to be in 𝑅, then |𝐿| ≥ 𝑘 iff 𝑋 < 𝑘𝑠∕𝑛 − 𝑔. Noting that 
=𝐸[𝑋] = 𝑘𝑠∕𝑛,

(𝑋 < 𝑘𝑠∕𝑛− 𝑔) = Pr(𝑋 < (1 − 𝛿)𝜇),

here 𝛿 = 𝑔∕𝜇 = 𝑔𝑛∕𝑘𝑠 and 𝑘 > (𝑔 + 1)𝑛∕𝑠, so 0 < 𝛿 < 1. Thus, by The-
em 9,

(𝑋 < (1 − 𝛿)𝜇) < 2−2𝛿2𝜇∕3 = 2−2𝑔2∕3𝜇 = 2−2𝑔2𝑛∕3𝑘𝑠 ≤ 2−4𝑔2∕3𝑠.

t us choose 𝑠 = 𝑛2∕3 and 𝑔 = 𝑛1∕3 log1∕2 𝑛, which implies that

(𝑋 < (1 − 𝛿)𝜇) < 2−(4∕3) log𝑛 < 𝑛−4∕3.

us, with high probability, we avoid this bad case.
Next, let us consider the bad outcome where |𝐿| + |𝑀| < 𝑘, which 
curs if the rank of 𝑣 in 𝑆 is less than 𝑘. That is, if we again let 𝑋
note the number of elements in 𝑆 with rank at most 𝑘 in 𝑆 that are 
osen to be in 𝑅, then |𝐿| + |𝑀| < 𝑘 iff 𝑋 > 𝑘𝑠∕𝑛 + 𝑔. Noting that 
=𝐸[𝑋] = 𝑘𝑠∕𝑛,

(𝑋 > 𝑘𝑠∕𝑛+ 𝑔) = Pr(𝑋 < (1 + 𝛿)𝜇),

here 𝛿 = 𝑔∕𝜇 = 𝑔𝑛∕𝑘𝑠 and 𝑘 > (𝑔 + 1)𝑛∕𝑠, so 0 < 𝛿 < 1. Thus, by The-
em 9,

(𝑋 < (1 + 𝛿)𝜇) < 2−2𝛿2𝜇∕3 = 2−2𝑔2∕3𝜇 = 2−2𝑔2𝑛∕3𝑘𝑠 ≤ 2−4𝑔2∕3𝑠;

nce, by our choices of 𝑠 and 𝑔, we have that

(𝑋 < (1 + 𝛿)𝜇) < 𝑛−4∕3.

us, with high probability, we avoid this bad case, as well.
We leave as an exercise to prove that our choice of 𝑠 implies that | is 𝑂(𝑛2∕3) with high probability; hence, our analysis so far implies 
at, with high probability, the number of comparisons performed is 
𝑘 +𝑂(𝑛2∕3 log𝑛) +𝑂(|𝑀| log |𝑀|). Let us therefore next bound, with 
gh probability, the size of 𝑀 , which, in the general case, consists of 
e elements in 𝑆 between 𝑢 and 𝑣. To bound this, let us consider the 
obability that any subset, 𝑇 , of 4𝑔𝑛∕𝑠 contiguously-ranked elements 
 𝑆 would have fewer than 2𝑔 elements chosen to be in 𝑅, since there 
e 2𝑔 elements in 𝑅 between 𝑢 and 𝑣. If we can show that this occurs 
6

ith low probability, then |𝑀| ≤ 4𝑔𝑛∕𝑠 with high probability. Let 𝑌
Information Processing Letters 187 (2025) 106516

note the number of elements in 𝑇 that are chosen to be in 𝑅. Then 
=𝐸[𝑌 ] = 4𝑔; hence, setting 𝛿 = 1∕2 and applying Theorem 11,

(𝑌 < 2𝑔) = Pr(𝑋 < (1 − 𝛿)𝜇) < 2−𝜇∕8 = 2−𝑔∕2 = 2−(𝑛1∕3 log
1∕2 𝑛)∕2.

us, with high probability, by our choices of 𝑠 and 𝑔, |𝑀| ≤ 4𝑔𝑛∕𝑠 =
2∕3 log1∕2 𝑛, which implies that, with high probability, the number 
 comparisons performed by the algorithm is 𝑛 + 𝑘 + 𝑂(𝑛2∕3 log3∕2 𝑛), 
hich establishes the theorem. □

 Conclusion

In this paper, we have provided parameterized Chernoff bounds that 
ve probabilities that are powers of two, and shown how to apply 
em for simplified analysis of some randomized algorithms. Thus, we 
lieve that we have provided evidence that parameterizing Chernoff 
unds is valuable not only for its own sake, but that it also can lead to 
w discoveries. As we mention above, we believe our results are just 
e tip of the iceberg in terms of new insights that are possible by using 
rameterized Chernoff bounds.
As 𝛿 grows, we move from a regime where central-limit-theorem-
e estimates apply towards a regime of large deviation theory [9]. 
r example, an interesting question for possible future work could be 
 compare Cramer’s large deviation theorem to Chernoff bounds as 𝛿
ows. For example, even in their transcendental exponent form, Cher-
ff bounds are based on the inequality 1 + 𝛿 < exp(𝛿), which is tight 
r small 𝛿, but less good as 𝛿 grows larger.
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