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ABSTRACT

Bayesian additive regression trees have seen increased interest in recent years due to their ability to combine
machine learning techniques with principled uncertainty quanti�cation. The Bayesian back�tting algorithm
used to �t BART models, however, limits their application to a small class of models for which conditional
conjugacy exists. In this article,wegreatly expand thedomainof applicability of BART to arbitrarygeneralized
BART models by introducing a very simple, tuning-parameter-free, reversible jump Markov chain Monte
Carlo algorithm.Our algorithm requires only that the user be able to compute the likelihood and (optionally)
its gradient and Fisher information. The potential applications are very broad; we consider examples
in survival analysis, structured heteroscedastic regression, and gamma shape regression. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

Since the introduction of boosting (Freund, Schapire, and Abe

1999), algorithms that ensemble shallow decision trees have

become a fundamental part of the data science toolkit. A

Bayesian framework for ensembling shallow decision trees is

the Bayesian additive regression trees (BART) framework of

Chipman, George, and McCulloch (2010). Some advantages

of BART over other machine learning algorithms are that it

provides direct uncertainty quanti�cation and can naturally be

incorporated into hierarchical models; while there are currently

no theoretical guarantees regarding uncertainty quanti�cation,

it has been observed that BART performs surprisingly well

in practice relative to other attempts at combining machine

learning with statistical inference (Dorie et al. 2019). BART also

bears a resemblance to the random forests algorithm (Breiman

2001): both BART and random forests average predictions over a

distribution of trees (the posterior distribution and the bootstrap

distribution, respectively). In terms of predictive performance,

BART is competitive with, and sometimes outperforms, ran-

dom forests (Chipman, George, and McCulloch 2010; Linero

and Yang 2018). BART has several advantages over random

forests, including (i) the ability to adapt to additive structures

in the regression function (Ročková and van der Pas 2020),

and (ii) the ability to use the posterior distribution to quantify

uncertainty.
A drawback of BART is that one usually needs to tailor it

to the problem at hand. Since the initial work of Chipman,
George, and McCulloch (2010), which developed methods for
semiparametric regression and classi�cation, there have been
substantial e�orts to extend BART to other settings; a lim-
ited set of examples include survival analysis (Sparapani et al.
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2016; Linero et al. 2022), Poisson regression (Murray 2021),
and gamma regression (Linero, Sinha, and Lipsitz 2020). These
developments have required either (i) the model to be such that
so�ware for normal or probit models can be adapted or (ii) the
involvement of experts in BART methodology.

The di�culty of implementing new BART models stands in

stark contrast with the di�culty of implementing new decision

tree boosting algorithms, which can be done with very minimal

expertise. In particular, given outcomes Y = (Y1, . . . ,YN),

covariate vectors X = (X1, . . . ,XN), and any utility function

R(Y | X, r, η) =
∑N

i=1 Rη

(
Yi | r(Xi)

)
with nuisance parameter

vector η, one can construct a gradient boosting algorithm (Fried-

man 2001) for estimating the function r(x) that only requires

users to provide the functions Rη(y | λ), Uη(y | λ) = ∂
∂λ
Rη(y |

λ), and, optionally, Jη(y | λ) = − ∂
∂λ
Uη(y | λ); for model-

based inference with a parametric family {fη(· | λ)}, note that
we can take Rη(y | λ) = log fη(y | λ). So�ware such as the R

packages xgboost and mboost make it straight-forward for

users to supply these functionsmanually, allowing boosting to be

applied with arbitrarymodels and loss functions. This di�erence

between BART and boosting is not because gradient boosting is

an intrinsically simpler algorithm, but rather because the com-

plex parts of the algorithm can be abstracted away from the user;

in addition to boosting, abstracting away the implementation

of complex inference algorithms has been key to the success of

applied Bayesian modeling, which has been fueled by packages

such as Stan and JAGS.

The contributions of this work are as follows.

1. Our primary aim is to introduce a framework for �tting gen-
eralized BART models with likelihoods of the form

∏
i fη{Yi |
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r(Xi)} that, like gradient boosting, allows us to automate the
application of BART to new settings.

2. We show that generalized BART is capable of addressing a
wide variety of problems, and o�en outperforms gradient
boosting for likelihood-based inference, while also providing
natural uncertainty quanti�cation.

3. We address the main obstacle to �tting generalized BART
models: the reliance of BART on the generalized Bayesian
back�tting algorithm of Hill, Linero, and Murray (2020),
which requires users to be able to specify a prior πμ(μ)

such that the integrated likelihood � =
∫ ∏

i fη(Yi |
θi + μ)πμ(μ) dμ can be computed in closed form for any
collection of back�t parameters θ = (θ1, . . . , θN). Existing
algorithms require this to compute a Metropolis-Hastings
acceptance probability for modifying the structure of a tree.

Rather than starting from the assumption that � is analyti-
cally tractable, we instead assume (like boosting) that log fη(y |
λ) and its derivatives have been provided; strictly speaking
even the derivatives need not be provided, as our algorithm
can also be applied by approximating the derivatives with
�nite di�erences. Using only this assumption, we construct a
generic reversible jump Markov chain Monte Carlo (RJMCMC,
Green 1995) algorithm to sample new tree structures. The jump
between dimensions is constructed using a Laplace approxima-
tion to ensure that the proposal has a high probability of being
accepted. Importantly, our proposal is agnostic to the choice of
model and completely free of tuning parameters.

We implement several models to illustrate both the accuracy
and �exibility of our approach. We benchmark our algorithm
on both semiparametric regression and classi�cation problems,
which are handled by existing algorithms; as a bonus, the RJM-
CMC algorithm avoids any data augmentation (Albert and Chib
1993).We thenmove on to previously intractablemodels such as
structured variancemodeling, accelerated failure timemodeling
with the log-logistic and generalized gamma distributions, and
modeling of the shape parameter in gamma regression. In all
cases we �nd that our RJMCMC algorithm works well.

In Section 2 we review the BARTmodels which can currently
be �t using existing Bayesian back�tting algorithms. In Section 3
we develop our RJMCMC algorithm for arbitrary generalized
BARTmodels. In Section 4,we study the posterior concentration
properties of some generalized BART models. In Section 5 we
illustrate our approach on a variety of both real and simulated
problems. We close in Section 6 with a discussion.

2. Bayesian Additive Regression Trees

2.1. A Brief Review of BART

Supposewe have outcome dataY = (Y1, . . . ,YN) and covariates
X = (X1, . . . ,XN)where, for simplicity, we assume that Xi takes
values in [0, 1]P. The Bayesian additive regression trees (BART)
model as originally proposed by Chipman, George, and McCul-
loch (2010) is a semiparametric regression model of the form

Yi ∼ Normal{r(Xi), σ
2}

where r(x) =
T∑

t=1

g(x; Tt ,Mt) (i = 1, . . . ,N), (1)

Figure 1. Schematic showing how a regression tree (left) gives rise to a step func-
tion of the predictors (right).

where N is the sample size. The functions g(x; Tt ,Mt) are
regression trees parameterized by a decision tree Tt and a collec-
tion of predictions for the leaf nodes Mt . Formally, we de�ne
a (binary) decision tree T as a collection of nodes n ∈ N (T )

where n is a �nite (potentially empty) string of the symbols L
(le�) and R (right). We say that 	 ∈ N (T ) is a leaf node of T
if both 	L /∈ N (T ) and 	R /∈ N (T ). Any node b which is not
a leaf node is called a branch node, and we require that both
bL ∈ N (T ) and bR ∈ N (T ) for every branch b. We let L(T )

and B(T ) denote the leaf and branch nodes of T respectively.
It will also be convenient for us to de�ne NOG(T ) to be the
set of non-grandparent branches, that is, NOG(T ) = {b ∈
B(T ) : bR ∈ L(T ) and bL ∈ L(T )}; for example, the only non-
grandparent branch in the tree in Figure 1 is the branch b = L.

Associated to each b ∈ B(T ) is a splitting rule of the form
[xjb ≤ Cb]. If x is associated to b and x satis�es b’s splitting
rule then we associate x to bL; otherwise, we associate x to bR.

We write x
T
� n (or x � n when T is clear from context) to

denote that x is associated to node n of tree T . The collection of
predictions can then be de�ned by Mt = {μt	 : 	 ∈ L(Tt)}.
By design, the leaf nodes partition the predictor space so that
x � 	 for exactly one 	 ∈ L(Tt). Given (Tt ,Mt) the decision
tree outputs the prediction g(x; Tt ,Mt) = μt	 if-and-only-if

x
Tt
� 	. A schematic showing how predictions are generated

from a regression tree is given in Figure 1.
TheBARTmodel places independent priors on the regression

trees (Tt ,Mt)
iid∼ πT (Tt) πM(Mt | Tt). We assume inde-

pendence across the leaf node parameters, that is, πM(Mt |
Tt) =

∏
	∈L(Tt)

πμ(μt	). When possible, πμ is chosen so that
it is conditionally conjugate; for the model (1) we take πμ(μ) =
Normal(μ | 0, σ 2

μ).
The most common choice of prior for πT (T ) is a branching

process: starting at depth d = 0, each node of depth d is made
a branch node with probability ρd = γ (1 + d)−β and is made
a leaf otherwise. This process iterates until all nodes at depth
d are leaves. A�er the shape of the tree is generated, Chipman,
George, and McCulloch (2010) propose generating the splitting
rules [xjb ≤ Cb] for each b ∈ B(T ) by (i) sampling a decision
rule jb from {1, . . . ,P} such that jb can produce a “valid” splitting
rule and (ii) sampling Cb ∼ Uniform(Xij : Xi � b) such that
the splitting rule is “valid”; if no such valid Xij exists, we instead
force the node to be a leaf. For a rule to be valid, Chipman,
George, and McCulloch (2010) require that the rule associate
some minimum number of Xi’s to each child node (say, 5). A
simple alternative, which we use here, is to simply take jb = j
with some probability s = (s1, . . . , sP) (the simplest option being
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Figure 2. Comparison of the �t of BART with T = 1 (left) and T = 50 (right) to Yi ∼ Normal{sin(2πXi), 0.22}. The function sin(2πx) is given by the dark green line; bands
correspond to posterior 95% credible bands.

sj = 1/P) and then sample Cb ∼ Uniform(Lbj,Ubj) where∏P
k=1[Lbk,Ubk] is the hyperrectangle in [0, 1]P of points x with

x � b.
BART improves upon using a single decision tree r(x) =

g(x; T ,M) in several ways. First, as seen in Figure 2, the addi-
tion of many decision trees together can smooth the estimates
of a function; this results in both more accurate predictions
and uncertainty quanti�cation. Second, the posterior tends to
be easier to explore when many trees are used. Third, as argued
heuristically by Chipman, George, and McCulloch (2010) and
rigorously by Linero and Yang (2018); Ročková and van der
Pas (2020), BART models induce a “shrinkage toward approx-
imately additive models:” samples of BART from the prior tend
to involve, at most, lower-order interactions in the covariates.
Outside of highly structured problems (e.g., image or speech
recognition), this structure is representative of what one o�en
expects to see in practice; for this reason, BART has been
seen to perform very well across many problems in predic-
tion (Chipman, George, andMcCulloch 2010), survival analysis
(Sparapani et al. 2016), and causal inference (Hahn,Murray, and
Carvalho 2020; Hill 2011).

2.2. Generalized BARTModels

In this article we consider BART models in which the function
r(x) enters the model in an arbitrary form. Our approach is
applicable to any posterior of the form

π(r, η | D) ∝ exp

{
N∑

i=1

log fη
(
Yi | r(Xi)

)
}

π(r) π(η), (2)

where log fη(y | λ) is the log-likelihood of some parametric
model {fη(· | λ) : η ∈ H, λ ∈ R} and η is a vector of nuisance
parameters. We note, however, that it is straight-forward to
replace log fη(y | λ) with an arbitrary utility function Rη(y | λ)

in our framework. We say that the model is a generalized BART
model if r has a BART prior.

The seminal work of Chipman, George, and McCulloch
(2010) develops the semiparametric regression model fσ (y |

λ) = Normal(y | λ, σ 2) (for continuous outcome data) and the
Binomial probit regression model fn(y | λ) = Binomial

(
y |

n,
(λ)
)
(for binary data). Several other models have also been

developed in this framework, such as the Poisson model f (y |
λ) = Poisson(y | eλ) (Murray 2021) for count outcomes and
the gamma regression model fα(y | λ) = Gam(y | α, eλ)
(Linero, Sinha, and Lipsitz 2020) for nonnegative outcomes.
Taking the nuisance parameter η to be in�nite-dimensional, this
also includes several recently proposed BART models for fully-
nonparametric regression and survival analysis (George et al.
2019; Henderson et al. 2020; Linero et al. 2022; Li, Linero, and
Murray 2023).

The need for generic algorithms for �tting generalized BART
models is evinced by the fact that, in some cases, the theoretical
development of generalized BART has preceded our ability to
implement it. For example, Saha (2023) proposes and studies
BARTmodels in the exponential family f (y | λ) = exp{λT(y)−
b(λ)+ c(y)}without providing algorithms for �tting these mod-
els. Instead, prior to this work, implementing new instances of
the generalized BART model required researchers to either �nd
clever ways of adapting existing Bayesian back�tting algorithms
(e.g., by introducing latent variables as in Kindo et al. 2016)
or �nd novel setups for leveraging conjugacy (Murray 2021);
both options generally require extensively modifying existing
so�ware.

2.3. Bayesian Back�tting in Generalized BARTModels

Inference in the semiparametric model (1) proceeds by means
of a Bayesian back�tting algorithm, which iteratively updates
the pairs (Tt ,Mt) for t = 1, . . . ,T. To facilitate forthcoming
comparisons with our RJMCMC algorithm, we describe the
original Bayesian back�tting algorithm of Chipman, George,
andMcCulloch (2010) in a slightly unconventional way. In order
to update (Tt ,Mt), we �rst de�ne θi =

∑
k�=t g(Xi; Tk,Mk) so

that Yi ∼ Normal(θi + μ	, σ
2) where 	 is the leaf such that

Xi
Tt
� 	. Let T−t = {Tk : k �= t} denote the set of all trees

except for tree Tt , M−t = {μk	 : k �= t} denote the set of
all leaf node parameters except those associated to tree t, and
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Ri = Yi − θi denote the back�t residual. The full conditional
π(Tt | T−t ,M−t ,X,Y , σ

2) of Tt with Mt marginalized out is
then proportional to

πT (Tt)
∏

	∈L(Tt)

∫
πμ(μ)

∏

i:Xi
Tt
�	

Normal(Yi | θi + μ) dμ

= πT (Tt)
∏

	∈L(Tt)

∫
πμ(μ)

∏

i:Xi
Tt
�	

Normal(Ri | μ, σ 2) dμ,

(3)

Importantly, when πμ(μ) = Normal(μ |, 0, σ 2
μ) this marginal

likelihood can be computed in closed-form due to the conjugacy
properties of the normal distribution (see Kapelner and Bleich
2016 for details). This allows us to update Tt using aMetropolis-
Hastings algorithm: we sample T ′ ∼ q(T ′ | Tt) from some
proposal distribution q(· | ·) and accept or reject it accord-
ing to a Metropolis-Hastings ratio based on (3). Generally, the
BIRTH, DEATH, and CHANGE proposals of Chipman, George,
and McCulloch (1998) (or the more advanced versions of these
moves proposed by Pratola 2016) are used for q(· | ·); we
discuss variants of these moves in Section 3.1. While BART
was initially developed for semiparametric regression,Chipman,
George, and McCulloch (2010) show how to adapt (1) to classi-
�cation settings using a probit model Yi ∼ Bernoulli[
{r(Xi)}].
Inference then proceeds by combining the above Metropolis-
Hastings approach with the data augmentation procedure of
Albert and Chib (1993).

While convenient and intuitive, the process of going from
Yi to Ri masks a more general expression which allows the
Bayesian back�tting algorithm to be generalized; speci�cally, for
a generic parametric model fη(y | λ) the relevant conditional
distribution is

π(Tt | T−t ,M−t ,Y ,X, σ
2)

∝ πT (Tt)
∏

	∈L(Tt)

∫
πμ(μ)

∏

i:Xi
Tt
�	

fη(Yi | θi + μ) dμ.

We can therefore generalize the Bayesian back�tting algorithm if
we canmakeπμ(μ) conjugate to

∏
i fη(Yi | θi+μ). A generalized

Bayesian back�tting algorithm based on this expression is given
inAlgorithm1. Beyond the normal-normalmodel, this Bayesian
back�tting algorithm has been used to implement (i) Poisson
loglinear models and multinomial logistic regression (Murray
2021), (ii) gamma regression (Linero, Sinha, and Lipsitz 2020),
(iii) nonparametric variance models (Pratola et al. 2020), and
(iv) the Cox proportional hazards model (Linero et al. 2022).
For example, the Poisson loglinear model takes f (Yi | θi +
μ) = Poisson(Yi | eθi+μ), for which the log-gamma distribu-
tion μt	 ∼ logGam(a0, b0) is a conditionally conjugate prior;
speci�cally, we have

πμ(dμ)
∏

Xi
T
�	

fη(Yi | θi + μ) =
b
a0
0 exp(

∑
Xi�	 Yi θi)

�(a0)
∏

Xi�	 Yi!

× exp{μ(a0 +
∑

Xi�	

Yi) − eμ(b0 +
∑

Xi�	

eθi)},

Algorithm 1One iteration of a generalized Bayesian back�tting
algorithm for updating (Tt ,Mt)

Input: {Tt ,Mt : t = 1, . . . ,T}, Y ,X, η, q(· | ·)
1: for t = 1, . . . ,T do

2: Compute θi ←
∑

k�=t g(Xi; Tk,Mk) for i = 1, . . . ,N.

3: Propose a new tree structure T ′ ∼ q(T ′ | Tt).
4: Compute the integrated likelihoods �(Tt) and �(T ′)

where

�(T ) =
∏

	∈L(T )

∫
πμ(μ)

∏

i:Xi
T
�	

fη(Yi | θi + μ) dμ.

5: Compute the acceptance probability

A = min

{
�(T ′) πT (T ′) q(Tt | T ′)

�(Tt) πT (Tt) q(T ′ | Tt)
, 1

}
.

6: With probability A, set Tt ← T ′; otherwise, leave Tt
unchanged.

7: SampleMt from its full conditional distribution.
8: end for

which we recognize as proportional to a logGam(a0 +∑
i:Xi�	 Yi, b0 +

∑
i:Xi�	 e

θi) density.
Unfortunately, for many models of interest it will not be

possible to �nd aπμ which is conjugate to
∏

i fη(Yi | θi+μ). The
class of models for which this is feasible is, in fact, surprisingly
narrow: for example, one cannot leverage the conjugacy of the
beta distribution to the binomial likelihood to construct a gen-
eralized Bayesian back�tting algorithm. One possible solution,
which was used by Chipman et al. (2021) to implement amono-
tone variant of BART, is to compute

∫
πμ(μ)

∏
i:Xi

T
�	

fη(Yi |
θi + μ) dμ numerically and then sample Mt using a discrete
approximation to the posterior; this introduces new problems,
as it requires both approximating the posterior on a grid and
evaluating the likelihood at a large number of grid points. In the
following section, we showhow to bypass the need for conjugacy
via RJMCMC.

3. Implementing Generalized BART with RJMCMC

We now show how to implement the generalized BART model
using a generic reversible jump Markov chain Monte Carlo
(RJMCMC) algorithm. Because RJMCMC has a reputation for
being di�cult to implement, and given the breadth of applica-
tions we want to consider, it is essential that the algorithms we
propose depend on neither tuning parameters nor the details of
a given problem.

We also provide a “default” prior for routine use which works
well across many problems. This is essential for widespread
adoption of our approach, as prior speci�cation is a barrier to
the use of Bayesian nonparametric methods by nonexperts.

3.1. Reversible JumpMarkov ChainMonte Carlo on Trees

Throughout this section, we consider updating a regression tree
(Tt ,Mt)with the quantities θ = (θ1, . . . , θN) and η �xed, where
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θi =
∑

k�=t g(Xi; Tk,Mk). To lighten notation, we will suppress
dependence ofmost quantities in this section on (Y ,X, η, θ), and
we will drop the index t from (Tt ,Mt). Conditional on the θi’s
and the nuisance parameter vector η, the model for the data is
Yi ∼ fη{y | θi + g(Xi; T ,M)}. The likelihood is then given by

L (T ,M) =
∏

	∈L(T )

∏

i:Xi�	

fη(Yi | θi + μ	). (4)

This quantity plays the same role in our RJMCMC scheme as
the integrated likelihood�(T ) does in the generalized Bayesian
back�tting algorithm of Section 2.2.

We consider the following Metropolis-Hastings proposals,
which are directly analogous to standard proposals for the
Bayesian CART of Chipman, George, and McCulloch (1998);
our proposals operate on (T ,M) rather than just T .

BIRTH Randomly choose a leaf node 	 ∈ L(T ) and sample
a splitting rule [xj	 ≤ C	]. Convert 	 from a leaf to a
branch with two leaf children and sample (μ′

	L,μ
′
	R) ∼

GBIRTH(μ
′
	L,μ

′
	R) where GBIRTH(·, ·) is a proposal distribu-

tion to be described in Section 3.2.
DEATH Randomly choose a branch node b ∈ NOG(T ) and

convert b from a branch to a leaf (deleting its children). Then
sample μ′

b ∼ GDEATH(μ
′) where GDEATH(·) is a proposal

distribution to be described in Section 3.2.
CHANGE Randomly choose a branch node b ∈ NOG(T )

and sample a new splitting rule [xj′b ≤ C′
	] from the

prior. Then sample new leaf node predictions (μ′
bL,μ

′
bR) ∼

GCHANGE(μ
′
bL,μ

′
bR) where GCHANGE(·, ·) is a proposal distri-

bution to be described in Section 3.2.

We now give a validMetropolis-Hastings acceptance ratio for
the BIRTH, DEATH, and CHANGE moves. It is useful to de�ne,
for a given node n (not necessarily a leaf), the quantity

F (n | T ,μ) = πμ(μ)
∏

i:Xi�n

fη(Yi | θi + μ). (5)

Using (5), the likelihood (4) is given by L (T ,M) =∏
	∈L(T ) F (	 | T ,μ	)/πμ(μ	).

Proposition 1. Let pBIRTH(T ) and pDEATH(T ) denote the prob-
ability of proposing BIRTH and DEATH moves to modify T ,
respectively and let |A| denote the size of a �nite set A. For the
BIRTH, DEATH, and CHANGE moves, accepting the proposed
change with probability 1 ∧ R leaves the posterior invariant,
where

RBIRTH =
ρd(1 − ρd+1)

2

(1 − ρd)
·
F (	L | T ′,μ′

	L)F (	R | T ′,μ′
	R)

F (	 | T ,μ	)

·
pDEATH(T

′) |NOG(T ′)|−1

pBIRTH(T ) |L(T )|−1
·

GDEATH(μ	)

GBIRTH(μ
′
	L,μ

′
	R)

RDEATH =
(1 − ρd)

ρd(1 − ρd+1)
2

·
F (b | T ′,μ′

b)

F (bL | T ,μbL)F (bR | T ,μbR)

·
pBIRTH(T

′) |L(T )|−1

pDEATH(T ) |NOG(T ′)|−1
·
GBIRTH(μbL,μbR)

GDEATH(μ
′
b)

and

Algorithm 2 One iteration of reversible jump Bayesian back�t-
ting

Input: Y ,X, η, {Tt ,Mt}Tt=1

1: Set θi ←
∑T

t=1 g(Xi; Tt ,Mt) for i = 1, . . . ,N.
2: for i = 1, . . . ,T do

3: Set θi ← θi − g(Xi; Tt ,Mt) for i = 1, . . . ,N.
4: Sample (T ′,M′) by randomly choosing between the
BIRTH, DEATH, and CHANGE steps.

5: Compute the associated acceptance probability from
Proposition 1 with (Tt ,Mt) in place of (T ,M) and
accept (T ′,M′) with that probability.

6: Sample Mt targeting its full conditional using an MH
step.

7: Set θi ← θi + g(Xi; Tt ,Mt) for i = 1, . . . ,N.
8: end for

RCHANGE =
F (bL | T ′,μ′

bL)F (bR | T ′,μ′
bR)

F (bL | T ,μbL)F (bR | T ,μbR)

·
GCHANGE(μbL,μbR)

GCHANGE(μ
′
bL,μ

′
bR)

.

Proposition 1 can be established by applying the results of
Green (1995) a�er introducing a suitable dimension-matching
transformation. In the supplementary material we give a deriva-
tion of RBIRTH (RDEATH being the inverse move and RCHANGE not
requiring RJMCMC). Algorithm 2 summarizes the proposed
approach.

3.2. Choice of the Proposal Distribution

The success of Algorithm 2 depends crucially on the quality
of the proposal mechanisms GDEATH(μ	), GCHANGE(μ	), and
GBIRTH(μ	L,μ	R). As part of the joint proposal for (T ,M),
these proposals are allowed to depend on T as well as Y and θ .
An e�ective proposal should be both accurate and applicable to
arbitrary models. To meet this need, we choose the proposal to
be a Normal(m, v2) distribution constructed using the Laplace
approximation (see, e.g., Gelman et al. 2013, chap. 13), which
requires only that we have access to the �rst and second deriva-
tives of log fη(y | λ). Recall that we de�ne Uη(y | λ) =
∂
∂λ

log fη(y | λ) andJη(y | λ) = − ∂
∂λ
Uη(y | λ). Then, for exam-

ple, in the BIRTH step we propose μ′
	L ∼ Normal(m	L, v

2
	L)

where

m	L = argmax
μ

∑

i:Xi�	L

log fη(Yi | θi + μ) + logπμ(μ) and

v−2
	L =

∑

i:Xi�	L

Jη(Yi | θi + m	L) −
d2

dμ2
logπμ(μ)|μ=m	L .

(6)

The values m	L and v	L can be computed using, for example,
Newton’s method: starting from μ	L, we perform the update

m	L ← m	L +
∑

i Uη(Yi | θi + m	L) + d
dμ logπμ(μ)|μ=m	L

∑
i Jη(Yi | θi + m	L) − d2

dμ2 logπμ(μ)|μ=m	L

,

until some stopping criterion is reached. Alternatively, the Fisher
scoring algorithm replaces Jη(Yi | θi + μ) with Iη(θi + μ) =
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Algorithm 3 Fisher scoring for computing m	 and v	 for the
proposal distribution of μ	

Input: 	, T ,Y ,X, θ , η, σ 2
μ

Let:Uη(μ, 	) =
∑

i:Xi�	 Uη(Yi | θi+μ)−μ/σ 2
μ andIη(μ, 	) =∑

i:Xi�	 I(θi + μ) + 1/σ 2
μ.

1: Initializem	: for BIRTHmoves, use the value ofμ from the
parent node; for DEATHmoves use (μ	L + μ	R)/2

2: while |Uη(m	, 	)| > Iη(m	, 	)
1/2/10 do

3: m	 ← m	 + Uη(m	, 	)/Iη(m	, 	)
4: end while

5: v ← Iη(m	, 	)
−1/2

6: return (m	, v	)

E{Jη(Yi | θi + μ) | θ , η,μ}; in our experience Fisher scoring
tends to be more robust than Newton’s method, and we will use
Fisher scoring whenever it is feasible. Note also that we do not
need to compute (6) exactly, as we just want reasonable Gaussian
approximations to the full conditional distributions of the leaf
node parameters; any inaccuracies are naturally corrected for by
their e�ect on the Metropolis-Hastings acceptance probability.
Algorithm 3 gives the Fisher scoring algorithm we used in our
illustrations, assuming πμ(μ) = Normal(μ | 0, σ 2

μ); to use
Newton’s method instead, simply replace Iη(λ) with Jη(Yi | λ)

where appropriate.
Conveniently, the use of a highly informative Gaussian prior

for the leaf parameters has bene�ts for the accuracy of the
Laplace approximation. First, the likelihood is encouraged to be
nearly Gaussian even if little data is associated to a particular
node. Second, because the prior shrinks the μ’s toward zero,
Newton’s method and Fisher scoring generally converge very
quickly even if we initialize the algorithm naively at μ = 0.

Remark 1. Note that we are using the Laplace approximation
only to generate a reasonable proposal distribution, and that our
Metropolis-Hastings algorithm leaves the posterior invariant
exactly. This approach can be contrasted with using the Laplace
approximation to the marginal likelihood to approximate the
marginal likelihood of a given tree in a Metropolis-Hastings
algorithm, which does not leave the posterior invariant. Note
also that it is important that the same Laplace approximation is
used for both the BIRTH and DEATH steps, as this is essential
for the BIRTH move to be the inverse of the DEATH move and
vice-versa.

Remark 2. We have found that, depending on the model, our
RJMCMC scheme can be sensitive to the choice of σμ: if a value
ofσ 2

μ is chosenwhich is too large, the algorithmgets “stuck” early
on and does not progress toward the stationary distribution. To
�x this, we have found that it is essential to slowly increase σμ

from 0 to its desired value for some fraction of the burn-in phase
of the MCMC (we used 25% of the burn-in iterations for this).

3.3. Choice of the Prior Distribution

There are three prior speci�cations we must make: the prior for
the trees (πT ), the leaf node parameters (πM), and the nuisance
parameter η. ForπT , we use Chipman, George, andMcCulloch’s

(2010) defaults (γ = 0.95, β = 2, and T ∈ 50, 200), though
choosing T via cross-validation may be bene�cial. Addition-
ally, as suggested by Linero (2018), we recommend replacing
the uniform distribution for jb described in Section 2.1 with
jb ∼ Categorical(s) where the hyperparameter s is given a
Dirichlet(ξ/P, . . . , ξ/P) hyperprior; this allows the model to
�lter out irrelevant variables much more e�ectively than the
original BARTprior. As η is problem speci�c, we o�er no general
guidelines on the selection of its prior.

The choice of πμ is less straight-forward. We are no longer
constrained by the conjugacy requirements of the generalized
Bayesian back�tting algorithm, and so for simplicity we take
πμ(μ) = Normal(μ | 0, σ 2

μ). The appropriate scale for σ 2
μ

will typically be problem speci�c, making it di�cult to make a
general recommendation. One strategy we have found to work
well is to use a half-Cauchy prior π(σμ) ∝ (1 + σ 2

μ/c2)−1

for some small c (say, c = k/
√
T where T is the number

of trees and k is 1 or 0.1). We use a Metropolis-within-Gibbs
strategy to update σμ under the half-Cauchy prior; speci�cally,
we propose σμ from the full conditional associated with an
improper (conditionally conjugate) Uniform(0,∞) prior on σμ.

4. Posterior Contraction in Generalized BARTModels

There is a growing literature that studies the rate at which the
posterior distribution of a BART model contracts (Linero and
Yang 2018; Ročková and van der Pas 2020; Orlandi et al. 2021;
Linero et al. 2022; Li, Linero, and Murray 2023; Saha 2023),
with the theory spanning exponential families to nonparametric
density estimation.We add to this literature by establishing pos-
terior concentration rates for a class of generalizedBARTmodels
that contains most of the illustrations given in this manuscript,
under the simplifying assumption that the nuisance parameter
η is known. To link prior work on the theoretical properties of
BART to the generalized BART model, we assume a bound on
the Kullback-Leibler divergence between densities fη(y | μ) and
fη(y | μ + �) of the form:

KLp{fη(· | μ)‖fη(· | μ + �)}

=
∫

fη(y | μ)

(
log

fη(y | μ)

fη(y | μ + �)

)p

ν(dy) ≤ Cη �2,

(A1)

for all |�| ≤ 1, where Cη is a universal constant depending
on the model, p = 1, 2, and ν(dy) denotes an appropriate
dominating measure.

We make the following assumptions about the unknown
function of interest r0(x).

Condition F. The function r0 : RP → R is α-Hölder smooth
for some α ∈ (0, 1] on R

P, and depends on only D of the
coordinates. Additionally, the Xi’s are supported on [0, 1]P.

In other words, r0(x) is a smooth function of P predictors,
with only D predictors relevant. Condition F can be relaxed in
several ways: For example, we can replace Condition F with a

low-order interaction assumption r0(x) =
∑V

v=1 r0v(x), with
improved rates if the individual functions r0v(x) are themselves
sparse. Alternatively, we can weaken the assumption that α ≤ 1
by using so� decision trees (Linero and Yang 2018; Ročková and
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van der Pas 2020). Our proof strategy can also accommodate P
diverging nearly-exponentially in N, provided that D remains
bounded, at the expense of an additional variable selection

term

√
D logP

N term in the following error rates. Our results are

summarized in the following theorem, which is proven in the
supplementary material.

Theorem 1. Suppose (Yi,Xi : i = 1, . . . , n) are iid pairs with
Xi ∼ FX and [Yi | Xi = x] ∼ fη{y | r0(x)} where r0(x)
satis�es Condition F, the family {fη(· | μ) : μ ∈ R} satis�es
Condition A1, and the prior r ∼ � satis�es Condition P in the
supplementary material. Then there exists a constant M > 0
such that

�{d(r, r0) ≥ Mεn | (Yi,Xi : i = 1, . . . , n)} → 0

in probability

as n → ∞, where d(r, r0) =
∫∫

|fη{y | r(x)} − fη{y |
r0(x)}| ν(dy)FX(dx) is theFX-integrated total variation distance,
�{· | (Yi,Xi : i = 1, . . . , n)} is the posterior distribution of r
given (Yi,Xi : 1 = 1, . . . , n), and εn = (log n/n)α/(2α+D).

In the supplementary material, we verify Condition A1 for
several of the families examined in this article, leading to the
following corollary.

Corollary 1. Condition A1 holds for the following models:

• Exponential dispersion families fη(y | μ) = exp
{
yμ−b(μ)

η

+c(y; η)
}
such that the V(μ) = b′′(μ) is bounded (e.g.,

normal, Bernoulli-logit, and beta regression models).

• Location-scale families fη(y | μ) = 1
η
f
(
y−μ

η

)
with f (x)

twice continuously-di�erentiable and satisfying Condition T
in the supplementary material (e.g., the normal, logistic, and
Student’s tν location-scale families).

• The Bayesian quantile regression forests of Kindo et al.
(2016), where fη(y | μ) is an asymmetric Laplace distribution
with scale τ , quantile q, and η = (τ , q).

Hence, under Condition F and Condition P, Theorem 1 applies
to these models.

Remark 3. Theorem 1 prioritizes conciseness and simplicity of
the proof rather than generality. For many applications, such
as Poisson regression with the canonical link or the structured
variancemodel used in Section 5.2, assumptionA1 is too strong.
In particular, we would need to replace Cη with Cη(μ) where
Cη(μ) is not bounded, which makes it di�cult to construct
an appropriate high-mass low-entropy sieve; one can bypass
this by either using a bounded link function (Saha 2023) or
by appealing to fractional posteriors (Linero and Yang 2018;
Bhattacharya, Pati, and Yang 2019). One might also consider
more relevant metrics than the L1-integrated total variation
d(r, r0), such as the empirical L2 distance de�ned by ‖r−r0‖2n =
1
n

∑n
i=1

∫
{r0(Xi) − r(Xi)}2. The conclusion of Theorem 1 holds

with d(r, r0) replaced by ‖r − r0‖n provided, roughly speaking,
that there exist su�ciently powerful tests of the hypothesis H0 :
r = r0 against the alternative H1 : ‖r − r0‖n > Cεn for some

C > 0 (see chap. 8 of Ghosal and van der Vaart 2017), which
is the case for both the Bernoulli-Logit and normal regression
problems. We note that, while the metrics above are de�ned in
terms of FX , we do not require that FX be known to the analyst.

5. Illustrations

5.1. Sanity Checks: Nonparametric Regression and

Classi�cation

To understand if there are any striking limitations of the RJM-
CMC approach, we apply it to two problems for which there are
existing algorithms: the semiparametric regression problem (1)
and nonparametric classi�cation with the logistic link. Going
in, we should expect that the RJMCMC algorithm should be
inferior in terms ofmixing to the algorithmofChipman,George,
and McCulloch (2010), as RJMCMC does not use the inte-
grated likelihood (which is available in closed form) to propose
changes. For logistic regression it is less clear what to expect, as
the algorithm of Sparapani, Spanbauer, and McCulloch (2021),
which we compare to, makes use of a data augmentation strategy
of Holmes and Held (2006) that itself can substantially slow
down mixing. We consider a typical benchmark function for
BART methods which takes

rF(x) = 10 sin(π x1 x2) + 20(x3 − 0.5)2 + 10 x4 + 5 x5, (7)

with Xij irrelevant for all j > 5.
We compare our RJMCMC algorithm to the methods imple-

mented in the R package BART. We choose this package speci�-
cally because, to the best of our knowledge, it is the only publicly
available package that implements BART with the logistic link;
like our default prior, it also implements the sparsity-inducing
Dirichlet hyperprior of Linero (2018). We remark that BART
di�ers slightly in how the prior is speci�ed, and for this reason
we do not expect that the predictive performance will be pre-
cisely the same between the twomethods; if RJMCMCperforms
better, however, this gives us some assurance that the algorithm
is correct and mixes well enough to produce reasonable predic-
tions. In all cases we compare RJMCMC and BART on a single
simulated dataset, however, the results we present are typical of
all replications of the simulations we have performed.

We �rst consider the semiparametric regression problem (1)
with nuisance parameter η = σ and r0(x) = rF(x) where
rF(x) is given by (7) with σ 2 = 1, N = 500, and P = 20.
For both methods we ran the Bayesian back�tting algorithm for
10,000 iterations, with the �rst 5000 discarded to burn-in. For
each iteration, we computed the mean squared error MSE =
N−1
test

∑
i{Y�

i − r(X�
i )}2 where (Y�

i ,X
�
i ) is a collection of 500

heldout samples.
Figure 3 displays the samples of MSE for both approaches.

Both methods are similar in terms of mixing; in particular, the
mixing of RJMCMC does not appear to be appreciably worse.
We also see that RJMCMC results in a lower MSE on average.

For the classi�cation problem we take Yi ∼
Bernoulli[s{r0(Xi)}] where η = ∅, r0(x) = rF(x)−14

5 , and

s(z) = (1 + e−z)−1 is the logistic function; this normalization
of rF(x) was chosen so that r0(Xi) has approximately mean 0
and variance 1.
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Figure 3. Traceplot of the heldout mean squared error for the semiparametric regression model. Left: results as implemented in the BART package. Right: results using
our RJMCMC algorithm.

Figure 4. Traceplot of the heldout log-likelihood for the logistic link BART model. Left: results using the BART package. Right: results using our RJMCMC algorithm.

Data augmentation can be applied to �t BART classi�ca-
tion models using the logistic link, using the scale-mixtures-
of-normals approach of Holmes and Held (2006), the Pólya-
gamma approach of Polson, Scott, and Windle (2013), or the
gamma augmentation approach of Murray (2021). The down-
side of these approaches is that data augmentation can slow
down mixing substantially, especially in cases where the out-
come distribution is highly imbalanced (Johndrow et al. 2019).

Our RJMCMC algorithm removes the need for data augmen-
tation entirely, and requires only that we plug in the likelihood,
score, and Fisher information; for the Bernoulli-logit model
Yi ∼ Bernoulli{s(λ)}, this is given by

log f (y | λ) = y log s(λ) + (1 − y) log{1 − s(λ)},
U(y | λ) = y − s(λ), and I(λ) = s(λ) {1 − s(λ)}.

We �t the classi�cation model using both the BART package
(which uses the data augmentation scheme of Holmes and Held
2006) and our RJMCMC algorithm. For each iterationwe record
the heldout log-likelihood

∑
i Y

�
i log s{r(X�

i )}+(1−Y�
i ) log[1−

s{r(X�
i )}],where (Y�

i ,X
�
i ) are 500 heldout observations. In Fig-

ure 4 we give traceplots of the heldout log-likelihood for both
methods, and we again observe that RJMCMC does not mix
appreciably worse than BART while producing better predic-
tions on the heldout data.

Finally, we compare the RJMCMC algorithm to the data
augmentation approach in terms of computational e�ciency. In
Figure 5 we present the time to �t 20 replicate datasets using the
BART package and our RJMCMC approach; both approaches
use T = 200 trees and run 10,000 iterations of their respective
Markov chains.We again stress that direct comparisons between
RJMCMC and any given package should be taken with a grain
of salt due to di�erences in the implementation details, but it is
reassuring that the RJMCMC scheme is slightly faster on a per-
iteration basis.

5.2. VarianceModeling

We now turn our attention to generalized BART models that
cannot be �t with existing Bayesian back�tting algorithms. A
common concern when constructing a regression model is het-
eroscedasticity of the error distribution. A selling point of gener-
alized linear models, for example, is that they handle the mean-
variance relationships inherent to proportion or count data.

In this section we consider BART models which allow for a
speci�ed (but essentially arbitrary) mean-variance relationship
using a Gaussian working model. Speci�cally, we set

[Yi | Xi] ∼ Normal{mi,φ V(mi)} (8)
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Figure 5. Comparison of time to collect 10,000 posterior samples for the logistic regression model using the BART package (left) and RJMCMC (right) for 20 synthetic
datasets.

where mi = g{r(Xi)}. Here, g(μ) and V(m) are user-speci�ed
functions which relate r(x), the mean, and the variance. In this
case, η = (φ,V(·)). In the supplementary material we show that
Uη(y | λ) and Iη(λ) are given by

Uη(y | λ) =
(

−
V ′(m)

2V(m)
+

V ′(m)(y − m)2

2φV(m)2
+

y − m

φV(m)

)
g′(λ)

Iη(λ) =
(
V ′(m)2

2V(m)2
+

1

φV(m)

)
g′(λ)2

where m = g(λ), V ′(m) = d
dmV(m), and g′(λ) = d

dλg(λ).
Additionally, the full conditional of τ = φ−1 is Gam{τ |
N/2, 1/2

∑
i(Yi − mi)

2/V(mi)} × π(τ). Plugging these expres-
sions into our generic RJMCMC scheme, we can �t a BART
model to any mean-variance relationship.

To illustrate, we generated Yi ∼ Poisson(mi) with mi =
exp{r(Xi)}, which implies the mean-variance relation V(m) =
m. We avoid �tting a Poisson loglinear model in order to
(i) illustrate the ability of the structured variance model to
work even when the outcome model is misspeci�ed and (ii)
because the Poisson model does not allow for overdispersion,
which is a common concern in practice. We took mi =
exp

{
2 +

(
rF(Xi)−14

5

)}
with rF(x) given by (7). We compare the

following three BART implementations.

• bartMachine: A standard BART model which takes Yi ∼
Normal{r(Xi), σ

2}, �t using the bartMachine package.
• rbart: A heteroscedastic BARTmodel of Pratola et al. (2020),

which takes Yi ∼ Normal{r(Xi), σ
2(Xi)}. This model was �t

using the rbart package.
• RJMCMC: The BART model (8) which takes Yi ∼

Normal{er(Xi),φer(Xi)}.

The goal of this comparison is to determine (i) if our RJMCMC
algorithm is capable of �tting (8), (ii) if there is a substantial gain
in performance from modeling the variance, and (iii) if there
is additional gain from correctly specifying the mean-variance
relationship. We compare methods based on the root mean-

squared error RMSE =
√
N−1
test

∑
i(m

�
i − m̂�

i )
2 on a collection

of 500 heldout samples (X�
i ,Y

�
i ). Results are given in Figure 6.

We see from the traceplot of RMSE that the RJMCMC model
results in a substantially lower RMSE on heldout data, and that
the RMSE mixes well for all three methods; while rbart is
able to account for heteroscedasticity, it gives only a modest
improvement over bartMachine. For both bartMachine
and rbart we see that the models tend to underestimate mi

when mi is large. The overall RMSEs using the Bayes estimate
for each method are 6.67 (bartMachine), 5.71 (rbart), and
3.25 (RJMCMC).

5.3. Accelerated Failure TimeModels

We now illustrate our approach on several accelerated failure
time (AFT) models for survival analysis (Wei 1992). Let Ti

denote a survival time and let Ci denote the censoring time such
that we observe Yi = min{Ti,Ci} and δi = I(Yi = Ti). The
accelerated failure time model takes logTi = r(Xi) + σ εiwhere
εi belongs to some parametric family of distributions; common
choices include the normal, logistic, and log-gamma distribu-
tions. Regarding logYi as the outcome, the log-likelihood of the
AFT model is given by

L (r, η) =
∏

i

Sε

(
logYi − r(Xi)

σ

) ⎧
⎨
⎩
hε

(
logYi−r(Xi)

σ

)

σ

⎫
⎬
⎭

δi

,

where Sε(t) is the survival function of εi, fε(t) is the density of εi,
and hε(t) = fε(t)/Sε(t) is the hazard function of εi. We consider
εi ∼ Logistic(0, 1) and εi ∼ logGam(α,α). These models
correspond to log-logistic (η = σ) and generalized gamma (η =
(σ ,α)) AFT models for Ti respectively. For both models, we
consider a ground truth of r0(x) = rF(x) and σ = 1.

The log-logistic model, for which fε(t) = s(t) {1 − s(t)},
is particularly convenient in that both the survival function
Sε(t) = 1 − s(t) and hazard function hε(t) = s(t) can be
written in closed form. To this point, the generalized gamma
model is the �rst model for which we cannot compute Iη(λ)

in closed form. We therefore use this as an opportunity to
show that our methodology works well even when we approx-
imate the required derivatives numerically. Given a function
w(μ), we use �nite di�erences to approximate the �rst and



10 A. R. LINERO

Figure 6. Top: traceplot of RMSE on heldout samples for eachmethod. Bottom: Plot of the Bayes point estimate ofE(Yi | Xi) (m̂i) against its true value (m); the relationship
m = m̂ is given by the dashed line.

second derivatives as w′(μ) ≈ w(μ+�)−w(μ−�)
2� and w′′(μ) ≈

w(μ+�)−2w(μ)+w(μ−�)

�2 with � = 10−6.

We simulate data from both models with r0(x) = rF(x)−14
5

and (N,P) = (500, 10). We censored the data at randomly by
sampling Ci and Ti from the same distribution; by design, this
results in roughly 50% of the samples being censored regardless
of the value of Xi. For the generalized gamma model, we used
the ground truth σ0 = α0 = 1.

Overall, we found that both chains mixed well, with the
exception that the mixing of σ and α was poor for the general-
ized gammaAFTmodel; this poormixing occurs because σ and
α are highly correlated in the posterior, and should be updated
jointly rather than with the slice sampler we used.We also found
that the log-logistic model took less time per iteration because
the survival function of the log-logistic model is available in
closed form. In general, σ and α are poorly identi�ed due to
the fact that both parameters are largely variance parameters for
logTi, with 95% credible intervals being σ ∈ (0.67, 3.72) and
α ∈ (0.60, 7.45). Despite this, the chain mixes very well on the
variance parameter V = var(logTi | r, σ ,α) = σ 2 ψ ′(α), with
the Bayes estimate V̂ = 1.72 being very close to the true value
V0 = 1.64.

Plots like those in Figure 8 (right) and Figure 6 (bottom) are

given in the Supplementary material; they show that both the

log-logistic and generalized gamma models recover r(x) e�ec-

tively. Estimates of the survival curve, along with 95% credible

bands, for some randomly sampled observations in a heldout test

set are given in Figure 7. We see that the point estimates and

credible bands provide accurate inference for the true survival

curves

Application to Liver Disease Data

We apply the AFT log-logistic (AFTLL) and generalized gamma
(AFTGG) models to a dataset from a randomized clinical trial
on time to death for individuals su�ering from primary biliary
cirrhosis; this data is publicly available as the pbc dataset in
the package survival. Our goal is to determine which of
the parametric families provides the best description of this
data. In addition to these models, we consider a semiparametric
Weibull model with hazard function of the form h(t | λ, k) =
k
eλ

(
t
eλ

)k−1
,with the survival time modeled as Ti ∼ h{t |

r(Xi), k} and η = k; a similar model is proposed by Linero et al.
(2022).
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Figure 7. Estimated (black) and true (orange) survival curves, with 95% posterior credible bands, for two randomly selected observations for the generalized gamma and
log-logistic AFT models.

ThisWeibull model, which sits at the intersection of AFT and

proportional hazards models, is a special case of the generalized

gammamodel with α = 1. Additionally, the generalized gamma

model includes the log-normal AFT model as a limiting case as

α → ∞; this makes the generalized gammamodel a potentially

useful tool for deciding between di�erent parametric families.

To gain insight into whether di�erentmodels lead to di�erent

qualitative prognoses for patients, we compare the estimates of

r(Xi) for the di�erent models in the supplementarymaterial.We

found that the models agreed remarkably well in their estimates

of r(Xi).

Conversely, we also found that the data did not distinguish

well between the di�erent models, particularly for large survival

times—this is due to poor identi�ability of the shape parameter

of the di�erent models, rather than any issue with the nonpara-

metric part of the model. In the supplementary material, we

plot the posterior distribution of the shape parameter α in the

generalized gamma model under a Uniform(0, 40) prior, and

�nd that the data is consistent with both the Weibull model

(α = 1) and log-normal model (α → ∞). These models make

quite di�erent predictions for the hazard at later timepoints, with

the Weibull model having a monotonically-increasing hazard

(k ≈ 1.3) and the log-normal and log-logistic models both

having non-monotone hazards.
Finally, we evaluate the goodness of �t of the AFTLL,

AFTGG, and Weibull models using the log-pseudo marginal
likelihood (LPML) given by

∑
i log f (Yi, δi | Y−i, δ−i,X)where

Y−i and δ−i denote the vector of event times and censoring
indicators with observation i removed, while X = (X1, . . . ,XN)

and f (Yi, δi | Y−i, δ−i,X) is the predictive density given by∫
fη(Yi, δi | r(Xi)) π(r, η | Y−i, δ−i,X) dr dη. The LPML

can be conveniently computed from the output of the MCMC
sampler using the loo package in R. The �ts of all three
models are quite similar, with the estimated LPMLs being
(−350.6,−353.4,−350.1) for the Weibull, AFTGG, and AFTLL

models, respectively. According to LPML, there is a slight prefer-
ence for the log-normal model, which has a non-monotone haz-
ard, although the Weibull model performs very similarly. This
observation is consistent with our �ndings in the supplementary
material, where we �nd that the posterior distribution of the
AFTGG model is consistent with both the Weibull (α = 1) and
log-normal (α → ∞) models.

5.4. Gamma Shape Regression

An interesting extension of the accelerated failure time models
discussed in Section 5.3 is to allow for the shape of the hazard
function itself to depend on the covariates; this would allow
some individuals to have monotonically increasing, decreasing,
or non-monotone hazards depending on their covariates. One
approach to doing this is to model the shape parameter α in
the generalized gamma model in a covariate-dependent fash-
ion as well. Toward this end, we consider a gamma regression
model which takes Yi ∼ Gam{α(Xi),β} (where η = β). A
BART model for the related gamma regression model Yi ∼
Gam{α,β(Xi)} was considered by Linero, Sinha, and Lipsitz
(2020), who showed that this model can be �t using the gener-
alized Bayesian back�tting algorithm; due to the fact that β(Xi)

is not a shape parameter for the gamma distribution, however,
this model is not appropriate for modeling changes in the shape
of the hazard.

We model the shape parameter on the log scale, taking
α(Xi) = exp{r(Xi)}. It is then straight-forward to show that

Uη(y | λ) = eλ{logβ − ψ(eλ) + log y} and

Iη(λ) = e2λ ψ ′(eλ)

where ψ(α) = d
dα log�(α) and ψ ′(α) = d

dα ψ(α) are the
digamma and trigamma functions, respectively. We simulate
data from the model with (N,β) = (100, 1) and r(x) = 2 +
rF(x)−14

5 so that logα(Xi) has roughly mean 2 and variance 1,
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Figure 8. Left: root mean-squared error of optimally-tuned mboost relative to the root mean-squared error (RRMSE) of the default generalized BART prior for the logistic
AFT (AFT), gamma shape (Gamma), structured variance (Heteroscedastic), and logistic regression (Logit) models. To aide visualization, the orange dashed line at 1 would
denote a tie in performance with generalized BART. Right: plots of r̂(X�

i
) against r0(X

�
i
) for generalized BART and mboost for the gamma shape regression model.

and �t the model with the default prior. Mixing of the RJMCMC
scheme is given in the Supplementary Material; summarizing,
we found that the chain mixed well. As shown in the right panel
of Figure 8, generalized BART is able to accurately recover r0(x)
on a set of heldout covariates (X�

1 , . . . ,X
�
Ntest

).

5.5. Comparisonwith Tree Boosting

We give a brief comparison of the generalized BARTmodel with
tree boosting as implemented in the mboost package in R. Our
comparisons are biased in favor of the mboost package: for
each comparison, we chose the mboost hyperparameters (the
shrinkage parameter nu and the number of boosting iterations
mstop) to minimize the error on the test set, and chose the
maximal depth of the tree (maxdepth) equal to 2 to ensure
that mboost does not include any spurious higher-order inter-
actions. By contrast, the hyperparameters for generalized BART
are either �xed a-priori or learned from the training data.

We compare mboost to generalized BART on the logis-
tic regression problem, the log-logistic accelerated failure time
(AFT) problem, the gamma shape regression problem, and
the structure heteroscedastic regression problem. The mboost
package implements logistic regression and log-logistic AFT
models, and we used the functionality within mboost to
build custom procedures for the gamma and heteroscedastic
regression models. In each case, accuracy is measured through

the mean squared error
√
N−1
test

∑
i{r0(X�

i ) − r̂(X�
i )}2 where

(X�
1 , . . . ,X

�
Ntest

) denotes a heldout test set of 500 points and r̂(x)
denotes the point estimate of r0(x) (for boosting) or the posterior
mean of r(x) (for BART).

Results are given in Figure 8, withN = 500 and P = 10; these
results are representative of what occurs in repeated simula-
tions. Despite the simulation settings here generally favorable to
boosting (the hyperparameters were optimally tuned to the test

set, there is little noise, and the number of nuisance predictors
is small) the results are strongly in favor of generalized BART.
Speci�cally, the RMSE of mboost ranges from 50% larger to
80% larger than the RMSE of generalized BART. The right
panel of Figure 8, which focuses on the gamma shape regression
problem, displays r0(X

�
i ) against r̂(X

�
i ) for mboost and gener-

alized BART, and provides a sanity check that both methods are
working as intended. Both sets of predictions cluster around the
45 degree line, with mboost being less precise.

6. Discussion

The approach outlined in this article greatly expands the prob-
lems to which BART can be applied, and we emphasize that
none of the models we applied BART to required any modi�ca-
tions to our algorithm. There are many directions for extending
this framework in future work. For example, by modifying the
approach to allow for more than one forest (Pratola et al. 2020),
we could develop �exible gamma regression models with Yi ∼
Gam{α(Xi),α(Xi)/μ(Xi)} or beta regression models with Yi ∼
Beta{μ(Xi) φ(Xi),φ(Xi) − φ(Xi) μ(Xi)}. This could be done
using either separate forests, in which case our methodology
extends directly, or using the shared forests approach of Linero,
Sinha, and Lipsitz (2020). The shared forests approach is likely
more di�cult to implement due to the need for a multivariate
Metropolis-Hastings proposal for the reversible jump move.

An alternative to RJMCMC is to use an approximation of the
tree’s marginal likelihood for Bayesian back�tting, as discussed
in DiCiccio et al. (1997) and Llorente et al. (2023). In particular,
the Laplace approximation we’ve used could also approximate
the marginal likelihood and full conditional of the leaf node
parameters; this approximation is likely accurate given our use
of informative priors, even for leaf nodes with little data. This
approach sacri�ces exactness for simplicity, but computational
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costs remain largely unchanged: a�er computing the Laplace
approximation, we see little reason for using an inexact update
when an exact update can be performed instead.More advanced
methods, such as those described by Llorente et al. (2023), likely
improve upon the Laplace approximation, but this should be
balanced against the fact that the marginal likelihood must be
evaluated many times over the course of the chain.

An additional application of our RJMCMC algorithm is that
it can be extended to the so� BART models of Linero and Yang
(2018). Thesemodels—which have better theoretical and empir-
ical properties than standardBARTmodels when the underlying
function r0(x) is smooth—canonly use conjugate updates for the
model (1) to the best of our knowledge.

For the generalized gamma model, we crudely avoided com-
puting the score and Fisher information by using numerical dif-
ferentiation; this approximates the likelihood, score, and Fisher
information using a total of three likelihood evaluations, and
so is relatively e�cient. We note that it is, in principle, possible
to eliminate the need for the user to explicitly compute the
derivatives of the likelihood by using so�ware that performs
automatic di�erentiation such as TensorFlow.

A lingering advantage of gradient boosting over BART is
that gradient boosting is much faster and scales better to large
datasets. Recently, He, Yalov, and Hahn (2019) and He and
Hahn (2021) substantially closed this gap with their XBART
algorithm; however, this approach also requires the same sort
of conditional conjugacy as the generalized BART model. It
is worth exploring whether our RJMCMC algorithm might be
combined with XBART, either to be used a�er a “warm-start”
with XBART or to be used to construct a replacement for the
XBART splitting criterion.

Supplementary Materials

The online supplement contains additional illustrations, a heuristic justi�-
cation of the algorithm, and proofs of all results.
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