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ABSTRACT

In this paper, we derive parameterized Chernoff bounds and show their applications for simplifying the analysis of some well-known probabilistic algorithms and
data structures. The parameterized Chernoff bounds we provide give probability bounds that are powers of two, with a clean formulation of the relation between the
constant in the exponent and the relative distance from the mean. In addition, we provide new simplified analyses with these bounds for hash tables, randomized
routing, and a simplified, non-recursive adaptation of the Floyd-Rivest selection algorithm.

1. Introduction

Chernoff bounds [4,15] have been shown to be useful for ana-
lyzing a wide variety of different probabilistic algorithms and data
structures. Examples of their use can be found in textbooks by Alon
and Spencer [1], Motwani and Raghavan [19], and Mitzenmacher and
Upfal [18]. Some of the most well-known Chernoff bounds provide a
bound on the probability that a sum, X = Zl": | X;, of independent ran-
dom variables taking values in {0, 1} has a value sufficiently far away
from its expected value y = E[X]. The multiplicative form of a Chernoff
bound for such a random variable X is commonly stated as follows.

Theorem 1 (See [1,14,18,19]). For any 6 >0,

e‘s K
Pr(X > (1 +o)u) < (W) .

Also, forany 0< 6 < 1,

ed :
PriX<(I-ow<|—=) -
X <=8 <(1_5)H>

These formulas are often unwieldy to use in practice, however.
Hence, algorithmic analyses often use simpler Chernoff bounds, with
the following being common.

Theorem 2 (See [1,2,14,18,19,22]).

Pr(X > (1+8)u) < e M for 550, )]

* Corresponding author.

Pr(X <(1=8)u) <e P H2, for0<6<1. @

As one example demonstrating how influential these bounds have
been, we note that a paper in Information Processing Letters (IPL) by
Hagerup and Riib [14], which includes simple bounds like those in The-
orem 2, has been cited hundreds of times. Nevertheless, as simple as the
above “simplified” Chernoff bounds are, they have the following draw-
backs with respect to algorithmic applications:

1. The probabilities in Theorem 2 are powers of Euler’s number,
e~ 2.71828183 ..., rather than of 2. In algorithmic applications,
however, it is often preferred to express probabilities as powers
of 2. Indeed, some algorithmic researchers will apply a simplified
Chernoff bound, as in Theorem 2, and then convert the resulting
probability to a power of two using the crude inequality, 2 <e,
which results in a loss of accuracy; e.g., see Elsdsser and Sauer-
wald [10].

2. The probabilities in Theorem 2 involve annoying 6> terms, due in
part to the need for the bounds to hold for values of 6§ very close
to 0, whereas algorithmic analyses are generally indifferent to very
small values of §. Indeed, Chernoff bounds are designed as upper
bounds for the tails of random variables.

In this paper, we build on a recent IPL paper by Dillencourt and
Goodrich [8], to derive simple parameterized Chernoff bounds, with
the following goals:
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1. Characterize probabilities as powers of 2, with a variable parame-
ter, x, in the exponent.!

2. Avoid 62 terms where possible, for example by loosening the re-
quirement that the bounds hold for values of § very close to 0.

1.1. Related prior work

In terms of prior work, there is a notable upper-tail Chernoff bound
where the error bound is a power of two, from a book by Mitzenmacher
and Upfal [18] and the paper by Hagerup and Riib [14]:

Theorem 3 (Mitzenmacher and Upfal [18] (p. 69) and Hagerup and
Riib [14]).

Pr(X > R) <27 R, for R>6u.

In addition, Motwani and Raghavan [19] leave as an exercise to
prove Pr(X > R) < 27R for R > 2eu, which is a slightly better condi-
tion, since 2e = 5.43656. Although this Chernoff bound is useful, and
it partially satisfies the two goals given above for simplified Chernoff
bounds, it does not always result in the best bounds. It can be improved
with parameterized Chernoff bounds, as we show.

In more recent work, Shiu [22] derives tighter Chernoff bounds
in the fashion of Theorem 2, but these bounds are not parameterized
and do not satisfy either of the two goals outlined above for algo-
rithmic applications. In addition, Dillencourt and Goodrich [8] derive
some simplified Chernoff bounds that partially satisfy the two goals
outlined above for algorithmic applications, but their bounds are not
parameterized; hence, they are not applicable for the algorithm analy-
sis applications we address in this paper.

1.2. Our results

In this paper, we derive parameterized Chernoff bounds with proba-
bility bounds that are powers of two and that, with one exception, avoid
5% terms, for reasonable values of § > 0, and are parameterized with a
single parameter, x > 0. We also provide algorithmic applications of
our parameterized Chernoff bounds, but we believe these are just the
tip of the iceberg in terms of simplified analyses that are possible. We
stress that the main contributions of this paper are for parameterized
Chernoff bounds, and that none of our Chernoff bounds are tighter than
those given in Theorem 1. Instead, we argue and show by example that
the type of parameterized Chernoff bounds provided in this paper are
easier to use for algorithmic applications than the Chernoff bounds of
Theorem 1. Further, the Chernoff bounds provided in this paper are
often tighter than the bounds of Theorems 2 and 3.

In addition, we show how our parameterized Chernoff bounds can
be used to provide new simplified analyses of hash tables. Also, we
provide a new simplified, non-recursive adaptation of the Floyd-Rivest
selection algorithm, and show how to use our parameterized Chernoff
bounds to show that this randomized method for finding the kth small-
est of n comparable items uses n+ min{k,n—k} + o(n) comparisons with
high probability.

2. The Lambert W function
Since we will derive parameterized Chernoff bounds by making use
of the Lambert W function, we first review this function. The Lambert

W function is defined by the rule that W (z) = w if and only if w satis-
fies the following equation:

1 In some cases, we may also derive bounds for specific values of x.
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-1 y = Wo(z)

\

y=W_i(z)

Fig. 1. The two real branches of the Lambert W function. Image Copyright ©
2022 Michael Dillencourt; used with permission.

where z is a complex number. See, for example, Corless, Gonnet, Hare,
Jeffrey, and Knuth [5], Barry, Culligan-Hensley, and Barry [3], Corless,
Jeffrey, and Knuth [6], or lacono and Boyd [16].

Technically, W is not a function. Hence its real-valued expression
is partitioned into two branches, for x > —1/e: W{y(x), which is called
the principal branch and is always greater than or equal to —1, and
W_,(x), which is called the non-principal branch and is always less
than or equal to —1. A plot of the two real branches is shown in Fig. 1.
The two branches split at (—é, —1). Thus, W (ye¥) =y for y>—1, and
W_,(ye?)=yfor y<—I.

The Lambert W function has several applications in algorithm anal-
ysis [5]. For example, if we define the function, A(x), to be

M= ——,

Wo(5)
then we can interpret the work of Devroye [7] and Reed [20] as show-
ing that the expected height of a randomly-constructed binary search
tree is A(1)log, n+ O(1) =~ 4.31107 log, n.

The Lambert W function cannot be expressed in terms of elementary
functions [5]; hence, evaluating it typically requires the use of a nu-
merical algorithm [16]. For example, its principal branch, W}, has the
following Taylor series expansion around O (see, e.g., Corless, Gonnet,
Hare, Jeffrey, and Knuth [5]), for —1/e < x < o0:

=D 2,33_84,125 5
4 2 x° 2
[/I/O(x)—é1 X =x-Xx +5x = 3xT+ X .
i=

3. Parameterized Chernoff bounds

In this section, we derive some Chernoff bounds with probabilities
that are powers of two and that are expressed using a parameter, x.
Interestingly, our parameterized Chernoff bounds provide another sur-
prising application of the A(x) function defined above.

Theorem 4. Let X, X,,..., X, be independent random variables taking
values in {0,1}. Let X = 2;;1 X; and let y = E[X] denote X’s expected
value. Then

Pr(X > R) <27*R,

for x >0 and R > A(x)u, where A(x) = —1/Wy(—1/(2%e)) and Wy(z) is
the principal branch of the Lambert W function.

Proof. From the general form of the Chernoff bound of Theorem 1,
taking R=(1+6)u,
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H@>&—Hw>ﬂ+®m<<a:§3>~

In order for this probability to be at most 27K, for x > 0, we need
1+ 6> 2%e%U+9_ Setting z = 1 + 6, the breakpoint for this inequality
occurs for z satisfying

(1) _1 -1
- —-)e z = —.
z 2%e

Thus, we have an equation in the form of the Lambert W func-
tion. To ensure § > 0, we must have z > 1 and hence —1/z > —1. So
we choose the principal branch of the Lambert W function to obtain
(=1/2) =Wy(-1/(2%e)), or z=—1/Wy(—1/(2%e)), thatis, z= A(x). O

If one desires a Chernoff bound expressed in terms of factors x and
(1 + 6) times u, Theorem 4 can be restated as follows.

Theorem 5. Let X, X5, ..., X, be independent random variables taking
values in {0,1}. Let X = Y,"_, X; and let y = E[X] denote X’s expected
value. Then

Pr(X > (1 + 8)u) < 27 *(1+0m,

for x>0 and 6 > A(x) — 1, where A(x) = —1/Wy(—1/(2%e)) and W (z) is
the principal branch of the Lambert W function.

Proof. Let R=(1+6)u and apply Theorem 4. []

Since the Lambert W function cannot be expressed in terms of el-
ementary functions, most uses of Theorems 4 and 5 will likely be for
specific values of x and A(x). The following theorem contains some ex-
amples.

Theorem 6. Let X, X5, ..., X, be independent random variables taking
values in {0,1}. Let X = Y,"_, X; and let y = E[X] denote X’s expected
value. Then

Pr(X > (1 + 8)u) < 271+0m/256  gor 5> 0.07735. &)
Pr(X > (1+&)u) <2”1Hm/128 - £or 5> 0.11172. 4
Pr(X > (14 8)u) <2~ HOH/64  for 5> 0.16285. 5)
Pr(X > (14 8)pu) <2~ MHO/32 - for 5> 0.24063. (6)
Pr(X > (14 8)u) <2~ MHOR/16  or 5> 0.36278. @
Pr(X > (14 68)u) <2~/ gor 5 > 0.56405. (8
Pr(X > (14 68)u) <2-0+K/6  for 5 >0.68619. ()
Pr(X > (1+8)p) <2-1Hu/4 for 5> 0.92051. (10)
Pr(X > (1+8)p) <2-1Hu3 for 5> 1.15187. an
Pr(X > (1+8)p) <2-UHu/2 for 5> 1.62729. 12)
Pr(X > (1 +8)u) <2~ U+ for 5§ >3.31107. (13)
Pr(X > (1 +8)pu) <2720+ for 5 > 8.82044. (14)
Pr(X > (1 +8)u) <2730+ for § > 19.72173. (15)

Pr(X > (14 8)u) <2740 for 5 > 41.48069. (16)
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In addition, we have the following parameterized Chernoff bound,
which provides an expression for its conditions in terms of elementary
functions of the parameter, x, and is also an improved bound over The-
orem 3 for x = 1.

Theorem 7. Let X, X,,..., X, be independent random variables taking
values in {0,1}. Let X = ZL] X; and let u = E[X] denote X’s expected
value. Then

Pr(X > R)<2™*R forx>0and R> (2%¢ — )u.

Proof. The proof follows from Theorem 4, provided we can show that,
for x >0,

2%e— 12 Ax)=—1/Wy(—1/(2%e)).

For convenience, let z=—1/(2*e), and note that z € (—1/e,0). We then
want to show that

—1/Wy(z) < —=(1/2) -1,
or equivalently

Wy(z) —z/(z+1)<0.

We examine the Taylor expansions, around 0, recalling (see, e.g., [6,16,
23D

O _pni-1
%@=2(3 z',
i=1 :

and
2/(z+ D)= Y (=172,
i=1

for z € (—1/e,0). It follows that

[

Wo(2) —z/z+ D)=

i=1

()~ = (=D
—_————Z.

i!

We see that the coefficient of z' is 0 for i = 1,2. For larger i, the co-
efficient is positive for odd i and negative for even i, since i'~! > i!,
for i > 3. As z is negative, each term is negative; hence, we have
Wy(z) £ z/(z+ 1), as desired. []

Suppose instead of being mutually independent, the »n 0-1 random
variables in a sum, X = ) | X, are only k-wise independent. We can
derive a parameterized Chernoff bound in this case, provided k is large
enough:

Theorem 8. Let X, X»,..., X, be k-wise independent random variables
taking values in {0,1}, for k > [6u], for 6 > 0. Let X = 2?:1 X; and let
1= E[X] denote X’s expected value. Then the bounds of Theorems 4, 5, 6,
and 7 hold for X.

Proof. Schmidt, Siegel, and Srinivasan [21] show that the upper-tail
bounds of Theorem 1 hold for k-wise independent random variables if
k > [6u], for 6 > 0. The bounds of Theorems 4, 5, 6, and 7 depend only
on the formulation of the upper-tail bound in Theorem 1. []

4. Additional Chernoff bounds for specific parameter values

The main results in this paper are for parameterized Chernoff
bounds in terms of a variable, x, but let us also provide some addi-
tional Chernoff bounds for specific parameter values.

For example, we have focused primarily on Chernoff bounds for val-
ues of & that are not too close to 0, but there are occasions in which
such Chernoff bounds are desired. For such occasions, one can use the
following simplified Chernoff bounds, albeit with §2 terms.
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Theorem 9. Let X, X,,..., X, be independent random variables taking
values in {0,1}. Let X = Z:’zl X; and let y = E[X] denote X’s expected
value. Then, for 0 <6 <1 and y =log, e,

Pr(X > (1 + )p) < 271578 H/G+8) < 9=26%u/G+8)  gng 17

Pr(X < (1 —6)p) < 2—9752/4/(18—66—52) < 2—252/4/(3—&—52/6). (18)

Proof. These bounds follow from tightened Chernoff bounds of Shiu
[22]. O

Alternatively, in case one would like to find a specific bound for
larger values of 6 based on a desired simple probability bound using
powers of two, Dillencourt and Goodrich [8] establish the following.

Theorem 10 (Dillencourt and Goodrich [8]). Let X, X;, ..., X, be inde-
pendent random variables taking values in {0,1}. Let X = Y| X, and let
u = E[X] denote X’s expected value. Then

Pr(X > (1 +6)u) <27%, (19)
holds for fixed a > 0 when
aln2-1

53 My (20)
Further, if 6 < 1, then

Pr(X < (1 =8)u) <27PH, (21)
holds for fixed f > 0 when

fln2-1
51— () (22)

We can use Theorem 10 to derive parameterized Chernoff lower-tail
bounds for specific constant parameters, as exemplified in the following
theorem.

Theorem 11. Let X, X, ..., X, be independent random variables taking
values in {0,1}. Let X = 2:':1 X; and let y = E[X] denote X’s expected
value. Then

Pr(X <(1-8)u)<2#/2,  for1>68>0.7064. (23)
Pr(X < (1 —8)u)<27#/3,  for 1> 6>0.5974. 24)
Pr(X <(1-8)u) <274/, for1>6>0.5276. (25)
Pr(X <(1—8)u)<27#/8, for 1>6>0.3863. (26)
Pr(X <(1=68)u)<2#/16  for1>5>0.2796. 27)
Pr(X <(1=8)u)<27#/32 for 1> 5 >0.2008. (28)

5. Revisiting balls-in-bins analyses for hash tables

In this section, we show some applications of parameterized Cher-
noff bounds to balls-in-bins problems for hash-table applications. We
start with a simple proof of a well-known result, which has a textbook
proof that uses Stirling’s approximation rather than a Chernoff bound
and is arguably less simple, e.g., see Mitzenmacher and Upfal [18,
p. 100].

Theorem 12. If n balls are thrown independently and uniformly at ran-
dom into n bins, then the probability that the largest bin has more than
3logn/loglogn balls is at most 1/n for sufficiently large n.

Proof. Let X =3 X; be a random variable for the number of balls
thrown into bin 1, where X; is a 0-1 random variable that is 1 if and
only if ball i is thrown into bin 1. Thus, E[X;] = 1/n; hence, y = E[X] =

Information Processing Letters 187 (2025) 106516

1. Taking x = loglogn—logloglogn and R =234 > 2*eu, we can apply
Theorem 7 as follows:
Pr(X > 3logn/loglogn) =Pr(X > R)

< 2—xR

— 2—(log log n—logloglogn)3logn/loglogn

< 2—2 logn

for suitably large n. The proof follows, then, by a union bound. []
In fact, we can prove something even stronger.

Theorem 13. If n balls are thrown independently and uniformly at random
into n/loglog n bins, then the probability that the largest bin has more than
3logn/loglogn balls is at most 1/(nloglogn) for sufficiently large n.

Proof. The proof is similar to that for Theorem 12. Let X = Y7 | X, be
a random variable for the number of balls thrown into bin 1, where X;
is a 0-1 random variable that is 1 if and only if ball i is thrown into bin
1. Thus, E[X;] = (loglogn)/n; hence, y = E[X] =loglogn. Taking x =
loglogn —2logloglogn and R =2*3yu > 2*eu, we can apply Theorem 7
as follows:

Pr(X > 3logn/loglogn) =Pr(X > R)
< 2—xR
— 2—(10glog n—2logloglogn)3logn/loglogn

< 2—2 logn

for suitably large n. The proof follows, then, by a union bound. []

We can also easily prove other interesting balls-in-bins results, with
negligible probabilities,? such as the following.

Theorem 14. If n balls are thrown independently and uniformly at random
into n bins, then the probability that the largest bin has more than 3logn
balls is negligible.

Proof. The proof is similar to that for Theorem 12. Let X = Y'" | X; be
a random variable for the number of balls thrown into bin 1, where X;
is a 0-1 random variable that is 1 if and only if ball i is thrown into bin
1. Thus, E[X;] = 1/n; hence, y = E[X] = 1. Taking x =loglogn and
R =2*3u>2%eu, we can apply Theorem 7 as follows:

Pr(X > 3logn)=Pr(X > R)
< 2—XR

= 2—(log logn)3logn

_ 1
- p3loglogn

The proof follows, then, by a union bound. []

Note that these theorems do not follow from a direct application of
Theorem 3.

2 Recall that a function is negligible if it tends towards O faster than the re-
ciprocal of any polynomial.
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6. Some algorithmic applications

In this section, we highlight some improved analyses that are im-
plied by the above bounds.

6.1. Randomized routing in a hypercube

A well-known “textbook” application of Chernoff bounds is for per-
mutation routing in a hypercube; see, e.g., [18,19]. In this problem, ev-
ery node in a hypercube with N = 2" nodes starts with a packet, which
is sent to another node in the hypercube. We assume each destination
node also receives one packet, so we are routing a permutation. At most
one packet can cross any edge at any time step. Valiant suggested rout-
ing the permutation by using a two-phase randomized routing [24,25]:
in a first phase, each packet is sent to a randomly chosen destination,
and, in a second phase, each packet continues to its final destination.
This randomized routing will route the permutation in O(n) total time
steps. We consider here the first phase, as the second phase is entirely
similar to analyze.

We follow the framework of Mitzenmacher and Upfal [18], and refer
there for additional details. Each node is represented by an n-bit vector,
(x1,X5,...,x,). The packet is sent using the bit-fixing route; that is, in
sending a packet from node (x;,x,,...,x,) to node (y;,y,,...,¥,), we
consider the x; in order, and whenever x; # y;, the packet crosses the
edge (¥, ¥2, -2 Vic 1> X Xig 15 -5 X) 10 (V15 V2, oo Vin 1 Vis X 15 o5 Xp)-
The key goal is to show that for any possible packet path, P, no more
than c¢n distinct packets are active with sufficiently high probability.
Here, active means that the packet reaches a vertex of P and has the
potential to cross an edge of P; that is, if P reaches a node v on path
P and the next node w of P differs from v on the jth bit, then when
the packet reaches v the jth bit of the packet’s path cannot have been
processed by the bit-fixing algorithm. With this bound, one can argue
that the cn packets cross the edges of P at most ¢’n times for some
other constant ¢’ (since each packet leaves the path P with probability
at least 1/2 at each vertex of P), and the result readily follows.

To start, for k=1,...,N, let H, be a 0-1 random variable where
H, =1 if the packet starting at node k is active and 0 otherwise. The
H, are independent, and we let H = Y. H,.. If neighbors v and w on the
path differ in the jth bit, there are only 2/~! possible active packets, as
an active packet must begin at a vertex that agrees with v on bits j
through n of its address. Further, each such packet reaches v with prob-
ability 2=U=1, since each such possible packet must choose a random
destination that matches v’s first j — 1 address bits. Hence, the expected
number of active packets per vertex is 1, and accordingly, E[H] <n, as
the path P has at most n vertices.

In the textbook by Mitzenmacher and Upfal [18], the Chernoff
bound

Pr(H > 6n>6E[H]) <27

is then applied. With some additional work, it is then shown that each
phase takes at most 30n steps with probability at least 1 — O(1/N), so
the two phases complete in at most 60n steps with probability at least
1 —=0O(1/N). (There does not seem to have been effort to optimize the
constant 60.) We can improve this using Theorem 7 with x = 0.8, to
find that

Pr(H > 4n) <2731,

which sulffices for the rest of the proof given in Mitzenmacher and Up-
fal [18] (as long as n is sufficiently large, e.g. n > 10). To continue, let T’
be the number of times the H packets cross an edge of P, which bounds
the total time a packet could take to traverse P. As each packet at a ver-
tex of P may leave P with probability 1/2, we see that, conditioned on
H < 4n, the probability that packets cross an edge of P more than 16n
times is bounded by the probability that a fair coin flipped 20n times
yields fewer than 4n heads. (Each time a packet at a vertex of P has to
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cross an edge, as its route is random, we model whether the bit flips in
that dimension as a coin flip: if the coin is heads, the packet leaves the
path and is no longer considered, and if the coin is tails, then the packet
follows the edge of P. After 4n heads, we are out of packets if H <4n,
so the probability of at least 16n edge traversals on P is bounded by the
given probability.) Let Z be the number of heads in 20n coin flips. By
Theorem 11, Equation (24), for 1 > 6 > 0.6, we have that

Pr(X < (1 —8)u) <27+/3,

Accordingly, for 20n coin flips, the number of heads Z satisfies

Pr(Z <4n) < 9-10n/3 - »=3.3n

We therefore have for any path P, when n > 10,

Pr(T > 16n) <Pr(T > 16n | H > 4n)Pr(H > 4n)
+Pr(T > 16n | H <4n)Pr(H < 4n)
<Pr(H > 4n) +Pr(T > 16n | H <4n)
<Pr(H >4n)+Pr(Z <4n)
<0321 4 9=33n
<273,

There are at most N2 = 22" paths P, so we have that the probability
any path has a delay of more than 16n steps is at most 1/N. It follows
that this analysis, using the power-of-two Chernoff bounds, improves
the bound for two-phase randomized rounding to 32n steps while ar-
guably simplifying the proof.

6.2. Analysis of a non-recursive adaptation of the Floyd-Rivest selection
algorithm

The Floyd-Rivest selection algorithm is a randomized, recursive
method for finding the kth smallest of n comparable items using
n+ min{k,n — k} + o(n) comparisons with high probability. Although
the algorithm itself is simple, its published analyses are not; see, e.g.,
[12,13,17]. For example, while the algorithm is simple enough to
present to undergraduates, we are not aware of lecture notes for its
analysis; see, e.g., Eppstein [11].

In this subsection, we provide a simplified non-recursive adaptation
of the Floyd-Rivest selection algorithm [12]. Our goal here is to provide
an analysis that achieves an optimal number of comparisons for the
selection problem, plus lower-order terms, which could be presented to
undergraduates.

Our non-recursive adaptation of the Floyd-Rivest selection algo-
rithm [12] is inspired by lecture notes of Eppstein [11] and pseudo-code
of Kiwiel [17], but is nevertheless different from both of these methods.
Given a set, .S, of n distinct comparable elements, and 1 < k < n, the fol-
lowing algorithm returns the kth smallest element in .S, using a sample
size parameter, s, and gap-size parameter, g.

Select(S,n,k,s, g):

1. Choose a random subset, R, of S of expected size s, by choosing
each element of .S’ independently with probability s/n.
2. Sort R.
3. If ks/n — g > 1, then let u be the element of rank |ks/n — g| in
R.
4. If ks/n + g < s, then let v be the element of rank [ks/n + g] in
R.
5. If k <n/2, then:
(a) Partition S into S’, the elements less than or equal to v, and
G, the elements greater than v.
(b) Ifks/n— g > 1, then partition S’ into L, the elements less than
u, and M, the elements greater than or equal to u. Otherwise,
let L=@ and M =S'.
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Else:

(a) Partition .S into L, the elements less than u, and S/, the ele-
ments greater than or equal to u.

(b) If ks/n + g < s, then partition .S’ into M, the elements less
than or equal to v, and G, the elements greater than v. Other-
wise, let G=@and M = 5.

6. If |L| <k and |L|+ |M| >k, then sort M and return the element
of rank k — |L| in M. Otherwise, repeat the entire algorithm from
scratch.

Theorem 15. One can choose s and g so that our non-recursive adapta-
tion of the Floyd-Rivest selection algorithm uses n + min{k,n — k} + o(n)
comparisons, with high probability.

Proof. W.l.o.g., let us assume that k < n/2. Assuming our non-recursive
adaptation of the Floyd-Rivest selection algorithm doesn’t restart and
we do the sorting steps with a worst-case optimal comparison-based
sorting algorithm, like heapsort or mergesort, then it is easy to see that
the total number of comparisons the algorithm performs is n + |L| +
O(|R|log|R|)+O(|M|log|M|). Note that if ks/n—g <1, then |L| =0,
which simplifies the analysis, so let us consider the more general case
when ks/n—g> 1, thatis, k> (g + 1)n/s.

Let us bound the probability for the bad outcomes that would cause
a restart of the algorithm. First, consider the bad outcome where |L| >
k. This would occur if u has rank greater than k in .S. That is, if we
let X denote the number of elements in S with rank at most k in §
that are chosen to be in R, then |L| >k iff X < ks/n — g. Noting that
u=E[X]=ks/n,

Pr(X < ks/n—g)=Pr(X < (1 - 6)u),

where 6 =g/u=gn/ks and k> (g + 1)n/s, so 0 < 6 < 1. Thus, by The-
orem 9,

Pr(X <(1=38)u) < 2—252/4/3 - 2—2g2/3;4 - 2—2g2n/3ks < 2—4g2/3s‘

Let us choose s = n?/3 and g = n'/3log!/? n, which implies that

Pr(X < (1 = §)p) < 2-@/Dlogn  y=4/3

Thus, with high probability, we avoid this bad case.

Next, let us consider the bad outcome where |L| + | M| < k, which
occurs if the rank of v in § is less than k. That is, if we again let X
denote the number of elements in .S with rank at most k in .S that are
chosen to be in R, then |L|+ |[M| < k iff X > ks/n + g. Noting that
u=E[X]=ks/n,

Pr(X > ks/n+g)=Pr(X <(1+)p),

where 6 =g/u=gn/ks and k> (g + 1)n/s, so 0 < 6 < 1. Thus, by The-
orem 9,

Pr(X < (1 +8)p) < 27252,4/3 — 2—2g2/3y — 2—2g2n/3ks < 2—4g2/3x;

hence, by our choices of s and g, we have that

Pr(X < (1+8)u)<n~*/3.

Thus, with high probability, we avoid this bad case, as well.

We leave as an exercise to prove that our choice of s implies that
|R| is O(n?/3) with high probability; hence, our analysis so far implies
that, with high probability, the number of comparisons performed is
n+k+ 023 logn)+ O(|M|log | M|). Let us therefore next bound, with
high probability, the size of M, which, in the general case, consists of
the elements in .S between u and v. To bound this, let us consider the
probability that any subset, T, of 4gn/s contiguously-ranked elements
in S would have fewer than 2g elements chosen to be in R, since there
are 2g elements in R between u and v. If we can show that this occurs
with low probability, then |M| < 4gn/s with high probability. Let Y
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denote the number of elements in T that are chosen to be in R. Then
u= E[Y]=4g; hence, setting 6 = 1/2 and applying Theorem 11,

Pr(Y <2g) =Pr(X < (1 - 8)u) <27#/8 =278/2 = g~ loe! P /2,

Thus, with high probability, by our choices of s and g, |[M| <4gn/s=
4n*/310g'/? n, which implies that, with high probability, the number
of comparisons performed by the algorithm is n + k + O(n?/3 log3/ 2n),
which establishes the theorem. []

7. Conclusion

In this paper, we have provided parameterized Chernoff bounds that
have probabilities that are powers of two, and shown how to apply
them for simplified analysis of some randomized algorithms. Thus, we
believe that we have provided evidence that parameterizing Chernoff
bounds is valuable not only for its own sake, but that it also can lead to
new discoveries. As we mention above, we believe our results are just
the tip of the iceberg in terms of new insights that are possible by using
parameterized Chernoff bounds.

As & grows, we move from a regime where central-limit-theorem-
like estimates apply towards a regime of large deviation theory [9].
For example, an interesting question for possible future work could be
to compare Cramer’s large deviation theorem to Chernoff bounds as &
grows. For example, even in their transcendental exponent form, Cher-
noff bounds are based on the inequality 1 + 6 < exp(6), which is tight
for small 6, but less good as 6 grows larger.
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