2022 IEEE International Conference on Cloud Engineering (IC2E)

4DHI: An index for approximate kNN search of
remotely sensed images in Key-Value databases
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Abstract—State-of-the-art, scalable, indexing techniques in
location-based image data retrieval are primarily focused on
supporting window and range queries. However, support of these
indexes is not well explored when there are multiple spatially
similar images to retrieve for a given geographic location. Adop-
tion of existing spatial indexes such as the kD-tree pose major
scalability impediments. In response, this work proposes a novel
scalable, key-value, database oriented, secondary-memory based,
spatial index to retrieve the top k£ most spatially similar images
to a given geographic location. The proposed index introduces
a 4-dimensional Hilbert index (4DHI). This space filling curve
is implemented atop HBase (a key-value database). Experiments
performed on both synthetically generated and real world data
demonstrate comparable accuracy with MD-HBase (a state of the
art, scalable, multidimensional point data management system)
and better performance. Specifically, 4DHI yielded 34% - 39%
storage improvements compared to the disk consumption of the
original index of MD-HBase. The compactness in 4DHI also
yielded up to 3.4 and 4.7 fold gains when retrieving 6400 and
12800 neighbours, respectively; compared to the adoption of
original index of MD-HBase for respective neighbour searches.
An optimization technique termed “Bounding Box Displacement”
(BBD) is introduced to improve the accuracy of the top k
approximations in relation to the results of in-memory kD-tree.
Finally, a method of reducing row key length is also discussed
for the proposed 4DHI to further improve the storage efficiency
and scalability in managing large numbers of remotely sensed
images.

Index Terms—remotely sensed images, approximate k nearest
neighbor search, key-value databases, scalability.

I. INTRODUCTION

Advances in spaceborne and airborne image mapping tech-
nologies has led to an unprecedented availability of hetero-
geneous data sets of remotely sensed imagery data (RSID)
[1]. For example, in 2013, one of NASA’s governing agencies
held a total of 7.5 PBs of archived satellite data [2]. Two
years late, the average daily archive growth translated to 5.8
PBs annually [1]. In 2019, the China Center for Resources
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Satellite Data and Application held more than 16 million
remote sensing images (RSIs). Such unprecedented availability
has generated an increasingly challenging set of storage and
querying problems.

To combat this, many researchers are investigating a range
of techniques to index and retrieve at scale. Prominent ex-
amples include, GeoMesa [3], RASDAMAN [4], TileDB [5],
RSMI [6], and the GeoSOT based HBase RSID system [7].
These systems and their corresponding indexing techniques
are designed with the objective of coping with sheer volume
of data while ensuring commensurate performance for image
retrieval at scale. Critically, the indexing techniques for these
systems are mainly geared towards supporting window queries
and range queries- i.e. retrieving images or image tiles that
overlap with a manually selected region. Typically, these
images will overlap the initial region of interest at different
scales. For example, some of the retrieved images will only
cover a subset of the region, while others may partially overlap
and fully cover and extend beyond the selected region.

The issue is further complicated by the fact that they can
be from different visual perspectives. Furthermore, spatially
similar images provide more direct insight on the entire initial
region of interest in a straight forward manner. These most
spatially similar images will have similar or near similar spatial
coverage with respect to the initial region of interest. However,
indexing strategies that perform retrieving of most spatially
similar images given to an initial region of interest, or in other
words, top k nearest neighbours (k-NN) images with respect
to a given region have not been studied well in the literature.

A potential reason for the absence for location specific top
k-NN search of images can be attributed to not having a
scalable index to effectively cope with large amounts of data.
A widely employed index for location specific k-NN searching
is the kD-tree [8]. By transforming the image bounding box
coordinates in the diagonal (i.e. xMin, yMin, xMax, yMax) to
four dimensional (4D) point values in 4D space, one could

978-1-6654-9115-0/22/$31.00 ©2022 IEEE 170
DOI 10.1109/IC2E55432.2022.00025
Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:26:21 UTC from IEEE Xplore. Restrictions apply.



develop required spatial indexes with kD-tree. However, since
kD-tree is an in-memory spatial index, when dealing with a
large number of RSID, kD-tree indexes could lead to excessive
main-memory usage.

Importantly, kD-tree construction time is heavily impeded
by the large size of RSID, with consequent increase in the re-
sponse time of the initial top k-NN search query. Additionally,
due to the volatile nature of main-memory, the adoption of a
kD-tree will also result in regeneration of kD-tree indexes in
power failure scenarios. Furthermore, as a kD-tree is sensitive
to the order in which the points are inserted, the kD-tree
construction time can be further negatively extended by un-
orderly bounding box insertions. Thus, the adoption of in-
memory kD-tree data structure cannot be viewed as a scalable
indexing approach for the retrieval of top k-NN images. A
potential solution to aforementioned problems would be to
employ a secondary-memory index, which can perform k-NN
search. Implementation of such a secondary-memory index
atop state-of-the-art databases has been shown by Laefer et
al. 2018 to radically overcome scalablity issues in aerial laser
scans

Key-Value (KV) databases are a class of state-of-the-art
NoSQL databases that can be employed as potential databases
for the top k-NN search of RSID. Internally, KV databases
represent all data as key-value data pairs [9] and store data
by mapping their key identifiers to their corresponding data
value [10], [11]. KV databases are designed to manage a large
amount of data through its distribution across multiple ma-
chines. Thus, the adoption of a KV database enables the explo-
ration of horizontally-scaled, shared-nothing-architecture solu-
tions. However, presently Log-Structured-Merge-trees (LSM-
trees), which is the underlying data structure in the storage
engines of KV databases, do not inherently support nearest
neighbour (NN) search. Thus, implementing the secondary-
memory implementations of kD-tree such as kD-B-tree [12]
and B-kD-tree [13], which are tailored for B-tree based storage
engines are not feasible for use in KV databases. To the au-
thors’ best knowledge, no secondary-memory implementation
of kD-tree is yet available for KV databases that uses LSM-
tree underneath its storage engine.

However, a solution that performs NN searches through
approximate top k-NN searches of multidimensional point
data atop KV databases has been achieved in the in MD-
HBase [14]. MD-HBase, is built atop HBase - a leading KV
database. It uses two persistent spatial indexes, namely (i)
region quadtree, and (ii) a multi-dimensional index that mimics
the kD-tree index. The corresponding indexes on MD-HBase
are based on the Z-order [15] Space Filling Curve (SFC). The
corresponding Z-order index values of multidimensional points
are stored as binary values or base 2 values. Since bounding
boxes can be indexed using their xMin, yMin, xMax, yMax
coordinates, the indexing strategy readily available in MD-
HBase can be adapted to implement 4D indexes. Thus this
seems to hold the potential for a secondary-memory based,
scalable solution for location-specific, approximate top k-NN
searches of RSID.
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However, the emphasis of MD-HBase is on spatial point
data management. Furthermore, the alternative of a Hilbert
curve [16] provides better packing and organization of rect-
angles [17]. Therefore, to better understand on which curve
to adopt in approximate top k-NN search of RSID, further
investigations are needed. This work presented herein inves-
tigates an alternative indexing technique for the approximate
k-NN search of RSID that are being managed in KV stores
by employing a Hilbert SFC. For fair comparison, this work
also employs the Hilbert SFC on the four bounding box
coordinates of RSID (i.e. xMin, yMin, xMax, yMax). Thus,
we are presenting a 4D Hilbert index (4DHI). Experiments
were conducted on both synthetically generated and real world
image bounding box data sets on a KV database cluster.

The contributions of this work are summarized as follows:

o A 4DHI - a novel, secondary-memory index structure for
approximate k-NN searches of RSID that are managed in
KV databases.

o An approximate k-NN search algorithm.

o An evaluation based on a real world data set that shows
that the 4DHI and 4D index in MD-HBase provide
comparable accuracy in returning similar percentages of
approximate k-NN results in comparison to precise results
of kD-tree.

o Demonstration of the effectiveness of compact index
sizes on storage performance and query response time
by representing index keys in base 10 format compared
to base 2 format in MD-HBase.

o An optimization strategy termed bounding box displace-
ment (BBD) to improve the accuracy of the approximate
top k-NN result set.

« A methodical approach to construct more compact index
keys to improve the storage of 4D indexes.

The remainder of the paper is organized is as follows.
Section II provides an overview on the use of SFCs for non-
point spatial data management in KV databases. Section II
also shares preliminary results on Z-order curve and Hilbert
SFC and provide index technique of MD-HBase in brief.
Furthermore, Section II discusses state-of-the-art, scalable
indexing techniques adopted in prominent RSID storage and
retrieval systems. Section III describes algorithm usage for
the construction of the 4DHI index and the approximate k-NN
algorithm use for data querying. In Section IVthe experimental
results are presented. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Non-point spatial data representation in KV databases

Spatial transformation is a technique to obtain the spatial
representation of non-point objects [18]. In this technique,
the non-point objects are transformed into different represen-
tations. Typically, transformation techniques map bounding
boxes of non-point objects to points in higher dimensional
space [19]. Use of SFCs is a prevalent technique in such
transformations.
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A SFC is a continuous, surjective mapping from R to
R? [20]. SFCs map data in multidimensional space into repre-
sentational values in a single dimensional space by navigating
each data in multi-dimensional space only once in a certain
order. There is no perfect mapping to preserve global proxim-
ity of the points in the multidimensional space [21]. However,
once mapped to single dimension, SFCs are relatively good
at preserving proximity at a local level [22]. This means
that once the multidimensional data are flattened into single
ordinal numbers, they can be incorporated into a list of ordered
key-value pairs where the localities among data points are
preserved [3]. As a result, modern KV database-oriented,
multidimensional data management adopts SFCs based values
in organizing the data. Two prominent examples are the Z-
order curve and the Hilbert curve. These SFCs are widely used
in KV database-oriented multidimensional, data management.
Figure 1 illustrates the navigation order for the Z-order curve
and the Hilbert curve in two-dimensional space.
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Fig. 1. Navigation order of Z-order and Hilbert curve with their space

preservation in two dimensional space.

B. Indexing strategy MD-HBase

MD-HBase employs the trie-based approach for dividing a
space into equal-sized grids. Upon division, each dimension’s
ranges are enumerated using binary values. MD-HBases’s
indexing layer is based on Z-order values of the dimensions
being indexed. Thus, each grid cell in the multidimensional
space has an associated Z-order value. These Z-order values
in MD-HBase grid cells are computed by interleaving the bits
from binary values of different dimensions (Figure 2). This
results for each grid cell value. In other words, the Z-order
values in MD-HBase are treated as bit arrays in binary format
(i.e the keys are in base 2 representation).

C. Scalable RSID systems and their indexing

Efforts to develop novel indexing techniques for remote
sensing image retrieval have been undertaken across diverse
databases and through varying spatial indexing techniques. In
this section, prominent state-of-the-art, database-oriented RSIs
storage and retrieval solutions are presented. Their queries of
interests, experimental settings, and limitations are highlighted
where appropriate.
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Fig. 2. Binary Z-ordering of MD-Hbase.

RASDAMAN [4], which uses a multidimensional, array
data model for processing spatial raster data is one of the
leading solutions for storage and retrieval of RSID. When stor-
ing images, RASDAMAN divides multidimensional discrete
image data into arbitrary array tiles. These subdivided array
tiles are later indexed following the built-in, spatial indexes of
RASDAMAN such as R+-tree or GiST indexes. Subsequently,
they are stored as binary large objects (or BLOBS) inside a
PostgreSQL database. While RASDAMAN can be considered
a versatile solution for RSID management, the main focus of
RASDAMAN has been range queries.

Another novel solution that opens up avenues for RS image
storage and retrieval and is based on array data model is
TileDB [5]. Similar to RASDAMAN, TileDB represents image
data as a 2D array and provides built-in, R-tree index support
for data indexing. Moreover, to date, there has yet to be
solid experimental evidence to demonstrate the capability of
TileDB’s native R-tree indexing strategy in retrieving location
-specific, spatially similar images at scale.

A more recent work on RS image storage and retrieval
is Remote Sensing Images Management System (RSIMS).
RSIMS was developed by [6] and is built atop a PostgreSQL
database cluster and Ceph distributed object storage file sys-
tem. At its indexing layer, RSMI employs a distributed multi-
level, Hilbert index that employs the latitude and longitude
of a single coordinate position. When indexing images, this
approach first determines the level at which the spatial index
needs to be calculated. The level is based on the spatial
coverage or the spatial area of the respective image. Once
the level is determined, the corresponding Hilbert code for
the image is ascertained through the latitude and longitude of
the geometric centre of the image. Similar to previous work
discussed, window queries and range queries are the targeted
functionality.

Organisation of images into predefined levels and the use
of a single point in the image as the index position is
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commonly employed in other remote sensing storage and
retrieval systems, such as those that adopt key-value databases.
Prominent examples include Wang et al. [7] and GeoMesa [3].

In 2015, Wang et al. [7] proposed an HBase-oriented
solution to store and retrieve remotely sensed image data.
That indexing technique employed was based on the GeoSOT
global discrete grid system and a packed Hilbert R-tree.
The GeoSOT codes of tiles were calculated based on the
latitude and longitude details of the respective grids. While
the authors did not specifically state the queries of interest,
based on the rationale of GeoSOT - i.e. using hierarchical
global subdivision at equal angular increments of latitude and
longitude, the prime focus appeared to be supporting window
and range queries.

GeoMesa is a leading raster data management solution.
While GeoMesa is compatible with a wide range of key-value
databases, its debut experiments were focused on raster data
management via an Accumulo key-value database. GeoMesa
stores images as tiles of different granularities or spatial
resolutions. When indexing image tiles, GeoMesa adopts XZ-
order curve [23], which is designed for non-zero sized, spatial
objects by extending the Z-order curve. However, in GeoMesa,
the XZ-curve is still applied based on a specific latitude and
longitudinal position in the image tile. In other words, the
indices constructed through XZ curve do not explicitly embed
the spatial extents of the images into its index representations
(i.e. all four coordinates xMin, yMin, xMax, yMax). Thus,
GeoMesa’s indexing strategy, although its based on secondary-
memory storage, cannot be applied to perform approximate
k-NN search of RSID.

III. METHODOLOGY

This section describes the spatial index established to enable
the approximate top k-NN queries for RSID in KV stores
and the approximate k-NN algorithm employed. For ease of
understanding and as a quick reference, mathematical symbols
and different notations used in Algorithm 1 and Algorithm 2
are summarized in Table I.

A. Obtaining Hilbert order for bounding boxes

Hilbert like scanning orders applied on two-dimensional
points cannot be applied to other object types such as lines
and polygons. As stated previously, the scanning orders for
non-point objects on a plane are typically obtained by map-
ping the bounding boxes of the objects to points in higher
dimensions [19]. Following the initial work of Kamel and
Faloutso [17], the approach presented herein indexed the
bounding boxes of RSID by mapping xMin, yMin, xMax,
and yMax coordinates to 4D points in a 4D Hilbert space.
This approach enables embedding of the spatial extents (i.e.
height and width information) of images to its index represen-
tation. More precisely, this approach enables the grouping of
bounding boxes that are similar in their geographic location
and spatial extents into a single-dimensional, sorted order.
Furthermore, this facilitates mapping and sorting adjacently on
4D Hilbert curve of location-specific, spatially similar images
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TABLE I
SYMBOLS / NOTATIONS AND THEIR MEANING

Symbol / Notation Meaning

SETRrsID RSID set to be indexed

Limg ith img record in the SETRs1 D

b; ith bounding box obtained from ;4 record

xMin;, yMin;, | minimum and maximum coordinates of b;
zMaz;, yMax;

hOrder Order of the Hilbert curve

fourDHI4g 4D Hilbert index in base 10

SETtourDHI,, Complete set of 4DHI of the entire SETRrs1pD
VEk approximate kNN results set

Ck candidate list of approximate kNN

Qw querying window

fourDH I gy 4D Hilbert value of querying window

cMingw, yMingw,
cMaxgw, yMazgw

bounding box coordinates of querying window

xMine, yMine,
zMazxc, yMax,

bounding box coordinates of candidate image

res candidate row

fourDHI .qpnai 4D Hilbert value of candidate row key

ED.gndi Eucledian distance of candidate image coordi-

nates with query region coordinates

that reside in close proximity in the real world. Unlike in the
case of MD-HBase where the index values are computed as
base 2 values, the proposed work computes 4D Hilbert values
as base 10 values.

Algorithm 1 (Create 4DHI) shares the steps involved in
the calculation of 4DHI for a given RSID set. Algorithm
1 takes three inputs: (i) set of images, (ii) Hilbert order,
and (iii) integer value 4 - which is the dimension of the
Hilbert curve. At the start of Algorithm 1, the SETtourpr1,0
which is the set that contains the 4DHI of the entire image
data set (i.e. SETRrsip), is set to null (Line 2). Subse-
quently, the looping across the set of input images (i.e.
SETgrsip) is performed. When looping, for each 4y im-
age record, the bounding box coordinates of the %;p,4, i.e.
bi(xMin;, yMin;, xMax;,yMax;), is ascertained (Line 4).
Once the bounding box coordinate for respective image is
obtained, the corresponding 4DHI value for i;,,4 is calculated
via the Hilbert function. This Hilbert function takes multi-
ple parameters as its input: the bounding box coordinates
bi(xMin;, yMin;, xMax;, yMax;), Hilbert order (hOrder),
and integer value 4 - which corresponds to the four dimen-
sional spatial transformation. The function Hilbert returns
the one-dimensional (1D) real number fourDHI;y (a base
10 number). This number depicts the 4DHI value of the
1;mg (Line 5). Once 4DHI is established, the value is added
to the SETfourpHI,,- In this work, the 4DHI computation
is performed sequentially. Nevertheless, the computation of
4DHI also can be done in parallel.

B. Approximate top k-NN Algorithm

The approximate top k-NN algorithm that is adopted in
this work is presented under Algorithm 2. There are three
main steps: (i) variable initialization, (ii) candidate row keys
selection, and (iii) refinement and retrieval of top k ap-
proximate NNs. First, under variable initialization, the sorted
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Algorithm 1: Create 4DHI

Algorithm 2: Approximate_kNN(Qw, k)

Input: SETRSID .
hOrder,
4
Output: SETfourDHIm
1 Function FourDHI (SETRrsip, hOrder,4) :
SETtourDHI, < 0
foreach i;,,; €SETRrsrp do
bi(xMin;, yMin;, eMazx;, yMax;) <iimg
fourDHIyy + Hilbert(b;, hOrder,4)
SETj'ou'r'DHIlU .add(fourDHIlo)
end
return SET .., DI,
End Function

2
3
4
5
6
7
8
9

approximate k-NN result set, candidate list of approximate
k-NN result set, and 4D Hilbert value of querying window
are set to null and zero (Line 2-4). Subsequently, under
candidate row keys selection, the 4DHI corresponding to the
querying window Qw is obtained from the coordinates of
Qw (Line 5). These coordinate values of Qw are already
known, as they are provided as inputs to the algorithm (i.e.
e Mingy, yMing,, xMaz gy, yMazq,). The obtained 4DHI
is called the fourDHI,,. This fourDHI, provides the
query position or the row key for the KV table scan.

With four DHI,,, the candidate row key set is determined
with the input k. The input k provides the upper-bound
and the lower-bound for the table scan. The upper-bound
includes k records from query position, while the lower-
bound includes k records prior to query position (Line 6-
7). Thus, the candidate set includes 2k records. These 2k
records are added to candidate set C'k. Importantantly, the
proposed Algorithm 2 considers a total of 2k rows. However,
as will be subsequently demonstrated, the initial observations
in Table II in Section IV indicated that an increase in number
of rows scanned could improve the accuracy. However, this
is not guaranteed and could negatively impact the query
response time (see discussion on this point in Section IV under
optimization techniques). Thus, when formalizing Algorithm 2
only 2k rows were considered.

Step 3, the refinement (i.e Line 8- Line 14), is performed
on the obtained candidate set C'k. For each candidate result
res, the row key is obtained, which is four DHI..,q4; (Line
10). Also, for each candidate result res in Ck, the Euclidean
Distance (ED) with initial Qw coordinates is acquired. This
ED of the candidate record is termed E'D..,4; (Line 11). Sub-
sequently, the algorithm adds four DHI.qnq; and ED..qna;
pairs to the set Vk that holds the approximated k-NN result
set (Line 12). Once all records in Ck are processed, Vk is
constructed. Then the pair of records in the Vk are further
sorted in ascending order according to E'D.,q4; values in each
pair (Line 14). Finally, the top k results from set Vk (Line
15) are returned.
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Input: Query window Quw
(@Mingy, yMing,, xMazqw, yMazg,),
integer k
Output: approximate top k-NN: top(k, Vk)
1 Function Approximate_kNN (Quw, k) :
Vi« 0
Ck <+
fourDHIyy, <0
fourDHI,,, < Hilbert(Qw)
Ck.add(row(fourDH I,) — num_rows(k) :
row(four DHIy,) + num_rows(k))
foreach res €Ck do
cMin.,yMin., xMax.,yMax. < res
fourDH I 4nq; < Tes
EDcandi — ED([
xMing, yMin.,xMax.,yMazx.],
[xMingy, yMing,, tMaz gy, yMazg,])
Vk.add( <fourDH I .qndgi, EDcandi >)
end
Vk.sort(ED.,,4)
return top(k,V'k)
[End Function

e X N N AW N

=
-

12
13
14
15
16

IV. EXPERIMENTAL EVALUATION

In this section, the implementation of the proposed 4DHI
and the MD-HBase’s indexes are presented. A comparison of
nearest neighbour results are presented with respect to the
baseline results of a kD-tree. An extensive performance study
between the 4D Hilbert index and MD-HBase’s index on
synthetically generated and real world data sets are presented.
Additionally, an optimization technique on improving the
accuracy of the 4DHI result set and another optimization
technique on improving the storage performance of the 4DHI
are also presented.

A. Study data

The real world data set was comprised of a set of aerial
images over a portion of the city of Dublin, Ireland. These
were collected during a 2015 airborne LiDAR and imagery
mapping excercise [24]. The imagery consists of precisely
geo-referenced, fully orthorectified images; oblique images
captured from two separate cameras; and RGB and colored
infrared (CIR) images taken from a nadir camera. The ex-
periments employed 8,438 real images from this data set.
The corresponding ground footprints for each image were
calculated from the image metadata files. The ground footprint
coordinate values of each image corner point were used to
obtain the coordinate values of each image bounding box.
These bounding box coordinate values ranged from 314272
to 318002 in the x dimension and 232467 to 236056 in the
y dimension in the Irish Grid System. The main aims were
(i) to compare the accuracy of the NN result sets of both the
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proposed 4DHI index and the MD-HBase’s index against the
result set of kD-tree and (ii) suggest optimizations.

While this dataset was used to show accuracy and optimiza-
tions, to compare scalability between the proposed 4DHI and
the MD-HBase’s index synthetically generated data sets were
employed. Each synthetically generated data set represents
minimum bounding boxes of images (i.e. xMin, yMin, xMax,
yMax coordinates), thus termed as pseudo bounding boxes. As
the prime purpose of using synthetically generated data sets
was to investigate scalability, the synthetic data generation
approach did not adhere to a specific coordinate reference
system. The coordinates values of each pseudo bounding box
were based on integer values ranges. For example, in the x
dimension it ranged from 200 to 240 and in y dimension from
900 to 965. For each real image bounding box and pseudo
bounding box, the 4DHI and counterpart index of MD-HBase
were obtained.

B. Implementation of indexes

When applying different SFCs to a given situation, one
of the essential factors was to divide the region of interest
into similarly sized raster grids. If the raster grid division
is not uniform, the comparison between the results yielding
from different SFCs are not comparable. Therefore, the study
region was divided into similarly sized raster grids to ensure
comparable results obtained from the proposed 4D Hilbert
index and the counterpart index of MD-HBase which was
based on the Z-order curve .

For the real world bounding boxes, an order 19 grid
system (19x19 raster grid) was selected, as this was the
largest bounding box coordinate value (i.e. 318002) that could
be represented with a 19 bit binary key in base two (e.g.
1001101101000110010). The corresponding 4D Hilbert val-
ues were calculated for each bounding box by considering
the coordinate values of the bounding boxes. Algorithm 1
presented in Section III was applied to construct 4DHI for
image data. As stated previously, the computed 4DHI were
in base 10 format. For the calculation of 4DHI an external Java
library was employed. The counterpart indexes of MD-HBases
were calculated by interleaving bits in the four coordinates.
To adhere to the MD-HBases’s original implementation, the
Z-order index values of MD-HBase were calculated as base 2
indexes.

As the maximum coordinate value in pseudo bounding
boxes was 965, when creating the raster grid for synthetic
data, a 10 x 10 raster grid was adopted. For the generation
of 4D Hilbert indexes and MD-HBases’ indexes, a technique
matching that applied to the real world data was implemented.
Once the index generation was done, the 4DHI keys and MD-
HBase’s index keys were sorted in ascending order. Next,
they were ingested into separate HBase tables by making 4D
Hilbert indexes and MD-HBase indexes, as required keys for
each data ingestion.
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C. Experimental setup

Experiments were performed on the Peel cluster at New
York University (NYU). Peel is a high-end 18 node cluster
that deploys HBase on top of the Hadoop environment. The
hardware and software specifications of each compute node
in Peel cluster are as follows: 2x24 - core Intel ® Xeon
® Platinum 8268 CPU @ 2.90 GHz, RAM - 384 GB, disk
storage - 8 HDD disks 8 TB each, Hadoop 3.0.0, and HBase
2.1.0-cdh6.3.4. The configured replication factor of HBase was
3 (i.e. each data record gets replicated 3 times).

D. Comparing accuracy of 4DHI

In the tests, first the reliability of using a 4DHI for the
representation of image bounding boxes as 4D points for
approximate k-NN search was tested. This evaluation was
performed on the real world data by comparing the precise NN
results produced by an in-memory kD-tree and the approxi-
mate k-NN results when employing MD-HBases’s indexes. In
the comparisons, the error metrics used in kD-tree and MD-
HBase’s indexes and the 4DHI were identical. For example,
as the error metric, the ED error metric was adopted. The ED
of respective 4D points in image bounding boxes and initial
querying window were calculated.

The comparison followed two methods. In first method, 100
bounding boxes were selected from the real image data set.
Each bounding box was subsequently parsed as a 4D vector
to a kD-tree data structure from which the top 40 precise NNs
were obtained. Subsequently, for each bounding box, 7 records
were scanned in the respective 4DHI and MD-HBase index
tables implemented in HBase. Here the r number of records
varied depending on the intended top K results. In this case the
r number represents 10 rows, 20 rows, and 40 rows for the top
10 results, 20 rows, 40 rows, and 80 rows for the top 20 results,
and 40 rows, 80 rows, and 160 rows for the top 40 results. The
row keys of r scanned records were inspected. Subsequently,
the percentage of overlapping for the top 10, top 20, and top
40 nearest neighbor results (i.e. row keys) with respect to kD-
tree results were calculated. This process was repeated six
times. Therefore, in total, 600 bounding boxes were randomly
chosen and their real NNs were obtained through kD-tree and
their approximate NNs determined through 4DHI and MD-
HBase indexes. Finally we calculated the average for each
overlapping for different percentages ranging from 70%, 80%,
90%, and 100%.

For the second method, a large of set consisting of 600
random bounding boxes was selected. Similar to the first
approach, the top precise top 40 NNs were chosen using the
kD-tree and the different percentages of overlaps for the top
10, top 20, and top 40, approximate NNs for both 4DHI and
MD-HBase’s index were obtained. The results are presented
in the Table II.

Table II demonstrates a trend for improved accuracy with
an increase in the number of rows. This intuitive conclusion
is distilled in Table II in a more analytical form:

« When retrieving the top 10 approximate NNs
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TABLE II
ACCURACY COMPARISONS BETWEEN MD-HBASE’S INDEX RESULTS AND
4DHI RESULTS WITH RESPECT TO RESULTS OF KD-TREE

EREERE MD-HBase 4DHI

s El %g Overlap percentage (%) | Overlap percentage (%)
S| | ® 70 80 90 100 | 70 80 90 100
10 9.8 2.3 0.1 0.0 123 1 4.2 0.5 0.0

10 | 20 31.8 | 185 | 8.1 2.1 377 | 240 | 11.3 | 2.3

40 482 | 363 | 242 | 122 | 587 | 44.7 | 31.3 | 16.2

20 7.8 0.8 0.2 0.0 9.7 2.0 0.0 0.0

1 |20 ] 40 315 | 177 ] 82 2.0 3751240 | 11.3 | 2.3
80 443 | 328 | 21.0 | 9.3 58.7 | 447 | 31.3 | 16.2

40 8.5 1.0 0.0 0.0 8.2 1.0 0.0 0.0

40 | 80 287 | 165 | 6.8 0.8 348 | 155 | 6.0 0.3
160 | 425 ] 31.0 | 17.8 | 5.5 572 | 413 | 23.0 | 4.8

10 11.7 | 3.0 1.5 0.2 14.8 | 4.7 1.2 0.0

10 | 20 3871261 | 120 | 42 40.5 | 25.8 | 12.7 | 4.0

40 55.6 | 45.0 | 30.0 | 16.7 | 60.2 | 47.0 | 31.8 | 16.7

20 102 | 2.3 0.3 0.0 9.5 2.2 0.0 0.0

2 120140 385 [ 225 ] 11.8 | 2.8 372 1233 ]9.7 1.8
80 557 | 40.7 | 27.8 | 11.8 | 57.7 | 44.0 | 27.0 | 10.0

40 9.5 1.7 0.0 0.0 8.2 0.7 0.0 0.0

40 [ 80 350 [ 21072 [07 [357[180]62 |03
160 | 53.8 [ 39.7 | 25.0 | 9.7 563 | 40.2 | 21.7 | 4.0
— In method 1, the always yielded better accuracy

over MD-HBase’s 4D Z-order index. The maximum
difference between the accuracies of the two indexes
was 10%.

In method 2, except for one event, the 4DHI yielded
better accuracy. The accuracy difference in the only
event where MD-HBases’s index outperformed 4D
Hilbert index was still less than 1%. In contrast, the
maximum difference when 4DHI outperformed MD-
HBases’s index was nearly 4%.

o When retrieving the top 20 approximate NNs

— In method 1, except for one instance, the 4DHI
yielded better accuracy with a maximum difference
of 4%. The accuracy difference between the 2 in-
dexes when the MD-HBase’s index outperformed the
4DHI was less than 1%.

In method 2, MD-HBases’s index outperformed
the4DHI in 5 instances with a maximum difference
of 2%. In events where 4DHI outperform MD-
HBase’s index, the maximum difference was 4%.

o When retrieving the top 40 approximate NNs

— In method 1, except for 5 circumstances, 4DHI
yielded better accuracy than counterpart index with a
maximum difference of 14%. When the MD-HBase
index performed better, the difference was less than
1%.

In method 2, MD-HBase’s index outperformed the
4DHI in 7 circumstances with a maximum difference
of nearly 5%. When 4DHI outperformed the MD-
HBase indexing, the maximum difference was only
2%. In these experiments, this was the only event
where the proposed index demonstrated a maximum
overlapping less than the counterpart index.

These analyses show that in the majority of circumstances,
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the proposed 4DHI performed better. In particular with respect
to obtaining the top 10 and top 20 approximate NNs, the per-
formance gain ranged from 10%-14%. This could be attributed
to the fact that Hilbert SFC is better at preserving locality com-
pared to the Z-order curve. However, as the experiments were
based on only one real world data set further generalization is
not yet possible. Thus this work concludes that both 4DHI and
4D MD-HBase indexes are capable of performing location-
specific approximate k-NN for aerial images when managed
in KV databases. From a SFC adoption point of view, Hilbert
SFC often provided better accuracy.

When the results proposed in the 4DHI did not tally with
kD-tree results, a further analysis was undertaken. To do so,
a bounding box was arbitrarily chosen from which the top 10
neighbours were obtained, as suggested by the kD-tree. The
approximate NN results suggested by 4DHI were also obtained
by scanning 10 records. In the top 10 results of the 4DHI, 7
out of 10 matched. Next, the bounding boxes of mismatched
results among the two data structures were plotted to obtained
their visual semantics (see Figure 3). Figure 3 demonstrates
that some results of 4DHI do not comply with the results of
kD-tree (i.e. only approximations). However, from a visual
point of view, those results of 4DHI are still comparable - or
in other words, geographically very close to the initial regions
of interest.

233400

233200

Irish Grid Coordinates - Y values

233000
=1 Region of interest =1 Region of interest
232800 7221 kD-tree neighbours —1 4DHI Neighbours
315800 316000 316200 315800 316000 316200

Irish Grid Coordinates - X values Irish Grid Coordinates - X values

Fig. 3. Analysis of non-overlapping results when using 4DHI with ground-
truth results of kD-tree

To deepen the understanding on the approximated results
against results of the kD-tree, further analysis was undertaken.
Specifically, the ED error values and Jaccard similarities
between the regions in the two scenarios were measured
using the ED error value as the established error metric. The
Jaccard similarity metric was used, as it provides a means to
measure similarity between polygons pairs. For example, the
Jaccard similarity between two polygons can be compared by
measuring the ratio between the Intersection and the Union of
the two polygons as a percentage (i.e. area of overlap / area of
union ) * 100). The results obtained are presented in Table III.

Table III illustrates that according to the ED error metric,
the non-matched, approximated results tend to deviate by a
distance value of 20 (i.e. 74 - 54) to 29 (i.e. 96 - 67).
Thus, the percentage difference range was 37%, 31%, and
43%. Therefore, even though the non-matching approximated
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TABLE III
EUCLIDEAN DISTANCE ERROR VALUES AND JACCARD SIMILARITY IN THE
APPROXIMATED RESULTS IN 4DHI IN COMPARISON TO KD-TREE RESULTS

Metric kD-tree 4DHI Difference (%)
Euclidean distance
of 4D points [54, 66, 67] | [74, 87,96] | [37, 31, 43]
Jaccard similarity (%) | [77, 73, 751 | [66, 72, 66] | [11, 1, 9]

results were visually comparable, in the 4D space, these results
might deviate from the expected actual results to some extent.
However, the matching result set was always greater than
the non-matching results. Also, the accuracy of the results
set have the potential to be improved through optimization
techniques (as will be discussed in Section IV-F). Thus, in
overall, this paper claims that the approximated results produce
more scalable results for location-specific RSID retrieval.
Moreover, from Table III one sees the Jaccarad similarity
differs only to a maximum of 11%. This means that the
approximated results still possess reasonably better region
overlapping with the union between initial region of interest.
This reinforces the claim that the approximated results produce
more scalable results for location-specific RSID retrieval.

E. Scalability

Next the scalability of the proposed index was considered
- in particular in coping with large amounts of image data,
by investigating the storage performance and query response
time performance. Scalability was tested using five different
synthetically generated data sets, where each data set repre-
sents a collection of pseudo bounding boxes. These data sets
range from 100K - 1200K (K = 1000), pseudo bounding boxes.
For each data set, the corresponding 4DHI were obtained as
base 10 values. As the authors of MD-HBase represent their
indexes as base 2 binary keys, the counterpart MD-HBase
indexes were calculated in base 2. After obtaining the index
values, they were injected into 10 different HBase tables by
considering row keys as either 4DHI or the counterpart MD-
HBase index (5 tables with 4DHI and 5 tables with MD-HBase
index). During ingestion the row keys were transformed into
their corresponding binary array representations - the format
that HBase stores data internally.

1) Storage Performance: For each table, the full disk
utilization (including the replication) was obtained. The results
in Table IV demonstrate that the proposed 4DHI scales well
in terms of storage requirements for high degree of data sizes
compared to the storage requirements of MD-HBase’s index.
When adopting the proposed 4DHI, the users obtained an
approximate 34% - 39% improvement in storage capacity vis-
a-vis the counterpart MD-HBases’s indexes. This improvement
can be predominantly attributed to the representation of the
index. For example, in the original work of MD-HBase, the
authors represented the index keys as base 2 binary values. In
this work the index keys were represented as base 10 values,
which produces more compact keys - meaning, the lengths of
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the index keys is much shorter. As a result, less storage is
required to store the keys in secondary-memory storage.

TABLE IV
STORAGE CONSUMPTION COMPARISON BETWEEN MD-HBASE’S INDEX
AND 4DHI
Num: of
pseudo Ml?l—vll-l]gase ‘(11\?[1];; Gain (%)
bounding boxes
100K
(SET 1) 86.8 54.6 36.6
200K
(SET 2) 174.3 110.0 | 36.8
400K
(SET 3) 336.3 207.8 | 38.2
800K
(SET 4) 672.2 442.1 | 342
1200K
(SET 5) 1019.9 623.1 | 38.9

2) Query response time performance: Next, a set of K-NN
queries were executed across HBase tables that stored synthet-
ically generated data. This was done to evaluate the versatility
of the proposed 4DHI as compared to MD-HBase’s indexes.
All approximate k-NN queries were based on Algorithm 2.
When designing the experiments, four arbitrary bounding box
regions (R1- R4) and eight & values, namely: 100, 200, 400,
800, 1600, 3200, 6400, and 128000 were selected as NN
values. Each corresponding bounding box region with its
respective k-NN value (e.g. R1 with 100 k-NN, R1 with 200 k-
NN, etc) was executed 25 times to achieve statistically robust
response times. As the focus of these experiments were on the
performance of the indexes, when ascertaining query response
time, the focus was only on the candidate row selection and
the filtering happening on the indexes. Image retrieval I/O time
was discarded for both indexes. When analyzing the k-NN
response time results, for 100, 200, and 400 k-NNs, the query
response times in both cases were always below one second.
Thus only comparable values that were above 800 are reported
herein. Due to space constraints, only a subset of the overall
results are presented, as shown in Table V and Figure 4.

TABLE V
AVERAGE QUERY RESPONSE TIME FOR K-NN QUERIES WHEN ADOPTING
MD-HBASE’S INDEX, AND PROPOSED 4DHI FOR APPROXIMATE KNN
SEARCH OF BOUNDING BOXES.

6400 Neighbours 12800 Neighbours
Data set Avg: response Avg: response

time (s) Gain time (s) Gain

MD-HBase | 4DHI MD-HBase | 4DHI

SET 1 8.4 2.6 32 34.8 10.0 3.5
SET 2 8.2 2.4 3.4 28.6 6.1 4.7
SET 3 8.0 3.7 22 28.7 6.1 4.7
SET 4 8.3 5.0 1.7 27.2 11.0 2.5
SET 5 11.0 3.0 3.7 37.9 15.2 2.5

Table V is based on retrieval of k-NN for a pre-selected
bounding box region for different sizes of data sets. This
demonstrates the impact on k-NN query response time due to
the growth in data size with respect to an arbitrary bounding
box region. Results shows that the average query response time
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for both indexes increased with respect to the growth in data
sizes. Nevertheless, compared to MD-HBases’s Z-order curve
based 4D index approach, the proposed 4DHI yielded greater
improvements. Figure 4 is based on data set 5 (i.e. SET 5) -
the biggest dataset tested. It demonstrates the average query
response times for the four arbitrarily selected bounding box
regions for the two indexes.

Region 2

—e— 4DHI re
-%- MD-HBase ’

Region 1

—e— 4DHI
-%- MD-HBase

response time (s)
3 8 & 8

H

°

0.8H.6K 3.2K 6.4K 12.8K
neighbours returned (K = 1000)

0.8H.6K 3.2K 6.4K 12.8K
neighbours returned (K = 1000)

Region 3 Region 4

—e— 4DHI
-%- MD-HBase

—e— 4DHI
~%- MD-HBase

6.4K
neighbours returned (K = 1000)

0.8E.6K 3.2K 6.4K 12.8K 12.8€

neighbours returned (K = 1000)

0.8H.6K 3.2K

Fig. 4. Approximate k-NN response times for four arbitrary regions selected
for SET 5

Similar to the above observation, irrespective of the region,
an improvement in query response time is clearly seen when
adopting the proposed 4DHI when compared to the MD-
HBase’s index approach. The improvement shown in Table V
and Figure 4, can be predominantly attributed to the compact-
ness of 4DHI. As previously noted, the adopted base 10 format
is more compact compared to MD-HBase’s base 2 rowkey
format. This means, there were less data to be transferred over
the network when adopting 4DHI.

FE. Optimizations

Finally, two optimization techniques for the proposed
4DHI were explored. These aim at improving accuracy of the
approximated results and the efficiency of the storage.

1) Bounding box displacement (BBD):

With the objective of improving the accuracy of the top k-
NN result set of the proposed 4DHI similar to the result set of
kD-tree, a technique termed - “Bounding Box Displacement
(BBD)” is proposed. The BBD technique is based on four
extra bounding box regions. Each bounding box region in has
a similar height and width dimension as that of the initial
bounding box. In BBD, the first step is to displace these extra
bounding box regions in north-east, south-east, south-west,
and north-west directions with respect to the initial region of
interest. Subsequently, row scans are performed around the
calculated 4DHI of each bounding box, while calculating the
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ED error values. After this step, the top K result sets from
each bounding box region are aggregated to generate a larger
candidate set. This expanded candidate set is based on a total
of five bounding box regions: initial region and four extra
regions as depicted in Figure 5. Finally, similar to Algorithm 2
in Section III, the candidate results are sorted according to
their ED values and the top k results are returned.

North-East
displacement

I_\Iorth-West .
displacement

South-East
displacement

South-West \,
displacement

: k)
Region ofj interest

Fig. 5. BBD technique to improve the accuracy of approximate kNN of RSID
images

The proposed BBD technique was applied to the real world
data. This was done over several regions by employing the
approximate k-NN Algorithm 2. In the proposed approximate
k-NN algorithm, a total of 2k rows are scanned; the term k
implies the number of neighbours intends to return. The impact
of scanning 4k rows was also tested. This was motivated by the
initial observation of higher accuracy in approximated results
being obtained when more rows are scanned (see Table II).

While employing BBD technique, we displaced additional
bounding boxes around the initial region of interest by 5%,
10%, 20%, and 40%. Employing BBD directly increased the
accuracy in the final approximated result set for all tested
regions. Furthermore, the combination of BBD with an in-
crease in the number of row scans, i.e. 4k rows as opposed
to scanning of 2k rows as stated in the Algorithm 2, also has
an impact. For example, with respect to the real world Irish
Grid coordinates 315815.56 (i.e. xMin), 233211.34 (i.e. yMin),
316222.28 (i.e. xMax), 233565.4 (i.e. yMax) is presented in
the Table VI. Figure 6, is based on Table VI; due to space
constraints only three neighbour search results are presented
from Table VI. The horizontal, dashed line in green in Figure 6
in each sub-graph shows the percentage of overlap with the
results set of the kD-tree when not employing BBD when
employing Algorithm 2 with a total of 2k rows scanned.

TABLE VI
APPLICATION OF BBD TO IMPROVE THE ACCURACY OF 4DHI RESULTS

% of overlap % (.)f overlap
top k | rows with KD-tree with BBD
5% 10% 20% 40%
10 20 90.0% | 90 .0% | 100.0% | 90.0% 90.0%
20 40 80.0% 85.0% 90.0% | 80.0% 80.0%
80 80.0% 90.0% 90.0% | 90.0% 90.0%
40 80 72.5% | 72.5% 72.5% | 77.5% 72.5%
160 85.0% 87.5% 87.5% | 87.5% 90.0%
30 160 76.3% | 71.5% 80.0% | 77.5% 88.7%
320 90.0% 90.0% 90.0% | 90.0% | 100.0%
160 320 84.4% 84.4% 84.4% | 84.4% 98.8%
640 84.4% 98.8% 98.8% | 98.8% 98.8%
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Fig. 6. Impact of BBD on increase in the accuracy in approximated top k
results

According to Table VI, initially the corresponding accuracy
or the percentage of overlapping with the result kD-tree for top
k neighbours (k = 10, 20,40, 80,160) was always less than
100%. However, with the proposed optimizations improved
accuracy up to 100% was achievable, at different displacement
percentages. This demonstrated that with the proposed BBD
technique, the final approximated result set potentially can be
improved, although the final approximated result set will not
always improve at all displacement percentages. Even with
BBD, the final percentage of overlapping with kD-tree results
can be similar to the percentage of overlapping of kD-tree
results without the BBD technique. For example, in Table VI
for the top 10 approximated neighbours, the percentage of
overlap only exceeded 10% of BBD around the initial region
of interest. Displacing 5%, 20%, and 40% did not guarantee
an improvement. Similar observations are visible for the top
20 approximated results when scanning 40 rows (or 2k rows
where k& = 20). More examples can be observed in Table VI.

Identifying the right percentage of displacement is non-
trivial, as it can be impacted by several factors such as data
distribution. Performing a deep analysis on identifying the
right level of displacement factor is beyond the scope of this
paper. However, the application of BBD will aim to ensure that
the cumulative approximated result be similar or better than
the approximated results. For example, in Figure 6, the bar
plot heights that show the percentage of overlapping with kD-
tree results, always matches or exceed the horizontal dashed
line.

The results in Table VI further uncover that the scanning of
additional rows might not improve the overall percentage of
overlapping with the results of kD-tree for a specific region.
This is opposed to the general analysis that our worked
observed in Table II. The distinction between the two tables is
that, in Table II the statistical results presented accounted for
group of regions whereas in Table VI the results accounted
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only for specific region.

Examples where the increase in the number of rows scan
does not always yield better overlapping with results of kD-
tree for a given region can be seen in Table VI. In the scenario
of top 20 approximated NNs, the increase of scanning of rows
from 40 to 80 had no impact on the overall accuracy. However,
when couple with use of BBD better accuracy was always
achieved irrespective of the percentage of overlap with results
of kD-tree. Similar observations can be made with respect to
the top 160 approximate NNs in Table VI and the subplot
corresponding to the 160 approximate NNs in Figure 6. Thus,
adopting BBD in unison with a high number of row scans
could improve the accuracy of the approximated results.

Insights on the BBD displacement percentage and increased
row scans can also be found in both Table VI and Figure 6. For
instance, for smaller k£ values, such as 20 neighbours, smaller
displacements tended to obtain improved accuracy when the
number of rows scanned remained at 40 rows (i.e. 2k rows).
When BBD displaced by 20% or 40%, the accuracy tended to
tally with the accuracy obtained without BBD (cf. Figure 6).
In contrast, for large number of neighbours such as 80 or 160
with 2k rows scanned, the accuracy tended to increase at large
displacement percentages of BBD.

BBD introduces additional scanning and filtering steps
to the proposed approximate top k-NN algorithm (i.e.
Algorithm 2). Intuitively, these additional steps can lead
to extra execution time. The experiments conducted while
employing BBD technique demonstrated that even for larger
k values such as 160 neighbours, the average query response
time only increased by 200 milliseconds, even with 4k
row scans. More specifically, when applying BBD for the
approximate top 160 NN search with a total of 640 row
scans (i.e. 4k rows), the final query response time stayed
at 1.6 milliseconds. The query response time for the top
160 approximated NNs without BBD was 1.4 milliseconds.
Thus, the impact on query response time from BBD can be
considered as trivial in these BBD experiments. Nevertheless,
based on the previous experiments on synthetic data, an
adverse impact on query response time for k values beyond
1600 can be expected (cf. Figure 4).

2) Compact row key design:

A recent work of the authors of MD-HBase [25] argues
that efficient indexing keys need to be short and fixed in
their length. In their work, the authors introduce a technique
termed reverse computation of prime factorization (RCPF)
as a novel SFC technique. This RCPF technique generates
more compact index keys termed ‘“P-Indexes”. When applied
to the real world data here, the keys or the corresponding
P-Indexes were indeed significantly small compared to the
counterpart 4DHI. For example, when applied to an arbitrary
Irish Grid based bounding box where coordinates are 314582
(xMin), 232779 (yMin), 314898 (xMax), 233081 (yMax), the
P-Index was 268210.2335256357 (17 characters) compared
to the counterpart 4DHI of 59118266627987739590792 (23
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characters).

Nevertheless when adopting RCPF technique, aggravated
index generation times (e.g. 12 seconds to 100 records, 25
seconds to 200 records, 53 seconds for 400 records etc.) were
observed. As index generation is a one time operation for a
given set of imagery data, arguably the time taken for index
generation is a one time cost. Furthermore, although the index
is relatively large in size, the index generation time for all real
data (i.e. 8438 records) was less than 1 second. Additionally,
the top K results’ analysis between 4DHI, MD-HBases’s index
and RCPF index against the in-memory kD-tree result set
suggested that both the proposed index and MD-HBase’s index
performed significantly better at preserving locality of spatially
similar images in the 4-dimensional space. For example, both
4DHI and MD-HBases’s results were at least 300% better than
the RCPF index based k-NN search.

Although the RCPF technique and the P-Index are not
suitable for the location-specific scenario, their testing further
demonstrated that more compact row keys are favorable,
as was shown with the better perfomance of the base 10
oriented indexes compared to the base 2 indexes. As RCPF
technique has limitations, in this work a three step technique
for generating more compact keys is proposed. The versatility
of the proposed optimization technique was demonstrated on
a real world data set.

o Step I: remove common prefix from each index key.
e.g. in our dataset the lowest 4DHI is
59118266407538384051197 and the highest 4DHI
is 59118270076213878661326. Therefore, we propose
removing the common prefix - i.e. “597/182” from all
index keys. Once removed, the lowest 4DHI value would
be 66407538384051197 and the highest 4DHI value
would be 70076213878661326. This step reduces the
length of the index to 17 characters - the same number
of characters appear when adopting RCPF.

o Step 2: recursively divide index keys by prime numbers
in their increasing order. At each division, round-up the
resulting values to nearest integer. Make sure that each
resulting integer is unique and the length of each integer
is identical. If not unique, break the recursive operation.
e.g. round_up_int (66407538384051197
2 /3 15/7) 316226373257387 and
round_up_int(70076213878661326/ 2/3/517) =
333696256565054. These new keys have 15 characters.

e Step 3: check if Step 1 and Step 2 can be applied

recursively on the new representation of keys.
e.g. 316226373257387 and 333696256565054 can be fur-
ther reduced to 16226373257387 and 33696256565054
to more compact keys of length 14 by removing the
common prefix “3”.

The impact of the new compact row keys were tested
on both storage performance and k-NN query response time
performance. A noted an improvement in storage efficiency
was achieved. For example, the 14 character length keys only
consumed a total of 32.0 MBs as opposed to the 36.8 MBs
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consumed by 23 characters length keys. This translated to
a storage performance improvement of 13.8% through the
proposed three step technique. However, the improvement
in the query response time was trivial for the considered
k neighbours. Nevertheless, according to the arguments of
the authors of the P-Index, compact keys are favorable -in
particular with storage efficiency. Thus, we argue that our
proposed three step technique on real world data set works
better compared to the approach suggested by the authors of P-
Index. For example, the proposed technique produced compact
row keys with only 14 characters as opposed to 17 characters
when applying RCPF technique.

V. CONCLUSIONS

This paper presented a 4D Hilbert index for scalable,
approximate, nearest neighbour searching of RSID which are
managed in KV databases. 4DHI is based on the spatial
transformation technique that transforms the minimum and
maximum coordinates of image bounding boxes to 4D points
in 4D space. Based on 4DHI, a further approximate top
k-NN algorithm is proposed that can be employed in KV
database environments for location-specific, spatially similar
RSID retrieval. When evaluated, the accuracy and the perfor-
mance of the proposed 4DHI for approximate top k-NN search
compared favorably against the results of a MD-HBases’s Z-
order curve based 4D index. Both 4DHI and MD-HBase’s 4D
indexes were evaluated based on the ground truth top k-NN
results produced by an in-memory kD-tree data structure. The
accuracy comparison demonstrated that the proposed 4DHI
yielded comparable (if not superior) accuracy compared to the
results of MD-HBase’s Z-order index.

In terms of storage performance and query response times
performance, the proposed 4DHI always out performed coun-
terpart index of MD-HBase, with 34% - 39% storage improve-
ments. Similarly, 1.7 - 3.4 fold gains and 2.5 - 4.7 fold gains
were obtained when retrieving 6400 neighbours and 12800
neighbours, respectively. These performance improvements
were mainly attributed to the index representation — namely
base 10 values as opposed to the base 2 base index keys,
as suggested by authors of MD-HBase. Thus, the index keys
produced were much more compact compared to the MD-
HBase index keys. Similar storage performance and query
response times could have been achieved through MD-HBase’s
indexes, if base 10 representation were adopted.

Finally two optimization techniques for retrieval of location
specific spatially similar images were introduced. The first
technique, termed as bounding box displacement (BBD). BBD
improved accuracy of the final result set at different levels
of bounding box displacements around the initial region of
interest. The second technique was a three step process that
could be adopted to generate even more compact index keys
to further improve the storage performance. This proposed
three step technique was easy to adopt and time efficient in
generating compact indexes compared to the RCPF technique
proposed by P-Index work that includes the authors of MD-
HBase.
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A. Future work

Potential future directions that arise from 4DHI work, in
particular in relation to the proposed optimization techniques
include the following:

« improve approximate k-NN algorithm further by integrat-

ing dynamic BBD displacement percentages.

integration of number of rows scanned in the query
execution as a dynamic value while making sure no
impediment on query response time.

analyze the impact of compact keys arising from second
optimization technique on large data sets on query per-
formance.
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