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Abstract—Power flow forms the basis of many power system
studies. With the increased penetration of renewable energy, grid
planners tend to perform multiple power flow simulations under
various operating conditions and not just selected snapshots at
peak or light load conditions. Getting a converged AC power flow
(ACPF) case remains a significant challenge for grid planners
especially in large power grid networks. This paper proposes
a two-stage approach to improve Newton-Raphson ACPF con-
vergence and was applied to a 6102 bus Electric Reliability
Council of Texas (ERCOT) system. The first stage utilizes a
deep learning-based initializer with data re-training. Here a deep
neural network (DNN) initializer is developed to provide better
initial voltage magnitude and angle guesses to aid in power flow
convergence. This is because Newton-Raphson ACPF is quite
sensitive to the initial conditions and bad initialization could
lead to divergence. The DNN initializer includes a data re-
training framework that improves the initializer’s performance
when faced with limited training data. The DNN initializer
successfully solved 3,285 cases out of 3,899 non-converging
dispatch and performed better than random forest and DC power
flow initialization methods. ACPF cases not solved in this first
stage are then passed through a hot-starting algorithm based
on homotopy continuation with switched shunt control. The hot-
starting algorithm successfully converged 416 cases out of the
remaining 614 non-converging ACPF dispatch. The combined
two-stage approach achieved a 94.9% success rate, by converging
a total of 3,701 cases out of the initial 3,899 unsolved cases.

Index Terms—Deep Learning, Homotopy Continuation, Neural
Network, Newton-Raphson, Power flow convergence, Power flow
initialization.

I. INTRODUCTION

SOLVING the AC power flow (ACPF) problem is of
utmost importance to power system planners as it pro-

vides insights into the steady-state operating condition of
the grid. It involves calculating the voltage magnitude and
angles at each bus. From these solutions, the system losses,
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thermal and voltage violations, and line loading condition can
be evaluated [1], [2]. Power flow also forms the basis for
performing many power system studies such as expansion
planning, interconnection studies and contingency analysis [3].
From existing literature, several power flow solution methods
have been developed which includes non-iterative methods
such as holomorphic embedding, DC power flow (DCPF), and
iterative methods such as Gauss-Seidel, Newton-Raphson, and
Fast Decoupled power flow [4][14]. Other methods include
continuation power flow developed in [14] and the Iwamoto
power flow.

Among the various solution techniques available, the
Newton-Raphson method is the most commonly used in in-
dustry because it exhibits significant robustness and quadratic
convergence compared to other methods [5]. As such, it is in-
corporated into many industrial simulation software programs,
such as PSS/E and Powerworld. Due to the nonlinear nature
of the power flow equations, achieving a converged ACPF
case can be quite difficult, especially in large power grids. In
fact, under certain operating conditions, a power flow case
may be unsolvable [7]. This presents a peculiar challenge
for researchers on how to improve ACPF convergence. The
convergence of Newton-Raphson ACPF is affected by factors
such as the initial guess of the voltage magnitude and angle,
generator and load dispatch, reactive power, and the control
devices present in the ACPF case. Addressing these factors
could improve convergence. Given the niche nature of ACPF
convergence, both foundational and recent advancements in
this specialized field will be reviewed.

Because the Newton-Raphson method is sensitive to the
initial conditions [1], better initializations tend to aid in con-
vergence. Based on this fact, researchers in [15] solved non-
converging ACPF models using DCPF initialization. In this
approach, the power flow model is first solved using DCPF,
and the voltage angle results obtained from the DCPF are
then used as the starting point for the Newton-Raphson ACPF.
Although this technique is regularly used in industry, a major
limitation is that DCPF does not consider voltage magnitude,
losses, or reactive power in the model. Initialization using
only voltage angles obtained from DCPF tends to reduce the
success rate of converging previously non-converging ACPF
cases, as observed in [8]. To further address the initial guess
problem, researchers in [13] introduced an iterative analytical
approach that starts with a random initial guess for the
voltage magnitude and angles. After the first iteration, the
Jacobian matrix is analyzed, and a convergence parameter
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ρ is computed based on the Jacobian. If ρ is greater than
a particular threshold, the initial guess is updated using a
developed affine matrix. However, the effectiveness of this
approach was not tested on relatively large-scale ACPF cases
under varying operating conditions.

Apart from addressing initialization, researchers regularly
apply various forms of homotopy continuation to converge
ACPF cases. The general concept of homotopy involves
replacing an original difficult dispatch case with an easily
solvable dispatch case. The parameters in this easy-to-solve
case are then slowly changed and solved until they match
the original dispatch case. Researchers in [11] developed a
methodology known as ”Power Flow Homotopy” that slowly
converts an easy DC into ACPF and tested it on a rela-
tively small 300-bus ACPF model. Recent applications of
homotopy continuation can be observed in [9] and [10]. In
[9], an incremental hot-starting algorithm based on homotopy
continuation was developed and applied to a reduced 243-
bus Western Electricity Coordinating Council (WECC) system.
The developed algorithm was able to successfully solve 77.8%
of the created AC dispatch cases. However, the effective-
ness of this algorithm was not tested on large-scale ACPF
cases regularly encountered in industry. Researchers in [10]
published a recent study that applies homotopy continuation
to a large-scale ACPF case. The homotopy algorithm in
[10] incorporates fictitious shunt admittances to solve the
ACPF model. Additionally, the algorithm was not tested under
varying operating conditions. From the literature on homotopy,
it can be observed that the role of control devices, such as
switched shunts, has not been incorporated into the various
homotopy-based algorithms currently available.

In addition to addressing initialization and the application of
homotopy, recent studies have solved non-converging ACPF
cases by applying a reactive power planning methodology
developed by researchers in [7]. This technique involves
using fictitious generators with unlimited reactive power.
Researchers at the National Renewable Energy Laboratory
(NREL) [4] recently applied this methodology to a reduced
243-bus WECC power flow model. In this approach, numerous
fictitious generators are added to the ACPF case to increase
the solvability region. These fictitious generators provide zero
active power and unlimited reactive power. The assumption is
that the initial ACPF cases were not solved due to insufficient
reactive power; therefore, adding generators would provide
the necessary reactive support. Once the case is solved, these
fictitious generators are gradually removed. A limitation of this
approach is the lack of a standardized method for determining
the number of fictitious generators to add to an ACPF case,
as well as for selecting the buses to which these fictitious
generators should be connected. Adding too many fictitious
generators could cause the case to diverge, so this method
requires some heuristic based on prior knowledge of the
specific ACPF case being solved.

Another method for solving non-converging ACPF cases
was recently published by researchers at the Pacific Northwest
National Laboratory [6]. In this method, ACPF cases are
solved by gradually reducing the load in the system until the
case finally converges. This approach assumes that the loads

in a dispatch are variable and is not suitable for scenarios
where the load dispatch is fixed by external factors, such as a
load forecast [9]. Shedding load presents a limitation to this
approach. Practically, it is easier to control generation than to
control load, and load shedding is only done under extremely
necessary conditions.

From the reviewed literature, most solution techniques for
converging ACPF cases in practical large grid systems include
reducing system load, DCPF initialization, homotopy contin-
uation, and reactive power planning. However, researchers in
[8] introduced a new method based on artificial intelligence for
solving non-converging Newton-Raphson ACPF cases. These
non-converging cases could not be solved from a flat start
or initialization with a reference voltage solution. In this
method, a random forest (RF) machine learning initializer
was used to predict the initial voltage magnitude and angle
guesses for a 6102-bus Electric Reliability Council of Texas
(ERCOT) system. The algorithm achieved a 54% success
rate by converging 2106 cases out of 3,899 non-converging
cases. Although machine learning has been regularly used to
predict power flow solutions for solvable cases where the
actual solutions are already known, such as those in [16],
which used a convolutional neural network (CNN); [17], which
applied physics-informed stacked extreme machine learning;
[18], which applied physics-informed deep learning; and [19],
which used RF. The algorithm proposed by researchers in [8]
presents a new approach for solving non-converging ACPF
cases for which the solutions are not known.

This paper aims to address the Newton-Raphson ACPF
convergence problem by improving on the methodology de-
veloped in [8]. While the work in [8] used only a RF
initializer, we propose a two-stage approach that combines
deep learning power flow initialization with homotopy con-
tinuation using a hot-starting algorithm. The deep learning
initialization is based on deep neural networks (DNN) and
incorporates a data-retraining framework that enhances the
initializer’s performance when faced with limited training data.
The DNN initializer provides better initial guesses for the
voltage magnitude and angles, aiding Newton-Raphson ACPF
convergence. ACPF cases not solved by the DNN initializer
are then processed through a hot-starting algorithm based on
homotopy continuation. This hot-starting method incorporates
switched shunt control to further improve convergence.

The main contribution of this work compared with literature
can be itemized as follows:

• A proposed two-stage method that avoids the addition
of fictitious generators and load shedding. It is also
applied to a realistic large scale ACPF case under multiple
operating conditions.

• A deep learning initializer based on neural networks to
provide better initial voltage magnitude and angle guesses
for unfamiliar ACPF cases when compared with other
initialization methods such as flat start,RF initialization
and DCPF initialization.

• A data retraining framework that improves the perfor-
mance of the deep-learning initializer which is useful in
cases with limited training data.

• Monitoring and adjustment of oscillating switched shunts.
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The proposed two-stage methodology is applied to the same
dispatch data used in [8] and shows significant improvement
in results. This work was developed using PSS/E and Python.
The rest of the paper is structured as follows. Section II and
III discuss the power flow problem formulation and the data
generation respectively. Section IV presents the methodology
and technical approach of the proposed method. While Section
V and VI present the results and conclusion respectively.

II. THE POWER FLOW PROBLEM FORMULATION

The power flow problem involves solving a set of nonlin-
ear equations, as shown in (1) and (2) [20]. The Newton-
Raphson solution method is a recursive iterative method that
solves the power flow equations until the active and reactive
mismatch tolerance is met. This mismatch tolerance is the
stopping criterion and signifies that the solution has converged.
Although the solutions to (1) and (2) are the voltage phasors
at each bus, an initial guess close to the actual solutions
(voltage phasors) is needed for the Newton-Raphson method
to solve and converge efficiently. From the voltage phasor
solutions (voltage magnitude and angles), other parameters can
be calculated, such as the power flowing through each line and
system losses. The nonlinear algebraic power flow equations
simply map the bus active and reactive power injections to the
voltage phasor at each bus [8].

P inj
i = Vi

N∑
k=1

Vk(GikCosΘik +BikSinΘik (1)

Qinj
i = Vi

N∑
k=1

Vk(GikSinΘik −BikCosΘik (2)

From (1) and (2), P inj
i and Qinj

i represent the net active
and reactive power injection at bus i. The Ybus admittance
matrix has a real part Gik and an imaginary part Bik. The
bus angle difference between bus i and k is given as Θik. For
N buses in the system V i and V k represent the bus voltage
magnitude at bus i and k. The inverse of the Jacobian matrix,
J(Θ, V ) , expressed in (3) is basically the derivatives of the
active power, P , and reactive power, Q, with respect to the
angle, Θ , and voltage magnitude, V , and it is computed at
each iteration.

J(Θ, V ) =

[
∂P
∂Θ

∂P
∂V

∂Q
∂Θ

∂Q
∂V

]
(3)

Assuming an initial guess of V and Θ at iteration t = 0, the
voltage magnitude and angle at the next iteration t+1 is given
by (4) [

Θt+1

V t+1

]
=

[
Θt

V t

]
+ [J(Θ, V )t]−1

[
∆P t+1

∆Qt+1

]
(4)

Where ∆P t and ∆Qt are the active and reactive power
mismatch at iteration t. From the power flow problem formu-
lation, it can be observed that a bad initial guess could cause
divergence. Machine/deep learning can be used to establish
key mapping between the active and reactive powers and the
bus voltage solutions.

TABLE I
GENERATED ACPF DISPATCH CASES.

Parameter Number of ACPF Cases
Total Generated Dispatch 8,761 Cases
Solved Dispatch 4,862 Cases
Unsolved (non-converging) 3,899 Cases

III. DATA GENERATION

The data used in this work consist of 8,761 power flow
dispatch cases generated by [8] for a 6102-bus ERCOT sys-
tem. These dispatch cases were generated using data from
the U.S. Energy Information Administration (EIA), which
includes hourly generation and load data for ERCOT for
the year 2022 and the first hour of 2023 [21]. The ACPF
cases represent the ERCOT system over a wide range of
operating conditions spanning a year. The minimum load in
the dispatch is 31.9 GW while the peak load is 79.8 GW [8].
The data generation process is documented in [8]. The dispatch
cases were solved using the full Newton-Raphson method and
the voltage solutions of the reference ERCOT PSS/E ACPF
case. From this process, 3,899 ACPF cases did not converge.
These 3,899 cases could not be solved from a flat start or
initialization with the voltage solutions of the reference case.
Table I shows the number of converged and non-converging
ACPF cases. The solved cases form the training and validation
data (based on a 90/10 split), while the non-converging cases
with unknown solutions form the testing data.

IV. METHODOLOGY

To solve the non-converging ACPF cases, a framework
that combines deep-learning initialization with incremental
hot-start homotopy and oscillating switched-shunt control is
developed. First, the non-converging case is initialized using
a DNN initializer. If the case does not converge, an incremental
hot-starting algorithm is applied, while the actions of control
devices, such as the switched shunt, are monitored.

A. Deep Learning Initializer with Data Re-training

The general idea is to train a model to learn the relationship
between active and reactive powers and the bus voltage phasor
solutions (voltage magnitude and angle). Once the model has
been successfully trained, it is applied to the non-converging
ACPF cases. The predicted voltage magnitudes and angles are
then used to initialize their respective non-converging ACPF
cases, and the full Newton-Raphson method is applied to solve
the cases.

Although researchers in [8] proposed a similar framework
using an RF-based initializer, the algorithm was only able to
achieve a 54% convergence rate due to the limited training
data. The initial data is limited because the training data
(4,376 cases) is not significantly greater than the testing data
(3,899 cases). Additionally, the training data is significantly
less than the total number of features. This paper uses the
same limited data for the exact same ERCOT system but
significantly improves the convergence rate by using a neural
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Fig. 1. Framework of the Deep learning Initializer with data re-training for Newton-Raphson ACPF Convergence.

network-based initializer and incorporating an iterative data
re-training process into the algorithm, as shown in Fig. 1

From Fig. 1, the deep learning initializer framework starts
by extracting the input and output parameters of the converged
ACPF cases stored in a computer folder that acts as the
database/storage. The input parameters are the generator active
power at each bus, from bus 1 to the last bus N (P(gen,1. . . N))
, the active power load at each bus (P(load,1. . . N)) and the
reactive power load at each bus (Q(load,1. . . N)) . If a bus does
not have a generator attached to it, the Pgen value is recorded
as zero. The same applies to the Pload and Qload at each bus.
The outputs are the bus voltage magnitude, bus angles, star
bus voltage magnitudes and star bus angles. The star buses are
fictitious buses used in modelling three-winding transformers
in many standard software like PSS/E and Powerworld [22].

The input data is then further separated into training and
validation data based on a 90/10 split. Four separate neural
network models are trained for 500 epochs for each output
category. The training setup is shown in Fig.2. Since this is a
regression task the loss function used is the mean square error
and each neural network model is validated using the Root
Mean Squared Error (RMSE) metric shown in (5), where n is
the total data points, Xi and X̂i are the true value and predicted
value respectively. Regardless of the value of the RMSE the
main task is to investigate whether the DNN initializer would
assist in Newton-Raphson convergence.

RMSE =

√√√√ 1

n

n∑
i=1

(Xi − X̂i)2 (5)

The input parameters of the non-converging ACPF cases
are then extracted and normalized. For these non-converging
cases, we do not know the actual solutions. The trained neural
network model is applied to these non-converging ACPF

cases, and the predicted voltage magnitudes and angles are
obtained. The neural network regressor learns the mappings
between the power injections and the power flow solutions.
Although there is no guarantee that the neural network will
learn the exact power flow equations, the hypothesis is that the
predicted voltage solutions are close to the actual solutions and
therefore within the convergence region [8]. This hypothesis is
supported by [1], which highlights the importance of choosing
initial guesses within the convergence boundary to ensure that
an ACPF case converges. Additionally, [16] successfully used
CNNs to initialize previously solved ACPF cases with the aim
of reducing iteration time.

To test this hypothesis, the predicted voltage solutions of
the non-converging cases are used as the starting points for
Newton-Raphson power flow. Basically the predicted solutions
are used to initialize their respective ACPF cases in PSS/E,
after which full Newton-Raphson power flow is performed.
ACPF cases that converge are then saved and added back to
the training data. An ACPF case is considered converged or
solved when the mismatch tolerance of the active and reactive
power is met. A max tolerance of 0.5 MW/MVAR is used.

After each training iteration, the newly solved or converged
cases (which were previously non-converging) are added to
the training database, and the neural network is retrained,
thus improving performance. By adding new solved cases to
the training database, the neural network can learn from new
information. This retraining process continues until no new
cases are solved. Finally, all solved cases are checked for
voltage violations by adding switched shunts using the QV
analysis method [6]. It is important to note that the same
hyperparameters and architecture are used for all four models,
except for the output layer, which is determined by the size
of the outputs (6,102 neurons for the bus voltage magni-
tudes/angles and 134 neurons for the star bus voltages/angles).
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Fig. 2. Deep Neural Network Training Setup.

Fig. 3. Deep Neural Network Architecture.

Each neural network model consists of four fully connected
layers, hence the term ”deep neural network.” Fig. 3 shows the
architecture of the DNN, including the number of layers, the
number of neurons in each layer, and the activation function
used in each layer.

B. Incremental Hot-Starting Algorithm with Switched Shunt
Control Based on Homotopy Continuation

ACPF cases that do not converge after being initialized with
the predicted solutions from the DNN initializer are passed
through an incremental hot-starting algorithm. This algorithm,
based on homotopy continuation, incorporates switched shunt
control, as shown in Fig. 4. The developed incremental hot-
starting algorithm is significantly different from other methods
in the literature because it avoids the optimal power flow tech-
nique [9] and the injection of generators and load technique
used in [3]. Additionally, the developed algorithm includes
a simple yet effective switched shunt monitoring and control
mechanism.

The non-converging ACPF cases are referred to as the target
dispatch, while the well-solved ACPF cases are the candidate
dispatch. The concept is to select a candidate dispatch as a
starting base case and gradually adjust its Pgen , Pload and
Qload values until they match those of the target dispatch.
Essentially, Pgen, Pload and Qload are considered homotopy
parameters. It is crucial to select a candidate case that is
as close as possible to the target dispatch. To determine
the candidate case to select as the starting base case, the
unit commitment similarity score (UCSS) metric [9] and a
modified mean squared difference (MMSD) metric are used.

UCSS assesses the similarity of the unit commitment of the
generators between the candidate and the target cases. The
candidate case with the highest UCSS score is selected as
the starting base case. USCC is expressed in (6) where uk

represents the commitment of generator k and takes a value
of either 0 or 1. If generator k is switched on in the target
dispatch, then uk,target = 1 otherwise uk,target = 0. The same
applies for the candidate dispatch. ⊕ is an Ex-NOR operator
and Ng is the number of generators [9].

UCSS =

Ng∑
k=1

uk,target ⊕ uk,candidate (6)

When there are multiple candidate cases with the same
largest UCSS score, then MMSD is used. MMSD is a
modification of the Mean Square Difference (MSD) Metric
developed in [9]. The key difference is that MMSD considers
both the generators and loads unlike MSD that considers
only generator. MMSD looks at how close the generator and
load dispatch are between the candidate and target case. The
candidate case with the smallest MMSD is selected as the
starting base case. MMSD is expressed in (7). Nl is the number
of loads. Pload,j,t and Pload,j,c are the active power values of
the load in the target and candidate case respectively. Qload,j,t

and Qload,j,c are the reactive load values in the target and
candidate case likewise, Pk,t and Pk,c are the generator active
powers in the target and candidate case respectively.

MMSD =
1

Ng

Ng∑
k=1

(Pk,t − Pk,c)
2

+
1

Nl

Nl∑
j=1

(Pload,j,t − Pload,j,c)
2

+
1

Nl

Nl∑
j=1

(Qload,j,t −Qload,j,c)
2

(7)

From Fig. 4, after selecting the candidate case, which now
serves as the starting base case, the generator and load dispatch
at each bus are slowly adjusted using an arbitrarily small
initial step size S (1 MW/MVAR). After each adjustment
iteration, the intermediate dispatch is compared with the
target dispatch. If the intermediate dispatch matches the target
dispatch, the hot-starting process is stopped. At this point,
the target dispatch is considered solved, and quality checks
are performed before adding this solved target case to the
database. If the latest intermediate dispatch does not converge,
the last solvable/converged intermediate dispatch is checked
for oscillating switched shunts. If oscillating switched shunts
are present, they are locked, and the step size is reduced.
The intermediate case is then further adjusted and solved. If
there are no oscillating switched shunts in the last solvable
intermediate case, only the step size is reduced. The step size
is an important parameter; a large step size could cause the
intermediate case to diverge. It is advisable to use a small step
size when adjusting the intermediate case, although this may
increase the computational time of the algorithm. If the current
intermediate case does not solve with S ≤ Smin (where Smin
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Fig. 4. Incremental Hot-Starting Algorithm with Switched Shunts Control.

is the minimum step size) and the last solvable intermediate
case does not have any control issues with the switched shunt,
then it means the algorithm cannot solve this case. At this
point, both the DNN initializer and the hot-starting algorithm
have failed to solve this case, and these cases need to be
further investigated manually. Although manual investigation
of unsolved cases is outside the scope of this paper.

C. Combined Framework for the Newton-Raphson AC Power
flow Convergence Algorithm

The developed Newton-Raphson ACPF convergence algo-
rithm is essentially a two-stage process. In the first stage, a
deep learning-based initializer with data retraining is used to
address the non-converging ACPF dispatches. The cases that
converge at this stage are checked for voltage quality. Voltage
violations are addressed using an automated process that adds
switched shunts to the violating buses. This voltage violation
solver is based on the reactive power planning framework
developed in [6]. However, this automated voltage violation
solver is not guaranteed to solve all voltage violations, as
the algorithm relies on QV analysis, which has the potential
to diverge. The ACPF dispatches that do not converge at
this stage are then processed using the second stage, which
involves the incremental hot-starting algorithm. The entire
framework is detailed in Algorithm 1.

Algorithm 1 Combined Two-Stage Convergence Framework

1 Start Stage 1
2 Get all stored solved/converged ACPF cases
3 Get all stored non-Converged ACPF cases
4 Train DNN Initilizer
5 Pass non-converging ACPF cases through DNN Initilizer
6 Obtain voltage and angle prediction
7 Initialize non-converging ACPF Cases
8 Run Full Newton-Raphson
9 if New Cases Converge then

10 Update database in 2 and 3
11 Jump to 4
12 else
13 Stop Stage 1

14 Check voltage violation in all converged cases
15 Solve any violation and store
16 if there are still non-converging cases in 3 then
17 Start Stage 2
18 Run Hot-Start Algorithm
19 if Case Converges then
20 Check and solve voltage violation
21 Update database in 2 and 3
22 else
23 Two-Stage algorithm failed to converge ACPF Case

24 Stop Stage 2
25 End

V. RESULTS

A. Results from Deep Learning Initializer with Data Re-
training

1) Results After the First Training Iteration: The perfor-
mance of the deep learning initializer after the first iteration
is shown in Table II. The RMSE values between the Deep
Neural Network (DNN) initializer and the RF initializer used
in [8] are quite close. The DNN initializer had a lower RMSE
for the Bus/Star Bus angle predictions, while the RF initializer
had slightly better Bus/Star bus voltage magnitude predictions.
However, regardless of the RMSE values, the major concern
is how well the initializer aids in solving the non-converging
ACPF cases. Generally, training a deep neural network for
a large system such as the 6102-bus ERCOT system takes
significant computational time. To address this, a Graphics
Processing Unit (GPU) with an NVIDIA GeForce RTX 2080
Ti was used for training the initializer, which significantly
reduced the training time to about an hour for each output
category. The DNN initializer successfully converged 2,316
ACPF cases out of the initial 3,899 non-converging cases after
the first training iteration. As shown in Table III, even at
the first training iteration, the DNN initializer outperformed
both RF and DCPF initialization. The DNN had a 59.39%
convergence success rate, representing a 5.38% increase in per-
formance compared to RF initialization, which had a 54.01%
convergence rate [8]
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TABLE II
RMSE PERFORMANCE COMPARISON BETWEEN INITIALIZATION

METHODS AFTER FIRST TRAINING ITERATION

RMSE on Validation RMSE on
Category Validation Data Validation Data

from DNN from RF [8]
Bus Voltage Magnitude 0.01892 0.01629

Bus Voltage Angle 0.0114 0.0138
Star Bus Voltage Magnitude 0.01016 0.0086

Star Bus Voltage Angle 0.0059 0.01024

TABLE III
CONVERGENCE PERFORMANCE COMPARISON BETWEEN INITIALIZATION

METHODS AFTER FIRST ITERATION

DNN RF DCPF
Parameter Initializer Initializer[8] Initializer[8]

Total (Initial non-
Converged Power flow 3,899 3,899 3,899

Cases) Cases Cases Cases
Power Flow Cases

Converged by 2,316 2,106 758
Initialization Cases Cases Cases

Percentage (%) of
Cases Solved by 59.39% 54.01% 19.44%

Initialization
Remaining Non-Converged
Power Flow Dispatch Cases 1,583 1,793 4,141
after 1st Training Iteration Cases Cases Cases

2) Results with Data Re-Training: Although the DNN results
are promising after the first training iteration, incorporating a
data re-training methodology helps improve the convergence
rate. This means that the initial 2,316 solved cases are added
to the training database, and the DNN is re-trained. The
added data provides the DNN with more information, which
further aids convergence. This re-training framework continues
until no new cases are solved. During re-training, the model
architecture and hyperparameters were not changed. Fig. 5
shows the number of ACPF cases that successfully converged
and the number of ACPF cases left unsolved after each re-
training iteration. From Fig. 5, it can be observed that the
number of new cases solved decreases after each re-training
iteration. After the first training iteration, 1,583 ACPF cases
did not converge. In the second training iteration, 359 cases
were solved out of the 1,583 cases, leaving 1,224 unsolved
ACPF cases. This process continues until the sixth training
iteration. By the sixth iteration, only 5 ACPF cases were
solved. Adding these 5 cases to the training database did not
offer any significant improvement.

The DNN was able to successfully converge a total of
3,285 ACPF cases out of the initial 3,899 non-converging
ACPF cases. This shows that the DNN initializer with data
re-training aided in converging about 84.25% of the initial
3,899 non-converging ACPF cases. The DNN’s ability to
re-learn provides an advantage over non-iterative convergence
methods like DCPF initialization. This re-learning capability
makes artificial intelligence-based methods very useful when
large number of cases need to be solved.

Fig. 5. ACPF Cases Converged at Each Re-Training Iteration .

3) Quality Checks and Voltage Violations in Converged
ACPF Cases: The 3,285 ACPF cases solved by the DNN
initializer are checked for voltage violations. From Table IV,
a typical converged ACPF case has about 288 buses with
voltages above 1.1 pu or below 0.9 pu. With 6,102 buses
in the ERCOT system, this means about 4.7% of the total
buses are violating voltage limits for a typical dispatch case.
To address this, switched shunt control devices are added to
the violating buses using the QV analysis method described
in [6]. The switched shunts supply or absorb reactive power
(MVARs) to keep the voltage at the violating buses within
a specified range. The QV analysis is used to determine the
size of MVARs to add on each violating bus. When solving
for a particular bus, if the QV analysis causes the case to
diverge, then that bus is skipped as described in [6]. While this
automated voltage solver is not guaranteed to solve all voltage
violations, it significantly reduces the number of violations to
an average of 8 buses per case. The automated voltage solver
reduced the number of violating buses (below 0.90 pu or above
1.1 pu) from an average of 4.7% (288 buses) to 0.13% (8
buses) for a typical dispatch in the 6,102-bus ERCOT system.

Fig. 6 shows the voltage of a typical ACPF case solved
using the DNN initializer before switched shunts are added.
It can be observed that multiple buses were below 0.9 pu for
this particular dispatch case. Fig. 7 shows the improved voltage
profile of the ACPF case after automated switched shunts were
added to the various violating buses. The solved cases are also
checked to ensure that their load dispatch values match the
original specified values. This is because PSS/E automatically
reduces loads when there is a significant voltage drop (<
0.7 pu) [22]. After solving the voltage violations, cases that
initially had reduced loads are rescaled back to their original
values and solved. This ensures that the final solved case is
of relatively good quality in terms of voltage and matches
the specified dispatch without any load shedding. These 3,285
ACPF cases are then added to the database of solved cases.
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Fig. 6. Bus Voltage Magnitude of a typical ACPF case before applying
automated switched shunts.

Fig. 7. Bus Voltage Magnitude of a typical ACPF case after applying
automated switched shunts.

B. Results from the Hot-Starting Homotopy Algorithm with
Switched Shunt Control

From the initial 3,899 non-converging ACPF cases, 3,285
ACPF cases have been successfully solved with relatively
good quality using the DNN Initializer with reactive support
added. The remaining 614 unsolved ACPF cases are then
passed through the hot-starting algorithm based on homotopy
continuation and switched shunt control. The hot-starting al-
gorithm successfully converged 416 cases out of the initial 614
non-converging cases, as shown in Table V. The hot-starting
algorithm gradually changes the Pgen , Pload and Qload to fit
the target unsolved dispatch cases. Of the 416 solved cases, 74
ACPF cases were solved by locking oscillating switched shunt
devices and then adjusting the dispatch, while the remaining
342 ACPF cases were solved by adjusting the dispatch without
locking any switched shunt devices. After solving the 416
ACPF cases via the hot-start algorithm, quality checks are
performed to improve the voltage profile. Table VI shows the

TABLE IV
VOLTAGE VIOLATION STATISTICS IN 3,285 ACPF CASES SOLVED WITH

DNN INITIALIZER

Average No. of Average No.
Violating Buses per of Violating Buses

Voltage Converged Testing per Converged
Magnitude Case(Without Extra ) Testing Case (With

Ranges (pu) Voltage ) Automated Voltage)
Support) Support)

< 0.90pu or > 1.1pu 288 8

< 0.85pu or > 1.12pu 192 2

< 0.80pu or > 1.2pu 146 0

TABLE V
CASES SOLVED USING HOT-STARTING ALGORITHM WITH SWITCHED

SHUNT CONTROL

Parameter ACPF Cases
Initial Non-Converging Cases 614 Cases
Solved Cases with Hot-Starting 416 Cases
Remaining Unsolved 198 Cases

average number of buses with voltage violations for a typical
case before and after adding the automated voltage support
using switched shunt devices.

C. Combined Results from the Newton-Raphson ACPF Con-
vergence Algorithm

The developed two-stage Newton-Raphson ACPF conver-
gence framework successfully converged 3,701 ACPF cases
out of the initial 3,899 non-converging ACPF cases. This
represents a 94.9% convergence success rate. Fig. 8 shows
an overview of the results. Of the initial 3,899 cases, 3,285
were solved in the first stage using the DNN initializer with
data retraining, while 614 cases remained unsolved. The 614
unsolved cases were then passed through the hot-starting algo-
rithm with switched shunt control. The hot-starting algorithm
solved 416 of these 614 cases, leaving 198 cases unsolved.
Further investigation of these 198 unsolved cases revealed
that 125 could be adjusted to their load dispatch but not
their generator dispatch, while 73 cases could not be adjusted
to either their load or generator dispatch. From the voltage
violation analysis of the total 3,701 converged cases, shown

TABLE VI
VOLTAGE VIOLATION STATISTICS IN 416 ACPF CASES SOLVED VIA

HOT-STARTING

Average No. of Average No.
Voltage Magnitude Violating Buses per of Violating Buses

Converged Testing per Converged
Magnitude Case(Without Extra ) Testing Case (With

Ranges (pu) Voltage ) Automated Voltage)
Support) Support)

< 0.90pu or > 1.1pu 36 8

< 0.85pu or > 1.12pu 5 1

< 0.80pu or > 1.2pu 1 0
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Fig. 8. Result Overview of the Combined Two-Stage Algorithm for Newton-Raphson ACPF Convergence.

TABLE VII
VOLTAGE VIOLATION STATISTICS IN 3,701 ACPF CASES

Voltage Magnitude Average No. of
Ranges (pu) Violating Buses per Converged

Case
< 0.90pu or > 1.1pu 8
< 0.85pu or > 1.12pu 2
< 0.80pu or > 1.2pu 0

in Table VII, a typical case has about 8 buses with voltage
violations out of the 6,102 buses in the system.

D. Result Comparison with Existing Literature

The result obtained from our two-stage approach is com-
pared with other machine learning initialization methods and
the standard DCPF initialization method currently used in the
industry during power flow base case development. From Table
VIII, the two-stage method described in this paper performed
better than DCPF and other machine learning initializers [8]
by achieving a 94.9% success rate.

Compared to other literature, the load reduction conver-
gence method recently developed by researchers at the Pacific
Northwest National Laboratory [6] and applied to a 22,000-
bus WECC case successfully converged 89.4% of the ACPF
dispatch cases. This technique, however, is not suitable when
the load levels in a dispatch need to be maintained. NREL also
recently applied the fictitious generator convergence method
on a reduced 243-bus WECC case, which successfully con-
verged 100% of the test cases [4]. However, it is important
to note that only 17 non-converging dispatch cases of the
WECC system were tested. Researchers in [9] achieved a

77.8% success rate, while researchers in [10] and [13] did
not vary the operating conditions of their test ACPF cases.

Based on the percentage (%) of converged cases, our
proposed two-stage method performs on par or better than
the results obtained in other literature.

VI. CONCLUSION

In this paper, a two-stage automated framework that com-
bines deep learning initialization with a hot-starting algorithm
based on homotopy continuation and switched shunt control
was designed. This framework achieved ACPF convergence in
3,701 cases out of 3,899 previously non-converging cases. The
proposed method was applied to a 6,102-bus ERCOT system.

The developed method uses a two-stage approach, with
the DNN initializer as the first stage. The DNN initializer
addresses the issue of poor initial voltage guesses. It predicts
initial voltage magnitudes and angles within the convergence
region. Since Newton-Raphson is very sensitive to the initial
voltage guess; the closer the initial guesses are to the actual
solution, the higher the chance of convergence. The DNN
initializer includes a re-training mechanism that enhances
convergence performance, especially when faced with limited
training data. It performed better than both the random forest
initialization and the DCPF initialization commonly used in
the industry.

The second stage involves a hot-starting algorithm with
switched shunt control, based on homotopy continuation.
Although the general concept of hot-starting power flow
cases is well-established, incorporating switched shunt con-
trol improves performance. The proposed framework, which
combines DNN initialization with the hot-starting algorithm, is
of significant relevance to power system planners. Achieving a
converged ACPF case in large power grids remains a challenge
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TABLE VIII
RESULT COMPARISON ON ERCOT 6102 BUS CASE

ACPF DNN Initializer + DCPF RF Decision Tree Linear Regression
Convergence Hot-Starting and Initialization Initializer Initializer Initializer

Method Switched Shunt Control
No. of Initial non-converging 3,899 3,899 3,899 3,899 3,899

dispatch ACPF cases Cases Cases Cases Cases Cases
No. of 3,701 758 2,106 1,783 246

Converged ACPF Cases Cases Cases Cases Cases Cases
Percentage.(%) of

Converged ACPF Cases 94.9% 19.44% 54.01% 45.73% 6.31%

regularly faced by grid planners, and attaining convergence
is a non-trivial task, especially in large grids. While the
method developed in this paper shows promise by achieving a
94.9% success rate, it does have some limitations that provide
opportunities for improvement in future studies. Some of the
limitations and ideas for future work include:

1) The developed DNN initializer does not guarantee con-
vergence without voltage violations or congestion. To
address this, reactive support using switched shunts was
added. Machine/deep learning simply maps input to
outputs, and this raises a question on how effective it
is in achieving power flow convergence for previously
non-converging cases.

2) The results also show that machine/deep learning cannot
be totally relied upon for solving power flow. As we
observed several cases where the DNN initializer failed
to assist in ACPF convergence. This area can be further
explored in future.

3) The developed DNN initializer does not consider
changes in grid topology. A framework for addressing
grids with different topologies could be investigated in
the future to further improve this method.

4) Although this paper is focused solely on steady-state
ACPF convergence, future work would incorporate
methods for evaluating the dynamic performance of all
newly converged cases.

The main idea of the proposed two-stage algorithm is
to automate the process for developing power flow cases
with relatively good quality, and it is not a substitute for
engineering judgement. The methodology described in this
paper significantly reduces the arduous effort spent by grid
planners in developing various solved power flow cases at
different operating conditions.
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