2022 IEEE International Conference on Big Data (Big Data) | 978-1-6654-8045-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/BigData55660.2022.10020833

2022 IEEE International Conference on Big Data (Big Data)

DACMA: Designing space ordering optimizations
to scalably manage aerial 1mages

I%* Chamin Nalinda Lokugam Hewage
School of Computer Science
University College Dublin
Dublin, Ireland
chamin.lokugamhewage @ucdconnect.ie

4™ Anh Vu Vo
School of Computer Science
University College Dublin
Dublin, Ireland
anhvu.vo@ucd.ie

Abstract—Aerial images are a special class of remote sensing
images, as they are intentionally collected with a high degree
of overlap. This high degree of overlap complicates existing
index strategies such as R-tree and Space Filling Curve (SFC)
based index techniques due to complications in space splitting,
granularity of the grid cells and excessive duplication of image
object identifiers (I0Is). However, SFC based space ordering can
be modified to provide scalable management of overlapping aerial
images. This involves overcoming similar IOIs in adjacent grid
cells, which would naturally occur in SFC based grids with such
data. IOI duplication can be minimized by merging adjacent grid
cells through the proposed “Designing Adjacent Cell Merge Al-
gorithm” (DACMA). This work focuses on establishing a proper
adjacent cell merge metric and merge percentage value. Using
a highly scalable, distributed HBase cluster for both a single
aerial mapping project, and multiple aerial mapping projects,
experiments evaluated Jaccard Similarity (JS) and Percentage
of Overlap (PO) merge metrics. JS had significant advantages:
(i) generating smaller merged regions and (ii) obtaining over
21% and 36% improvement in reducing query response times
compared to PO. As a result, JS is proposed for the merge
metric for DACMA. For the merge percentage two considerations
were dominant: (i) substantial storage reductions with respect to
both straight forward SFC-based cell space indexing and 4SA
based indexing, and (ii) minimal impact on the query response
time. The proposed merge percentage value was selected to
optimize the storage (i.e. space) needs and response time (i.e.
time) herein named the ‘“Space-Time Trade-off Optimization
Percentage” value (or STOP value) is presented.

Index Terms—aerial images, space filling curves, scalability,
space-time trade-off

I. INTRODUCTION

The rise in the affordable imaging cameras and image
acquisition modes is resulting in a profound growth in Remote
sensing images (RSIs) [1]. Consequently, the development
of RSIs management systems that can cope with increased
RSIs volumes, as well as traffic volumes (i.e. scalable), while
also achieving commensurate query performance is a research
topic of increasing interest. Today, most research in highly-
scalable, RSIs management systems is happening through the

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 4916

2" Debra Laefer
Center for Urban Science and Progress
New York University
New York, USA
debra.laefer@nyu.edu

3" Michela Bertolotto
School of Computer Science
University College Dublin
Dublin, Ireland
michela.bertolotto @ucd.ie

5™ Nhien-An Le-Khac
School of Computer Science
University College Dublin
Dublin, Ireland
an.lekhac@ucd.ie

innovation of novel spatial indexes and index optimizations.
Typically, these innovations are targeted at improving window
and containment queries - queries that retrieve images or image
tiles, which either fully or partially overlap and/or completely
reside within a specific region. Ideally, these are coupled with
databases that are designed specifically to manage increased
data and traffic volumes via the distribution of loads across
multiple, horizontally-scaled machines.

Arguably, the most seminal research has included ‘“raster
data manager” (RASDAMAN) [2], “remote sensing im-
age management system” (RSIMS) [3], GeoMesa [4], and
TileDB [5], [6] and [7]. To accommodate increased vol-
umes of RSIs and potential growth in users, RSIMS, RAS-
DAMAN and TileDB employ horizontally-scaled, object re-
lational databases. GeoMesa and systems from [6] and [7]
are built atop Key-Value (KV) databases - a class of NoSQL
database that is inherently scalable for high data demands
and user demands. In their indexing, both RASDAMAN and
TileDB implement R+-tree and R-tree indexes by organizing
the minimum bounding rectangles (MBRs) of RSIs. RSIMS
and the aforementioned KV database oriented systems imple-
ment Space Filling Curve (SFC) based indexes.

Traditionally, application of R-tree and its variants on
imagery data have been performed by organizing two-
dimensional (2D) MBRs of images into overlapping spatial
regions. Successful deployment of the R-tree and its variants
requires recognizition of overlapping spatial subdivisions. In
contrast, SFC-based indexing employs space ordering tech-
niques that divide the space into distinct levels of grids and
organize grid cells of uniform spatial resolution in each grid
level according to the respective SFC value (e.g. a Hilbert
value or Morton code). This approach organizes images or
image tiles into a specific grid cell at a particular grid level
according to the spatial coverage of the image. For aerial
images, the adoption of both the R-tree or its variants and
SFC-based indexes can pose significant challenges.

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

Aerial images are a special class of RSIs that involve flight
paths, as well as camera configurations designed to ensure a
great deal of overlapping (e.g. 20-80%) among adjacent im-
ages (see Section IV for more details). Figure 1 demonstrates
the high degree of overlap among images captured in an area of
2km? during the 2015 LiDAR and imagery mapping exercise
performed in the city of Dublin, Ireland [8]. In Figure 1,
each green color squares represent the bounding box of an
aerial image. Figure 2 also illustrates the substantial number
of images that may overlap with a specific geographic region.
As depicted in Figure 2, the superimposing of a 64 x 64 grid
(where each unit cell has a height and width of 60 m) quantifies
the images overlapping with each grid cell.

23600

235000

23400

23300

315000

316000 317000 318000

Fig. 1: High degree of over-
lap among images

Fig. 2: Heat-map of
image overlapping

These inherent characteristics of aerial images, especially
the high degree of overlap among images, poses challenges
in using R-tree type indexes. Generally, adoption of R-tree
requires identification, of overlapping spatial subdivisions of
the region. The massively overlapping of aerial imagery com-
plicates the splitting of the space into distinct overlapping
regions. Furthermore, identifying the potentially optimum sub-
division is cumbersome. Finally, a traditional R-tree like index
structures limits the possibility of adopting highly scalable
databases such as KV databases as an R-tree would require
maintenance of an in-memory index. This is an impediment
from scalability perspective in managing aerial images at scale.

Similarly, current SFC-based indexes also exhibit substantial
challenges when being used to index aerial images. For
example, when adopting a SFC-based grid, the high degree
of image overlap causes a significant amount of overlap with
the cell boundaries. Traditionally this has resulted in a much
coarse grid. However, larger grid cells may not represent the
actual image coverage and would require filtering more images
during the querying process.

To mitigate those challenges, an SFC-based indexing can
be tailored for aerial images by using a single level SFC grid.
Such a solution would store the image object identification
(IO]) of each image in all the cells that the image overlaps [9].
As several images may overlap with a given cell, such a
solution would store multiple IOIs in each distinct cell. Once
the IOIs for each cell are determined, the spatially ordered
cells can be stored in a highly-scalable, clustered database
environment, such as a KV database or a relational database.

4917

When stored database, the associated SFC value (e.g. Hilbert
value or Morton code) for each cell will be the key in the
respective database table. The corresponding IOI list for each
cell will be stored as the value for each key in the database
table record.

While such a solution for aerial image management is
straight forward and scalable, it has limitations. The main one
is the necessity to store the IOI of each aerial image in every
grid cell for all images for which there is an overlap. Arguably,
unless the size of the unit grid cell is coarse, the storage of
the IOIs across every cell covering each RSIs would cause
excessive storage consumption [10]. Consequently, it would
also require excessive IOl writes as well as updates, if sub-
sequent updates are necessary for IOIs. In the above solution,
the IOIs of adjacent cells share a high degree of similar IOIs.
This opens the avenue for “Designing Adjacent Cell Merge
Algorithms (DACMA)” for SFC-based index optimizations for
scalably-managed, aerial images.

As such, this work studies two critical parameters relevant
to DACMA. The first is the merge metrics for combining
adjacent cell; this work considers “Jaccard Similarity (JS)” and
“percentage of overlap (PO)” merge metrics. The second is the
merge percentage, which examines the percentage of similarity
of the IOIs between the adjacent cells. The selection of a
merge percentage has the potential for substantial impact on
overall storage performance and window/ containment query
performance. Thus, investigation of merge percentages in
tandem with storage reductions and query times are considered
for DACMA. Through the utilization of two synthetically
generated data sets, this work identifies the merge metric and
the merge percentage. The pivotal contributions of DACMA
can be summarized as follows:

« Introduction of DACMA as a novel algorithm for scalable
aerial image data management.

o Evaluation of adopting JS and PO for DACMA in space
splitting, by forming merged grid cells (i.e. blocks) and
query response times for similar storage reductions.

o Confirmation of JS as a better merge metric for DACMA.

« Identification of a merge percentage termed STOP value
which yields substantial storage reduction with only min-
imal impact on query time, with the aid of the previously
introduced “Four Step Algorithm (4SA)” [11].

II. RELATED WORK AND 4SA

A. State-of-the-art RSIs management systems

RASDAMAN [2] is a leading RSIs management system.
RSIs in RASDAMAN are stored as binary large objects
inside a PostgreSQL database. To index images, RASDAMAN
employs R+-tree and GiST indexes. TileDB [5] is another
RSIs management system that employs R-tree. As stated,
application of R-tree or its variants require the spatial regions
to divide into overlapping regions. However, due to its inherent
nature, its cumbersome to identify distinct overlapping regions
for aerial images. Thus, use of RASDAMAN or TileDB for
aerial image management will require extensive investigation

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

of identifying appropriate spatial splittings as well as woul
also require to consider larger spatial regions. This is a
impediment to scalable management of aerial images.

The RSIMS [3] is a RSIs data management system built ato
a PostgreSQL database. In indexing images, RSIMS employ
a distributed multi-level, Hilbert index. When indexing image
or image tiles, RSIMS determines the grid level at which th
spatial indexes needs to be calculated. This level is based o
the spatial coverage of the respective image. Once the leve
is identified, the corresponding Hilbert index for the image i
calculated through the latitude and longitude of the geometri
centre of the image. Admittedly, this approach requires the im
age to be completely contained within a grid cell. Nevertheless
as aerial images have high degree of overlap, superposition ¢
a grid could result in a substantial amount of images not full
contained within grid cell. Thus RSIMS’s index strategy is nc
feasible in indexing aerial images.

Similar challenges arise in the adoption of [6] and [7
which are built atop KV databases. The is because their inde
strategies also employ multi-level grid systems and SFC-base
indexing to spatially organize imagery data — thus requiring th
RSIs to precisely fit into grid cells. This complicates indexin
where there are a substantial number of aerial images.

GeoMesa is another leading RSIs management system buil
atop a KV database. The focus of GeoMesa is to inde.
image tiles, not raw images. To index tiles, GeoMesa employs
XZ-SFC [10]. When a given spatial object overlaps with
multiple cells, the XZ-curve forms a much larger region by
increasing the height and width of the bottom left cell by a
factor of 2 (upwards and to the right). Although this approach
theoretically works for any object with a spatial extent, the
authors did not discuss application of this concept for non
point objects that have a high degree of overlap. For muct
larger regions, employing an extended region concept woulc
ultimately result in a single, massive grid cell. Therefore
adoption of XZ-SFC curve will work for indexing image tiles
it would prohibit the indexing the well formatted real worlc
images that have high degree of overlap as well as raw non:
axis align aerial images that also have a significant overlap.

B. Four Step Algorithm (4SA)

The Four Step Algorithm or 4SA [11] is for optimizatior
of an SFC-based grid cell space indexing to scalably manage
RSIs in KV databases. The 4SA was specifically designed fo
window and containment queries where the region of interes
overlaps with at least a 2 x 2 grid of cells. The objective o:
4SA was to avoid the IOI storage in grid cells if a particulas
grid cell exhibits a certain spatial configuration (SC) type with
respect to its adjacent grid cells in its overall image coverage
The four SC types of 4SA are presented in Figure 3.

In step 1, 4SA checks if the SC type “+” exists, for the IO
of the image for its currently considered cell. If the SC type
“+” exists, then 4SA omits storage of its IOI in the respective
cell. Similarly, in steps 2-4, the 4SA check if the other SC
types: “X”, “Ts”, and “Is” for currently considered cell of the
respective image. If existing, the respective 10l of the image

4

Step 3: type "Ts"

101

g

Li101 | 101 1015

Fig. 3: Spatial configuration types in each step in 4SA

will not be stored in the currently considered cell. As a result,
application of 4SA to a set of RSIs reduces the overall storage
cost (as well as the write/ update costs). Additionally, due
to the reduced number of 10Is, the processing, window, and
containment query times are also reduced.

III. METHODOLOGY

A. Intuition of DACMA

Figure 4 demonstrates the intuitiveness of DACMA. In
Figure 4, the letters ‘A’-‘L’ represent IOIs of 12 images
that overlap with the grid space. In the case of a non-
DACMA scenario (i.e. directly adopting straight SFC based
space indexing), 12 IOIs are stored 24 times in total across
the 8 grid cells. In contrast, when the adjacent cells are merged
based on the condition if there’s an overlap of 80% or more
among adiacent cells. the total number of cells are reduced

(a) before merge (b) after merge

B.C,
A [B.C.D, G.H A B,C,D, E, Fi
[A] Dl Eh [GH] (Al [1
> [G.H]
1,4, K 0,4, G,H oJ,
[LJK | [J, K] KU [G.H] [1, J, Kl KU

Fig. 4: Merge adjacent cells if IOIs overlap by 80%

Another notable feature of the merge process is the total
number of images in the blocks. For example, the second
block in the first row contains 5 IOIs. Prior to the adjacent
cell merge, the second and the third cells in the first row
contained only 4 and 5 IOIs respectively. Therefore, if a user
executes a window/ containment query with in the region of
cell 2 in the first row, it would only require evaluation of
4 images. However, after the cells merge, the same query
requires evaluation of 5 images. Therefore, although adjacent
cell merging reduced the storage, in some instances, it can
impact the query times negatively. However, reduction of
IOI storage also indicates a reduction of the IOI writes/
updates required to access the database tables. Thus, DACMA
produces both storage reductions and database write/ update
reductions while potentially impacting query time.

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

B. Adjacent cell merge metrics (i.e. mergeMetric)

In the above example, the adjacent cells were merged
based on “Jaccard similarity” (JS) among the IOIs in the
adjacent cells. Equation 1 details the JS metric. Suppose
the C1 cell and the C2 cell are adjacent and that each cell
has a specific number of IOIs stored among the cells and
demonstrate a degree of overlap. In such scenarios, the JS
mergeMetric defined as the percentage of ratio between the
size of the IOIs in the intersection of C1 and C2 with the
total number of distinct elements in the union of C1 and C2.
If the ratio exceeds a defined threshold (i.e. mergePercentage),
the adjacent cells are merged.

In addition to the JS, assessing similarity between the 101Is
in adjacent cells can be done through alternative approaches.
One such alternative would be to first check the size of the
intersection between the common IOIs in the adjacent cells.
Subsequently, merge would only occur, if the ratio between the
size of the intersected elements in the two cells and size of the
currently considered cell (or already merged block) exceeds a
certain threshold. This mergeMetric in this research work is
defined as “percentage of overlap” (PO). Equation 2 shares
the formula for the PO metric.

75 = {555+ 100% PO = {15822 < 100%

(1) 2)

C. Explanation of DACMA

Algorithm 1 outlines DACMA. Algorithm 1 employs two
input parameters. The first is a SFC-based spatially organized
grid (i.e. {SOGrid}). Each cell in the {SOGrid} is comprised
of the list of IOIs of the images for which each cell is over-
lapping. The second input parameter is the merge percentage
(i.e. mergePercentage). The mergeParameter is the minimum
percentage that must consider in performing an adjacent cell
merge. After successfully processing the {SOGrid} subjected
to the minimum mergeMetric, DACMA produces two outputs:
(i) a set of blocks with the corresponding 10Is included in each
block (i.e. {MrgBlksWithImgs}) and (ii) the set of distinctly
aggregated sets of grid cells (i.e. {MrgSOValsBlks}).

At the start, DACMA, defines five empty sets (Line 2-
6), which includes {MrgBlksWithImgs} and {MrgSOValsBlks}
sets to produce the output of DACMA. The other three sets
are defined to facilitate three requisite intermediate steps:
(i) a set that stores the images in the current merge pro-
cess (i.e. {currMrgPr}; (ii) a set that stores the spatially
ordered values involved in the current merge process (i.e.
{currMrgPrSOVals}), and (iii) a set that manages the grid cells
with no images (i.e. {nolmgRegions}).

Once DACMA defines the initial sets, it loops through
each grid cell set (i.e. {SOGridCell}) in {SOGrid}. For each
{SOGridCell}, DACMA obtains the corresponding spatial
order value (i.e. SOVal such as a Hilbert value) and the

4919

Algorithm 1: DACMA

Input: {SOGrid} > spatially ordered grid set
mergePercentage
Output: {MrgBlksWithImgs} > set of merged
blocks with images in the blocks
{MrgSOValsBlks} > set of merged
blocks with cell ids that each block contains
1 Function DACMA ({SOGrid}, mergePercentage) :
2 {currMrgPr} < 0
3 {currMrgPrSOVals} <
4 | {noImgRegions} < 0
5 {MergBlksWithImgs} < 0
6 {MergSOValsBlks} + 0
7 | foreach {SOGridCell} € {SOGrid} do
8 SOVal + {SOGridCell}
9 {imgLst} < {SOGridCell}

10 if {imgLst} — () then
u if [{currMrgPr}| == 0 then
12 {currMrgPr} = {imgLst}
13 {currMrgPrSOVals}q.qq(SOVal)
14 end
15 else
16 {x} = {currMrgPr} N {imgLst}
17 {v} = {currMrgPr} U {imgLst}
18 JS = ({x}H/Hv}) + 100
19 PO = ({x}|/I{imgLst}|) * 100
> mergeMetric - i.e. either JS or PO
if
mergeMetric >= mergePercentage
then
{currMrgPr}+ = U{imgLst}
{currMrgPrSOVals}.qa(SOVal)
end
else
| CompleteCurrentMerge()
end
20 end
21 end
22 else
23 {noImgRegions}qqq(SoVal)
24 if |{currMrgPr}|! = 0 then
| CompleteCurrentMerge()
25 end
26 end
27 end
28 return

{MrgBlksWithImgs}, {MrgSOValsBlks}
29 End Function

30 Function CompleteCurrentMerge ():

31 return

32 {MrgBlksWithImgs}aqq({currMrgPr})

33 {MrgSOValsBlks}qqa({currMrgPrSOVals})
34 {currMrgPr} < 0

35 {currMrgPrSOVals} <

36 {currMrgPr} = {imgLst}

37 {currMrgPrSOV als},qqa(SOVal)

38

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

set of the IOIs of the images that overlap with the corre-
sponding {SOGridCell} (i.e. {imgList}. Subsequently, for
each {imgList}, DACMA checks if it is empty (meaning no
images overlap with the cell) or not empty. If {imgList} is not
empty, DACMA searches for an on-going merge process by
checking {currMrgPr}. At the process’s onset, there are no
on-going merge processes. Hence, the size of {currMrgPr}
is zero (Line 11). Thus, when the {imgList} is not empty and
DACMA is in its early execution steps, the {currMrgPr} is
initialized with {¢mgList}. Importantly, the SOVal of the
corresponding cell is added to the {currMrgPrSOVals}
(Line 12-13).

In circumstances where there is an on-going merge,
DACMA builds the corresponding merge metric- [i.e. either
JS or PO (Line 16-19)]. This obtains the intersection between
the current image set and all the images in the on-going merge
process (i.e. {x}) in-unison the union of current image set
and the ongoing image set (i.e. {v}). Development of PO is
performed by considering the intersection between the current
image set and all the images in the on-going merging and the
size of the current image set (i.e. [{imgLst}|). If the value
obtained for the intended mergeMetric satisfies the minimum
mergePercentage, then the current {imgList} is aggregated
with the images in the current merge process. The correspond-
ing SOV al is also added to the {currMrgPrSOVals}.

When the mergeMetric is less than the mergePercent-
age, the current merge process is completed through the
execution of the CompleteCurrentMerge method (Line
31-37). This adds the already existing {currMrgPr} and
{currMrgPrSOVals} in the on-going merge process to the
two sets that DACMA returns: {MrgBlksWithImgs} and
{MrgSOValsBlks}. Once the on-going merge process is
completed, a new merge process must be reinitiated for the
subsequent adjacent cell merging. Thus, both {currMrgPr}
and {currMrgPrSOVals} are set to null () and initialize
the {imgList} and SOV al with respect to the {SOGrid}.

In fact, CompleteCurrentMerge is also required to be
performed when there are no images in the adjacent cells,
while there is a non-empty {currMrgPr} (Line 24). Further-
more, when there are no images in the {SOGrid}, DACMA
adds the corresponding SOVal of the cell to the “no im-
age regions” set (i.e. {noImgRegions}). Once the entire
{SOGrid} is processed, DACMA returns the two output
result sets.

IV. EXPERIMENTAL EVALUATION
A. Study data

All experiments in DACMA employed a 2015 real world,
aerial imagery data set covering 2km? of Dublin Ireland’s city
centre in [8]. The data set inlcudes 8,438 images. Each has a
bounding box of approximately 400 m x 400 m (cf. Figure 1).
The imagery primarily consists of two classes: (i) oblique
images and (ii) true colored (i.e. RGB) and infrared (i.e. CIR)
images. Both the RGB and CIR images were acquired from
a nadir camera that was mounted perpendicular to the aerial
mapping platform - thus the camera was directly facing the

4920

earth. The oblique images were taken from two tilted cameras
that were set at 30° degrees tilt from the mapping platform.

Notably, this mapping exercise included 41 overlapping
flight paths spaced at 100 meters intervals. Each flight operated
at a 300 meter altitude, and each flight path was oriented
45° degrees to Dublin’s dominant street grid. The 45° degree
orientation was deployed to alleviate the self-shadowing effect
and to maximize data coverage of building facades. The
camera configurations and flight path configurations were
established intentionally to introduce a significant degree of
overlap between successive aerial images along a flight line
(i.e. forward lap), as well as overlap between successive
photos from adjacent fight lines (i.e. side lap). With such a
configuration, the surveyed 2km? was scanned 6 times from
multiple angles, while producing many images overlap of the
given geographic areas.

The configuration of the aforementioned real world dataset
was used herein to generate two larger synthetic data sets to
evaluate DACMA’s performance. The first synthetic data set
was designed to be indicative of a single airborne mapping
project corresponding to surveying one region of 100 km?
(i.e. 10 km x 10 km). The resulting heat-map of aerial
image distribution was obtained by super imposing a grid
where each unit cell had a width and height of 60m and
is presented in Figure 5. The second synthetic data set was
designed correspond to multiple airborne mapping projects
around the same 10 km x 10 km region. As a result, the super
imposition of same grid atop second simulated data set resulted
in multiple clusters as shown in an image distribution heat-map
Figure 6. In each synthetic data sets a total of 250,000 image
data records for each class were generated.

-6

<o

ceEyNausswNNE

| 300

| 150

2RBLABR

Fig. 6: Heat-map of
multiple clusters

Fig. 5: Heat-map of
the single cluster

B. Experimental setup

The experiments were design to identify a proper merging
metric and evaluation of scalability. The generation of the
synthetic data sets, and the initial application of DACMA were
performed locally. Subsequent DACMA experiments were
performed on an inherently scalable HBase KV database in
the form of the Peel cluster at New York University (NYU).
Peel is a high-end, 18 node cluste,r which has deployed HBase
(HBase 2.1.0) atop Hadoop (3.0.0).

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

C. Selecting proper merge metric

The rationale of DACMA is based on the merging of
adjacent cells, if the adjacent cells share a significant number
of IOI. While superficially straightforward, from a deeper
analytical prospect, depending on the merge metric, such a
rationale can yield substantially different results. Thus, while
employing JS and PO as merge metrics, multiple experiments
were performed to discern a better metric that would suitable
for both a single cluster and multiple cluster scenarios.

In designing the tests, first, DACMA was applied to both the
synthetically generated single cluster data set and the multi-
cluster data set for a range of merge percentages. For instance,
for a single cluster, PO based DACMA was applied at 72.5%,
75%, 77.5%, 78.5%, 80%, and 82.5% merge percentages and
the JS based DACMA was applied at 5%, 7.5%, 15%, 20%,
25%, 30%, 35%, 40%, 45%, and 50% merge percentages.
Similarly, a range of merge percentages were applied for
multiple clusters, for both the PO based DACMA and the JS
based DACMA. As specified in Algorithm 1, the application
of DACMA, resulted in two outputs: (i) a set of merged grid
cells (i.e. blocks), and (ii) grid cells to block mapping set. The
obtained outputs for each JS and PO based DACMA solutions
for each synthetic data set were subsequently ingested into
HBase tables. Thereafter, the storage consumption for each PO
and JS based DACMA solutions for both single and multiple
clusters scenarios were obtained. Additionally, the storage
requirement for aerial images in the non-DACMA situation
was also obtained.

A better merge metric was investigated by analyzing the
JS and PO merge percentages that produced similar storage
reductions for each synthetically generated data sets. three
major factors were analyzed: (i) layout of space splittings;
(i) minimum, maximum, and average number of images in
the merged grid cells (i.e. blocks) including total number
of blocks; and (iii) average query response times for five
arbitrarily chosen regions.

Table I contains the results from the layout of space
splittings. The results obtained for minimum, maximum, and
average number of images in the block with total number of
blocks are presented in Table II. Analysis of average query
times are outlined in Table III.

1) Layout of space splitting:

The layout of space splittings in Table I demonstrates that
in scenarios where similar storage reductions occurred, JS
based DACMA tended to generate smaller merged regions
irrespective of whether DACMA was applied to a single
cluster or multiple clusters scenario. For example, when the
storage reduction was 91.4% in the single cluster scenario,
smaller merged regions were clearly visible in the JS applied
DACMA (i.e. JS = 7.5%) scenario as opposed to the counter
part PO applied DACMA (i.e. PO = 75.0%). While similar
outcomes can be seen across all instances of JS being applied
to DACMA scenarios in the single cluster, this was even more
evident in multiple cluster scenarios where the overall storage
reduction was approximately 93.4% where the corresponding
JS percentage was 1.7% and the PO percentage was 70.0%.

4921

2) Statistics on blocks (i.e. merged cells):

Further insights on the impacts of adopting JS and PO
as merge metrics can be seen in both Table II and Table I.
Specifically, irrespective of the merge percentage, the number
of total blocks in the JS based DACMA experiments was
always less than in the PO based DACMA experiments for the
same storage reductions. The reduction in blocks ranged from
20.1% to 47.0% for the single cluster scenario and 51.0% -
57.6% for the multiple cluster scenario. Admittedly, the block
reduction was negatively influenced by the JS based DACMA
solutions which included an increase in the average number
of images in the blocks. This increase ranged from 58.1%
to 84.1% and from 108.5% to 152.1% for the multi-cluster
scenario.

The analysis on the maximum number of images in the
blocks demonstrated similar patterns as that for the total
number of blocks. Specifically, the maximum number of
images that the blocks included was considerably lower for
JS based DACMA solutions. This reduction ranged from
66.6% to 77.2% for the single cluster scenario and from
60.8% to 72.7% for the multi-cluster scenario. As discussed
with respect to Table I, JS based DACMA solutions produce
comparatively smaller merged regions compared to PO based
DACMA solutions. Thus, JS based DACMA solutions are
likely to host comparatively fewer images compared to PO
based DACMA solutions.

Based on block reduction in Table II and comparatively
smaller merged regions in Table I for the JS with DACMA
solution, further insights discerned. One is the influence of JS
and PO on the layout of space splittings. Specifically there
were few excessively large or extremely small space splits
occurring when adopting JS for DACMA compared to PO
for DACMA. Visual space splittings of PO based DACMA
clearly shows a large number of regions, but Table II also
demonstrates a large number of total blocks. This suggests that
the adoption of PO for DACMA results in comparatively large,
merged regions, as well as comparatively smaller merged
regions compared to JS based DACMA merged regions which
are all tend to be medium in their merged sizes.

3) Comparison of average query times:

Table III presents the average query times when adopting JS
and PO for DACMA for one use-case for a single cluster and
multiple cluster. JS as opposed to PO for DACMA always
yielded lower average query times. For the single cluster
scenario, the reduction in average time ranged from 6.0%
to 21.4% for the tested five regions. For the multiple cluster
scenario, the reductions ranged from 2.4% to 36.6%. Although
due to space constraints, only one use-case from from both
single and multiple clusters scenarios are reported herein,
this reduction was observed across all performed querying
experiments. Therefore, the authors concluded that JS based
DACMA solutions always yield better reduced query times
compared to PO based DACMA solutions for similar storage
reductions. Previously observed results, such as JS based
DACMA solutions having smaller merged regions and the a
considerably fewer maximum number images hosted in the

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of layouts

Storage
reduction (%) ~91.4 ~87.0 83.4
2
=
ey
E
£
k<]
3
3
S
B ‘é IS =7.5% JS =20.0% JS =30.0%
E z
B —
° ~
£ 3
s g
5}
>
S
Gy
5]
5]
£l
=
3]
S
a
PO = 75.0% PO =77.5% PO = 78.5%
Storage
reduction (%) ~86.7
2
=
z
E
£
k<]
3
3
2 =
3
3
S % IS=17% JS =10.0% JS =20.0%
Q
= —_
= 3
g
5}
>
S
Gy
5]
(5]
El
=
]
S
~
PO = 70.0% PO = 75.0% PO = 77.0%
TABLE II: Analysis of aspects of Jaccard and PO for similar storage reductions
Storage Jaccard Similarity (JS) Percentage of Overlap Reduction with JO (%) Increase
Scenraio | reduction % total Images in blocks % total Images in blocks total Max images in avg
(%) ° | blocks max min avg ‘ blocks max min | avg | blocks in blocks images (%)
sinele ~91.4 | 7.5 597 3,247 1 974 75 1,127 9,723 1] 535 47.0 66.6 82.1
clufter ~87.0 | 20 1,356 1,267 1 691 | 77.5 2,148 5,569 1 | 437 36.9 77.2 58.1
834 [30 | 2,571 854 I 718 | 78.5 3,217 3,656 1] 390 20.1 76.4 84.1
multiple ~934 | 1.7 386 | 22,433 1| 1074 70 910 | 74,485 1] 426 57.6 69.9 152.1
clusteI;s ~90.5 | 10 819 5,781 1 793 75 1,762 | 14,740 1] 354 535 60.8 124.0
~86.7 | 20 1,598 3,022 1 590 77 3,257 | 11,056 1] 283 51.0 72.7 108.5

4922

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Impact of JS and PO on average query response
time for similar storage reductions

Storage Po | 15 Num: Av.g: query Reduction

5 reduction % % | images time (s) in query
g % ; PO JS time (%)
S 6,205 | 27| 23 14.8
= 11993 | 39| 34 12.8
g 914 | 750 | 75| 24,053 | 70| 55 21.4
? 48,603 | 97| 94 31
96,139 | 184 | 17.3 6.0

. Storage PO | IS Num: Av'g: query Reduction
8 reduction % % | images time (s) in query
] %o PO | IS time (%)
o 10,905 [132 | 84 36.4
= 21,556 | 133 | 85 36.1
% 935|700 | 1.7 [23,070 | 141 | T1.5 18.4
S 69,230 | 19.3 | 14.0 275
121,206 | 25.0 | 24.4 2.4

blocks influenced such reductions in query times compared to
the PO based DACMA.

4) Concluding remarks on merge metric:

The overall impact of JS compared to PO as a merge metrics
for DACMA for similar storage reductions was independent
of it being a single or multiple cluster scenarios. The JS based
DACMA solutions always: (i) yielded smaller merged regions,
(ii) comprised a smaller number of total blocks, (iii) hosted a
larger average number of images in the blocks, (iv) hosted a
substantially lower maximum number of images in the blocks,
and (iv) most importantly yielded reduced average query
times. Consequently, the adoption of JS as a merge metric is
recommended for designing adjacent cell merge algorithms-i.e.
for DACMA. Thus, the subsequent experiments investigated
the avenues in designing adjacent cell merge algorithms by
employing JS as the merge metric for DACMA.

D. Identify the merge percentage for JS

The experiments performed to establish JS as the better
merge metric over its counterpart PO also indicated that
the chosen merge percentage had a substantial impact on
query performance time. As shown in Table III, when the JS
percentage value increased, the average query response times
decreased. The primary reason was the smaller sized merge
regions that were formed due to the increased JS percentage
(cf. Figure I). Consequently, the number of images that each
smaller block host is small. However, as the query times
decreased, the overall obtainable storage reduction compared
to non-DACMA applied solutions also reduced.

Typically, when designing new spatial indexes or spatial
index optimizations, one or two categories of costs associated
with index design are reduced [12]. These include: (i) storage
costs, (ii) response times, and (iii) write/update costs. Opti-
mization of all three in a specific index or index optimization
solution ia practically infeasible. Thus a prioritization on
the optimization of cost category (or categories) must be
determined in advance. As stated previously, DACMA was
primarily envisioned to reduce IOI duplication among adjacent
grid cells through adjacent grid cell merging. Intuitively, the
reduction of IOI duplication also results in a reduction of the

4923

number of IOIs required to write into database table(s). In
addition, it also reduces the number of merged cells that need
to be updated in scenarios where a specific 10l is changed.
Thus, admittedly, DACMA primarily reduces the storage cost
in adopting SFC curved based grid cell space indexing. More
over, DACMA also reduces write/update costs as a result of
reduced storage of IOI. However, as anticipated, both storage
cost and update/write cost reductions were achieved at the
expense of query response time.

Thus, identification of an optimal JS percentage for adjacent
cell merge that reduces storage cost (and write/update cost),
while having a minimally adverse impact on query time is
critical. This subsection describes an approach for identifying
an optimal or near optimal JS percentage value to balance the
impacts of DACMA on storage (i.e. space) cost and query
response time (i.e. time). The optimal JS value herein called
the “Space-Time Trade-Off Optimization Percentage (STOP)
value”. The STOP value is identified in two stages. In stage
one, the JS percentage is identified through analysis of two
storage reduction base lines. The identified JS percentages
were then subsequently tested for average query times for other
JS percentages.

1) Stage 1: Identifying an estimated STOP value by
analysing storage reductions:

To identify a STOP value, as the first baseline, overall
storage requirements for a straight-forward SFC- based cell
space indexing were obtained (i.e. non-DACMA solution).
Next, the overall storage requirement in the case of using 4SA
was obtained. Subsequently, the total storage requirement for
different JS-based DACMA solutions obtained from a range
the JS merge percentage values. The storage consumption was
compared between non-DACMA and 4SA based scenarios.
Following the comparison, the storage reduction for each
JS-based DACMA solution was obtained. These steps were
repeated for both single and multiple cluster scenarios. The
achieved storage reductions for a single cluster is shown
in Figure 7(a) and Figure 7(b). Figure 7(b) demonstrates
three points in the storage reduction curve that were used
to identify an estimated STOP value. Similarly Figure 7(c)
and Figure 7(d) demonstrate the storage reduction curves for
multiple cluster scenario and the three points involved in
identifying the STOP value.

According to Figure 7, the application of DACMA initially
resulted in an overall storage reduction to get decreased with
the increase in the JS percentage compared to the storage
demands of the two baselines. Thereafter, the storage reduction
was remained constant. A notable observation in the storage
reduction measured against the 4SA technique was that, be-
yond a certain percentage, the reduction dipped below zero.
This indicated that beyond certain JS percentage, adoption of
4SA for aerial data management could be consider as a viable
approach over DACMA. This is due to the 4SA’s capability
in reducing the storage cost. Hence, the JS percentage value
where the storage reduction measured against the 4SA reached
zero was considered as the upper-bound percentage for JS in
finding the STOP value. Furthermore, a STOP value must

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

(a) single cluster
storage reduction

(b) single cluster
finding STOP value

c 4
5 ®0
T 60
=) So
T 404 Point 3 ", Point 2
]
o 204 \
g o | Point T
<
§ —— DACMA w/ direct SFC \ —— DACMA w/ direct SFC \
¥ 207 --— DACMA w/ 45A_SFC N 1 --- DACMA w/ asA_SFC N
-40
20 40 60 80 20 a0 60 80
Jaccard similarity Jaccard similarity
(c) multiples clusters (d) multiples clusters
100 storage reduction finding STOP value
c 4
5 ®0
T 60
=) S
T 404 Point 3 ™. Point 2
o S
o 204 1 \\
2 o \i| Point T
§ —— DACMA w/ direct SFC \ —— DACMA w/ direct SFC AN
(1 7207 -~ DACMA w/ 45A_SFC N 1 --- DACMA w/ asA_SFC N
-40

0 20 40 60 80
Jaccard similarity

0 20 a0 60 80
Jaccard similarity

Fig. 7: Identification of estimated STOP values

yield a reasonably good storage reduction in terms of bot
straight-forward and 4SA optimized SFC approaches. Thus,
methodically explore a STOP value in both storage reductic
curves, three points in each curve were considered.

As for the first point (i.e. “Point 1”°), it was decided to dra
a vertical line across the JS percentage value where storag
reduction becomes zero for the 4SA optimized SFC indexin;
The point where this vertical line intersected the DACM.
applied SFC based curve considered to select the secon
point (i.e. Point 2). Therefore, a horizontal line was draw
across the Point 2. This performed because, when navigatin
to the left over this horizontal line demonstrated JS percentag
values that had net positive storage reduction for both storag
reduction curves.

Navigating to lower JS percentages yielded improved stor-
age reductions. However, this was curtailed at the point where
the drawn horizontal line at Point 2 intersected the 4SA
optimized SFC storage reduction curve. This was due to two
reasons: (i) the overall storage reduction from DACMA was
considerably net positive compared to both storage reduction
curves, and (ii) to avoid potentially higher query response
times. This point is considered as the third point (i.e. Point
3). Finally, a vertical line across the Point 3 was drawn. The
JS percentage value where this vertical line intersects the x-
axis is considered as a reasonably good JS merge percentage.
Due to the fact that at this JS merge percentage yielded net
positive storage reductions for both storage reduction curves,
the JS merged percentage given by the line drawn at Point 3
was considered as the estimated STOP value.

Application of the aforementioned approach on the two
storage reduction curves yielded two estimated STOP values.
The estimated STOP value for the single cluster data set
was 57%. For the multiple cluster data set, this was 53%.
Theoretically, such estimated STOP values must yielded better
trade-off between storage reduction and query times. Thus,
further experiments were needed to obtain average query times
for five different regions in the two synthetic data sets for

4924

different JS merge percentage values, along with the potential
STOP values, as described in the next section.

2) Stage 2: Investigate average query response times for JS
percentages identified in Stage 1:
For each synthetic data set, the average query time for five
different regions were obtained. Additionally, the average
query response times for the straight-forward adoption of SFC
based grid cell space indexing (i.e. non-DACMA) was also
investigated. To obtain statistically robust average query re-
sponse times, each query was executed 25 times. The obtained
average query response times a single cluster is presented in
Figure 8. Due to space constraints, the average query times
obtained for multiple clusters are not presented. Nevertheless,
the patterns observed for multiple clusters scenario for five

waminno wiao idantinal ta tha cinala Alhctas cranasin

Region 1 Region 2

[[
k‘x“\‘___“ | |

1 1

1 1 1

] [

1

1 1

[

Region 3

v

IS

w

1
1
'\’\l__
1
1
U
1

1
1
1 | 1
[

~

ot

1

1 1 B 1
20 40 60 80 20 40 60 80 20 40 60 80
Jaccard similarity (%) Jaccard similarity (%) Jaccard similarity (%)
Region 4 Region 5

E——

o

average response time(s)

N
o

-
@

—— avg: time with DACMA
=== avg: time without DACMA
— - estimated STOP value

1
1
1
1
1

v

average response time(s)
H
5

I
1
1
1
1
1
1
1

1
1
1
1

o

20 40 60 80 20 40 60 80
Jaccard similarity (%) Jaccard similarity (%)

Fig. 8: Single cluster - decrease in average query response
time with the increase in JS percentage

In Figure 8 the dashed blue color horizontal lines represents
the average query times in the non-DACMA scenarios. The
green color dashed vertical lines represents the estimated JS
merge percentages identified for the the single cluster scenario-
i.e. 57%. Careful investigation of Figure 8 indicates two vital
observations (i) the estimated STOP value which is 57%,
does not always yield the minimum query times, and (2) the
potential STOP value, has a significant capability to deliver
comparable average query times compared to non-DACMA
query times while always guarantees a substantial storage
reduction.

To elaborate, for the single cluster scenario, when the STOP
value was 57%, the precise storage reductions were 56.0% and
33.7% when compared with non-DACMA and 4SA optimized
techniques, respectively. (as Figure 7 was not based on values
at 57% JS percentage, the respective curves do not show
precise reductions). In achieving these reductions, the average
query times for the five regions only required compromising
by 0.2, 0.1, 0.3, 0.2, and 0.3 seconds. This indicated that the
trade between query times at the 57% merge percentage was
low. Thus, the estimated STOP value at JS 57% could still
qualify as a good merge percentage.

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

Figure 9 demonstrates the combined observations of Stage 1
and Stage 2- i.e, the impact of query response time with respect
to the storage reductions when employing JS for DACMA.
The green color dashed vertical lines in Figure 9 represents the
storage reduction, which was 56%, at a 57% JS similarity — the
estimated STOP value. The blue color dashed horizontal line
represents the average query times in non-DACMA scenarios
for a single cluster. Figure 9 shows that for all five tested
regions, when the storage reductions reached beyond the 56%
yield [the estimated STOP value (i.e. 57%)], the query times
started to increase exponentially. Thus, the estimated STOP

values obtained in Stage 1 and Stage 2 certainly qualify as a
QTNOP valneac

as Region 1 Region 2 Region 3
w
1 1 1

s 4 1 1 1

3 1 1 1

c3

o 1 1

o

8 2 1 1 1

=~ T 1 1

g 1 1 1

1

i ! !

9

>0 1 1 T

©

20 40 60 80 20 40 60 80 20 40 60 80
Storage reduction (%) Storage reduction (%) Storage reduction (%)

— Region 4 Region 5
w
T 20 1 [
£ ! e —
ke 1 1
o 15
2 ! ! —% avg: time with DACMA
I} 1 1 ---- avg: time without DACMA
Q
g 10 15e— ek 1 - - Storage reduction @ STOP value
~ 1 1
8. 5 1 |
©
i ! !
%

> 1 1
© 20 40 60 80 20 40 60 80

Storage reduction (%) Storage reduction (%)

Fig. 9: Single cluster -increase in average query time with
respect to improvement in storage reduction

V. CONCLUSIONS

This paper introduced a SFC-based cell space index opti-
mization technique name as DACMA for scalable management
of aerial images. DACMA’s was intended to establish an
adjacent cell merge algorithm based on the selection of a
proper merge metric and and proper merge percentage. This
paper experimentally identified that as a merge metric, JS
yielded better smaller space splits, as well as improved query
times when compared to PO based results. After identifying
JS as a better merge metric, this work explored avenues to
identify a proper merge percentage. This merge percentage
had a significant impact on both storage reduction as well
as query time. Thus, the focus was narrowed to identify a
merge percentage that yielded substantial storage reduction,
while having minimal impact on the query time. As this
identified merge percentage value correspond to “space-time
trade-off optimization percentage value”, it was termed as
“STOP value”.

A. Future work

Albeit not presented due to the space constraints, this work
identified a strong correlation of 0.999 between the total
number of blocks and the total storage, with respect to the

4925

increase in the JS. Thus, it is hypothesized that identification
of a JS merge percentage region, termed as “STOP region” for
DACMA is possible. Such a region will enable selection of a
range of JS merge percentages that yield efficient space-time
trade-off. Therefore, the pivotal future work of DACMA is
to extrapolate the determination of a STOP region using total
number of blocks as a proxy.

ACKNOWLEDGMENTS

This publication originated from research supported in part
by a grant from Science Foundation Ireland under Grant
number SFI - 17US3450. Further funding for this project
was provided by the National Science Foundation as part
of the project “UrbanARK: Assessment, Risk Management,
Knowledge for Coastal Flood Risk Management in Urban
Areas” NSF Award 1826134, jointly funded with Science
Foundation Ireland (SFI - 17US3450) and Northern Ireland
Trust (Grant USI 137). The clusters used for the testing
were provided by NYU High Performance Computing Cen-
ter. The aerial image data of Dublin were acquired with
funding from the European Research Council [ERC-2012-
StG-307836] and additional funding from Science Foundation
Ireland [12/ERC/12534].

REFERENCES

[1] A. Habib, “Integration of LiDAR and Photogrammetric Data: Trian-
gulation and Orthorectification,” in Topographic Laser Ranging and
Scanning Principles and Processing, 2nd ed., J. Shan and C. Toth, Eds.,
2018, ch. 13, pp. 413-442.

P. Baumann, P. Furtado, R. Ritsch, and N. Widmann, “The rasdaman
approach to multidimensional database management,” in Proceedings of
the 1997 ACM symposium on Applied computing, 1997, pp. 166—-173.
X. Zhou, X. Wang, Y. Zhou, Q. Lin, J. Zhao, and X. Meng, “Rsims:
Large-scale heterogeneous remote sensing images management system,”
Remote Sensing, vol. 13, no. 9, p. 1815, 2021.

J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and
M. Ronquest, “Geomesa: a distributed architecture for spatio-temporal
fusion,” in Geospatial Informatics, Fusion, and Motion Video Analytics
V, vol. 9473. International Society for Optics and Photonics, 2015, p.
94730F.

S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb array
data storage manager,” Proceedings of the VLDB Endowment, vol. 10,
no. 4, pp. 349-360, 2016.

L. Wang, C. Cheng, S. Wu, F. Wu, and W. Teng, “Massive remote
sensing image data management based on hbase and geosot,” in
2015 IEEE international geoscience and remote sensing symposium
(IGARSS). IEEE, 2015, pp. 4558-4561.

W. Jing and D. Tian, “An improved distributed storage and query for
remote sensing data,” Procedia Computer Science, vol. 129, pp. 238—
247, 2018.

D. Laefer, S. Abuwarda, A. Vo, L. Truong-Hong, and H. Gharibi, “2015
Aerial Laser and Photogrammetry Survey of Dublin City Collection
Record,” 2017, (Last accessed by 20/10/2019). [Online]. Available:
https://geo.nyu.edu/catalog/nyu_2451_38684

H. Samet, Foundations of multidimensional and metric data structures,
Ist ed. San Francisco, CA, USA: Morgan Kaufmann, 2006.

C. Bohm, G. Klump, and H.-P. Kriegel, “XZ-Ordering: A space-filling
curve for objects with spatial extension,” in International Symposium on
Spatial Databases. Springer, 1999, pp. 75-90.

C. Hewage, A. Vo, M. Bertolotto, N. Le Khac, and D. Laefer, “4SA:
Optimizing space filling curve based grid cell indexing to scalably man-
age remotely sensed images in key-value databases,” ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences,
2022.

M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos,
A. Ailamaki, and M. Callaghan, “Designing access methods: The rum
conjecture.” in EDBT, vol. 2016, 2016, pp. 461-466.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

Authorized licensed use limited to: New York University. Downloaded on March 12,2025 at 01:28:56 UTC from IEEE Xplore. Restrictions apply.

