
Dynamic On-Palm Manipulation via Controlled

Sliding

William Yang and Michael Posa

University of Pennsylvania

Email: yangwill,posa@seas.upenn.edu

https://dynamic-controlled-sliding.github.io/

Abstract—Non-prehensile manipulation enables fast interac-
tions with objects by circumventing the need to grasp and
ungrasp as well as handling objects that cannot be grasped
through force closure. Current approaches to non-prehensile ma-
nipulation focus on static contacts, avoiding the underactuation
that comes with sliding. However, the ability to control sliding
contact, essentially removing the no-slip constraint, opens up
new possibilities in dynamic manipulation. In this paper, we
explore a challenging dynamic non-prehensile manipulation task
that requires the consideration of the full spectrum of hybrid
contact modes. We leverage recent methods in contact-implicit
MPC to handle the multi-modal planning aspect of the task. We
demonstrate, with careful consideration of integration between
the simple model used for MPC and the low-level tracking
controller, how contact-implicit MPC can be adapted to dynamic
tasks. Surprisingly, despite the known inaccuracies of frictional
rigid contact models, our method is able to react to these
inaccuracies while still quickly performing the task. Moreover,
we do not use common aids such as reference trajectories or
motion primitives, highlighting the generality of our approach.
To the best of our knowledge, this is the first application of
contact-implicit MPC to a dynamic manipulation task in three
dimensions.

I. INTRODUCTION

Recent advancements in robot manipulation have demon-

strated impressive dexterity [6] and generality [10] [9]. How-

ever, these methods largely focus on slow tasks that can be

viewed from a quasi-static perspective. As robots are increas-

ingly being asked to perform manipulation tasks in logistics

applications such as warehouse robotics, speed becomes a key

driving metric. While there are plenty of examples of dynamic

manipulation, the methods are often achieved using ad-hoc,

task-specific solutions [33] and demonstrated on systems with

few degrees of freedom and few contacts. The desire for a

general control framework for contact-rich tasks has resulted

in many formulations for contact-implicit model predictive

control [2] [24] [25] (MPC), which can automatically plan

when and where to make and break contact and are reported

to be fast enough for real-time control.

In this paper, we focus on an extension of the waiter’s task

to serve as an example of a general class of problems that

involve multiple contacts, reasoning about external contact,

as well as stick-slip behavior. This task both resembles real

dexterous manipulation skills and also exemplifies a range of

challenges faced in general-purpose dexterous manipulation.

In contrast with prior renditions of the waiter’s task [36] [16]

[4], which focus on just transporting the tray while maintaining

Fig. 1: We examine a dynamic sliding task, where the robot

uses the full spectrum of contact modes (sticking, sliding,

making and breaking contact) in order to retrieve a tray resting

on external supports. We use contact-implicit MPC to automat-

ically plan when and where to use different contact modes.

With careful consideration on how to integrate the simplified

MPC model with the robot arm, we are able complete the

entire maneuver of retrieving the tray, lifting it, and placing it

back on the external supports in just 5 seconds, demonstrating

dynamic capability for a contact-rich task.

static contact, our task simulates the full process of first

retrieving the tray, then lifting the tray, and finally placing

the tray back at its initial position. The tray initially rests on

external supports, so that a portion of the tray hangs over the

edges of the supports. As illustrated in Fig. 1, in order to

retrieve the tray, the robot must first shift the tray so that it

slides onto the end effector before it can be supported from

underneath. Similarly, in order to place the tray back at its

initial position, the end effector must shift the tray forward

onto the supports. Both of these maneuvers require repeated

stick-slip transitions. The primary challenge of this task is



the consideration of dynamic frictional contact. One major

challenge of frictional contact is the known model inaccuracies

of Coulomb friction and rigid frictional impacts [32]. Another

major challenge is that sliding adds additional contact modes

to the already challenging hybrid planning problem. Prior

works that consider control with sliding contact are restricted

to a single contact for planar dynamic tasks [34] [19] or

multiple contacts for planar quasi-static tasks [11] [37]. Other

methods can reason about sliding contacts in 3D quasi-static

and quasi-dynamic tasks [7] [8]; however, the methods are

currently too slow for real-time control.

Surprisingly, we show that, with some improvements, a

general contact-implicit model predictive controller (MPC)

framework can accomplish this dynamic task. Specifically, we

build upon prior work by carefully considering the integration

between the simple model used by the MPC and the low-level

tracking controller in order to accurately track the dynamic

motions commanded by the MPC. Our controller automatically

plans motions with repeated stick-slip transitions as the robot

pushes or pulls the object, including initiating slipping to

reposition the end effector to then push or pull again. The

controller accomplishes this all without using heuristics or

commonly relied on aids such as reference trajectories or mo-

tion primitives. This work makes the following contributions:

• Proposal and demonstration of a complex object pick and

place task that requires regulating sticking and sliding

contact modes as well as making and breaking contacts.

• Improvements to contact-implicit MPC including integra-

tion with the downstream tracking controller to accurately

track dynamic motions.

• Extensive experimental validation of the proposed frame-

work and hypotheses for characteristics of robust stick-

slip maneuvers.

• Demonstration of the generality of the contact-implicit

MPC framework with a task where the robot must rotate

a circular tray using a wall.

II. RELATED WORK

A. Contact Mode Regulation

The primary exploration of this work is how to plan and

regulate between frictional contact modes (sliding, sticking,

and breaking contact altogether), with an emphasis on dynamic

sliding contact as it is comparatively unexplored. Dynamic

sliding [34] and pivoting [19] for object reorienting and

regrasping are performed by simultaneously regulating inertial

and frictional forces using a parallel jaw gripper. However,

these works are limited to the planar case and only consider a

single surface contact. Doshi et al. [11] demonstrate impressive

control of both sliding and sticking contact along multiple

surfaces including utilizing external contacts [37]; however,

they focus on quasi-static manipulation and again are limited

to a planar system. Woodruff and Lynch [40] demonstrate se-

quencing multiple motion primitives [26], including dynamic

sliding, demonstrated on a planar manipulator and block set

up. However, the full trajectory is planned offline and relies

on local feedback control to stabilize each motion primitive.

We highlight the planar nature of prior examples because

planning for sliding contact in 3D is fundamentally more

challenging than in the planar case. This is because, in addition

to the increased state dimension, the planar case only requires

consideration of 4 hybrid modes (sticking, no contact, slide

left, slide right) per contact, whereas there exists a continuum

of sliding modes for the 3D case. Higashimori et al. [17]

considers full surface-surface friction when manipulating a

flat object with 3 degrees of freedom (DOFs) resting on a

pizza peel-like platform with only controlled 2 DOFs. Their

work showcases impressive controllability, but the method

assumes that the platform is much larger than the object and

the nominal pressure distribution on the object being uniform.

B. Waiter Task

Several works [31] [16] [36] [4] have tackled the “waiter

task”, where objects are balanced on top of an end effector

with a planar surface. Despite the similar task set-up, all of

these works critically focus on avoiding sliding between the

object and manipulator, whereas the key focus of our work

is to specifically leverage sliding to perform tasks that would

otherwise be infeasible.

C. Contact-Implicit MPC

Recently, several contact-implicit MPC frameworks have

demonstrated solve times fast enough for real-time control on

systems with multiple contacts and many degrees of freedom

[2] [24] [25]. However, these methods have not been evaluated

on dynamic manipulation with sliding contacts. Here, we do

not propose a new MPC framework, but rather we seek to

identify the implementation details to adapt such a framework

to a dynamic task, including how to consume the outputs in a

downstream tracking controller. Critically, the output of these

contact-implicit methods were tracked as position set-points

stabilized with impedance gains [2] [24], whereas we track

time-parameterized trajectories for the end effector position

and end effector forces. Position set-points rely on the stiffness

of the impedance controller to achieve accelerations, while

accelerations and forces can be specified directly and are

defined smoothly using time-parameterized trajectories.

III. PROBLEM SETUP

We are interested in the problem setup shown in Fig. 2. The

system consists of a serial-link manipulator equipped with a

small flat disk as its end effector, where the end effector is

constrained to move only in 3D translation. The robot arm is

tasked with retrieving, lifting, and returning (placing) a tray

as shown in Fig. 2. The tray is initially resting on external

supports and starts in a slightly overhanging position so that

it can be contacted on its bottom surface. The tray has all

floating base degrees of freedom, with its pose in SE(3), and

its pose can be tracked using fiducials attached to the tray.

We assume that we have accurate model parameters (mass,

inertia, geometry, and friction) of each component (robot arm,

end effector, tray, and supports), although we do examine

the effect of inaccurate models in Section VII. We assume



a single coefficient of friction per pair of geometries (tray/end

effector and tray/supports). The task objectives: retrieve, lift,

and place, are specified as three sequential targets, meaning

the next target is given when the tray reaches the previous

target.

Fig. 2: The three target positions. The grasp locations on the

tray change between targets, thus requiring the end effector to

either slide and/or break contact with the tray.

IV. SYSTEM MODELS

Fig. 3: We abstract the system into two models. The LCS

model captures the contact forces λ between the end effec-

tor, tray, and supports. In the LCS model, the robot arm

is abstracted away and replaced with direct inputs to the

end effector ulcs. We then use a robot-only model to track

the end effector position qee(t) and force ulcs(t) trajectories

commanded from the MPC, so λee = ulcs.

In this paper, we abstract the system using two models as

shown in Fig. 3. We model the the end effector, object, and

external contacts as a Linear Complementarity System [15]

(LCS) to use for the MPC. For the low-level operational space

controller, we only consider the dynamics of the robot arm and

rely on inputs from the MPC to address the interaction forces

from the object.

A. Linear Complementarity Model

We model the dynamics of the end effector, object, and

external contacts as a discrete time LCS. We ignore rest of

the robot arm in the MPC model by considering the end

effector as an isolated floating object with only translation

degrees of freedom and controlled directly with forces ap-

plied to its center of mass. To ensure downstream feasibility

when applying this model to the actual system, we impose

workspace and input limits on the MPC model. The state of

the LCS xlcs = [qlcs, vlcs] is a combination of the positions

qlcs = [qee, qobj ] of the end effector and object and the

corresponding velocities vlcs = [vee, vobj ]. The control input

ulcs to the LCS are forces applied directly to the end effector

center of mass, such that it can be controlled in 3D translation.

Finally, the contact forces λ are the interaction forces between

the end effector, object, and external supports.

The dynamics of the LCS have the form:

xk+1 = Axk +Buk +Dλk + d (1)

0 f λk § Exk + Fλk +Huk + c g 0, (2)

where xk ∈ R
nx , λk ∈ R

nλ , and uk ∈ R
nu are the state,

force, and input variables at the k-th knot point. Eq. (1) are the

system dynamics linearized at the current state and input. The

§ indicates a complementarity constraint, where 0 f λ § φ g
0 implies λ g 0, φ g 0, λTφ = 0. Critically, this constraint

succinctly describes the multi-modality of contact dynamics

for both making and breaking contact as well as the boundary

between stick and slip. For example, the boundary between

sliding and sticking friction for a given sliding direction can

be expressed as:

0 f µλn − λt § v g 0, (3)

where λn is the normal force, and λt is the tangential force

in the opposite direction of the sliding velocity v. With this

context, Eq. (2) is the linearization of the contact boundaries

at the current state and input.

The contact dynamics of the LCS are governed by our

choice of contact geometry. We approximate the surface-

surface contacts between the end effector and object as well

as the object and external contacts using point contacts.

We use three contact points between the end effector and

object, because that is the minimum number necessary to have

statically stable surface-surface contact. Similarly, we model

each support as two points to represent the line contacts. These

contact geometries are visualized in Fig. 4. Under this choice

of contact geometry, φ encodes the distance between any of

these contact points and the tray, represented as a cylinder.

Under this modeling choice, the number of contacts nλ is

fixed. Note, we are ignoring potential contacts between the end

effector and the supports. As these contacts are undesirable, we

simply avoid these contacts by imposing workspace constraints

on the end effector.

B. Robot-Only Model

We only consider the state of the arm when applying our

low level tracking controller. We denote the state of the robot

arm as xarm = [qarm, q̇arm], which is comprised of its

generalized positions qarm ∈ R
narm and generalized velocities

q̇arm ∈ R
narm . The arm is controlled using actuator inputs

uarm ∈ R
narm , where the inputs are motor torque commands.

For brevity, we omit the arm subscript for the remainder of

this section. We can describe the arm dynamics using the

manipulator equation:

M(q)q̈ + C(q, q̇) = Bu+ J(q)Tλee, (4)

where M is the mass matrix with approximated reflected

inertia terms [12], C contains the Coriolis and gravitational



Fig. 4: We consider seven total contacts for our task. The

contact geometries shown in red. We represent the tray as

a cylinder and we choose fixed contact points on the end

effector and supports, which we model as spheres. The radii

for the spheres are enlarged by a factor of 10 for visibility

purposes. A minimum of three contact points are required to

approximate surface-surface contact between the end effector

and tray, while two contact points are required to model each

line contact from the supports.

forces, B maps actuator inputs to generalized forces, and J is

the contact Jacobian that maps forces λee applied at the end

effector to generalized forces.

V. METHODS

A. Complementary Consensus Control

We formulate our control problem as a contact-implicit

MPC problem with LCS dynamics. This is succinctly formu-

lated as the following optimization problem:

min
xk,uk,λk

xTNQfxN +

N−1
∑

k=0

xTkQxk + uTkRuk (5)

s.t. xk+1 = Axk +Dλk +Buk + d (6)

Exk + Fλk +Huk + c g 0 (7)

λk g 0 (8)

λTk (Exk + Fλk +Huk + c) = 0 (9)

xmin f xk f xmax (10)

umin f uk f umax, (11)

where N is the planning horizon, Qf , Q,R are cost matrices,

and xmin, xmax, umin, umax are bounds on the state and input

variables. Eq. (6), Eq. (7), and Eq. (8) are the dynamics

constraints of the LCS. Eq. (9) is the orthogonality constraint

for the complementarity. Note, Eq. (9) is non-convex, but it is

possible to introduce binary variables to represent the contact

modes and transcribe the entire problem as a Mixed Integer

Quadratic Program (MIQP). However, this scales poorly with

the number of contacts, as a binary variable is needed for each

contact across all knot points.

Instead, we adopt a method called Complementarity Con-

sensus Control (C3) [2], which addresses the scaling problem

by decoupling the time dependence of the contact decisions.

The algorithm is based in consensus alternating direction

method of multipliers (ADMM), which optimizes over mul-

tiple copies of the decision variables. The full details of

the algorithm is outside of the scope of this paper, but a

key property is that the algorithm alternates between solv-

ing the MPC problem as a quadratic program (QP) without

complementarity constraints and projecting the current MPC

solution to the complementarity constraints as a mixed integer

quadratic program (MIQP) separately for each knot point.

While the solutions will eventually converge to each other,

we choose to terminate early after a fixed number of iterations

on a potentially suboptimal solution. We choose to terminate

after the QP step, because we empirically observe better

performance. Note, the suboptimal solutions from terminating

early do not necessarily satisfy the full LCS dynamics, but in

practice are good enough when used in MPC for even contact-

rich tasks.

B. System Linearization

We approximate our system as a LCS at each C3 solve. The

continuous dynamics parameters (A, B, d) of the LCS can be

solved via automatic differentiation using any popular rigid

body dynamics library. The gap function φ and corresponding

contact Jacobians J for convex geometries can be computed

by a library that implements collision detection, e.g. via the

GJK algorithm[13]. With φ and J for each contact along with

a choice of force basis, we can compute the contact-related

terms: D, E, F , H , c. We use the convex time-stepping contact

model proposed by Anitescu and Potra [1] to form the force

basis. In this model, contact forces are parameterized via the

extreme rays of the pyramidal approximation of the friction

cone. That is, for a square pyramidal approximation, there

are 4 contact force variables per point contact. This choice of

contact force basis is visualized in Fig. 7.

C. MPC Modifications for Dynamic Motions

The fast motions commanded by our MPC are on the same

timescale as the solve time. For this reason, the system state

at the end of the MPC solve is likely far from the system state

at the beginning of the MPC solve. We address this latency

problem by using the predicted state of the system according

to the previous MPC solve as the initial state constraint similar

to [3]

x0 = xsol(dt), (12)

where xsol(t) is the state trajectory from the previous MPC

solve and dt is the filtered average MPC solve time. Because

we have less confidence in the accuracy of our contact models,

we only apply this prediction to the end effector state and not

the state of the tray.

Warm starting by giving the MPC an initial guess from the

previous solve is a common technique to reduce computation

time. However, the values from the previous solution are

often poor initial guesses because the contact modes at each

knot point planned from the current MPC state may differ

from the previous solution. Because the dynamics can vary

greatly between contact modes, so can the values for x, u, λ.

For this reason, we use the corresponding predicted values

from the previous solution when possible for warm starting.

Additionally, C3 involves multiple QP and MIQP solves per



MPC solve each with different cost parameters. We address

this by treating each QP and MIQP as separate optimization

programs each with a separately cached set of warm start

variables in order to increase the quality of the warm start.

D. Operational Space Control

We use a low-level tracking controller to stabilize the plans

commanded by the MPC. Specifically we track the end effector

position, orientation, and force applied at the end effector

specified as time-parameterized trajectories. To achieve these

accelerations in our low-level tracking controller, we use

an operational space controller (OSC) [23] [39], which is

an inverse dynamics controller designed to track task-space

objectives.

It accomplishes this by finding the optimal actuator torques

that best tracks the commanded task space accelerations

ÿcmd,i, which is computed as the desired end effector acceler-

ations ÿdes,i stabilized with PD gains in task space formulated

as

ÿcmd,i = ÿdes,i(t) +Kp(ydes,i(t)− y) +Kd(ẏdes,i(t)− ẏ).
(13)

We directly track the end effector force objective λee.

We formulate this as the following quadratic program (QP):

min
u,λ,q̈

∥λ− λee∥
2

W +

N
∑

i

∥(ÿ − ÿcmd)i∥
2

Wi
(14)

s.t. Mq̈ + C = u+ JTλ λ (15)

umin f u f umax, (16)

where i refers to each task space objective and whose accel-

eration ÿi is linear mapping of q̈ and can be derived from

the task space kinematics function ψi, where y = ψi(q).
Differentiating with respect to time, we have ẏ = ∂ψ

∂q
q̇ = Jy,iq̇,

and differentiating once more we get ÿ = J̇y,iq̇ + Jy,iq̈.

Eq. (15) is the dynamics constraint that relates actuator inputs

u to joint accelerations q̈ and the actuator lower and upper

limits are specified by umin and umax respectively.

Using this general OSC formulation, we explicitly define the

tracking objectives as follows. The time-varying objectives of

the OSC are the end effector position trajectory qee(t) and the

end effector force trajectory ulcs(t), so ydes,0(t) = qee(t) and

corresponding derivatives and λee = ulcs(t). For the other

objectives, the end effector orientation target is the neutral

quaternion ydes,1 = [1, 0, 0, 0], ẏdes,1 = ÿdes,1 = [0, 0, 0]
because we assume the end effector can only move in transla-

tion degrees of freedom. Additionally, in order to keep the

robot arm in the “elbow down” configuration and have a

unique robot configuration for a given end effector position

and orientation target, we specify a single joint-space tracking

objective to keep the second joint of the arm at a fixed angle.

1) End Effector Force Target: The end effector force target

is an important component to accurately tracking the MPC

plan without relying on overly stiff impedance gains or an

integral term, both of which could cause instability for this

task. To see this, consider the scenario where the robot

balances the tray. Without a force target, the robot will not

compensate for the weight of the object, and the object will

sag according to the impedance stiffness Kp. While tracking

error for interactions solely between the manipulator and

object scales with stiffness, tracking error for systems with

additional contacts is more complex. For example during the

sliding maneuver, even small forces applied by the end effector

to the object can result in significant effects on the weight

distribution of the object across the supports and end effector.

Because our task is governed by friction forces, this objective

is particularly important.

VI. EXPERIMENTS

A. Task Parameters

The exact position targets are given in Table I. The positions

are defined in the world frame where the robot base is at the

origin. For the first and second targets, the end effector target

is the same as the tray, just offset in the vertical position to

compensate for the thicknesses. Critically, the third target for

the tray is outside the workspace limits of the end effector,

so for this pair of targets the end effector target is chosen as

the closest point within the feasible workspace. We choose to

make the third target to be identical to the initial position

in order to be able to repeatedly execute the experiment

without manually resetting the task environment. As detailed

in Section III, the next target is only given when the tray

reaches the previous target. We define reaching the target as

being within 5 cm from the target location.

Tray (m) End Effector (m) Idle Time (s)

Initial Position [0.7, 0.0, 0.485] [0.55, 0, 0.45]
First Target [0.45, 0, 0.485] [0.45, 0, 0.47 0.5

Second Target [0.45, 0, 0.60] [0.45, 0, 0.585] 3.0
Third Target [0.7, 0, 0.485] [0.6, 0, 0.47]

TABLE I: Target positions for tray retrieval task. Positions are

specified as meters and in the robot/world frame where the

base of the robot is at the origin [0, 0, 0]. Idle time indicates

how long the robot must remain at the target before the next

target is given.

1) Tray and End Effector: We use a standard circular food

service tray with a smooth low friction bottom surface and a

rubberized high friction upper surface. We model the tray as a

cylinder with uniform density. We machine the disk-shaped

end effector out of aluminum. Because the coefficient of

friction between the machined aluminum and the tray’s bottom

surface is not sufficiently high, we cover the top surface of the

end effector with tape. We estimate the friction coefficients by

slowly tilting the supports or end effector until the tray slips

and using that angle to determine a single friction coefficient,

assuming that the static and dynamic coefficients are identical.

Detailed parameters for both objects are listed in Table II and

the objects are shown in Fig. 6.

2) Franka Panda: All communication between the simu-

lator, C3 controller, and OSC were handled via LCM [21].

Communication between the low-level OSC controller and the



Fig. 5: System diagram for the hardware implementation. The different colored boxes indicate separate processes which are

connected via arrows that indicate represent communication via ROS/LCM.

Value

Tray Mass 1 kg
Tray Radius 0.228 m

Tray Thickness 0.004 m
Tray Height (including raised rim) 0.022 m

End Effector Mass 0.37 kg
End Effector Radius 0.0725 m

End Effector Thickness 0.01 m
Tray/Support Friction Coefficient 0.18

Tray/End Effector Friction Coefficient 0.5

TABLE II: Physical Parameters

Franka Panda was handled by a direct torque passthrough

controller written using franka ros, a ROS wrapper around

libfranka. We receive joint state messages from and send joint

torques commands to the robot at 1000 Hz. A separate LCM

and ROS bridge is dedicated to translating between message

types. Notably, in franka ros, it was necessary to relax the

torque and force thresholds from their default limits in order

to accommodate the fast motions and interaction forces in this

task.

B. Implementation

Both C3 and the OSC were implemented in C++ with the

help of the Drake robotics library [38]. Both controllers, as

well as franka ros and the LCM to ROS bridges, are run on

the same desktop with a Intel i7-8700K processor. The QP

step of C3 was solved using OSQP [35], while the MIQP

projection was solved using Gurobi [14]. The OSC QP was

solved using OSQP [35] at 1000 Hz. We tune the OSC and C3

parameters by executing the task in the Drake [38] simulator

using the hydroelastic contact model [28]. We directly apply

the parameters that were tuned in simulation on hardware

without additional tuning.

Here, we report the most relevant parameters for C3 and

leave the remaining parameters to be discussed in Section X-A.

We chose N = 5 knot points, a timestep of 0.075s for a time

horizon of 0.3s, and 2 ADMM iterations for each C3 solve.

Under this choice of C3 parameters, we receive a new plan

between 30 - 60 Hz. The friction coefficient for the contacts

between the tray and end effector was set to µtray,ee = 0.6
and the friction coefficient for the contacts between the tray

and the supports was set to µtray,supports = 0.1.

1) Motion Capture: We use an off-the-shelf motion capture

system [29], which uses AprilTags attached to the tray to

publish the position of the tray via ROS at 10 Hz.

Fig. 6: End effector attached to Franka robot and serving tray

with attached AprilTag.

VII. RESULTS

We performed multiple experiments to validate the ro-

bustness and generality of our framework. First we ablate

our design decision to include the force tracking objective

in the OSC by running experiments with and without that

objective. We then demonstrate the reliability by continuously

executing the experiment without manual resetting. Then, we

demonstrate the robustness of our method to inaccurate models

of mass and inertia by placing objects on the tray. We use the

same controller parameters for all three targets and across all

the demonstrations, and footage of the experiments can be

seen in the supplemental video.

A. Force Tracking Ablation

First we ablate the contribution of tracking the end ef-

fector force by executing 10 experiments with and without

the tracking objective. The tracking controller with the end

effector force objective succeeded for 80% of the trials, failing

once when trying to reach the second target when lifting an

unbalanced tray and failing once to reach the third target when

the tray slipped off in the direction of the robot base. The

trajectories of the end effector and tray for an execution are

shown in Fig. 8 and Fig. 10. The tracking controller without

the end effector force objective succeeded for 30% of the



Fig. 7: Examples of the MPC plan for retrieval (left), lift (center), and place (right), where the current state and target state

of the tray are represented as triads. The MPC plans the states, inputs, and forces for N timesteps into the future. The forces

(yellow arrows) and inputs (pink arrow) at the first timestep are visualized for each maneuver. For the retrieval maneuver,

the plan heavily relies on the external supports compared to the other two maneuvers, where the primary contacts forces are

between the end effector and tray.

trials, failing seven times to reach the third target due to the

tray either colliding when the supports or slipping off in the

direction of the robot base.

B. Reliability Test

The reliability of our method is evaluated by repeatedly ex-

ecuting the task without intervention. This is possible without

manual resetting because the final target position coincides

with the initial position, and thus we treat tracking error from

the previous execution as unstructured perturbations to the

initial state. Our method was able to complete six full cycles

before failing due to the tray reach the position threshold

(within 5cm) of the third target.

C. Task Variations

To evaluate the robustness of our method to model error,

specifically inaccurate mass and inertia properties, we add two

different objects on top of the tray as shown in Fig. 9. The

first object is a common household mug that weighs 0.319 kg

(∼30% mass of the tray). We place it at an arbitrary position

on the tray but take care to not obstruct the AprilTags on the

tray. We similarly test the tray with the second object, which

is a sugar box that weighs 0.515 kg (∼50% mass of the tray).

Without adjusting any parameters, our controller is able to

successfully complete the full task without failure.

Although our method demonstrates robustness to moderate

model error, it fails when we double the mass by stacking two

Fig. 8: Position trajectories from execution on hardware. The

visually estimated contact mode between the tray and end

effector as well as tray and supports are indicated. Note,

determining the actual contact mode for each of the seven

contacts is challenging and there are likely many more contact

mode transitions than reported in the figure. For instance, as

shown in the last frame of Fig. 7, each contact point can be

active independently.

trays. However, we can adjust our controller to accommodate

the two stacked trays by updating its model to reflect its

new mass, inertia, and contact geometry. Specifically, this

means updating the corresponding values in the URDF file



that defines the tray model. The task demonstrates the, perhaps

obvious, finding that MPC is able leverage new object models.

(a) Unmodeled mug (b) Unmodeled sugar box

(c) Two stacked trays (modeled in the controller)

Fig. 9: We evaluate our controller with the tray carrying

unmodeled household objects placed at arbitrary positions as

well as with two trays stacked on each other.

D. Behavior Analysis

We empirically observe that we did not need to tune any

parameters, including friction, when transferring to hardware.

We hypothesize that controller feedback and the stick-slip

“gait” that naturally emerges from MPC has some inherent

robustness to minor over and under estimation of friction. As

evidence for this hypothesis, we observe the trajectory traces

of the end effector and tray for two sections of the task where

transitions between sliding and sticking contact are prevalent.

The first section is during the retrieval task when the controller

attempts to slide the tray onto the end effector. We plot a 1.5

second trajectory of the initial retrieval maneuver in Fig. 10,

which shows that the end effector is not only moving back

and forth along the direction of the target, but also raising and

lowering in a circular pattern. This gait increases the normal

force between the tray when attempting to stick and decreases

the normal force when attempting to slide, even utilizing the

supports to entirely break contact with the tray. This difference

in contact forces results in a margin for the boundary between

sticking and sliding. The second section is during the place

task when the controller attempts to slide the tray off of the end

effector back onto the supports and is also shown in Fig. 10.

Here, the controller accelerates the tray forward and down

in order to initiate sliding followed by a similar gait pattern

as the first target once the tray is on the supports. Although

underestimating the friction force may not lead to failure as the

(a) Retrieve Target

(b) Place Target

Fig. 10: Portions of the end effector and tray trajectories ap-

proximately overlayed on top of image showing the naturally

planned gaits from the MPC. The selected trajectory for the

retrieve target (a) is 1.5 seconds long and 2.5 seconds long for

the place target (b).

tray should still reach the supports, overestimating the friction

force may cause sliding during the initial forward acceleration.

This may explain why, during the ablation study, the most

frequent failures were during this maneuver.

E. Perturbation Recovery

The predominant motion of the task is along the x and z-

axes. To showcase the 3D nature of our method and to high-

light its reactivity properties, we apply manual perturbations

directly to the tray primarily along the y-axis during execution

of the experiment. Our controller is able to recover from

modest perturbations applied during execution. Footage of

these perturbation recoveries are included in the supplemental

video.

F. Tray Rotation using an External Wall

To showcase the generality of our framework, we consider

a different task where the robot is initialized with the tray

balanced on the end effector and must rotate the tray using

an external wall placed to the side of the robot as shown in

Fig. 11. Reorienting objects has many practical uses such as

changing the viewing angle of the tray. This task has simi-

larities to previous works [5] [18] that use external contacts

to reorient an object grasped within parallel jaw grippers.



(a) Initial position of the tray and desired rotation direction.

(b) Final position of the tray after rotating using the wall.

Fig. 11: We apply our framework to a different task where the

robot is tasked with rotating the tray with the aid of a wall.

Using the same LCS model for the end effector and tray and a

single set of gains and a single target, our framework is able to

successfully accomplish the task. The system is initialized (a)

so that the tray must be rotated by approximately -45 degrees

about the z-axis in order to reach the target configuration

(bottom).

However, in our variation of the reorientation task, the object

has no corners to use a pivot points. In fact, only the tangential

component from the external wall contact applies a useful

moment for rotating the tray. Additionally, because the tray is

balanced on the end effector and not rigidly grasped, we have

limited control authority to adjust the contact forces between

the end effector and the tray. The result is an underactuated

reorientation task that requires careful planning and control of

the sliding forces on the end effector and rolling between the

tray and wall.

To specify this task, we are able to use the same represen-

tation (see Section X-A) for the end effector and tray in the

LCS. Therefore the only modeling change is that we replace

the two supports with a single wall, which is represented as

a simple box. We show, still using a single set of MPC gains

and a single target position for the tray and end effector,

our framework successfully moves the tray to contact and

wall and rotate the tray by 45 degrees around the z-axis in

either direction. Note, the gains used to perform this task are

different from those used for the dynamic sliding task. The

gains, along with additional experiment details, are reported

in Section X-B.

VIII. LIMITATIONS

While our controller is fairly robust to mass and inertia, it is

not robust to the height of the supports. This is not surprising

as the tray, supports, and robot are stiff, leading to senstivity

at the boundary between contact and no-contact. However,

this can be addressed by quickly adapting the LCS parameters

[22] or generating the contact geometry and system dynamics

entirely [20] [30].

Another limitation of this method originates from the LCS

model used by the MPC. A known limitation of the LCS

model is that it only is a linear representation of the contact

decisions, meaning that it cannot consider contacts beyond

the contact boundary. For example, if the end effector moves

entirely out from underneath the tray, the gap function φ will

shift and instead consider only horizontal contact between the

end effector and tray. In this scenario, the MPC cannot find a

solution for the task as it cannot reason about a path to go back

under the tray. This linear representation of contact boundaries

can be limiting when applying this method to certain dynamic

manipulation tasks such as flipping or scooping, however this

can be addressed by linearizing about a reference trajectory

with more informative configurations. On the other hand,

dynamic manipulation tasks such as batting and throwing

should, in principle, fit well within our method.

While not needing to tune a separate set of parameters

for each target highlights the flexibility of our approach, our

selected parameters choose to favor broad motions over fine

adjustments which results in higher steady state error. An

adaptive set of parameters depending on the task could reduce

this tradeoff. Additionally, the success of this task is extremely

sensitive to the C3 parameters. We found that many parameters

need to be within 20% of their final values. Fortunately, the

parameters that perform well in simulation also perform well

on hardware as we did not adjust any parameters on hardware

except to calibrate the height of the supports.

Finally, the tasks we consider have relatively few contacts

compared to the dexterous tasks demonstrated with robotic

hands [27]. The number of contact variables scales linearly

with the number of contacts and the possible MIQP branches

per knot point scaling as 2nλ . However, in practice, high

performance can often be achieved without convergence of

the ADMM iterations. As a result, the compute time required

to achieve sufficient performance is better than this worst-

case analysis would imply. However, this also means that the

compute time is sensitive to the nuances in a given task, which

might lead to faster or slower convergence to a high-quality

policy. We leave exploring the computational limits of MPC

for future work.

IX. CONCLUSION

This paper demonstrates state-of-the-art performance for a

on-palm sliding task, showing what can be accomplished with



state feedback and contact-implicit MPC.

Although we show success with one particular formula-

tion, there are many diverse formulations for contact-implicit

MPC, which may have fundamentally different limitations or

advantages. Avenues for future research include evaluating

the other formulations for contact-implicit MPC and under-

standing these fundamental differences. Additionally, existing

formulations seem to share common limitations, particularly

the vulnerability to local minima. Future work can address

how to intelligently integrate higher-level planners into this

framework.

ACKNOWLEDGMENTS

We would like to thank Alp Aydinoglu and Wei-Cheng

Huang for helpful explanations about C3. We thank Bibit

Bianchini and Mengti Sun for their tutorial on TagSlam. We

thank Brian Acosta, Leon Kim, and Jessica Yin for their help

with hardware experiments.

This material is based upon work supported by the National

Science Foundation Graduate Research Fellowship Program

under Grant No. DGE-1845298. Additional funding was pro-

vided from the AI Institute.

REFERENCES

[1] Mihai Anitescu and Florian A Potra. Formulating dy-

namic multi-rigid-body contact problems with friction

as solvable linear complementarity problems. Nonlinear

Dynamics, 14:231–247, 1997. URL https://link.springer.

com/article/10.1023/A:1008292328909.

[2] Alp Aydinoglu, Adam Wei, and Michael Posa. Consensus

complementarity control for multi-contact mpc. arXiv

preprint arXiv:2304.11259, 2023. URL https://arxiv.org/

abs/2304.11259.

[3] Gerardo Bledt. Regularized predictive control framework

for robust dynamic legged locomotion. PhD thesis,

Massachusetts Institute of Technology, 2020. URL

https://dspace.mit.edu/handle/1721.1/125485.

[4] Zachary Brei, Jonathan Michaux, Bohao Zhang, Patrick

Holmes, and Ram Vasudevan. Serving time: Real-time,

safe motion planning and control for manipulation of un-

secured objects. IEEE Robotics and Automation Letters,

9(3):2383–2390, 2024. doi: 10.1109/LRA.2024.3355731.

URL https://ieeexplore.ieee.org/document/10403905.

[5] Nikhil Chavan-Dafle, Rachel Holladay, and Alberto Ro-

driguez. Planar in-hand manipulation via motion cones.

The International Journal of Robotics Research, 39(2-3):

163–182, 2020. URL https://journals.sagepub.com/doi/

full/10.1177/0278364919880257.

[6] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar,

Edward Adelson, and Pulkit Agrawal. Visual dexter-

ity: In-hand reorientation of novel and complex object

shapes. Science Robotics, 8(84), 2023. URL https:

//www.science.org/doi/abs/10.1126/scirobotics.adc9244.

[7] Xianyi Cheng, Eric Huang, Yifan Hou, and Matthew T.

Mason. Contact mode guided motion planning for

quasidynamic dexterous manipulation in 3d. In 2022

International Conference on Robotics and Automation

(ICRA), pages 2730–2736. IEEE, 2022. URL https:

//ieeexplore.ieee.org/document/9811872.

[8] Xianyi Cheng, Sarvesh Patil, Zeynep Temel, Oliver

Kroemer, and Matthew T Mason. Enhancing dexterity

in robotic manipulation via hierarchical contact explo-

ration. IEEE Robotics and Automation Letters, 9(1):390–

397, 2023. URL https://ieeexplore.ieee.org/document/

9811872.

[9] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu,

Eric Cousineau, Benjamin Burchfiel, and Shuran Song.

Diffusion policy: Visuomotor policy learning via ac-

tion diffusion. 2023 Robotics Sciences and Systems,

2023. URL https://roboticsconference.org/2023/program/

papers/026/.

[10] Aidan Curtis, Xiaolin Fang, Leslie Pack Kaelbling,

Tomás Lozano-Pérez, and Caelan Reed Garrett. Long-

horizon manipulation of unknown objects via task and

motion planning with estimated affordances. In 2022

International Conference on Robotics and Automation

(ICRA), pages 1940–1946. IEEE, 2022. URL https:

//ieeexplore.ieee.org/document/9812057.

[11] Neel Doshi, Orion Taylor, and Alberto Rodriguez. Ma-

nipulation of unknown objects via contact configura-

tion regulation. In 2022 International Conference on

Robotics and Automation (ICRA), pages 2693–2699,

2022. doi: 10.1109/ICRA46639.2022.9811713. URL

https://ieeexplore.ieee.org/document/9811713.

[12] Roy Featherstone. Rigid body dynamics algorithms.

Springer, 2014. URL https://link.springer.com/book/10.

1007/978-1-4899-7560-7.

[13] Elmer G Gilbert, Daniel W Johnson, and S Sathiya

Keerthi. A fast procedure for computing the distance

between complex objects in three-dimensional space.

IEEE Journal on Robotics and Automation, 4(2):193–

203, 1988. URL https://ieeexplore.ieee.org/document/

2083.

[14] Gurobi Optimization, LLC. Gurobi Optimizer Reference

Manual, 2023. URL https://www.gurobi.com.

[15] WPMH Heemels, Johannes M Schumacher, and S Wei-

land. Linear complementarity systems. SIAM journal

on applied mathematics, 60(4):1234–1269, 2000. URL

https://doi.org/10.1137/S0036139997325199.

[16] Adam Heins and Angela P. Schoellig. Keep it upright:

Model predictive control for nonprehensile object trans-

portation with obstacle avoidance on a mobile manipula-

tor. IEEE Robotics and Automation Letters, 8(12):7986–

7993, 2023. doi: 10.1109/LRA.2023.3324520. URL

https://ieeexplore.ieee.org/document/10285028.

[17] Mitsuru Higashimori, Keisuke Utsumi, Yasutaka Omoto,

and Makoto Kaneko. Dynamic manipulation inspired

by the handling of a pizza peel. IEEE Transac-

tions on Robotics, 25(4):829–838, 2009. doi: 10.1109/

TRO.2009.2017085. URL https://ieeexplore.ieee.org/

document/4814586.

[18] Yifan Hou, Zhenzhong Jia, and Matthew T Mason. Fast

planning for 3d any-pose-reorienting using pivoting. In



2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 1631–1638. IEEE, 2018. URL

https://ieeexplore.ieee.org/document/8462834.

[19] Yifan Hou, Zhenzhong Jia, Aaron M Johnson, and

Matthew T Mason. Robust planar dynamic pivoting by

regulating inertial and grip forces. In Algorithmic Foun-

dations of Robotics XII: Proceedings of the Twelfth Work-

shop on the Algorithmic Foundations of Robotics, pages

464–479. Springer, 2020. URL https://link.springer.com/

chapter/10.1007/978-3-030-43089-4 30.

[20] Taylor A Howell, Simon Le Cleac’h, Jan Brüdigam,

J Zico Kolter, Mac Schwager, and Zachary Manchester.

Dojo: A differentiable physics engine for robotics. arXiv

preprint arXiv:2203.00806, 2022. URL https://arxiv.org/

abs/2203.00806.

[21] Albert S Huang, Edwin Olson, and David C Moore. Lcm:

Lightweight communications and marshalling. In 2010

IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 4057–4062. IEEE, 2010. URL https:

//ieeexplore.ieee.org/document/5649358.

[22] Wei-Cheng Huang, Alp Aydinoglu, Wanxin Jin, and

Michael Posa. Adaptive contact-implicit model predictive

control with online residual learning. arXiv preprint

arXiv:2310.09893, 2023. URL https://arxiv.org/abs/2310.

09893.

[23] O. Khatib. A unified approach for motion and force

control of robot manipulators: The operational space for-

mulation. IEEE Journal on Robotics and Automation, 3

(1):43–53, 1987. doi: 10.1109/JRA.1987.1087068. URL

https://ieeexplore.ieee.org/document/1087068.

[24] Vince Kurtz, Alejandro Castro, Aykut Özgün Önol, and

Hai Lin. Inverse dynamics trajectory optimization for

contact-implicit model predictive control. arXiv preprint

arXiv:2309.01813, 2023. URL https://arxiv.org/abs/2309.

01813.

[25] Simon Le Cleac’h, Taylor A. Howell, Shuo Yang, Chi-

Yen Lee, John Zhang, Arun Bishop, Mac Schwager,

and Zachary Manchester. Fast contact-implicit model

predictive control. IEEE Transactions on Robotics, pages

1–14, 2024. doi: 10.1109/TRO.2024.3351554. URL

https://ieeexplore.ieee.org/document/10384795.

[26] Kevin M Lynch and Matthew T Mason. Dynamic non-

prehensile manipulation: Controllability, planning, and

experiments. The International Journal of Robotics Re-

search, 18(1):64–92, 1999. URL https://journals.sagepub.

com/doi/abs/10.1177/027836499901800105.

[27] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-

An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu,

Linxi Fan, and Anima Anandkumar. Eureka: Human-

level reward design via coding large language models.

arXiv preprint arXiv:2310.12931, 2023.

[28] Joseph Masterjohn, Damrong Guoy, John Shepherd,

and Alejandro Castro. Velocity level approximation

of pressure field contact patches. IEEE Robotics and

Automation Letters, 7(4):11593–11600, 2022. doi: 10.

1109/LRA.2022.3203845. URL https://ieeexplore.ieee.

org/document/9874987.

[29] Bernd Pfrommer and Kostas Daniilidis. Tagslam:

Robust slam with fiducial markers. arXiv preprint

arXiv:1910.00679, 2019. URL https://github.com/

berndpfrommer/tagslam root.

[30] Samuel Pfrommer, Mathew Halm, and Michael Posa.

Contactnets: Learning discontinuous contact dynamics

with smooth, implicit representations. In Jens Kober,

Fabio Ramos, and Claire Tomlin, editors, Proceedings of

the 2020 Conference on Robot Learning, volume 155 of

Proceedings of Machine Learning Research, pages 2279–

2291. PMLR, 16–18 Nov 2021. URL https://proceedings.

mlr.press/v155/pfrommer21a.html.

[31] Quang-Cuong Pham, Stéphane Caron, Puttichai Lertkul-

tanon, and Yoshihiko Nakamura. Admissible veloc-

ity propagation: Beyond quasi-static path planning for

high-dimensional robots. The International Journal

of Robotics Research, 36(1):44–67, 2017. doi: 10.

1177/0278364916675419. URL https://doi.org/10.1177/

0278364916675419.

[32] C David Remy. Ambiguous collision outcomes and

sliding with infinite friction in models of legged sys-

tems. The International Journal of Robotics Research,

36(12):1252–1267, 2017. URL https://doi.org/10.1177/

0278364917731820.

[33] Fabio Ruggiero, Vincenzo Lippiello, and Bruno Sicil-

iano. Nonprehensile dynamic manipulation: A survey.

IEEE Robotics and Automation Letters, 3(3):1711–1718,

2018. doi: 10.1109/LRA.2018.2801939. URL https:

//ieeexplore.ieee.org/document/8280543.

[34] Jian Shi, J Zachary Woodruff, Paul B Umbanhowar, and

Kevin M Lynch. Dynamic in-hand sliding manipulation.

IEEE Transactions on Robotics, 33(4):778–795, 2017.

URL https://ieeexplore.ieee.org/document/7913727.

[35] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Al-

berto Bemporad, and Stephen Boyd. Osqp: An op-

erator splitting solver for quadratic programs. Math-

ematical Programming Computation, 12(4):637–672,

2020. URL https://link.springer.com/article/10.1007/

s12532-020-00179-2.

[36] Rajesh Subburaman, Mario Selvaggio, and Fabio Rug-

giero. A non-prehensile object transportation framework

with adaptive tilting based on quadratic programming.

IEEE Robotics and Automation Letters, 2023. URL

https://ieeexplore.ieee.org/document/10105969.

[37] Orion Taylor, Neel Doshi, and Alberto Rodriguez. Object

manipulation through contact configuration regulation:

Multiple and intermittent contacts. In 2023 IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tems (IROS), pages 8735–8743, 2023. doi: 10.1109/

IROS55552.2023.10341362. URL https://ieeexplore.ieee.

org/document/10341362.

[38] Russ Tedrake and the Drake Development Team. Drake:

Model-based design and verification for robotics, 2019.

URL https://drake.mit.edu.

[39] Patrick M. Wensing and David E. Orin. Generation of



dynamic humanoid behaviors through task-space control

with conic optimization. In 2013 IEEE International

Conference on Robotics and Automation, pages 3103–

3109, 2013. doi: 10.1109/ICRA.2013.6631008. URL

https://ieeexplore.ieee.org/document/6631008.

[40] J. Zachary Woodruff and Kevin M. Lynch. Planning

and control for dynamic, nonprehensile, and hybrid ma-

nipulation tasks. In 2017 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 4066–

4073, 2017. doi: 10.1109/ICRA.2017.7989467. URL

https://ieeexplore.ieee.org/document/7989467/.

X. APPENDICES

A. Full C3 Parameters for Dynamic Sliding Task

We report the full C3 parameters used across all exper-

iments. We refer to Aydinoglu et al. [2] for the detailed

parameter definitions. The LCS state vector for our system

is xlcs = [qlcs, vlcs], where

qlcs =

































eex
eey
eez

trayqw
trayqx
trayqy
trayqz
trayx
trayy
trayz

































, vlcs =





























eevx
eevy
eevz
traywx
traywy
traywz
trayvx
trayvy
trayvz





























.

All quantities are expressed in the world frame. ()x indicates

the x position, ()qw,qx,qy,qz is the orientation expressed as

a quaternion, ()vy indicates the y velocity, and ()wz ex-

pressed the angular velocity. The LCS input vector is ulcs =
[ux, uy, uz] expressed as forces applied to the end effector. The

contact forces are λ ∈ R
4ncontacts , where ncontacts is 7 for our

problem. Reminder that 4 comes from the 4 extreme rays of

a pyramidal approximation of the friction cone. We report the

parameters in Table III. The matrices Q,R,G,U are all diago-

nal matrices, so we report the diagonal terms for conciseness.

We use only three values to parameterize G and U , once each

for the state variables, contact variables, and input variables,

where G and U are diagonal matrices constructed from three

diagonal matrices as G =





Gx
Gλ

Gu



, and Gx = wGx
I ,

where Gx is overloaded to mean both diagonal matrix and the

scalar that defines the matrix. Workspace limits are imposed

only on the end effector as qee,min f qee f qee,max.

N 5
dt 0.075

µtray,ee 0.6
µtray,supports 0.1

ρ 4
ADMM iterations 2

Qq 50 * [150, 150, 150, 0, 1, 1, 0, 15000, 15000, 15000]
Qv 50 * [5, 5, 15, 10, 10, 1, 5, 5, 5]
R 50 * [0.15, 0.15, 0.1]

wGx
0.1

wGλ
10

wGu
0.1

wUx
0.1

wUλ
10

wUu
3

umin [-10, -10, 0]
umax [10, 10, 30]
qee,min [0.4, -0.1, 0.35]
qee,max [0.6, 0.1, 0.7]

TABLE III: Full C3 parameters used across all tray retrieval

experiments



B. Additional Details for Rotating with an External Wall

We use the same LCS model to represent the state of the

end effector and tray as the tray retrieval task. Thus, xlcs and

ulcs for this task are the same as discussed in Section X-A.

However, for this task, ncontacts is 4. This includes the 3

contacts to model the surface-surface contact between the end

effector and the tray and 1 contact to model the interaction

between the tray and the wall. The MPC gains used for this

task are reported below in Table IV. We give just a single

fixed target

qlcs,des = [0.55, 0.0, 0.469, 1, 0, 0, 0, 0.55, 0.0, 0.485],

for this task and the state of the system is initialized to

approximately

qlcs,init = [0.55, 0.0, 0.469, 0.925, 0, 0, 0.38, 0.55, 0.02, 0.485].

The quaternion [0.925, 0, 0, 0.38] is approximately a rotation

of 45 degrees around its z-axis. We also successfully perform

same experiment with the tray rotated approximately by -45

degrees around its z-axis. We found that offsetting the position

of tray in the direction of the wall encouraged the MPC to

utilize the wall, because otherwise it would have to trade off

position error with orientation error instead of reducing both

simultaneously. Additionally, the wall is placed 0.3 m to the

side of the robot in order to decrease the penalty of using the

wall, as the robot would need to move away from the target in

order to make contact with the wall. Finally, because the state

tracking terms of the MPC error (xlcs,des−xlcs)
TQ(xlcs,des−

xlcs) is improperly defined for the quaternions components, we

convert the quaternion orientation error into angle-axis form

and set the desired tray angular velocity to be proportional to

that error.

In the hardware setup, we use a single particle board as

the wall and use the same tray as the tray retrieval task.

Additionally, we add high friction tape to the rim of the tray

in order to increase the friction of that surface.

N 4
dt 0.05

µtray,ee 0.8
µtray,wall 1.0

ρ 5
ADMM iterations 3

Qq 50 * [10, 10, 150, 1000, 1000, 1000, 1000, 25, 25, 15000]
Qv 50 * [5, 5, 5, 1, 1, 500, 5, 5, 5]
R 75 * [1.9, 0.5, 0.05]

wGx
0.5

wGλ
75

wGu
1.25

wUx
0.5

wUλ
50

wUu
15

umin [-10, -10, 0]
umax [10, 10, 30]
qee,min [0.45, -0.2, 0.4]
qee,max [0.7, 0.2, 0.5]

TABLE IV: Full C3 parameters used for rotating with external

wall experiment


	Introduction
	Related Work
	Contact Mode Regulation
	Waiter Task
	Contact-Implicit MPC

	Problem Setup
	System Models
	Linear Complementarity Model
	Robot-Only Model

	Methods
	Complementary Consensus Control
	System Linearization
	MPC Modifications for Dynamic Motions
	Operational Space Control
	End Effector Force Target


	Experiments
	Task Parameters
	Tray and End Effector
	Franka Panda

	Implementation
	Motion Capture


	Results
	Force Tracking Ablation
	Reliability Test
	Task Variations
	Behavior Analysis
	Perturbation Recovery
	Tray Rotation using an External Wall

	Limitations
	Conclusion
	Appendices
	Full C3 Parameters for Dynamic Sliding Task
	Additional Details for Rotating with an External Wall


