
4DHI: An index for approximate kNN search of
remotely sensed images in Key-Value databases

1st Chamin Nalinda Lokugam Hewage
School of Computer Science

University College Dublin
Dublin, Ireland

chamin.lokugamhewage@ucdconnect.ie

2nd Anh Vu Vo
School of Computer Science

University College Dublin
Dublin, Ireland

anhvu.vo@ucd.ie

3rd Nhien-An Le-Khac
School of Computer Science

University College Dublin
Dublin, Ireland

an.lekhac@ucd.ie

4th Debra Laefer
Center for Urban Science and Progress

New York University
New York, USA

debra.laefer@nyu.edu

5th Michela Bertolotto
School of Computer Science

University College Dublin
Dublin, Ireland

michela.bertolotto@ucd.ie

Abstract—State-of-the-art, scalable, indexing techniques in
location-based image data retrieval are primarily focused on
supporting window and range queries. However, support of these
indexes is not well explored when there are multiple spatially
similar images to retrieve for a given geographic location. Adop-
tion of existing spatial indexes such as the kD-tree pose major
scalability impediments. In response, this work proposes a novel
scalable, key-value, database oriented, secondary-memory based,
spatial index to retrieve the top k most spatially similar images
to a given geographic location. The proposed index introduces
a 4-dimensional Hilbert index (4DHI). This space filling curve
is implemented atop HBase (a key-value database). Experiments
performed on both synthetically generated and real world data
demonstrate comparable accuracy with MD-HBase (a state of the
art, scalable, multidimensional point data management system)
and better performance. Specifically, 4DHI yielded 34% - 39%
storage improvements compared to the disk consumption of the
original index of MD-HBase. The compactness in 4DHI also
yielded up to 3.4 and 4.7 fold gains when retrieving 6400 and
12800 neighbours, respectively; compared to the adoption of
original index of MD-HBase for respective neighbour searches.
An optimization technique termed “Bounding Box Displacement”
(BBD) is introduced to improve the accuracy of the top k
approximations in relation to the results of in-memory kD-tree.
Finally, a method of reducing row key length is also discussed
for the proposed 4DHI to further improve the storage efficiency
and scalability in managing large numbers of remotely sensed
images.

Index Terms—remotely sensed images, approximate k nearest
neighbor search, key-value databases, scalability.

I. INTRODUCTION

Advances in spaceborne and airborne image mapping tech-

nologies has led to an unprecedented availability of hetero-

geneous data sets of remotely sensed imagery data (RSID)

[1]. For example, in 2013, one of NASA’s governing agencies

held a total of 7.5 PBs of archived satellite data [2]. Two

years late, the average daily archive growth translated to 5.8

PBs annually [1]. In 2019, the China Center for Resources

Identify applicable funding agency here. If none, delete this.

Satellite Data and Application held more than 16 million

remote sensing images (RSIs). Such unprecedented availability

has generated an increasingly challenging set of storage and

querying problems.

To combat this, many researchers are investigating a range

of techniques to index and retrieve at scale. Prominent ex-

amples include, GeoMesa [3], RASDAMAN [4], TileDB [5],

RSMI [6], and the GeoSOT based HBase RSID system [7].

These systems and their corresponding indexing techniques

are designed with the objective of coping with sheer volume

of data while ensuring commensurate performance for image

retrieval at scale. Critically, the indexing techniques for these

systems are mainly geared towards supporting window queries

and range queries- i.e. retrieving images or image tiles that

overlap with a manually selected region. Typically, these

images will overlap the initial region of interest at different

scales. For example, some of the retrieved images will only

cover a subset of the region, while others may partially overlap

and fully cover and extend beyond the selected region.

The issue is further complicated by the fact that they can

be from different visual perspectives. Furthermore, spatially

similar images provide more direct insight on the entire initial

region of interest in a straight forward manner. These most

spatially similar images will have similar or near similar spatial

coverage with respect to the initial region of interest. However,

indexing strategies that perform retrieving of most spatially

similar images given to an initial region of interest, or in other

words, top k nearest neighbours (k-NN) images with respect

to a given region have not been studied well in the literature.

A potential reason for the absence for location specific top

k-NN search of images can be attributed to not having a

scalable index to effectively cope with large amounts of data.

A widely employed index for location specific k-NN searching

is the kD-tree [8]. By transforming the image bounding box

coordinates in the diagonal (i.e. xMin, yMin, xMax, yMax) to

four dimensional (4D) point values in 4D space, one could

170

2022 IEEE International Conference on Cloud Engineering (IC2E)

978-1-6654-9115-0/22/$31.00 ©2022 IEEE
DOI 10.1109/IC2E55432.2022.00025

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 E
ng

in
ee

rin
g

(IC
2E

) |
 9

78
-1

-6
65

4-
91

15
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
2E

55
43

2.
20

22
.0

00
25

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

develop required spatial indexes with kD-tree. However, since

kD-tree is an in-memory spatial index, when dealing with a

large number of RSID, kD-tree indexes could lead to excessive

main-memory usage.

Importantly, kD-tree construction time is heavily impeded

by the large size of RSID, with consequent increase in the re-

sponse time of the initial top k-NN search query. Additionally,

due to the volatile nature of main-memory, the adoption of a

kD-tree will also result in regeneration of kD-tree indexes in

power failure scenarios. Furthermore, as a kD-tree is sensitive

to the order in which the points are inserted, the kD-tree

construction time can be further negatively extended by un-

orderly bounding box insertions. Thus, the adoption of in-

memory kD-tree data structure cannot be viewed as a scalable

indexing approach for the retrieval of top k-NN images. A

potential solution to aforementioned problems would be to

employ a secondary-memory index, which can perform k-NN

search. Implementation of such a secondary-memory index

atop state-of-the-art databases has been shown by Laefer et

al. 2018 to radically overcome scalablity issues in aerial laser

scans

Key-Value (KV) databases are a class of state-of-the-art

NoSQL databases that can be employed as potential databases

for the top k-NN search of RSID. Internally, KV databases

represent all data as key-value data pairs [9] and store data

by mapping their key identifiers to their corresponding data

value [10], [11]. KV databases are designed to manage a large

amount of data through its distribution across multiple ma-

chines. Thus, the adoption of a KV database enables the explo-

ration of horizontally-scaled, shared-nothing-architecture solu-

tions. However, presently Log-Structured-Merge-trees (LSM-

trees), which is the underlying data structure in the storage

engines of KV databases, do not inherently support nearest

neighbour (NN) search. Thus, implementing the secondary-

memory implementations of kD-tree such as kD-B-tree [12]

and B-kD-tree [13], which are tailored for B-tree based storage

engines are not feasible for use in KV databases. To the au-

thors’ best knowledge, no secondary-memory implementation

of kD-tree is yet available for KV databases that uses LSM-

tree underneath its storage engine.

However, a solution that performs NN searches through

approximate top k-NN searches of multidimensional point

data atop KV databases has been achieved in the in MD-

HBase [14]. MD-HBase, is built atop HBase - a leading KV

database. It uses two persistent spatial indexes, namely (i)

region quadtree, and (ii) a multi-dimensional index that mimics

the kD-tree index. The corresponding indexes on MD-HBase

are based on the Z-order [15] Space Filling Curve (SFC). The

corresponding Z-order index values of multidimensional points

are stored as binary values or base 2 values. Since bounding

boxes can be indexed using their xMin, yMin, xMax, yMax
coordinates, the indexing strategy readily available in MD-

HBase can be adapted to implement 4D indexes. Thus this

seems to hold the potential for a secondary-memory based,

scalable solution for location-specific, approximate top k-NN

searches of RSID.

However, the emphasis of MD-HBase is on spatial point

data management. Furthermore, the alternative of a Hilbert

curve [16] provides better packing and organization of rect-

angles [17]. Therefore, to better understand on which curve

to adopt in approximate top k-NN search of RSID, further

investigations are needed. This work presented herein inves-

tigates an alternative indexing technique for the approximate

k-NN search of RSID that are being managed in KV stores

by employing a Hilbert SFC. For fair comparison, this work

also employs the Hilbert SFC on the four bounding box

coordinates of RSID (i.e. xMin, yMin, xMax, yMax). Thus,

we are presenting a 4D Hilbert index (4DHI). Experiments

were conducted on both synthetically generated and real world

image bounding box data sets on a KV database cluster.

The contributions of this work are summarized as follows:

• A 4DHI - a novel, secondary-memory index structure for

approximate k-NN searches of RSID that are managed in

KV databases.

• An approximate k-NN search algorithm.

• An evaluation based on a real world data set that shows

that the 4DHI and 4D index in MD-HBase provide

comparable accuracy in returning similar percentages of

approximate k-NN results in comparison to precise results

of kD-tree.

• Demonstration of the effectiveness of compact index

sizes on storage performance and query response time

by representing index keys in base 10 format compared

to base 2 format in MD-HBase.

• An optimization strategy termed bounding box displace-
ment (BBD) to improve the accuracy of the approximate

top k-NN result set.

• A methodical approach to construct more compact index

keys to improve the storage of 4D indexes.

The remainder of the paper is organized is as follows.

Section II provides an overview on the use of SFCs for non-

point spatial data management in KV databases. Section II

also shares preliminary results on Z-order curve and Hilbert

SFC and provide index technique of MD-HBase in brief.

Furthermore, Section II discusses state-of-the-art, scalable

indexing techniques adopted in prominent RSID storage and

retrieval systems. Section III describes algorithm usage for

the construction of the 4DHI index and the approximate k-NN

algorithm use for data querying. In Section IVthe experimental

results are presented. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Non-point spatial data representation in KV databases

Spatial transformation is a technique to obtain the spatial

representation of non-point objects [18]. In this technique,

the non-point objects are transformed into different represen-

tations. Typically, transformation techniques map bounding

boxes of non-point objects to points in higher dimensional

space [19]. Use of SFCs is a prevalent technique in such

transformations.

171

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

A SFC is a continuous, surjective mapping from R to

R
d [20]. SFCs map data in multidimensional space into repre-

sentational values in a single dimensional space by navigating

each data in multi-dimensional space only once in a certain

order. There is no perfect mapping to preserve global proxim-

ity of the points in the multidimensional space [21]. However,

once mapped to single dimension, SFCs are relatively good

at preserving proximity at a local level [22]. This means

that once the multidimensional data are flattened into single

ordinal numbers, they can be incorporated into a list of ordered

key-value pairs where the localities among data points are

preserved [3]. As a result, modern KV database-oriented,

multidimensional data management adopts SFCs based values

in organizing the data. Two prominent examples are the Z-

order curve and the Hilbert curve. These SFCs are widely used

in KV database-oriented multidimensional, data management.

Figure 1 illustrates the navigation order for the Z-order curve

and the Hilbert curve in two-dimensional space.

Fig. 1. Navigation order of Z-order and Hilbert curve with their space
preservation in two dimensional space.

B. Indexing strategy MD-HBase

MD-HBase employs the trie-based approach for dividing a

space into equal-sized grids. Upon division, each dimension’s

ranges are enumerated using binary values. MD-HBases’s

indexing layer is based on Z-order values of the dimensions

being indexed. Thus, each grid cell in the multidimensional

space has an associated Z-order value. These Z-order values

in MD-HBase grid cells are computed by interleaving the bits

from binary values of different dimensions (Figure 2). This

results for each grid cell value. In other words, the Z-order

values in MD-HBase are treated as bit arrays in binary format

(i.e the keys are in base 2 representation).

C. Scalable RSID systems and their indexing

Efforts to develop novel indexing techniques for remote

sensing image retrieval have been undertaken across diverse

databases and through varying spatial indexing techniques. In

this section, prominent state-of-the-art, database-oriented RSIs

storage and retrieval solutions are presented. Their queries of

interests, experimental settings, and limitations are highlighted

where appropriate.

Fig. 2. Binary Z-ordering of MD-Hbase.

RASDAMAN [4], which uses a multidimensional, array

data model for processing spatial raster data is one of the

leading solutions for storage and retrieval of RSID. When stor-

ing images, RASDAMAN divides multidimensional discrete

image data into arbitrary array tiles. These subdivided array

tiles are later indexed following the built-in, spatial indexes of

RASDAMAN such as R+-tree or GiST indexes. Subsequently,

they are stored as binary large objects (or BLOBS) inside a

PostgreSQL database. While RASDAMAN can be considered

a versatile solution for RSID management, the main focus of

RASDAMAN has been range queries.

Another novel solution that opens up avenues for RS image

storage and retrieval and is based on array data model is

TileDB [5]. Similar to RASDAMAN, TileDB represents image

data as a 2D array and provides built-in, R-tree index support

for data indexing. Moreover, to date, there has yet to be

solid experimental evidence to demonstrate the capability of

TileDB’s native R-tree indexing strategy in retrieving location

-specific, spatially similar images at scale.

A more recent work on RS image storage and retrieval

is Remote Sensing Images Management System (RSIMS).

RSIMS was developed by [6] and is built atop a PostgreSQL

database cluster and Ceph distributed object storage file sys-

tem. At its indexing layer, RSMI employs a distributed multi-

level, Hilbert index that employs the latitude and longitude

of a single coordinate position. When indexing images, this

approach first determines the level at which the spatial index

needs to be calculated. The level is based on the spatial

coverage or the spatial area of the respective image. Once

the level is determined, the corresponding Hilbert code for

the image is ascertained through the latitude and longitude of

the geometric centre of the image. Similar to previous work

discussed, window queries and range queries are the targeted

functionality.

Organisation of images into predefined levels and the use

of a single point in the image as the index position is

172

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

commonly employed in other remote sensing storage and

retrieval systems, such as those that adopt key-value databases.

Prominent examples include Wang et al. [7] and GeoMesa [3].

In 2015, Wang et al. [7] proposed an HBase-oriented

solution to store and retrieve remotely sensed image data.

That indexing technique employed was based on the GeoSOT

global discrete grid system and a packed Hilbert R-tree.

The GeoSOT codes of tiles were calculated based on the

latitude and longitude details of the respective grids. While

the authors did not specifically state the queries of interest,

based on the rationale of GeoSOT - i.e. using hierarchical

global subdivision at equal angular increments of latitude and

longitude, the prime focus appeared to be supporting window

and range queries.

GeoMesa is a leading raster data management solution.

While GeoMesa is compatible with a wide range of key-value

databases, its debut experiments were focused on raster data

management via an Accumulo key-value database. GeoMesa

stores images as tiles of different granularities or spatial

resolutions. When indexing image tiles, GeoMesa adopts XZ-

order curve [23], which is designed for non-zero sized, spatial

objects by extending the Z-order curve. However, in GeoMesa,

the XZ-curve is still applied based on a specific latitude and

longitudinal position in the image tile. In other words, the

indices constructed through XZ curve do not explicitly embed

the spatial extents of the images into its index representations

(i.e. all four coordinates xMin, yMin, xMax, yMax). Thus,

GeoMesa’s indexing strategy, although its based on secondary-

memory storage, cannot be applied to perform approximate

k-NN search of RSID.

III. METHODOLOGY

This section describes the spatial index established to enable

the approximate top k-NN queries for RSID in KV stores

and the approximate k-NN algorithm employed. For ease of

understanding and as a quick reference, mathematical symbols

and different notations used in Algorithm 1 and Algorithm 2

are summarized in Table I.

A. Obtaining Hilbert order for bounding boxes

Hilbert like scanning orders applied on two-dimensional

points cannot be applied to other object types such as lines

and polygons. As stated previously, the scanning orders for

non-point objects on a plane are typically obtained by map-

ping the bounding boxes of the objects to points in higher

dimensions [19]. Following the initial work of Kamel and

Faloutso [17], the approach presented herein indexed the

bounding boxes of RSID by mapping xMin, yMin, xMax,

and yMax coordinates to 4D points in a 4D Hilbert space.

This approach enables embedding of the spatial extents (i.e.

height and width information) of images to its index represen-

tation. More precisely, this approach enables the grouping of

bounding boxes that are similar in their geographic location

and spatial extents into a single-dimensional, sorted order.

Furthermore, this facilitates mapping and sorting adjacently on

4D Hilbert curve of location-specific, spatially similar images

TABLE I
SYMBOLS / NOTATIONS AND THEIR MEANING

Symbol / Notation Meaning
SETRSID RSID set to be indexed
iimg ith img record in the SETRSID

bi ith bounding box obtained from iimg record
xMini, yMini,
xMaxi, yMaxi

minimum and maximum coordinates of bi

hOrder Order of the Hilbert curve
fourDHI10 4D Hilbert index in base 10
SETfourDHI10 Complete set of 4DHI of the entire SETRSID

V k approximate kNN results set
Ck candidate list of approximate kNN
Qw querying window
fourDHIqw 4D Hilbert value of querying window
xMinqw , yMinqw ,
xMaxqw , yMaxqw

bounding box coordinates of querying window

xMinc, yMinc,
xMaxc, yMaxc

bounding box coordinates of candidate image

res candidate row
fourDHIcandi 4D Hilbert value of candidate row key
EDcandi Eucledian distance of candidate image coordi-

nates with query region coordinates

that reside in close proximity in the real world. Unlike in the

case of MD-HBase where the index values are computed as

base 2 values, the proposed work computes 4D Hilbert values

as base 10 values.

Algorithm 1 (Create 4DHI) shares the steps involved in

the calculation of 4DHI for a given RSID set. Algorithm

1 takes three inputs: (i) set of images, (ii) Hilbert order,

and (iii) integer value 4 - which is the dimension of the

Hilbert curve. At the start of Algorithm 1, the SETfourDHI10 ,

which is the set that contains the 4DHI of the entire image

data set (i.e. SETRSID), is set to null (Line 2). Subse-

quently, the looping across the set of input images (i.e.

SETRSID) is performed. When looping, for each ith im-

age record, the bounding box coordinates of the iimg , i.e.

bi(xMini, yMini, xMaxi, yMaxi), is ascertained (Line 4).

Once the bounding box coordinate for respective image is

obtained, the corresponding 4DHI value for iimg is calculated

via the Hilbert function. This Hilbert function takes multi-

ple parameters as its input: the bounding box coordinates

bi(xMini, yMini, xMaxi, yMaxi), Hilbert order (hOrder),

and integer value 4 - which corresponds to the four dimen-

sional spatial transformation. The function Hilbert returns

the one-dimensional (1D) real number fourDHI10 (a base

10 number). This number depicts the 4DHI value of the

iimg (Line 5). Once 4DHI is established, the value is added

to the SETfourDHI10 . In this work, the 4DHI computation

is performed sequentially. Nevertheless, the computation of

4DHI also can be done in parallel.

B. Approximate top k-NN Algorithm

The approximate top k-NN algorithm that is adopted in

this work is presented under Algorithm 2. There are three

main steps: (i) variable initialization, (ii) candidate row keys

selection, and (iii) refinement and retrieval of top k ap-

proximate NNs. First, under variable initialization, the sorted

173

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Create 4DHI

Input: SETRSID,

hOrder,

4
Output: SETfourDHI10

1 Function FourDHI(SETRSID, hOrder, 4):
2 SETfourDHI10 ← ∅
3 foreach iimg ∈SETRSID do
4 bi(xMini, yMini, xMaxi, yMaxi) ←iimg

5 fourDHI10 ← Hilbert(bi, hOrder, 4)
6 SETfourDHI10 .add(fourDHI10)
7 end
8 return SETfourDHI10

9 End Function

approximate k-NN result set, candidate list of approximate

k-NN result set, and 4D Hilbert value of querying window

are set to null and zero (Line 2-4). Subsequently, under

candidate row keys selection, the 4DHI corresponding to the

querying window Qw is obtained from the coordinates of

Qw (Line 5). These coordinate values of Qw are already

known, as they are provided as inputs to the algorithm (i.e.

xMinqw, yMinqw, xMaxqw, yMaxqw). The obtained 4DHI

is called the fourDHIqw. This fourDHIqw provides the

query position or the row key for the KV table scan.

With fourDHIqw, the candidate row key set is determined

with the input k. The input k provides the upper-bound

and the lower-bound for the table scan. The upper-bound

includes k records from query position, while the lower-

bound includes k records prior to query position (Line 6-

7). Thus, the candidate set includes 2k records. These 2k
records are added to candidate set Ck. Importantantly, the

proposed Algorithm 2 considers a total of 2k rows. However,

as will be subsequently demonstrated, the initial observations

in Table II in Section IV indicated that an increase in number

of rows scanned could improve the accuracy. However, this

is not guaranteed and could negatively impact the query

response time (see discussion on this point in Section IV under

optimization techniques). Thus, when formalizing Algorithm 2

only 2k rows were considered.

Step 3, the refinement (i.e Line 8- Line 14), is performed

on the obtained candidate set Ck. For each candidate result

res, the row key is obtained, which is fourDHIcandi (Line

10). Also, for each candidate result res in Ck, the Euclidean

Distance (ED) with initial Qw coordinates is acquired. This

ED of the candidate record is termed EDcandi (Line 11). Sub-

sequently, the algorithm adds fourDHIcandi and EDcandi

pairs to the set V k that holds the approximated k-NN result

set (Line 12). Once all records in Ck are processed, V k is

constructed. Then the pair of records in the V k are further

sorted in ascending order according to EDcandi values in each

pair (Line 14). Finally, the top k results from set V k (Line

15) are returned.

Algorithm 2: Approximate kNN(Qw, k)

Input: Query window Qw
(xMinqw, yMinqw, xMaxqw, yMaxqw),

integer k
Output: approximate top k-NN: top(k, V k)

1 Function Approximate_kNN(Qw, k):
2 V k ← ∅
3 Ck ← ∅
4 fourDHIqw ← 0
5 fourDHIqw ← Hilbert(Qw)
6 Ck.add(row(fourDHIqw)− num rows(k) :
7 row(fourDHIqw) + num rows(k))

8 foreach res ∈Ck do
9 xMinc, yMinc, xMaxc, yMaxc ← res

10 fourDHIcandi ← res
11 EDcandi ← ED([

xMinc, yMinc, xMaxc, yMaxc],
[xMinqw, yMinqw, xMaxqw, yMaxqw])

12 V k.add(<fourDHIcandi, EDcandi >)
13 end
14 V k.sort(′ED′

candi)
15 return top(k, V k)
16 End Function

IV. EXPERIMENTAL EVALUATION

In this section, the implementation of the proposed 4DHI

and the MD-HBase’s indexes are presented. A comparison of

nearest neighbour results are presented with respect to the

baseline results of a kD-tree. An extensive performance study

between the 4D Hilbert index and MD-HBase’s index on

synthetically generated and real world data sets are presented.

Additionally, an optimization technique on improving the

accuracy of the 4DHI result set and another optimization

technique on improving the storage performance of the 4DHI

are also presented.

A. Study data

The real world data set was comprised of a set of aerial

images over a portion of the city of Dublin, Ireland. These

were collected during a 2015 airborne LiDAR and imagery

mapping excercise [24]. The imagery consists of precisely

geo-referenced, fully orthorectified images; oblique images

captured from two separate cameras; and RGB and colored

infrared (CIR) images taken from a nadir camera. The ex-

periments employed 8,438 real images from this data set.

The corresponding ground footprints for each image were

calculated from the image metadata files. The ground footprint

coordinate values of each image corner point were used to

obtain the coordinate values of each image bounding box.

These bounding box coordinate values ranged from 314272

to 318002 in the x dimension and 232467 to 236056 in the

y dimension in the Irish Grid System. The main aims were

(i) to compare the accuracy of the NN result sets of both the

174

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

proposed 4DHI index and the MD-HBase’s index against the

result set of kD-tree and (ii) suggest optimizations.

While this dataset was used to show accuracy and optimiza-

tions, to compare scalability between the proposed 4DHI and

the MD-HBase’s index synthetically generated data sets were

employed. Each synthetically generated data set represents

minimum bounding boxes of images (i.e. xMin, yMin, xMax,

yMax coordinates), thus termed as pseudo bounding boxes. As

the prime purpose of using synthetically generated data sets

was to investigate scalability, the synthetic data generation

approach did not adhere to a specific coordinate reference

system. The coordinates values of each pseudo bounding box

were based on integer values ranges. For example, in the x

dimension it ranged from 200 to 240 and in y dimension from

900 to 965. For each real image bounding box and pseudo

bounding box, the 4DHI and counterpart index of MD-HBase

were obtained.

B. Implementation of indexes

When applying different SFCs to a given situation, one

of the essential factors was to divide the region of interest

into similarly sized raster grids. If the raster grid division

is not uniform, the comparison between the results yielding

from different SFCs are not comparable. Therefore, the study

region was divided into similarly sized raster grids to ensure

comparable results obtained from the proposed 4D Hilbert

index and the counterpart index of MD-HBase which was

based on the Z-order curve .

For the real world bounding boxes, an order 19 grid

system (19x19 raster grid) was selected, as this was the

largest bounding box coordinate value (i.e. 318002) that could

be represented with a 19 bit binary key in base two (e.g.

1001101101000110010). The corresponding 4D Hilbert val-

ues were calculated for each bounding box by considering

the coordinate values of the bounding boxes. Algorithm 1

presented in Section III was applied to construct 4DHI for

image data. As stated previously, the computed 4DHI were

in base 10 format. For the calculation of 4DHI an external Java

library was employed. The counterpart indexes of MD-HBases

were calculated by interleaving bits in the four coordinates.

To adhere to the MD-HBases’s original implementation, the

Z-order index values of MD-HBase were calculated as base 2

indexes.

As the maximum coordinate value in pseudo bounding

boxes was 965, when creating the raster grid for synthetic

data, a 10 x 10 raster grid was adopted. For the generation

of 4D Hilbert indexes and MD-HBases’ indexes, a technique

matching that applied to the real world data was implemented.

Once the index generation was done, the 4DHI keys and MD-

HBase’s index keys were sorted in ascending order. Next,

they were ingested into separate HBase tables by making 4D

Hilbert indexes and MD-HBase indexes, as required keys for

each data ingestion.

C. Experimental setup

Experiments were performed on the Peel cluster at New

York University (NYU). Peel is a high-end 18 node cluster

that deploys HBase on top of the Hadoop environment. The

hardware and software specifications of each compute node

in Peel cluster are as follows: 2x24 - core Intel ® Xeon

® Platinum 8268 CPU @ 2.90 GHz, RAM - 384 GB, disk

storage - 8 HDD disks 8 TB each, Hadoop 3.0.0, and HBase

2.1.0-cdh6.3.4. The configured replication factor of HBase was

3 (i.e. each data record gets replicated 3 times).

D. Comparing accuracy of 4DHI

In the tests, first the reliability of using a 4DHI for the

representation of image bounding boxes as 4D points for

approximate k-NN search was tested. This evaluation was

performed on the real world data by comparing the precise NN

results produced by an in-memory kD-tree and the approxi-

mate k-NN results when employing MD-HBases’s indexes. In

the comparisons, the error metrics used in kD-tree and MD-

HBase’s indexes and the 4DHI were identical. For example,

as the error metric, the ED error metric was adopted. The ED

of respective 4D points in image bounding boxes and initial

querying window were calculated.

The comparison followed two methods. In first method, 100

bounding boxes were selected from the real image data set.

Each bounding box was subsequently parsed as a 4D vector

to a kD-tree data structure from which the top 40 precise NNs

were obtained. Subsequently, for each bounding box, r records

were scanned in the respective 4DHI and MD-HBase index

tables implemented in HBase. Here the r number of records

varied depending on the intended topK results. In this case the

r number represents 10 rows, 20 rows, and 40 rows for the top

10 results, 20 rows, 40 rows, and 80 rows for the top 20 results,

and 40 rows, 80 rows, and 160 rows for the top 40 results. The

row keys of r scanned records were inspected. Subsequently,

the percentage of overlapping for the top 10, top 20, and top

40 nearest neighbor results (i.e. row keys) with respect to kD-

tree results were calculated. This process was repeated six

times. Therefore, in total, 600 bounding boxes were randomly

chosen and their real NNs were obtained through kD-tree and

their approximate NNs determined through 4DHI and MD-

HBase indexes. Finally we calculated the average for each

overlapping for different percentages ranging from 70%, 80%,

90%, and 100%.

For the second method, a large of set consisting of 600

random bounding boxes was selected. Similar to the first

approach, the top precise top 40 NNs were chosen using the

kD-tree and the different percentages of overlaps for the top

10, top 20, and top 40, approximate NNs for both 4DHI and

MD-HBase’s index were obtained. The results are presented

in the Table II.

Table II demonstrates a trend for improved accuracy with

an increase in the number of rows. This intuitive conclusion

is distilled in Table II in a more analytical form:

• When retrieving the top 10 approximate NNs

175

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ACCURACY COMPARISONS BETWEEN MD-HBASE’S INDEX RESULTS AND

4DHI RESULTS WITH RESPECT TO RESULTS OF KD-TREE

M
et

h
o
d

k
v
al

u
e

R
o
w

s
(n

)
MD-HBase 4DHI

Overlap percentage (%) Overlap percentage (%)
70 80 90 100 70 80 90 100

1

10
10 9.8 2.3 0.1 0.0 12.3 4.2 0.5 0.0
20 31.8 18.5 8.1 2.1 37.7 24.0 11.3 2.3
40 48.2 36.3 24.2 12.2 58.7 44.7 31.3 16.2

20
20 7.8 0.8 0.2 0.0 9.7 2.0 0.0 0.0
40 31.5 17.7 8.2 2.0 37.5 24.0 11.3 2.3
80 44.3 32.8 21.0 9.3 58.7 44.7 31.3 16.2

40
40 8.5 1.0 0.0 0.0 8.2 1.0 0.0 0.0
80 28.7 16.5 6.8 0.8 34.8 15.5 6.0 0.3
160 42.5 31.0 17.8 5.5 57.2 41.3 23.0 4.8

2

10
10 11.7 3.0 1.5 0.2 14.8 4.7 1.2 0.0
20 38.7 26.1 12.0 4.2 40.5 25.8 12.7 4.0
40 55.6 45.0 30.0 16.7 60.2 47.0 31.8 16.7

20
20 10.2 2.3 0.3 0.0 9.5 2.2 0.0 0.0
40 38.5 22.5 11.8 2.8 37.2 23.3 9.7 1.8
80 55.7 40.7 27.8 11.8 57.7 44.0 27.0 10.0

40
40 9.5 1.7 0.0 0.0 8.2 0.7 0.0 0.0
80 35.0 21.0 7.2 0.7 35.7 18.0 6.2 0.3
160 53.8 39.7 25.0 9.7 56.3 40.2 21.7 4.0

– In method 1, the always yielded better accuracy

over MD-HBase’s 4D Z-order index. The maximum

difference between the accuracies of the two indexes

was 10%.

– In method 2, except for one event, the 4DHI yielded

better accuracy. The accuracy difference in the only

event where MD-HBases’s index outperformed 4D

Hilbert index was still less than 1%. In contrast, the

maximum difference when 4DHI outperformed MD-

HBases’s index was nearly 4%.

• When retrieving the top 20 approximate NNs

– In method 1, except for one instance, the 4DHI

yielded better accuracy with a maximum difference

of 4%. The accuracy difference between the 2 in-

dexes when the MD-HBase’s index outperformed the

4DHI was less than 1%.

– In method 2, MD-HBases’s index outperformed

the4DHI in 5 instances with a maximum difference

of 2%. In events where 4DHI outperform MD-

HBase’s index, the maximum difference was 4%.

• When retrieving the top 40 approximate NNs

– In method 1, except for 5 circumstances, 4DHI

yielded better accuracy than counterpart index with a

maximum difference of 14%. When the MD-HBase

index performed better, the difference was less than

1%.

– In method 2, MD-HBase’s index outperformed the

4DHI in 7 circumstances with a maximum difference

of nearly 5%. When 4DHI outperformed the MD-

HBase indexing, the maximum difference was only

2%. In these experiments, this was the only event

where the proposed index demonstrated a maximum

overlapping less than the counterpart index.

These analyses show that in the majority of circumstances,

the proposed 4DHI performed better. In particular with respect

to obtaining the top 10 and top 20 approximate NNs, the per-

formance gain ranged from 10%-14%. This could be attributed

to the fact that Hilbert SFC is better at preserving locality com-

pared to the Z-order curve. However, as the experiments were

based on only one real world data set further generalization is

not yet possible. Thus this work concludes that both 4DHI and

4D MD-HBase indexes are capable of performing location-

specific approximate k-NN for aerial images when managed

in KV databases. From a SFC adoption point of view, Hilbert

SFC often provided better accuracy.
When the results proposed in the 4DHI did not tally with

kD-tree results, a further analysis was undertaken. To do so,

a bounding box was arbitrarily chosen from which the top 10

neighbours were obtained, as suggested by the kD-tree. The

approximate NN results suggested by 4DHI were also obtained

by scanning 10 records. In the top 10 results of the 4DHI, 7

out of 10 matched. Next, the bounding boxes of mismatched

results among the two data structures were plotted to obtained

their visual semantics (see Figure 3). Figure 3 demonstrates

that some results of 4DHI do not comply with the results of

kD-tree (i.e. only approximations). However, from a visual

point of view, those results of 4DHI are still comparable - or

in other words, geographically very close to the initial regions

of interest.

Irish Grid Coordinates - X values

Region of interest
kD-tree neighbours

Iri
sh

 G
rid

 C
oo

rd
i n

at
es

 -
Y

va
l u

es

316200316000315800
232800

233000

233200

233400

315800 316000 316200
Irish Grid Coordinates - X values

Region of interest
4DHI Neighbours

Fig. 3. Analysis of non-overlapping results when using 4DHI with ground-
truth results of kD-tree

To deepen the understanding on the approximated results

against results of the kD-tree, further analysis was undertaken.

Specifically, the ED error values and Jaccard similarities
between the regions in the two scenarios were measured

using the ED error value as the established error metric. The

Jaccard similarity metric was used, as it provides a means to

measure similarity between polygons pairs. For example, the

Jaccard similarity between two polygons can be compared by

measuring the ratio between the Intersection and the Union of

the two polygons as a percentage (i.e. area of overlap / area of

union) * 100). The results obtained are presented in Table III.
Table III illustrates that according to the ED error metric,

the non-matched, approximated results tend to deviate by a

distance value of 20 (i.e. 74 - 54) to 29 (i.e. 96 - 67).

Thus, the percentage difference range was 37%, 31%, and

43%. Therefore, even though the non-matching approximated

176

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

TABLE III
EUCLIDEAN DISTANCE ERROR VALUES AND JACCARD SIMILARITY IN THE

APPROXIMATED RESULTS IN 4DHI IN COMPARISON TO KD-TREE RESULTS

Metric kD-tree 4DHI Difference (%)
Euclidean distance
of 4D points

[54, 66, 67] [74, 87, 96] [37, 31, 43]

Jaccard similarity (%) [77, 73, 75] [66, 72, 66] [11, 1, 9]

results were visually comparable, in the 4D space, these results

might deviate from the expected actual results to some extent.

However, the matching result set was always greater than

the non-matching results. Also, the accuracy of the results

set have the potential to be improved through optimization

techniques (as will be discussed in Section IV-F). Thus, in

overall, this paper claims that the approximated results produce

more scalable results for location-specific RSID retrieval.

Moreover, from Table III one sees the Jaccarad similarity

differs only to a maximum of 11%. This means that the

approximated results still possess reasonably better region

overlapping with the union between initial region of interest.

This reinforces the claim that the approximated results produce

more scalable results for location-specific RSID retrieval.

E. Scalability

Next the scalability of the proposed index was considered

- in particular in coping with large amounts of image data,

by investigating the storage performance and query response

time performance. Scalability was tested using five different

synthetically generated data sets, where each data set repre-

sents a collection of pseudo bounding boxes. These data sets

range from 100K - 1200K (K = 1000), pseudo bounding boxes.

For each data set, the corresponding 4DHI were obtained as

base 10 values. As the authors of MD-HBase represent their

indexes as base 2 binary keys, the counterpart MD-HBase

indexes were calculated in base 2. After obtaining the index

values, they were injected into 10 different HBase tables by

considering row keys as either 4DHI or the counterpart MD-

HBase index (5 tables with 4DHI and 5 tables with MD-HBase

index). During ingestion the row keys were transformed into

their corresponding binary array representations - the format

that HBase stores data internally.

1) Storage Performance: For each table, the full disk

utilization (including the replication) was obtained. The results

in Table IV demonstrate that the proposed 4DHI scales well

in terms of storage requirements for high degree of data sizes

compared to the storage requirements of MD-HBase’s index.

When adopting the proposed 4DHI, the users obtained an

approximate 34% - 39% improvement in storage capacity vis-

a-vis the counterpart MD-HBases’s indexes. This improvement

can be predominantly attributed to the representation of the

index. For example, in the original work of MD-HBase, the

authors represented the index keys as base 2 binary values. In

this work the index keys were represented as base 10 values,

which produces more compact keys - meaning, the lengths of

the index keys is much shorter. As a result, less storage is

required to store the keys in secondary-memory storage.

TABLE IV
STORAGE CONSUMPTION COMPARISON BETWEEN MD-HBASE’S INDEX

AND 4DHI

Num: of
pseudo

bounding boxes

MD-HBase
(MB)

4DHI
(MB)

Gain (%)

100K
(SET 1)

86.8 54.6 36.6

200K
(SET 2)

174.3 110.0 36.8

400K
(SET 3)

336.3 207.8 38.2

800K
(SET 4)

672.2 442.1 34.2

1200K
(SET 5)

1019.9 623.1 38.9

2) Query response time performance: Next, a set of k-NN

queries were executed across HBase tables that stored synthet-

ically generated data. This was done to evaluate the versatility

of the proposed 4DHI as compared to MD-HBase’s indexes.

All approximate k-NN queries were based on Algorithm 2.

When designing the experiments, four arbitrary bounding box

regions (R1- R4) and eight k values, namely: 100, 200, 400,

800, 1600, 3200, 6400, and 128000 were selected as NN

values. Each corresponding bounding box region with its

respective k-NN value (e.g. R1 with 100 k-NN, R1 with 200 k-

NN, etc) was executed 25 times to achieve statistically robust

response times. As the focus of these experiments were on the

performance of the indexes, when ascertaining query response

time, the focus was only on the candidate row selection and

the filtering happening on the indexes. Image retrieval I/O time

was discarded for both indexes. When analyzing the k-NN

response time results, for 100, 200, and 400 k-NNs, the query

response times in both cases were always below one second.

Thus only comparable values that were above 800 are reported

herein. Due to space constraints, only a subset of the overall

results are presented, as shown in Table V and Figure 4.

TABLE V
AVERAGE QUERY RESPONSE TIME FOR K-NN QUERIES WHEN ADOPTING

MD-HBASE’S INDEX, AND PROPOSED 4DHI FOR APPROXIMATE KNN
SEARCH OF BOUNDING BOXES.

Data set
6400 Neighbours 12800 Neighbours

Avg: response
time (s) Gain

Avg: response
time (s) Gain

MD-HBase 4DHI MD-HBase 4DHI
SET 1 8.4 2.6 3.2 34.8 10.0 3.5
SET 2 8.2 2.4 3.4 28.6 6.1 4.7
SET 3 8.0 3.7 2.2 28.7 6.1 4.7
SET 4 8.3 5.0 1.7 27.2 11.0 2.5
SET 5 11.0 3.0 3.7 37.9 15.2 2.5

Table V is based on retrieval of k-NN for a pre-selected

bounding box region for different sizes of data sets. This

demonstrates the impact on k-NN query response time due to

the growth in data size with respect to an arbitrary bounding

box region. Results shows that the average query response time

177

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

for both indexes increased with respect to the growth in data

sizes. Nevertheless, compared to MD-HBases’s Z-order curve

based 4D index approach, the proposed 4DHI yielded greater

improvements. Figure 4 is based on data set 5 (i.e. SET 5) -

the biggest dataset tested. It demonstrates the average query

response times for the four arbitrarily selected bounding box

regions for the two indexes.

Fig. 4. Approximate k-NN response times for four arbitrary regions selected
for SET 5

Similar to the above observation, irrespective of the region,

an improvement in query response time is clearly seen when

adopting the proposed 4DHI when compared to the MD-

HBase’s index approach. The improvement shown in Table V

and Figure 4, can be predominantly attributed to the compact-

ness of 4DHI. As previously noted, the adopted base 10 format

is more compact compared to MD-HBase’s base 2 rowkey

format. This means, there were less data to be transferred over

the network when adopting 4DHI.

F. Optimizations

Finally, two optimization techniques for the proposed

4DHI were explored. These aim at improving accuracy of the

approximated results and the efficiency of the storage.

1) Bounding box displacement (BBD):

With the objective of improving the accuracy of the top k-

NN result set of the proposed 4DHI similar to the result set of

kD-tree, a technique termed - “Bounding Box Displacement
(BBD)” is proposed. The BBD technique is based on four

extra bounding box regions. Each bounding box region in has

a similar height and width dimension as that of the initial

bounding box. In BBD, the first step is to displace these extra

bounding box regions in north-east, south-east, south-west,

and north-west directions with respect to the initial region of

interest. Subsequently, row scans are performed around the

calculated 4DHI of each bounding box, while calculating the

ED error values. After this step, the top K result sets from

each bounding box region are aggregated to generate a larger

candidate set. This expanded candidate set is based on a total

of five bounding box regions: initial region and four extra

regions as depicted in Figure 5. Finally, similar to Algorithm 2

in Section III, the candidate results are sorted according to

their ED values and the top k results are returned.

Fig. 5. BBD technique to improve the accuracy of approximate kNN of RSID
images

The proposed BBD technique was applied to the real world

data. This was done over several regions by employing the

approximate k-NN Algorithm 2. In the proposed approximate

k-NN algorithm, a total of 2k rows are scanned; the term k
implies the number of neighbours intends to return. The impact

of scanning 4k rows was also tested. This was motivated by the

initial observation of higher accuracy in approximated results

being obtained when more rows are scanned (see Table II).

While employing BBD technique, we displaced additional

bounding boxes around the initial region of interest by 5%,

10%, 20%, and 40%. Employing BBD directly increased the

accuracy in the final approximated result set for all tested

regions. Furthermore, the combination of BBD with an in-

crease in the number of row scans, i.e. 4k rows as opposed

to scanning of 2k rows as stated in the Algorithm 2, also has

an impact. For example, with respect to the real world Irish

Grid coordinates 315815.56 (i.e. xMin), 233211.34 (i.e. yMin),

316222.28 (i.e. xMax), 233565.4 (i.e. yMax) is presented in

the Table VI. Figure 6, is based on Table VI; due to space

constraints only three neighbour search results are presented

from Table VI. The horizontal, dashed line in green in Figure 6

in each sub-graph shows the percentage of overlap with the

results set of the kD-tree when not employing BBD when

employing Algorithm 2 with a total of 2k rows scanned.

TABLE VI
APPLICATION OF BBD TO IMPROVE THE ACCURACY OF 4DHI RESULTS

top k rows
% of overlap
with kD-tree

% of overlap
with BBD

5% 10% 20% 40%
10 20 90.0% 90 .0% 100.0% 90.0% 90.0%

20
40 80.0% 85.0% 90.0% 80.0% 80.0%
80 80.0% 90.0% 90.0% 90.0% 90.0%

40
80 72.5% 72.5% 72.5% 77.5% 72.5%

160 85.0% 87.5% 87.5% 87.5% 90.0%

80
160 76.3% 77.5% 80.0% 77.5% 88.7%
320 90.0% 90.0% 90.0% 90.0% 100.0%

160
320 84.4% 84.4% 84.4% 84.4% 98.8%
640 84.4% 98.8% 98.8% 98.8% 98.8%

178

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Impact of BBD on increase in the accuracy in approximated top k
results

According to Table VI, initially the corresponding accuracy

or the percentage of overlapping with the result kD-tree for top

k neighbours (k = 10, 20, 40, 80, 160) was always less than

100%. However, with the proposed optimizations improved

accuracy up to 100% was achievable, at different displacement

percentages. This demonstrated that with the proposed BBD

technique, the final approximated result set potentially can be

improved, although the final approximated result set will not

always improve at all displacement percentages. Even with

BBD, the final percentage of overlapping with kD-tree results

can be similar to the percentage of overlapping of kD-tree

results without the BBD technique. For example, in Table VI

for the top 10 approximated neighbours, the percentage of

overlap only exceeded 10% of BBD around the initial region

of interest. Displacing 5%, 20%, and 40% did not guarantee

an improvement. Similar observations are visible for the top

20 approximated results when scanning 40 rows (or 2k rows

where k = 20). More examples can be observed in Table VI.

Identifying the right percentage of displacement is non-

trivial, as it can be impacted by several factors such as data

distribution. Performing a deep analysis on identifying the

right level of displacement factor is beyond the scope of this

paper. However, the application of BBD will aim to ensure that

the cumulative approximated result be similar or better than

the approximated results. For example, in Figure 6, the bar

plot heights that show the percentage of overlapping with kD-

tree results, always matches or exceed the horizontal dashed

line.

The results in Table VI further uncover that the scanning of

additional rows might not improve the overall percentage of

overlapping with the results of kD-tree for a specific region.

This is opposed to the general analysis that our worked

observed in Table II. The distinction between the two tables is

that, in Table II the statistical results presented accounted for

group of regions whereas in Table VI the results accounted

only for specific region.

Examples where the increase in the number of rows scan

does not always yield better overlapping with results of kD-

tree for a given region can be seen in Table VI. In the scenario

of top 20 approximated NNs, the increase of scanning of rows

from 40 to 80 had no impact on the overall accuracy. However,

when couple with use of BBD better accuracy was always

achieved irrespective of the percentage of overlap with results

of kD-tree. Similar observations can be made with respect to

the top 160 approximate NNs in Table VI and the subplot

corresponding to the 160 approximate NNs in Figure 6. Thus,

adopting BBD in unison with a high number of row scans

could improve the accuracy of the approximated results.

Insights on the BBD displacement percentage and increased

row scans can also be found in both Table VI and Figure 6. For

instance, for smaller k values, such as 20 neighbours, smaller

displacements tended to obtain improved accuracy when the

number of rows scanned remained at 40 rows (i.e. 2k rows).

When BBD displaced by 20% or 40%, the accuracy tended to

tally with the accuracy obtained without BBD (cf. Figure 6).

In contrast, for large number of neighbours such as 80 or 160

with 2k rows scanned, the accuracy tended to increase at large

displacement percentages of BBD.

BBD introduces additional scanning and filtering steps

to the proposed approximate top k-NN algorithm (i.e.

Algorithm 2). Intuitively, these additional steps can lead

to extra execution time. The experiments conducted while

employing BBD technique demonstrated that even for larger

k values such as 160 neighbours, the average query response

time only increased by 200 milliseconds, even with 4k
row scans. More specifically, when applying BBD for the

approximate top 160 NN search with a total of 640 row

scans (i.e. 4k rows), the final query response time stayed

at 1.6 milliseconds. The query response time for the top

160 approximated NNs without BBD was 1.4 milliseconds.

Thus, the impact on query response time from BBD can be

considered as trivial in these BBD experiments. Nevertheless,

based on the previous experiments on synthetic data, an

adverse impact on query response time for k values beyond

1600 can be expected (cf. Figure 4).

2) Compact row key design:

A recent work of the authors of MD-HBase [25] argues

that efficient indexing keys need to be short and fixed in

their length. In their work, the authors introduce a technique

termed reverse computation of prime factorization (RCPF)

as a novel SFC technique. This RCPF technique generates

more compact index keys termed “P-Indexes”. When applied

to the real world data here, the keys or the corresponding

P-Indexes were indeed significantly small compared to the

counterpart 4DHI. For example, when applied to an arbitrary

Irish Grid based bounding box where coordinates are 314582

(xMin), 232779 (yMin), 314898 (xMax), 233081 (yMax), the

P-Index was 268210.2335256357 (17 characters) compared

to the counterpart 4DHI of 59118266627987739590792 (23

179

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

characters).

Nevertheless when adopting RCPF technique, aggravated

index generation times (e.g. 12 seconds to 100 records, 25

seconds to 200 records, 53 seconds for 400 records etc.) were

observed. As index generation is a one time operation for a

given set of imagery data, arguably the time taken for index

generation is a one time cost. Furthermore, although the index

is relatively large in size, the index generation time for all real

data (i.e. 8438 records) was less than 1 second. Additionally,

the top K results’ analysis between 4DHI, MD-HBases’s index

and RCPF index against the in-memory kD-tree result set

suggested that both the proposed index and MD-HBase’s index

performed significantly better at preserving locality of spatially

similar images in the 4-dimensional space. For example, both

4DHI and MD-HBases’s results were at least 300% better than

the RCPF index based k-NN search.

Although the RCPF technique and the P-Index are not

suitable for the location-specific scenario, their testing further

demonstrated that more compact row keys are favorable,

as was shown with the better perfomance of the base 10

oriented indexes compared to the base 2 indexes. As RCPF

technique has limitations, in this work a three step technique

for generating more compact keys is proposed. The versatility

of the proposed optimization technique was demonstrated on

a real world data set.

• Step 1: remove common prefix from each index key.

e.g. in our dataset the lowest 4DHI is

59118266407538384051197 and the highest 4DHI

is 59118270076213878661326. Therefore, we propose

removing the common prefix - i.e. “591182” from all

index keys. Once removed, the lowest 4DHI value would

be 66407538384051197 and the highest 4DHI value

would be 70076213878661326. This step reduces the

length of the index to 17 characters - the same number

of characters appear when adopting RCPF.

• Step 2: recursively divide index keys by prime numbers

in their increasing order. At each division, round-up the

resulting values to nearest integer. Make sure that each

resulting integer is unique and the length of each integer

is identical. If not unique, break the recursive operation.

e.g. round up int (66407538384051197

/2 /3 /5/7) = 316226373257387 and

round up int(70076213878661326/ 2/3/5/7) =

333696256565054. These new keys have 15 characters.

• Step 3: check if Step 1 and Step 2 can be applied

recursively on the new representation of keys.

e.g. 316226373257387 and 333696256565054 can be fur-

ther reduced to 16226373257387 and 33696256565054

to more compact keys of length 14 by removing the

common prefix “3”.

The impact of the new compact row keys were tested

on both storage performance and k-NN query response time

performance. A noted an improvement in storage efficiency

was achieved. For example, the 14 character length keys only

consumed a total of 32.0 MBs as opposed to the 36.8 MBs

consumed by 23 characters length keys. This translated to

a storage performance improvement of 13.8% through the

proposed three step technique. However, the improvement

in the query response time was trivial for the considered

k neighbours. Nevertheless, according to the arguments of

the authors of the P-Index, compact keys are favorable -in

particular with storage efficiency. Thus, we argue that our

proposed three step technique on real world data set works

better compared to the approach suggested by the authors of P-

Index. For example, the proposed technique produced compact

row keys with only 14 characters as opposed to 17 characters

when applying RCPF technique.

V. CONCLUSIONS

This paper presented a 4D Hilbert index for scalable,

approximate, nearest neighbour searching of RSID which are

managed in KV databases. 4DHI is based on the spatial

transformation technique that transforms the minimum and

maximum coordinates of image bounding boxes to 4D points

in 4D space. Based on 4DHI, a further approximate top

k-NN algorithm is proposed that can be employed in KV

database environments for location-specific, spatially similar

RSID retrieval. When evaluated, the accuracy and the perfor-

mance of the proposed 4DHI for approximate top k-NN search

compared favorably against the results of a MD-HBases’s Z-

order curve based 4D index. Both 4DHI and MD-HBase’s 4D

indexes were evaluated based on the ground truth top k-NN

results produced by an in-memory kD-tree data structure. The

accuracy comparison demonstrated that the proposed 4DHI

yielded comparable (if not superior) accuracy compared to the

results of MD-HBase’s Z-order index.

In terms of storage performance and query response times

performance, the proposed 4DHI always out performed coun-

terpart index of MD-HBase, with 34% - 39% storage improve-

ments. Similarly, 1.7 - 3.4 fold gains and 2.5 - 4.7 fold gains

were obtained when retrieving 6400 neighbours and 12800

neighbours, respectively. These performance improvements

were mainly attributed to the index representation – namely

base 10 values as opposed to the base 2 base index keys,

as suggested by authors of MD-HBase. Thus, the index keys

produced were much more compact compared to the MD-

HBase index keys. Similar storage performance and query

response times could have been achieved through MD-HBase’s

indexes, if base 10 representation were adopted.

Finally two optimization techniques for retrieval of location

specific spatially similar images were introduced. The first

technique, termed as bounding box displacement (BBD). BBD

improved accuracy of the final result set at different levels

of bounding box displacements around the initial region of

interest. The second technique was a three step process that

could be adopted to generate even more compact index keys

to further improve the storage performance. This proposed

three step technique was easy to adopt and time efficient in

generating compact indexes compared to the RCPF technique

proposed by P-Index work that includes the authors of MD-

HBase.

180

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

A. Future work
Potential future directions that arise from 4DHI work, in

particular in relation to the proposed optimization techniques

include the following:

• improve approximate k-NN algorithm further by integrat-

ing dynamic BBD displacement percentages.

• integration of number of rows scanned in the query

execution as a dynamic value while making sure no

impediment on query response time.

• analyze the impact of compact keys arising from second

optimization technique on large data sets on query per-

formance.

ACKNOWLEDGMENTS

This publication originated from research supported in part

by a grant from Science Foundation Ireland under Grant

number SFI - 17US3450. Further funding for this project

was provided by the National Science Foundation as part

of the project “UrbanARK: Assessment, Risk Management,

Knowledge for Coastal Flood Risk Management in Urban

Areas” NSF Award 1826134, jointly funded with Science

Foundation Ireland (SFI - 17US3450) and Northern Ireland

Trust (Grant USI 137). The clusters used for the testing

were provided by NYU High Performance Computing Cen-

ter. The aerial image data of Dublin were acquired with

funding from the European Research Council [ERC-2012-

StG-307836] and additional funding from Science Foundation

Ireland [12/ERC/I2534].

REFERENCES

[1] L. Wang, J. Yan, and Y. Ma, Cloud computing in remote sensing. CRC
Press, 2019.

[2] M. Chi, A. Plaza, J. A. Benediktsson, Z. Sun, J. Shen, and Y. Zhu, “Big
data for remote sensing: Challenges and opportunities,” Proceedings of
the IEEE, vol. 104, no. 11, pp. 2207–2219, 2016.

[3] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and
M. Ronquest, “Geomesa: a distributed architecture for spatio-temporal
fusion,” in Geospatial Informatics, Fusion, and Motion Video Analytics
V, vol. 9473. International Society for Optics and Photonics, 2015, p.
94730F.

[4] P. Baumann, P. Furtado, R. Ritsch, and N. Widmann, “The rasdaman
approach to multidimensional database management,” in Proceedings of
the 1997 ACM symposium on Applied computing, 1997, pp. 166–173.

[5] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb array
data storage manager,” Proceedings of the VLDB Endowment, vol. 10,
no. 4, pp. 349–360, 2016.

[6] X. Zhou, X. Wang, Y. Zhou, Q. Lin, J. Zhao, and X. Meng, “Rsims:
Large-scale heterogeneous remote sensing images management system,”
Remote Sensing, vol. 13, no. 9, p. 1815, 2021.

[7] L. Wang, C. Cheng, S. Wu, F. Wu, and W. Teng, “Massive remote
sensing image data management based on hbase and geosot,” in
2015 IEEE international geoscience and remote sensing symposium
(IGARSS). IEEE, 2015, pp. 4558–4561.

[8] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[9] M. T. Özsu and P. Valduriez, Principles of distributed database systems.
Springer, 2020, vol. 4.

[10] N. Dayan and S. Idreos, “The log-structured merge-bush & the wacky
continuum,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 449–466.

[11] ——, “Dostoevsky: Better space-time trade-offs for lsm-tree based key-
value stores via adaptive removal of superfluous merging,” in Proceed-
ings of the 2018 International Conference on Management of Data,
2018, pp. 505–520.

[12] J. T. Robinson, “The kdb-tree: a search structure for large multidimen-
sional dynamic indexes,” in Proceedings of the 1981 ACM SIGMOD
international conference on Management of data, 1981, pp. 10–18.

[13] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter, “Bkd-tree: A
dynamic scalable kd-tree,” in International Symposium on Spatial and
Temporal Databases. Springer, 2003, pp. 46–65.

[14] S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi, “Md-hbase:
A scalable multi-dimensional data infrastructure for location aware
services,” in 2011 IEEE 12th International Conference on Mobile Data
Management, vol. 1. IEEE, 2011, pp. 7–16.

[15] J. A. Orenstein and T. H. Merrett, “A class of data structures for as-
sociative searching,” in Proceedings of the 3rd ACM SIGACT-SIGMOD
symposium on Principles of database systems, 1984, pp. 181–190.

[16] D. Hilbert, “Über die stetige abbildung einer linie aufein flächenstück,”
Mathematische Annalen, vol. 38, pp. 459–460, 1891.

[17] I. Kamel and C. Faloutsos, “On packing r-trees,” in Proceedings of
the second international conference on Information and knowledge
management, 1993, pp. 490–499.

[18] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Computing Surveys (CSUR), vol. 30, no. 2, pp. 170–231, 1998.

[19] H. Haverkort and F. V. Walderveen, “Four-dimensional hilbert curves
for r-trees,” Journal of Experimental Algorithmics (JEA), vol. 16, pp.
3–1, 2008.

[20] H. Haverkort and F. van Walderveen, “Locality and bounding-box qual-
ity of two-dimensional space-filling curves,” Computational Geometry,
vol. 43, no. 2, pp. 131–147, 2010.

[21] R. Laurini and D. Thompson, Fundamentals of spatial information
systems. Academic press, 1992, vol. 37.

[22] J. Wang and J. Shan, “Space-Filling Curve Based Point Clouds Index,”
Proceedings of the 8th International Conference on GeoComputation
University of Michigan, pp. 1–16, 2005. [Online]. Available:
http://www.geocomputation.org/2005/WangJ.pdf

[23] C. BÖxhm, G. Klump, and H.-P. Kriegel, “Xz-ordering: A space-filling
curve for objects with spatial extension,” in International Symposium on
Spatial Databases. Springer, 1999, pp. 75–90.

[24] D. Laefer, S. Abuwarda, A. Vo, L. Truong-Hong, and H. Gharibi, “2015
Aerial Laser and Photogrammetry Survey of Dublin City Collection
Record,” 2017, (Last accessed by 20/10/2019). [Online]. Available:
https://geo.nyu.edu/catalog/nyu 2451 38684

[25] J. Liu, S. Nishimura, and T. Araki, “P-index: A novel index based on
prime factorization for similarity search,” in 2019 IEEE International
Conference on Big Data and Smart Computing (BigComp). IEEE,
2019, pp. 1–8.

181

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.

