Downloaded 03/11/25 to 128.195.74.216 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. DISCRETE MATH. (©) 2024 the authors
Vol. 38, No. 3, pp. 2095-2107

PRODUCT STRUCTURE EXTENSION OF THE
ALON-SEYMOUR-THOMAS THEOREM*

MARC DISTEL', VIDA DgJMOVICi, DAVID EPPSTEINS, ROBERT HICKINGBOTHAMT,
GWENAEL JORETY, PIOTR MICEK!I, PAT MORIN#,
MICHAL T. SEWERYNY, AND DAVID R. WOODT

Abstract. Alon, Seymour, and Thomas [J. Amer. Math. Soc., 3 (1990), pp. 801-808] proved
that every n-vertex graph excluding K: as a minor has treewidth less than t3/2\/ﬁ. Illingworth,
Scott, and Wood [Product Structure of Graphs with an Excluded Minor, preprint, arXiv:2104.06627,
2022] recently refined this result by showing that every such graph is a subgraph of some graph with
treewidth ¢ — 2, where each vertex is blown up by a complete graph of order O(y/tn). Solving an
open problem of Illingworth, Scott, and Wood [2022], we prove that the treewidth bound can be
reduced to 4 while keeping blowups of order O¢(y/n). As an extension of the Lipton—Tarjan theorem,
in the case of planar graphs, we show that the treewidth can be further reduced to 2, which is best
possible. We generalize this result for K3 ;-minor-free graphs, with blowups of order O(¢y/n). This
setting includes graphs embeddable on any fixed surface.
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1. Introduction. Treewidth is a measure of how similar a given graph is to a
tree, and is of fundamental importance in structural and algorithmic graph theory;
see [2, 15, 24] for surveys.

In one of the cornerstone results of graph minor theory, Alon, Seymour, and
Thomas [1] proved that every n-vertex K;-minor-free graph G has treewidth tw(G) <
3/2p1/2 which implies that G has a balanced separator of order at most ¢3/2nl/2.
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For fixed ¢t > 5, this bound is asymptotically tight since the n'/? x n'/? grid is K-
minor-free and has treewidth n'/2.

Our goal is to prove qualitative strengthenings of the Alon—-Seymour—-Thomas
theorem through the lens of graph product structure theory, which describes graphs
in complicated classes as subgraphs of products of simpler graphs. Here we consider
products of bounded treewidth graphs and complete graphs. To be precise, for a
graph H and m € N, let H X K,,, be the strong product of H and a complete graph
K,,, which is the “complete-blow-up” of H by K,,, that is, the graph obtained by
replacing each vertex of H by a copy of K,, and replacing each edge of H by the
complete join between the corresponding copies of K,,. Say a graph G is contained
in a graph X if G is isomorphic to a subgraph of X.

Tlingworth, Scott, and Wood [18] showed that for any integer ¢ > 4, every n-vertex
Ki-minor-free graph G is contained in H X K, for some graph H with treewidth at
most ¢t — 1, where m < v/tn. This result implies and strengthens the Alon-Seymour—
Thomas theorem since

tw(G) <tw(HRK,,) < (tw(H) + 1)m — 1 < tV/tn.

Importantly, they also showed a similar result with treewidth ¢t — 2 (and a slightly
larger value of m): every n-vertex K;-minor-free graph G is contained in H X K, for
some graph H with treewidth at most ¢ — 2, where m < 2v/tn.

The following definition, implicitly introduced by Illingworth et al. [18], naturally
arises. For a proper minor-closed graph class G, let f(G) be the minimum integer such
that for some ¢, every n-vertex graph G € G is contained in HX K, for some graph H
with treewidth at most f(G), where m < ¢y/n. The above result of Illingworth et al.
[18] implies that f(G) is well-defined; in particular, if G; is the class of K-minor-free
graphs, then f(G;) <t —2.

Tlingworth et al. [18] asked whether f(G) is upper bounded by an absolute con-
stant. This paper answers this question in the affirmative.

THEOREM 1.1. Every n-vertex K;-minor-free graph G is contained in H K K,,
for some graph H of treewidth at most 4, where m € O(y/n).

Theorem 1.1 implies that f(G) < 4 for every proper minor-closed class G. The
proof of Theorem 1.1 actually shows that tw(H — v) <3 for some vertex v € V(H).

We also give improved bounds on f(G) for particular minor-closed classes G. First
consider the class £ of planar graphs. The Lipton—Tarjan separator theorem [21] is
one of the most important structural results about planar graphs, with numerous
algorithmic applications [22]. It is equivalent to saying that every n-vertex planar
graph has treewidth O(y/n) (see [12]). Since planar graphs are Kj-minor-free, the
above result of Illingworth et al. [18] shows that f(£) < 3. Our next contribution
shows that f(£) <2, resolving an open problem of Illingworth et al. [18].

THEOREM 1.2. FEvery n-vertex planar graph is contained in HX K,,, where H is
a graph with treewidth 2 and m € O(y/n).

As an aside, since every graph with treewidth 2 is planar, the graph H in Theorem
1.2 is planar (although not necessarily a minor of the original planar graph).

We actually prove a more general result than Theorem 1.2 for graphs that exclude
a K3, minor.

THEOREM 1.3. Every Ks.-minor-free n-vertex graph is contained in H X K,,,
where H is a graph with treewidth 2 and m € O(t\/n).

© 2024 the authors
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Since K33 is not planar, Theorem 1.3 with ¢ = 3 implies Theorem 1.2. More
generally, Theorem 1.3 also implies results for graphs embeddable in any fixed surface.
The FEuler genus of a surface with h handles and ¢ cross-caps is 2h + ¢. The Euler
genus of a graph G is the minimum integer g > 0 such that there is an embedding of
G in a surface of Euler genus g; see [23] for more about graph embeddings in surfaces.
It follows from Euler’s formula that K3 2443 has Euler genus greater than g. Thus
Theorem 1.3 implies the following.

COROLLARY 1.4. FEvery n-vertex graph with Fuler genus g is contained in HX
K., where H is a graph with treewidth 2 and m € O((g + 1)y/n).

Note that Gilbert, Hutchinson, and Tarjan [14] and Djidjev [6] proved that n-
vertex graphs with Euler genus g > 0 admit balanced separators of order O(,/gn) and
thus have treewidth O(,/gn). Corollary 1.4 is a qualitative strengthening of these
results, with slightly worse dependence on g.

1.1. Related work. We first mention a connection to clustered coloring. A
(vertex-)k-coloring of a graph has clustering c if every monochromatic component has
at most ¢ vertices. This is equivalent to saying that G is contained in H X K for
some graph H with x(H) < k. Clustered coloring has been widely studied in recent
years; see [28] for a survey. Linial et al. [20] showed that n-vertex planar graphs,
and more generally graphs excluding any fixed minor, are 3-colorable with clustering
O(yv/n). Since treewidth 2 graphs are 3-colorable, in the case of planar or K ;-minor-
free graphs, Theorems 1.2 and 1.3 are a qualitative improvement over the result of
Linial et al. [20].

Clustered colorings also provide lower bounds. Linial et al. [20] constructed a
family of planar graphs {G} : k > 1}, where G} has 2k3 + 1 vertices and every
2-coloring of Gy has a monochromatic component with at least k?/2 vertices. In
particular, if Gy, is contained in H X K,,, for some graph H with treewidth 1 (that
is, H is a forest), then a proper 2-coloring of H determines a 2-coloring of G} with
clustering m, implying m € Q(n?/3) where n :=|V(Gy)|. Hence f(L£) > 1. Therefore
the bounds on the treewidth of H in Theorems 1.2 and 1.3 and Corollary 1.4 are best
possible. In particular, f(£) = 2, and if G3; is the class of K3 ;-minor-free graphs,
then f(Gs ) =2 for t > 3. These lower bounds lead to the following characterization
of minor-closed classes G with f(G) < 1.

PROPOSITION 1.5. For a minor-closed class G, f(G) < 1 if and only if G has
bounded treewidth.

Proof. Dvordk and Wood [13, Theorem 8 with ¢ = 1] proved that every n-vertex
graph with treewidth & is contained in HX K,,, where H is a star and m < /(k + 1)n.
Since a star has treewidth 1, if G has bounded treewidth, then f(G) < 1. For the
converse, if G has unbounded treewidth, then by the grid minor theorem [25], every
planar graph is in G, and thus f(G) > f(£) =2, as desired. d

We conclude by mentioning the following related definition and results. Campbell
et al. [3] defined the underlying treewidth of a graph class G to be the minimum integer
k such that for some function g every graph G € G is contained in H X K,,,, where
tw(H) <k and m < g(tw(QG)). Here m is required to depend only on tw(G), whereas
the present paper allows m € O(y/n). Among other results, Campbell et al. [3]
showed! that the underlying treewidth of G, equals ¢t — 2. Thus, in the underlying
treewidth setting, no absolute bound on tw(H) is possible, unlike in the setting of

!In the result of Campbell et al. [3], g(w) € O(w?logw), which was improved to O¢(w) by
Hlingworth et al. [18].

(© 2024 the authors
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O(yv/n) blowups, where Theorem 1.1 achieves tw(H ) < 4. There is a similar distinction
for planar graphs. Campbell et al. [3] showed that the underlying treewidth of the
class of planar graphs equals 3. So in Theorem 1.2 with tw(H) < 2, the bound of
m € O(y/n) cannot be improved to m < g(tw(G)) for any function g. See [8] for recent
results on underlying treewidth.

2. Background. For m,n € Z with m < n, let [m,n] := {m,m+1,...,n} and
[n] :=[1,n].

We consider simple, finite, undirected graphs G with vertex-set V(G) and edge-
set E(GQ). For a graph G and set S C V(G), let Ng(S) :={v e V(G)\ S : Jow €
E(G),w € S} and let Ng[S]:= Ng(S)U S. We drop the subscript G if the graph in
question is clear.

A tree-decomposition of a graph G is a collection T = (B, : € V(T)) of subsets
of V(G) (called bags) indexed by the vertices of a tree T, such that (a) for every edge
uv € E(G), some bag B, contains both v and v, and (b) for every vertex v € V(G),
the set {x € V(T'):v € B,} induces a nonempty (connected) subtree of T'. The width
of T is max{|B,|: © € V(T)} — 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width of a tree-decomposition of G.

Consider a tree-decomposition T = (B, : @ € V(T)) of a graph G. The adhesion of
T is max{|B, N By|: 2y € E(T)}. The torso of a bag B, (with respect to 7'), denoted
by G(B.), is the graph obtained from the induced subgraph G[B,] by adding edges
so that B, N B, is a clique for each edge zy € E(T'). We say T is rooted if T is rooted.
Then, for each z € V(T), a clique C in the torso G(B,) is a child-adhesion clique if
there is a child y of x such that C'C B, N B,.

A path-decomposition is a tree-decomposition in which the underlying tree is a
path, simply denoted by the corresponding sequence of bags (B, ..., B,).

A graph H is a minor of a graph G if H is isomorphic to a graph that can be
obtained from a subgraph of G by contracting edges. A graph G is H-minor-free if
H is not a minor of G. A graph class G is minor-closed if every minor of every graph
in G is in G. A graph class is proper if it is not the class of all graphs. The graph
minor structure theorem of Robertson and Seymour [26] shows that every K;-minor-
free graph has a tree-decomposition where each torso can be constructed using three
ingredients: graphs on surfaces, vortices, and apex vertices. To describe this formally,
we need the following definitions.

Let G be a graph embedded in a surface ¥. A closed disc D in ¥ is Gg-clean if
its only points of intersection with G are vertices of G that lie on the boundary of
D. Let z1,...,x;, be the vertices of Gy on the boundary of D in the order around D.
A D-vortex (with respect to Gg) of a graph H is a path-decomposition (B, ..., Bp)
of H such that x; € B; for each i € [b], and V(Go N H) ={x1,...,2p}.

For integers g,p,a >0 and k > 1, a graph G is (g, p, k, a)-almost-embeddable if for
some set A C V(G) with |A| < a, there are graphs Gy, G1,...,G) such that

L] G—A:G()UGlU"'UGp,

e (1,...,G, are pairwise vertex-disjoint,

e (G is embedded in a surface ¥ of Euler genus at most g,

e there are p pairwise disjoint Gy-clean closed discs Dq,..., D, in ¥, and
for i € [p], there is a D;-vortex (By,...,Bs,) of G; of width at most k.
The vertices in A are called apex vertices—they can be adjacent to any vertex in
G. A graph is l-almost-embeddable if it is (g,p,k,a)-almost-embeddable for some
g,p, k,a< /.

© 2024 the authors
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We use the following version of the graph minor structure theorem, which is
implied by a result of [4, Theorem 4].

THEOREM 2.1 (see [4]). For every integer t > 1 there exists an integer k > 1 such
that every Ki-minor-free graph G has a rooted tree-decomposition (By: x € V(T))
such that for every node x € V(T), the torso G(B,) is k-almost-embeddable and if
Ay is the apex-set of G(By), then for every child-adhesion clique C of G(B,), either
C\ A, is contained in a bag of a vortex of G{By), or |C'\ Az < 3.

The strong product of graphs A and B, denoted by AKX B, is the graph with vertex-
set V(A) x V(B), where distinct vertices (v, ), (w,y) € V(A) x V(B) are adjacent if
v=w and zy € E(B), or x =y and vw € E(A), or vw € E(A) and zy € E(B).

Let G be a graph. A partition of G is a collection P of sets of vertices in G such
that each vertex of GG is in exactly one element of P. Each element of P is called a
part. Empty parts are allowed. The width of P is the maximum number of vertices in
a part. The quotient of P (with respect to G) is the graph, denoted by G /P, whose
vertices are the nonempty parts in P, where distinct nonempty parts A, B € P are
adjacent in G/P if and only if some vertex in A is adjacent in G to some vertex in
B. For a graph H, an H-partition of G is a partition P = (P, CV(G) : z € V(H))
of G indexed by V(H), such that for each edge vw € E(G), if v € P, and w € P,
then x =y or xy € E(H). That is, G/P is contained in H. The following observation
connects partitions and products.

Observation 2.2 (see [9]). For all graphs G and H and any integer p > 1, G is
contained in H X K, if and only if G has an H-partition with width at most p.

A layering of a graph G is a partition P of G, whose parts are ordered P =
(Vo,Vi,...) such that for each edge vw € E(G), if v € V; and w € V}, then |i — j| < 1.
Equivalently, a layering is a P-partition for some path P. Consider a connected
graph G. Let r € V(G) and let V; :={v € V(G) : distg(v,r) =i} for each > 0. Then
(Vo,Vi,...) is a BFS-layering of G rooted at r. Let T be a spanning tree of G, where
for each non-root vertex v € V; there is a unique edge vw in T for some w € V;_.
Then T is called a BFS-spanning tree of G. (These trees are a superset of the trees
that can be generated by the breadth-first search algorithm.)

If T is a tree rooted at a vertex r, then a nonempty path P in T is vertical if the
vertex of P closest to r in T' is an end-vertex of P.

Many recent results show that certain graphs can be described as subgraphs of the
strong product of a graph with bounded treewidth and a path [5, 7, 9, 11, 16, 17, 27].
For example, Distel et al. [5] proved the following result (building on the work of
Dujmovié et al. [9]).

LEMMA 2.3 (see [5]). Ewery connected graph G of Euler genus at most g is
contained in H K P X K .(2g,3y for some planar graph H with treewidth 3, and for
some path P. In particular, for every rooted spanning tree T of G, there is a planar
graph H with treewidth at most 3 and there is an H-partition P of G such that each
part of P is a subset of the union of at most max{2g,3} vertical paths in T.

3. Proof of Theorem 1.1. This section proves Theorem 1.1 for K;-minor-free
graphs, where the graph minor structure theorem is our main tool. We first prove
an analogue of Theorem 1.1 for almost-embeddable graphs with several additional
properties that will be needed later.

LEMMA 3.1. For integers g,p,a >0 and k,n > 1 and d > 4, for every (g,p,k,a)-
almost embeddable n-vertex graph G with apex set A, there exists a set S C V(G)

© 2024 the authors
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where |S| < 375 +a such that G — S has an H-partition with width at most (2g+4p+

32/ (k+ 1)n+d+2k+2), where H is planar with treewidth at most 3. Moreover,
ACS and any clique in a vortex of G is contained in at most two parts.

Proof. Let Go,Gh1,...,G, and Dq,...,D, be as in the definition of (g,p,k,a)-
almost embeddable. Let G{, be obtained from Gy as follows. Initialize Gy, := G and
add edges to Gf so that it is connected and is still embedded in the same surface as
Gy, and Dy, ..., D, are G{-clean.

For each i € [p], modify G}, as follows. Say the vertices around D; are z1,...,Tp.
In G, add edges so that (z1,...,23) is a path, and add a vertex z; into the disc D;
adjacent to z1,...,z,. Note that since D; was initially G{-clean for each i € [p] and
Dy, ..., D, are pairwise disjoint, this can be done while maintaining an embedding of

0 in the same surface as Gy.

Now apply the following operation for each i € [p]. Let (By, ..., By) be a D;-vortex
of G; with width at most k, where x; € B; for each j € [b]. Greedily find an increasing
sequence of integers as,...,aq41 so that a1 =1, ag41 = b+ 1, and for each j € [¢],
if Z; := Ba, UBg, U---UB,, and Y j := (Ba;41U By, 42U ---UB,, ;1)\ Z;, then
[V (k+1Dn] <Y | < [V (k+1)n]+k for each j € [¢—1] and |Y; | < [/ (kK + 1)n]+k.
Note that n > (¢ — 1)\/(k+1)n, so |Z;] < (k+1)g < (k+ D(n/y/(k+1)n+1) =
VE+FDn+k+1.

Every clique in G; is contained in Y; ; U Z; for some j € [g]. In G, contract the
path (74, 1,%a;42, - +,%a,,, 1) iNto a vertex y; ;, for each j € [g]. In Gj contract the
edge z;z,4; into z; for each j € [¢]. Call the vertices y; ; and z; of Gf special.

For each i € [p], let F be some face of G, incident to z;. If p =0, then add a vertex
r to G{, adjacent to some vertex of Gy. If p > 1, then for each i € [p—1], add a handle to
the surface in which Gf is embedded between F} and F} ;. The resulting embedding
of Gj has a single face F” incident to each of z1,...,2,. Add a vertex r to G{, adjacent
to 21,...,%,. Embed r and the edges incident to r in F’. Note that (for any value of
p) the resulting surface has Euler genus at most g + 2max{0,p — 1} < g+ 2p.

Let T be a BFS-spanning tree of Gf, rooted at r (which exists since Gf, is con-
nected). Let (Vp,Vi,...) be the corresponding BFs-layering of Gf,. So Vh = {r},
and if p > 1, then Vi = {z1,...,2,} and V5 contains all y; ; vertices (plus possibly
others). By Lemma 2.3 there is an H’-partition P’ of G{, where H' is planar with
treewidth at most 3 such that each part of P’ is a subset of the union of at most
max{2g + 4p,3} < 2¢g + 4p + 3 vertical paths in T. Note that each vertical path in T
has at most two special vertices (some z; and some y; ;). L R

For eachi € [3,d—1], let V; := ViUViyaUViy2aU- - - Since |V3|+|V4HA—~ Vo1 <
n, there exists £ € [3,d — 1] such that |V;| < n/(d —3). Let S := VU A. Then
S| <n/(d—3)+a.

Let Vi := & for i < 0, and for any integer j > 0, let P} be the H}-partition of
GolVey (j-1)ar1Y- - 'UVeyja—1] induced by P’, where H} is a copy of H' (and Hg, Hi, . ..
are pairwise disjoint). Then P} has width at most (2g + 4p + 3)d.

Let H be the disjoint union of H}, Hy,.... Then H is planar with treewidth at
most 3. Now P{UPJU--- is an H-partition of Gf, — S where each part is a subset of
the union of at most (2g + 4p + 3) vertical paths of length at most d — 1 in T. Hence,
the width of this partition is smaller than (2¢ + 4p + 3)d.

We now modify this partition of G — S into a partition of G —S. By construction
(since £ > 3), P} is a partition of G{[VoUV3UVaU---UV,_1]. In particular, each vertex
yi,; (which is in V5) is in some part X of Pj. Replace y; ; in X by Y; ;. Similarly, each
vertex z; (which is in V1) is in some part X of P}. Replace z; in X by Z;. Remove r

© 2024 the authors
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from the part of Pj that contains r. This defines an H-partition P of G — S where
every clique in a vortex of GG is contained in at most two parts.

It remains to bound the width of P. Let X € P. If X comes from Pj'- for some
Jj =1, then |X| < (29 + 4p + 3)d. Now suppose X comes from Pj. Each vertical
path in T has at most two special vertices (some z; and some y; ;). The correspond-
ing replacements contribute at most 2+/(k + 1)n + 2k + 2 vertices to X. Since X
corresponds to the union of at most 2g 4+ 4p + 3 vertical paths (before replacement)
inT),

|X| < (29 +4p+3)d+ (29 +4p + 3)(2V/(k + 1)n + 2k + 2)
=294+ 4p+3)2V(k+ )n+d+ 2k +2).

So P has width at most (2g + 4p + 3)(2+/(k + 1)n + d + 2k + 2), as required. 0

To handle tree-decompositions we need the following standard separator lemma.
For a tree T rooted at r € V(T'), the root of a subtree 7" of T is the vertex in V(I")
that is closest to r. A weighted tree is a tree T together with a weighting function
v:V(T') — R*. The weight of a subtree T of T"is 3, cy (/) 7(v).

LEMMA 3.2. For every integer ¢ > 0 and n € RT, every weighted tree T with
weight at most n has a set Z of at most q vertices such that each component of T — Z
has weight at most anr

Proof. We proceed by induction on q. The ¢ =0 case holds trivially with Z = @.
Now assume that ¢ > 1 and the result holds for ¢—1. Root T at an arbitrary vertex r.
For each vertex v, let T, be the maximal subtree of T" rooted at v. Let v be a vertex
in T furthest from r such that T, has weight greater than q%. (If no such v exists,

i
then T has weight at most -n; and Z = @ satisfies the claim). Let 77 :=T — V(T5,).

a+T
So T" has weight at most 2%. By induction, 7" has a set Z’ of at most ¢ — 1 vertices

such that each component of 7" — Z' has weight at most 7. Let Z := Z" U {v}.

+1
By the choice of v, each component of T, — v has weight at most q%. Thus each
component of T'— Z has weight at most #. O

The next lemma handles tree-decompositions.

LEMMA 3.3. Let a,b,k,n,w > 1 be integers, and let G be an n-vertex graph that
has a rooted tree-decomposition (B, : x € V(T)) of adhesion at most k such that for
each © € V(T') there exists Sy C By such that

o 1S,]< |B.l/vn +a,
e G(B,)— S, has a J,-partition P, of width at most b where tw(J,) <w, and
e for every child-adhesion clique C of G{B,), the set C'\ S, is contained in at
most w parts in P,.
Then G has an H-partition of width at most max{b,(a + 2k + 1)[\/n]} such that
tw(H) <w+1. Moreover, H contains a vertex « such that tw(H — o) < w.

Proof. Let r € V(T) be the root of T. For every node x € V(T') with parent y,
let X, := B, N B, (where X, = @) and let B, := B, — X,. For each node z € V(T),
let v(z) = |BL|. Observe that (B.: xz € V(T)) is a partition of V(G), so the total
weight equals n. By Lemma 3.2 with ¢ := [y/n] — 1, there is a set Z' C V(T') where
|Z'| < g such that each component of T'— Z’ has total weight at most 37 < y/n. Let
Z:=27'J{r}. For each z € Z, let T, be the maximal subtree of T rooted at z such
that T, N Z = {z}. Let Q :=J(X, : z € Z) and observe that |Q| < k(¢ + 1) < ky/n.
For each z € Z, let G, :=G|J(B., : x € V(T,))] — X,. If there is an edge zy € E(T),
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where y is the parent of z, and z € V(T,) and y € V(T,) for some distinct 2,2’ € Z,
then z = z. Thus G — @ is the disjoint union of (G,: z € Z).

CrLaM 3.4. For each z € Z, there exists S, C V(G,) where |S,| < |B:|/v/n+a
such that G, — S, has an H.-partition of width at most max{b,/n} for some graph
H, with treewidth at most w.

Proof. Let Ti,..., T} be the components of T, — z. For each j € [f], let C; be the
subgraph of G, induced by (B}: z € V(T})). Note that V(G) is the disjoint union of
BL,V(C1),...,V(Cy). By Lemma 3.2, |V(C))| < [U(B;: » € V(T}))| = v(T}) < V/n.
By assumption, there is a set S, C B, where |S,| < |B,|/v/n+a such that G(B,) — S,
has a J,-partition P, with width at most b where tw(.J,) < w, and for every child-
adhesion clique C in G(B,), C'\ S, is contained in at most w parts in P.,. Let
(ngz): x € V(T®)) be a tree-decomposition of J, with width at most w. Add
V(C4),...,V(Cy) to the partition P, to obtain a partition P, of G, —S. with quotient
H.. Then P, has width at most max{b,/n}. For each j € [f], let a; € V(H.) be
the vertex that indexes V(C;) and let N; be the neighborhood of «;. Since the
neighborhood of C; in G, is a child-adhesion clique of G(B.), it follows that N; is a
clique in J, of size at most w. Thus there is a node = € V(T(Z)) such that V; C Wéz).
Add a leaf node ¢ adjacent to x and let WZ(Z) :=N;U{a;}. Repeat this procedure for
all j € [f] to obtain a tree-decomposition of H, with width at most w. d

Observe that

Y IB <Y (IBU+IX:) = (Z IB;|> + (Z |le> <n+ k2],

zeZ zeZ z€Z zeZ

Since |Q| < k|Z] and |Z| < q+1=[y/n],
’QU (USz:zeZ)‘ <1QI+ 3" (1B:l/Vn+a) < (k+a)|Z| + (n+ K| Z|)/V/n
z€Z
<(2k+a-+1)[v/n].

Let H be the graph obtained from the disjoint union of (H.: z € Z) by adding one
dominant vertex .. So tw(H —«a) < w and tw(H) < w+ 1. By associating QU (|J S, :
z € Z) with «, we obtain an H-partition of G with width at most max{b, (a + 2k +
D[v/nl}. 0

Proof of Theorem 1.1. Let G be an n-vertex K;-minor-free graph. By Theorem
2.1, G has a rooted tree-decomposition (B :x € V(T)), such that for each 2 € V(T),
the torso G(B;) is k-almost-embeddable (for some k = k(t)), and if A, is the apex-set
of G(B,), then for every child-adhesion clique C of G(B,), either C'\ A, is contained
in a vortex of G(B;), or |C'\ A;| <3. [10, Lemma 21] showed that every clique in a k-
almost-embeddable graph has at most 9% vertices. So the adhesion of (B, :x € V(T))
is at most 9%k. We may assume that n > k. By Lemma 3.1 with d := [\/n]| + 3, for
each torso G(B,) there exists a set S, C B, such that |S,;| < H\]%H + k< Ig%l + k
and G(B,) — S, has a J,-partition P,, where tw(J,) < 3 and the width of P, is at
most (2k +4k +3)(2y/(k + 1)n+ [v/n] + 3+ 2k +2) < (6k +3) - 9+/(k + 1)n (because
nxk>1).

Moreover, A, C S, and any clique in a vortex of G(B,) is contained in at most two
parts in P,. As such, for every child-adhesion clique C of G(B,), C'\ S, is contained
in at most three parts of P,. By Lemma 3.3, G has an H-partition with width at most
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m:=max{(6k+3)-9/(k+ 1)n, (k+18k+1)[v/n]} < (6k+3)-9/(k + 1)n, where H
contains a vertex « such that tw(H — «) < 3. It therefore follows from Observation
2.2 that G is contained in H X K|,,,; where tw(H) <4. d

4. Proof of Theorem 1.3. This section proves Theorem 1.3 for K3 ;-minor-
free graphs, where we assume throughout that ¢ > 1. We use the following extremal
function for K3 ,-minor-free graphs by Kostochka and Prince [19]. Here K3, is the
graph obtained from K3, by adding an edge between each pair of vertices in the side
of the bipartition with three vertices.

LEMMA 4.1 (see [19]). Every K3 ,-minor-free graph G satisfies |E(G)| < at [V (G))|
for some constant o > 1.

The following notation will be useful in the proof of Theorem 1.3. For a graph G,
an induced subgraph C of G, and sets X,Y C V(G) such that X,Y,V(C) are pairwise
disjoint, let kg (X,C,Y") be the maximum number of vertex-disjoint paths in C, each
with an endpoint in Ng(X) N C and an endpoint in Ng(Y) N C. By Menger’s theorem
there is a set S CV(C) of size kg (X, C,Y) separating Ng(X)NC and Ng(Y)NC in
C. If X ={z}, then replace X by x in this notation, and similarly for Y.

The following lemma is the key to the proof of Theorem 1.3. Here « is from
Lemma 4.1.

LEMMA 4.2. Let G be a K3 ;-minor-free graph on n vertices. Let X and Y be
disjoint nonempty sets of vertices in G such that G[X], G[Y], and G[X UY] are
connected. Then there is a set S CV (G — X —=Y) such that

o [Ng[S]| <tv3an,
e ko(X,CY)<tV3an for every component C of G—X —Y — S, and
e G[X US| and G[Y US] are connected.

Proof. Let Q1,...,Q. be a maximum-size set of vertex-disjoint paths in G—X-Y
between Ng(X)\Y and Ng(Y) \ X. If m =0, then the lemma holds trivially with
S = @, and thus we may assume m > 1. Define J to be the auxiliary graph with
vertex set {qi,...,qm} where q;q; € E(J) whenever there is a path in G — X —Y
joining @; and Q;, and avoiding each Q, with ¢ & {i, j}.

Consider a component J' of J. Let (Vp,Vi,...) be a BFs-layering of J'. So
[Vo| =1. We claim that |V;| <¢ for each ¢ > 1. Suppose for the sake of contradiction
that |V;| >t for some ¢ > 1. Without loss of generality, q1,...,q: € V;. Let A be the
union of (1) all paths @, corresponding to vertices in Vo U---UV;_q, (2) all paths in
G — X —Y corresponding to edges in J[VoU---UV;_4], and (3) all paths in G— X -Y
corresponding to edges in J between a vertex in V;_; and qi,...,q:, not including the
vertex in Q1 U---U Q. By construction, A is a connected subgraph of G — X —Y
disjoint from @, U---U@Q; and adjacent to each of Q1,...,Q;. Each of A,Q1,...,Q
intersect Ng(X) and Ng(Y). Thus X,Y,A,Qq,...,Q; form a K3 ,-model in G. This
contradiction shows that |V;| <t for each i > 0.

Concatenate the above-mentioned layerings of each component of J to obtain a
layering (Vo, Vi,...) of J with |V;| <t for each i. Assign each vertex g; in J a weight
of [N¢[Q;]]. The total weight is at most |V (G)| + 2|E(G)|, which by Lemma 4.1
is at most (2at + 1)n < 3atn since t > 1. Weight each set V; by the total weight
of the vertices in V;. Let p := [v3an]. There exists i € {0,...,p — 1} such that
Z :=J{V;:j =1 (mod p)} has weight at most 3atn/p < tv3an, and each component
of J — Z has less than (p — 1)t < tv/3an vertices. Let S := |J{Q; : ¢ € Z}. By
construction, |[Ng[S]| is at most the weight of Z, which is at most ¢tv/3an. Moreover,
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since G[X UQ;] and G[Y U Q] are connected for all i € [m], it follows that G[X U S|
and G[Y U S| are connected.

Consider a component C of G— X —Y — 5. Since each component of J— Z has at
most tv/3an vertices, the number of paths @; that pass through C' is at most tv/3an.
By the choice of Q1,...,Qm, we have ka(X,C,Y) <tv3an. ]

Theorem 1.3 follows from Observation 2.2 and the next lemma.

LEMMA 4.3. Let G be a K3 ,-minor-free graph on n wvertices. Let Q be a clique
in G with |Q| <2 such that if Q = {x,y} with © #vy, then ka(z,C,y) < 2tv/3an for
every component C' of G —x —y, where « is from Lemma 4.1. Then G has a partition
P with nonempty parts, with width at most < 4tv/3an, with tw(G/P) < 2, and with
{v} €P for eachveq.

Proof. We proceed by induction on [V(G)\ Q|. The result is trivial if V(G) = Q.
Now assume that V(G) # Q. If Q = @, then the result follows by induction where
Q@ :={v} and v is any vertex in G. Now assume that Q # @. If G is disconnected,
then the result follows by applying induction in each component C' of G with the
cliqgue @ NV(C). Now assume that G is connected. First consider the case in which
Q ={z}. Since G is connected and V(G) # Q, there is a neighbor v of . By Lemma
4.2 applied to (G, {x},{v}), there is a set S C V(G — x —v) such that

e [NelS]|<tv3an,

o xg(x,C,v) <tv3an for each component C of G —x —v— 5, and

e G[SU{v}] is connected.
Let G’ be obtained from G by contracting S U {v} into a single vertex v'. So G’
is K3 ;-minor-free and zv’ is an edge of G'. For each component C’ of G’ — x — 7/,
we have kg (z,C’,v") < kg(x,C',v) + |Ng[S]| € 2tv/3an. Apply induction to G’
and Q' := {x,v'} to obtain a partition P’ of G’ of width at most 4¢v/3an such that
tw(G'/P’) <2 and {x},{v'} € P’. Let P be the partition of G obtained from P’ by
replacing {v'} by SU{v}. So P has width at most max{4tv/3an,|S|+ 1} = 4tv/3an
and {z} € P. Since G/P =G’ /P’ we have tw(G/P) < 2.

Now consider the case in which |Q] =2 and Q ={z,y}.

First, suppose that no component of G — x — y intersects Ng(x) and Ng(y). Let
G, be the subgraph of G induced by {z} and the components of G — x — y that
intersect N (x). Let Gy, be the subgraph of G induced by {y} and the components of
G — x —y that intersect N¢(y). By induction, G, has a partition P, of width at most
4tv/3an such that tw(G,/P;) < 2 and {z} € P,. Similarly, G, has a partition P, of
width at most 4tv/3an such that tw(G,/P,) < 2 and {y} € P,. Let P :=P, UP,.
So P is a partition of G, and G/P is obtained from the disjoint union of G, /P, and
Gy /Py by adding the edge {z}{y}. So tw(G/P) <2.

Now assume that some component C of G — x — y intersects both Ng(x) and
N¢(y). By assumption, kg(z,C,y) < 2tv/3an. By Menger’s theorem, there exists
S CV(C) such that |S| < 2tv3an and S separates Ng(x) NV (C) and Ng(y) NV (C)
in C. Choose S to be minimal. Observe that S # @. No component of C' — S
intersects both Ng(z) and Ng(y). Let D, be the union of the components of C' — S
that intersect Ng(x). Let D, be the union of the components of C'— .S that intersect
N¢(y). Let F be the union of the components of C'— S that intersect neither Ng(z)
nor Ng(y). Let Go:=G[(V(C)U{x,y}) \ V(F)].

Let YV := {y} UV (Dy) US. By the minimality of S, G[Y] is connected, and
G[{z} UY] is connected since zy € E(G). By Lemma 4.2 applied to (G¢,{z},Y),
there is a set S, CV(Ge — 2z —Y)=V(D,) such that
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e |Ng,[S:]| <tv3an,

o kg (x,C"Y) <tyv3an for every component C’ of D, — S,, and

o G¢[S;UY] is connected.
Let G, be the graph obtained from G¢ by contracting S, UY into a single vertex
z. Thus G, is K3 ;-minor-free and xz is an edge of G,. Consider a component C” of
Gy —x — 2. Then C’ is a component of D, — S,, and

ke, (2,0, 2) =kg. (2,0, S, UY) < kg (2,07, Y) + | N [S2]| < 2tV 3an.

By induction, G, has a partition P, of width at most 4¢v/3an such that tw(G,/P.) <
2 and {z},{z} € P,. (Note that |V(G,)| < |[V(G)| since S # &, so we may apply
induction.)

Let X :={z}UV(D,)US. By an argument symmetric to the above, there is a
set S, CV(D,) such that

i |NGC [Sy” <tV 3an,

o kg (y,C", X) <tv3an for every component C’ of D, — Sy, and

e G¢[S,UX] is connected.
Let G, be the graph obtained from G¢ by contracting S, U X into a single vertex z.
Thus Gy is K3 ;-minor-free and yz is an edge of G. By a symmetric argument, G, has
a partition P, of width at most 4¢v/3an such that tw(G,/Py) <2 and {y},{z} € P,.

Note that G[X UY] is connected. Let GF be the graph obtained from G[{z,y} U
V(C)] by contracting X UY into a single vertex z. So V(Gp) ={z} UV (F), and Gp
is K3 ;-minor-free. By induction, Gr has a partition Pr of width at most 4tv/3an
such that tw(Gr/Pr) <2 and {z} € Pr.

Let G’ := G —V(C). So G’ is K3 ,-minor-free, and xy is an edge of G'. By
induction, G’ has a partition P’ of width at most 4¢v/3an such that tw(G’/P’) < 2
and {z},{y} € P".

Let P be the partition of G obtained from P, UP, UPrUP’ by replacing each of
the three instances of {z} by SU S, US,. The width of P is at most 4tv/3an. Note
that G/P is obtained by pasting the four graphs G, /Py, Gy/Py, Gr/Pr, and G' /P’
on the triangle {z},{y}, SUS,; US,, where each of the four graphs contains vertices
in two of {z}, {y} and SU S, US,. Thus G/P is obtained from graphs of treewidth
at most 2 by pasting on edges. Hence tw(G/P) <2 and {z},{y} € P. 0

5. Open problems. It is an intriguing open problem to determine f(G) for a
given proper minor-class G. It is possible that f(G) < 2 for every minor-closed class
G. This is open even when G is the class of Ks-minor-free graphs [18]. Let A be
the class of apex graphs,? which is minor-closed. It is open whether f(A) < 2. This
is equivalent to the following open problem (which would strengthen Theorem 1.2):
for every n-vertex planar graph G, does there exist an apex-forest® H such that G is
contained in H X K,,, where m € O(y/n)?

It is also open whether treewidth can be replaced by pathwidth in Theorems 1.1
to 1.3. That is, for a proper minor-closed class G, are there integers k,c such that
every n-vertex graph in G is contained in HX K, for some graph H with pathwidth at
most k, where m < ¢y/n? Two pieces of evidence suggest a positive answer. First, n-
vertex graphs in a proper minor-closed class have pathwidth O(y/n); see [2]. Second,
if G has bounded treewidth, then the answer is “yes” with k& = 1, since Dvorak and
Wood [13] showed that n-vertex graphs in G have H-partitions of width O(y/n) where
H is a star, which has pathwidth 1. This question is open for planar graphs.

2A graph H is apez if H — v is planar for some vertex v of H.
3A graph H is an apex forest if H — v is a forest for some vertex v of H.
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