Received: 28 February 2024 Revised: 8 May 2024 Accepted: 27 May 2024

W) Check for updates

DOI: 10.1002/jbio.202400078

LETTER

OURNAL OF
PHOTONICS

Virtual-point-based deconvolution for optical-resolution

photoacoustic microscopy

Rui Yao' | Anthony DiSpirito" |
Colton Thomas McGarraugh'

'Department of Biomedical Engineering,
Duke University, Durham, North
Carolina, USA

Abstract

*Department of Biomedical Engineering,
University of California San Diego, La
Jolla, California, USA

Correspondence

Junjie Yao, Department of Biomedical
Engineering, Duke University, Durham,
NC 27708, USA.

Email: junjie.yao@duke.edu

Funding information

United States National Institutes of Health
(NIH), Grant/Award Numbers:
R21EB027981, R21 EB027304, RF1
NS115581, RO1 NS111039, R01 EB028143,
R01DK139109; The United States National
Science Foundation (NSF) CAREER,
Grant/Award Number: 2144788; Duke
University Pratt Beyond the Horizon
Grant; Eli Lilly Research Award Program;
Chan Zuckerberg Initiative Grant,
Grant/Award Number: 2020-226178

KEYWORDS

1 | INTRODUCTION

Photoacoustic microscopy (PAM) is a major implementa-
tion of photoacoustic imaging with balanced spatial reso-
lution, penetration depth, and imaging speed [1, 2]. PAM
provides optical absorption contrast for endogenous bio-
logical molecules like hemoglobin, fat, and melanin
in vivo via the photoacoustic effect. This capability has
attracted significant attention for biological and pre-
clinical applications in vascular biology, monitoring brain
activities, cancer detection, and more [3-23]. Based on
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Optical-resolution photoacoustic micros-
copy (OR-PAM) has been increasingly
utilized for in vivo imaging of biological
tissues, offering structural, functional,
and molecular information. In OR-PAM,
it is often necessary to make a trade-off
between imaging depth, lateral resolu-
tion, field of view, and imaging speed. To
improve the lateral resolution without
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sacrificing other performance metrics, we

developed a virtual-point-based deconvolution algorithm for OR-PAM
(VP-PAM). VP-PAM has achieved a resolution improvement ranging from 43%
to 62.5% on a single-line target. In addition, it has outperformed Richardson-
Lucy deconvolution with 15 iterations in both structural similarity index and
peak signal-to-noise ratio on an OR-PAM image of mouse brain vasculature.
When applied to an in vivo glass frog image obtained by a deep-penetrating
OR-PAM system with compromised lateral resolution, VP-PAM yielded
enhanced resolution and contrast with better-resolved microvessels.

deconvolution, genetic algorithm, photoacoustic microscopy

the relative sizes of optical versus acoustic foci, PAM is cat-
egorized into either optical-resolution PAM (OR-PAM) or
acoustic-resolution PAM (AR-PAM), both of which usually
employ point-by-point scanning of the confocally-aligned
optical and acoustic foci. In OR-PAM, the lateral resolu-
tion is primarily determined by the optical focusing [24],
which is usually more than 10 times tighter than its
acoustic focusing. Optical absorbers within the optical
focus generate acoustic waves simultaneously, which are
detectable by a single-element focused ultrasonic trans-
ducer (Figure 1A). Due to the proximity of these optical
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absorbers within the optical focus (much smaller than the
acoustic wavelength), they act as a single signal source at
each scanning location. The absorbers outside the optical
focus contribute little to the final signal (Figure 1B).
Hence, an OR-PAM image can be simply approximated
as the convolution of the optical focus with the optical
absorption distribution of the imaged target. By comp-
romising the lateral resolution, OR-PAM can achieve a
deeper penetration, larger field of view, and/or higher
imaging speed [1, 12].

Building on the concept of reconstructing images
from incoherent virtual point sources, Martinez et al. pro-
posed a deconvolution method, SUPPOSe, to improve the
spatial resolution of optical microscopy [25, 26]. SUP-
POSe iteratively optimizes the distribution of a large
number of virtual points with identical intensities placed
on a virtual image, formed by the superposition of these
virtual points, until the virtual image convolved with the
system's point spread function (PSF) is sufficiently close

(A) (B) Optical absorbers
OL
UT
' Acoustic focus
:\ N Optical focus

~a-

FIGURE 1 Imaging principle of OR-PAM. (A) Schematic of a
representative OR-PAM. OL, objective lens; OR-PAM, optical-
resolution photoacoustic microscopy; UT, ultrasonic transducer.

(B) Cross-sectional view of the focal region circled in (A). Absorbers
within the optical focus contribute the most to the detected signal.

to the original image (Figure 2). Doing so, the spatial
resolution of the virtual image can be improved over the
original image. Although this method was originally
applied to optical microscope images, we expect it is also
applicable for OR-PAM. A similar approach, Adam-
based pointillism deconvolution (A-PoD) [27], replaces
the genetic algorithm in SUPPOSe with an Adam opti-
mizer. A-PoD uses pixel-level image gradients to indi-
vidually adjust each virtual point and therefore achieves
a faster convergence with improved signal localization.
Inspired by both SUPPOSe and A-PoD, we developed a
virtual-point-based deconvolution method for OR-PAM
(VP-PAM). VP-PAM integrates a novel genetic algo-
rithm that leverages a pixel-level loss function alongside
smoothness regularization. The loss for each pixel loca-
tion is calculated individually without integrating across
the image. The new genetic algorithm is designed to
improve the performance of VP-based deconvolution
techniques on OR-PAM images, which are characterized
by a mix of high-frequency and low-frequency compo-
nents. Since VP-PAM is based on a genetic algorithm,
the terms “loss” and “fitness” will be used interchange-
ably throughout this letter.

2 | METHODS

2.1 | Description of VP-PAM

The fitness score F for pixel (i,j) on the virtual image R
can be expressed as a function of the raw image S, the
point spread function PSF, and the regularization
term ¢:

Fy= {Sij ~ (psF+R)
)

} gy 1)

Virtual image R PSF
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<

FIGURE 2 Optimization of VP-
based deconvolution algorithms. The
loss between the raw image S and the
estimated virtual image R convolved

with a known PSF is updated for each
iteration. R should resemble the ground
truth if the loss is small enough. PSF,
point spread function; VP, virtual-point.
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where * denotes convolution and 4 is the regularization
coefficient. We enforced the smoothness constraint by
implementing a modified local mean method:

¢ij:ﬂ(§ij_uij) +(1-5) (ﬁij—vij) (2)

where u;; is the mean of the middle five pixel intensities
after sorting the 3 x 3 grid intensities centered at pixel
(i,j), and vy is the average of the two intensities closest
to the grid's central intensity. The term (fi’ij—vij) pre-
serves edges by modulating the penalty on edge regions,
whereas (IAQU - uij) is primarily used for noise reduction
and ensuring image smoothness. Parameter § (0</<1)
modulates each term's impact on the regularization
score. For a M x N image S, the total number of virtual
points K and the virtual point intensity a follows
K= Zﬁ\ilzj]ilsij/a, with either K or a set by the user.
In VP-PAM, each virtual point is considered as an
individual within a K-sized population. Each individual
possesses two genes: the (x,y) coordinates on image R.
Individuals with the same genes are identical and
therefore possess the same fitness. If we denote the
fitness of individual k with genes (x¥,y*) as F¥, the goal
of this optimization problem is to adjust the genes

xoplim ’ylgptim = ar%rr}(in ( ‘Fk
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of each individual to minimize the absolute fitness:
k ), Vk € [1,K].

xky

Figure 3 describes the framework of the genetic algo-
rithm wused in VP-PAM. The optimization process
depends on the ranking of individual fitness scores. In
each generation, individuals with higher fitness scores
are more likely to survive and reproduce, propagating
their genetic traits to the next generation. On the con-
trary, those with lower fitness scores are more likely to
be discarded and have a reduced chance for reproduc-
tion. To keep the population size consistent, the algo-
rithm calculates the requisite number of offspring from
the current parent pool, allowing for the possibility of a
single parent individual to produce multiple children
within one generation. In addition, it is critical to retain
the sign of the fitness score from Equation 1 for
accurate fitness ranking. For example, with a small reg-
ularization term qﬁij, a more positive F; indicates the
need for additional virtual points at position (i,j), while a
more negative F; indicates that the number of virtual
points at that position should be reduced. In practice, the
regularization term described in Equation 2 is often non-
negligible: it penalizes the pixel regions with excessively
high intensities relative to their neighbors and rewards

(A) ) o ® -
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children Sifted Mutated

/ \ parents children
Mutation Selection l
f Generation +1 §\>- Yirtual
image
Children _»| Parents
Rl PSF % Raw
e pdate image
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Vi (_/H
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. / & G &
1
™ sifted 4
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FIGURE 3

Principle of VP-PAM. (A) Schematic of the genetic algorithm implemented in VP-PAM. Step 0: Virtual points are randomly

spread over a virtual image and form the initial children population. Step I: Children with positive fitness scores are selected and become

parents for the new generation, while the rest are discarded. Step 2: Low fitness parents are randomly discarded. The sifted parents survive

and join the parent population of the next generation. Step 3: Sifted parents produce children in a mitosis-like manner—new children are

randomly generated within the 3 x 3 pixel Moore neighborhood. Higher fitness parents are likely to produce more children in each

generation. Step 4: A small portion of children undergo mutation—small, random perturbations are applied to their genes. Step 5: Repeat

Steps 1-4 until the maximum number of generations is reached. The final population consists of the sifted parents and the children of the

last generation. (B) General workflow showing how the fitness score is updated and utilized. The population size stays the same. VP-PAM,

virtual-point-based deconvolution method for OR-PAM.
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dimmer ones. The magnitude of the regularization term
¢;; remains minimal only if the corresponding region is
inherently smooth.

2.2 | Implementation details

The VP-PAM algorithm employed in this study was devel-
oped using Python 3.10.12. For acceleration, the implemen-
tation leveraged TensorFlow 2.15.0 on an Nvidia V100-16GB
GPU, courtesy of Google Colab’s computing resources.
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3 | RESULTS AND DISCUSSION

To evaluate the performance of VP-PAM, we began with
a binary image of a single-pixel-thick (5 pm) vertical line.
This image was first blurred by a factor of 10 using a
Gaussian PSF (Figure 4A). We experimented with five
different regularization coefficients 4 (0, 0.1, 1, 1.5, 2) to
deblur the synthesized target. Each deblurring process
involved 300 generations and approximately 3.3 x 10° vir-
tual points. The resultant deblurred VP-PAM images
(Figure 4B-F) had an FWHM of 12.5, 18.75, 26.0, 27.0,
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FIGURE 4 Resolution enhancement on a synthetic single-line target by various methods. (A) Noise-free blurred single-line target. The
blue line represents the ground truth. (B-F) Deblurred VP-PAM results from (A) with 1 =0, 0.1, 1, 1.5, and 2, respectively. (G, H) Deblurred
results from (A) using RL15 and A-PoD, respectively. (I) Blurred target with added noise. (J-N) Deblurred VP-PAM results from (I) with
different A values. (O-P) Deblurred results from (I) using RL15 and VP-PAM, respectively. (Q) Line profiles of (B)-(H) along the white line
in (A). (R) Evolutions of mean squared error (MSE) of (B)—(F). Scale bar: 75 pm. VP-PAM, virtual-point-based deconvolution method for OR-
PAM. RL15, Richardson-Lucy deconvolution with 15 iterations. A-PoD, Adam-based Pointillism deconvolution.
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and 28.5 pm, respectively (Figure 4Q), translating to a res-
olution improvement of approximately 75%, 62.5%, 48%,
46%, and 43%. Figure 4R shows the mean squared error
(MSE) progression for Figure 4B-F, with the lowest final
MSE observed at A =0. However, we noted less fluctua-
tion in MSE with larger 4. We then added Gaussian white
noise (standard deviation=0.004, grayscale) to the
blurred target, resulting in a final signal-to-noise ratio of
14.57 dB (Figure 4I). Table 1 presents the structural simi-
larity index (SSIM) and peak signal-to-noise ratio (PSNR)
of each deblurred image (Figure 4J-N). Among the tested
A values, A=0.1 (Figure 4K) resulted in the highest SSIM
and PSNR. A values of 1, 1.5, and 2 resulted in similar
performances. Notably, while there was a decrease in
SSIM and PSNR, the deblurred images become smoother
and more continuous with a larger A.

We also compared VP-PAM with Richardson-Lucy
(RL) deconvolution [28-30] and A-PoD. RL deconvolu-
tion is an iterative approach commonly used in astron-
omy imaging and optical imaging such as fluorescence
microscopy. It was derived using maximum likelihood
estimate based on the assumption that each pixel in the
observed image follows a Poisson distribution with an
expected value given by the true image convolved with a
known PSF. Although PA images do not strictly involve
Poisson noise, several studies have successfully demon-
strated the applicability of RL or RL-based algorithms in
PAM, typically using 10-30 iterations [31-36]. Here, we
selected RL deconvolution with 15 iterations (RL15) to avoid
over-sharpening the deblurred features, which is a common
issue for RL deconvolution [32], and the over amplification
of noise or artifacts. For the noise-free target, RL15 yielded a
resolution enhancement of 50% (FWHM = 25 pm), which
is comparable to the performance of VP-PAM with 1=1.
The latter slightly outperformed RL15 in the noisy target
in terms of SSIM (0.74 compared to 0.71, see Table 1).
For a fair comparison, A-PoD utilized the same number
of virtual points, virtual point intensity, and iterations as
VP-PAM. A-PoD surpassed both methods by achieving a
resolution enhancement of 88% (FWHM =6 um) in the
noise-free target (Figure 4H). It also achieved the highest
SSIM and PSNR in the noisy target (Figure 4P). However,
A-PoD's results were much more discontinuous with con-
centrated hotspots, even for the noise-free target. A possi-
ble explanation for this will be provided later.

TABLE 1 SSIM and PSNR of

VP-PAM

The performance of VP-PAM was further demon-
strated using a mouse brain vasculature image acquired
by our previously reported high-speed OR-PAM sys-
tem [3] as the ground truth (Figure 5A). The ground
truth image has a size of 900-by-1000 pixels with an 8-pm
pixel size and was subsequently blurred by a factor of
10 using a Gaussian PSF, followed by the corruption
of Gaussian white noise (standard deviation = 0.004,
gray scale), as shown in Figure 5B. Because the resolu-
tion enhancement by VP-PAM using A = 1, 1.5, and 2 var-
ies only slightly and larger A values yield smoother
vessels, we selected 1=1.5 to balance image smoothness
with resolution enhancement for VP-PAM. Additionally,
we introduced ~87 million virtual points for both VP-
PAM and A-PoD. The resulting deblurred image from
VP-PAM (Figure 5D) achieved an SSIM of 0.82 and
a PSNR of 29.93. This performance surpasses RL15,
which attained an SSIM of 0.783 and a PSNR of 27.86
(Figure 5C). Interestingly, although RL15 yielded a
greater resolution improvement than VP-PAM with
A=1.5 on the single-line target in Figure 4, VP-PAM per-
formed better on the complex target (Figure 5F). The
advantage of the VP-PAM method over RL15 is also evi-
dent in resolving small vessels (Figure 5G). The deblurred
image by A-PoD (Figure 5E), however, showed a large
dynamic range, deviating significantly from the ground
truth. In addition, virtually all small vessels disappeared
after A-PoD deblurring. This poor convergence of virtual
points likely resulted from A-PoD's optimization mecha-
nism, which uses an Adam optimizer to iteratively
update the coordinates of individual virtual points based
on the image gradient of the pixel-wise loss. Since virtual
points that initially occupy the same location share iden-
tical losses and therefore receive identical updates, they
form a collective group and are unable to separate during
the iteration. In this case, the smallest intensity unit is
not a single virtual point but rather a collective of identi-
cal virtual points (i.e., the sum of identical individuals at
the same pixel location). As a result, structures with
intensities below this collective intensity unit (mostly the
small vessels) are unlikely to be restored. In addition, vir-
tual points that join a pre-existing collective group tend
to receive similar updates as the collective group in sub-
sequent iterations, due to the Adam optimizer's updating
rule and the pixel-wise loss. Conversely, VP-PAM does

Figure 4J-P.
A=0

SSIM 0.69
PSNR 16.37

A=01 A=1 A=15 A=2 RL15 A-PoD
0.74 0.74 0.73 0.72 0.71 0.90
18.62 18.26 18.19 18.13 18.31 20.39

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, structural similarity index metric.
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FIGURE 5 VP-PAM on a mouse brain vasculature image. (A) Ground truth image of mouse brain vasculature. (B) Blurred
image. (C-E) Deblurred images using RL15, VP-PAM, and A-PoD, respectively. For better visualization, (E) was clipped between
0 and 1. (F, G) Line profiles of (A)-(E) along the two solid lines, respectively. Note that (E) was plotted using the right y-axis

in (F) and (G). Scale bars: 1 mm for the main images and 400 pm for the insets. VP-PAM, virtual-point-based deconvolution method
for OR-PAM. RL15, Richardson-Lucy with 15 iterations. A-PoD, Adam-based Pointillism deconvolution.
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FIGURE 6 VP-PAM on a glassfrog vasculature image. (A) Original D-PAM image of glassfrog vasculature. (B) Deblurred image by VP-

PAM. (C, D) Close-up images of the boxed region #1 in (A), (B), respectively. (E, F) Close-up images of the boxed region #2 in (A), (B),
respectively. (G) Line profiles of (C) and (D) along the solid line path in (C). (H) Line profiles of (E) and (F) along the solid line path in (E).
Scale bars: 2 mm in (A, B), and 500 pm in (C-F). D-PAM, deep-penetrating PAM; VP-PAM, virtual-point-based deconvolution method for

OR-PAM.

not have such issues since it does not adjust the position
of existing virtual points; Instead, VP-PAM adds or
removes some of the existing ones. The selection process is
only applied to the new individuals (children), as
described in Figure 3, which helps stabilize the algorithm.
The sifting mechanism also randomly removes parent
individuals from low-fitness families/collective groups.
Finally, we tested VP-PAM on a 2000 x 1700-pixel
glassfrog vasculature image obtained by a deep-
penetrating PAM (D-PAM) system (Figure 6A) [12]. The
system has a lateral resolution of ~45um, an imaging

depth of ~3mm, and a depth of focus of ~2.5mm in
glassfrogs. While it surpasses traditional OR-PAM sys-
tems in terms of imaging depth and depth of focus, its
lateral resolution is ~10 times worse. It is worth noting
that PAM exhibits a depth-dependent PSF that varies
significantly between in-focus and out-of-focus regions.
The in-focus signals and out-of-focus signals in PAM
can be separated based on the acoustically-resolved
depths. Since VP-PAM relies on shift-invariant PSF, we
specifically selected the in-focus signals where the PSF
is assumed to be consistent. For the deblurring process,
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approximately 42 million virtual points were utilized in
VP-PAM (Figure 6B). VP-PAM (1=1.5) effectively
improved the clarity of the original image, leading to
better-resolved small microvessels with improved con-
trast (Figure 6C-H).

Computation speed is a crucial factor for image
deconvolution algorithms. The current implementation
of VP-PAM is GPU-accelerated, which processed the
images in 10 s for Figure 4, 100 s for Figure 5, and 110 s
for Figure 6. Although VP-PAM is approximately 20-fold
slower than RL15, it is still much faster than A-PoD,
which required ~40 min for Figure 5E. The processing
time for both A-PoD and VP-PAM is proportional to the
total number of virtual points; however, VP-PAM does
not need to track and update the position of every single
virtual point each iteration, thereby substantially reduc-
ing the processing time per iteration. The processing time
for VP-PAM depends on the image size as well because of
the convolution operation described in Figure 2. With the
same setup, the current algorithm can process 1.2 x 10®
virtual points for a 900 x 1000 image in about 117 s with
300 generations. It is important to note that although we
observed better VP-PAM performance with increasing vir-
tual points, this improvement would eventually reach a
plateau. To improve the computation speed, future efforts
can focus on reducing the number of virtual points without
significantly compromising the performance. One potential
approach is to make individual virtual point intensity a as
another optimizable parameter, which might vary among
virtual points. This adjustment indicates that regions
with higher intensity would require fewer virtual points.
Another solution is to incorporate an early-stopping
mechanism to reduce the total number of iterations.
Additionally, the method described in [25, 26] could be
employed to determine the optimal @ and K.

VP-PAM is designed to minimize a pixel-level loss
function within a genetic algorithm framework, optimiz-
ing on a pixel-by-pixel basis without integrating the loss
across the entire image. The deblurring method used in
VP-PAM can potentially be applied to other imaging
modalities with shift-invariant PSFs, such as fluorescence
microscopy and stimulated Raman spectroscopy. It is
worth noting that this pixel-wise approach is not applica-
ble to shifted PSFs, such as those with motion blurring,
as the local loss cannot be properly projected to the cor-
rect pixel position in the image space.

The optimization in VP-PAM progresses through
selection, sifting, and mitosis of virtual points, all of which
heavily rely on the individual fitness ranking. Regulariza-
tion plays a crucial role in these steps, especially in the sift-
ing step, where parent individuals with low fitness scores
are eliminated. This makes sifting especially important. In
contrast, selection and mitosis are secondary optimization

mechanisms, which also serve to stabilize the algorithm. To
avoid model collapse, we adopted a conservative strategy:
to select all children with positive fitness scores and permit
each parent to produce a specific number of children based
on its fitness ranking, rather than restricting the reproduc-
tion opportunities to a limited group of parents. Future
improvements to VP-PAM's optimization efficiency should
therefore focus on refining these three critical steps.

Lastly, to improve smoothness and local texture, a
proper local regularization method is necessary. As men-
tioned previously, the current regularization strategy pro-
motes smoothness by adjusting the local fitness based on
the pixel intensity relative to its neighbors. Specifically, if the
intensity of a pixel exceeds the average intensity of its neigh-
boring pixels, its fitness is reduced; and vice versa. This
adjustment affects high-frequency signal components, such
as noise and edges, more significantly because they are less
similar to their surroundings. The regularization coefficient
A dictates the extent to which the fitness is affected. As A
decreases, the sensitivity to local smoothness reduces
and the pixel-wise loss plays a more important role in
local fitness, making edges sharper but also amplifying
noise. We observed that local regularization not only
dampens noise amplification but also helps maintain
a continuous distribution of virtual points, even in a
noise-free target. Based on our experimental results, we
recommend 4 to be greater than 0.1. Currently, the
regularization strategy employs a modified local mean
method on a 3 x 3 grid. For future work, one may con-
sider a larger grid to improve noise resistance and/or edge
preservation. Unfortunately, due to the pixel-level loss func-
tion used in VP-PAM, it is challenging to apply traditional
regularization approaches, such as total variation, which
involves a summation of regularization scores over the image.

4 | CONCLUSION

In summary, VP-PAM represents a novel deconvolution
strategy for deblurring OR-PAM images, which combines
a pixel-level loss function with smoothness regularization
to improve image texture. VP-PAM has achieved a resolu-
tion enhancement ranging from 43% to 62.5% on a single-
line target and outperformed both RL deconvolution and
A-PoD in restoring more complex images of mouse brain
vasculature, although with a slower processing speed
than RL deconvolution. In addition, VP-PAM effectively
improved the resolution and contrast of an in vivo glass
frog image.
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