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Abstract. Alon, Seymour, and Thomas [J. Amer. Math. Soc., 3 (1990), pp. 801--808] proved
that every n-vertex graph excluding Kt as a minor has treewidth less than t3/2

\surd 
n. Illingworth,

Scott, and Wood [Product Structure of Graphs with an Excluded Minor, preprint, arXiv:2104.06627,
2022] recently refined this result by showing that every such graph is a subgraph of some graph with
treewidth t  - 2, where each vertex is blown up by a complete graph of order \scrO (

\surd 
tn). Solving an

open problem of Illingworth, Scott, and Wood [2022], we prove that the treewidth bound can be
reduced to 4 while keeping blowups of order \scrO t(

\surd 
n). As an extension of the Lipton--Tarjan theorem,

in the case of planar graphs, we show that the treewidth can be further reduced to 2, which is best
possible. We generalize this result for K3,t-minor-free graphs, with blowups of order \scrO (t

\surd 
n). This

setting includes graphs embeddable on any fixed surface.
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1. Introduction. Treewidth is a measure of how similar a given graph is to a
tree, and is of fundamental importance in structural and algorithmic graph theory;
see [2, 15, 24] for surveys.

In one of the cornerstone results of graph minor theory, Alon, Seymour, and
Thomas [1] proved that every n-vertex Kt-minor-free graph G has treewidth tw(G)<
t3/2n1/2, which implies that G has a balanced separator of order at most t3/2n1/2.
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2096 DISTEL ET AL.

For fixed t \geqslant 5, this bound is asymptotically tight since the n1/2 \times n1/2 grid is K5-
minor-free and has treewidth n1/2.

Our goal is to prove qualitative strengthenings of the Alon--Seymour--Thomas
theorem through the lens of graph product structure theory, which describes graphs
in complicated classes as subgraphs of products of simpler graphs. Here we consider
products of bounded treewidth graphs and complete graphs. To be precise, for a
graph H and m \in N, let H \boxtimes Km be the strong product of H and a complete graph
Km, which is the ``complete-blow-up"" of H by Km, that is, the graph obtained by
replacing each vertex of H by a copy of Km and replacing each edge of H by the
complete join between the corresponding copies of Km. Say a graph G is contained
in a graph X if G is isomorphic to a subgraph of X.

Illingworth, Scott, and Wood [18] showed that for any integer t\geqslant 4, every n-vertex
Kt-minor-free graph G is contained in H \boxtimes Km for some graph H with treewidth at
most t - 1, where m<

\surd 
tn. This result implies and strengthens the Alon--Seymour--

Thomas theorem since

tw(G)\leqslant tw(H \boxtimes Km)\leqslant (tw(H) + 1)m - 1< t
\surd 
tn.

Importantly, they also showed a similar result with treewidth t  - 2 (and a slightly
larger value of m): every n-vertex Kt-minor-free graph G is contained in H \boxtimes Km for
some graph H with treewidth at most t - 2, where m< 2

\surd 
tn.

The following definition, implicitly introduced by Illingworth et al. [18], naturally
arises. For a proper minor-closed graph class \scrG , let f(\scrG ) be the minimum integer such
that for some c, every n-vertex graph G\in \scrG is contained in H\boxtimes Km for some graph H
with treewidth at most f(\scrG ), where m\leqslant c

\surd 
n. The above result of Illingworth et al.

[18] implies that f(\scrG ) is well-defined; in particular, if \scrG t is the class of Kt-minor-free
graphs, then f(\scrG t)\leqslant t - 2.

Illingworth et al. [18] asked whether f(\scrG ) is upper bounded by an absolute con-
stant. This paper answers this question in the affirmative.

Theorem 1.1. Every n-vertex Kt-minor-free graph G is contained in H \boxtimes Km

for some graph H of treewidth at most 4, where m\in Ot(
\surd 
n).

Theorem 1.1 implies that f(\scrG ) \leqslant 4 for every proper minor-closed class \scrG . The
proof of Theorem 1.1 actually shows that tw(H  - v)\leqslant 3 for some vertex v \in V (H).

We also give improved bounds on f(\scrG ) for particular minor-closed classes \scrG . First
consider the class \scrL of planar graphs. The Lipton--Tarjan separator theorem [21] is
one of the most important structural results about planar graphs, with numerous
algorithmic applications [22]. It is equivalent to saying that every n-vertex planar
graph has treewidth \scrO (

\surd 
n) (see [12]). Since planar graphs are K5-minor-free, the

above result of Illingworth et al. [18] shows that f(\scrL ) \leqslant 3. Our next contribution
shows that f(\scrL )\leqslant 2, resolving an open problem of Illingworth et al. [18].

Theorem 1.2. Every n-vertex planar graph is contained in H \boxtimes Km, where H is
a graph with treewidth 2 and m\in \scrO (

\surd 
n).

As an aside, since every graph with treewidth 2 is planar, the graph H in Theorem
1.2 is planar (although not necessarily a minor of the original planar graph).

We actually prove a more general result than Theorem 1.2 for graphs that exclude
a K3,t minor.

Theorem 1.3. Every K3,t-minor-free n-vertex graph is contained in H \boxtimes Km,
where H is a graph with treewidth 2 and m\in \scrO (t

\surd 
n).
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PRODUCT STRUCTURE EXTENSION OF ALON--SEYMOUR--THOMAS 2097

Since K3,3 is not planar, Theorem 1.3 with t = 3 implies Theorem 1.2. More
generally, Theorem 1.3 also implies results for graphs embeddable in any fixed surface.
The Euler genus of a surface with h handles and c cross-caps is 2h + c. The Euler
genus of a graph G is the minimum integer g \geqslant 0 such that there is an embedding of
G in a surface of Euler genus g; see [23] for more about graph embeddings in surfaces.
It follows from Euler's formula that K3,2g+3 has Euler genus greater than g. Thus
Theorem 1.3 implies the following.

Corollary 1.4. Every n-vertex graph with Euler genus g is contained in H \boxtimes 
Km, where H is a graph with treewidth 2 and m\in \scrO ((g+ 1)

\surd 
n).

Note that Gilbert, Hutchinson, and Tarjan [14] and Djidjev [6] proved that n-
vertex graphs with Euler genus g > 0 admit balanced separators of order \scrO (

\surd 
gn) and

thus have treewidth \scrO (
\surd 
gn). Corollary 1.4 is a qualitative strengthening of these

results, with slightly worse dependence on g.

1.1. Related work. We first mention a connection to clustered coloring. A
(vertex-)k-coloring of a graph has clustering c if every monochromatic component has
at most c vertices. This is equivalent to saying that G is contained in H \boxtimes Kc for
some graph H with \chi (H) \leqslant k. Clustered coloring has been widely studied in recent
years; see [28] for a survey. Linial et al. [20] showed that n-vertex planar graphs,
and more generally graphs excluding any fixed minor, are 3-colorable with clustering
\scrO (

\surd 
n). Since treewidth 2 graphs are 3-colorable, in the case of planar or K3,t-minor-

free graphs, Theorems 1.2 and 1.3 are a qualitative improvement over the result of
Linial et al. [20].

Clustered colorings also provide lower bounds. Linial et al. [20] constructed a
family of planar graphs \{ Gk : k \geqslant 1\} , where Gk has 2k3 + 1 vertices and every
2-coloring of Gk has a monochromatic component with at least k2/2 vertices. In
particular, if Gk is contained in H \boxtimes Km for some graph H with treewidth 1 (that
is, H is a forest), then a proper 2-coloring of H determines a 2-coloring of Gk with
clustering m, implying m \in \Omega (n2/3) where n := | V (Gk)| . Hence f(\scrL ) > 1. Therefore
the bounds on the treewidth of H in Theorems 1.2 and 1.3 and Corollary 1.4 are best
possible. In particular, f(\scrL ) = 2, and if \scrG 3,t is the class of K3,t-minor-free graphs,
then f(\scrG 3,t) = 2 for t\geqslant 3. These lower bounds lead to the following characterization
of minor-closed classes \scrG with f(\scrG )\leqslant 1.

Proposition 1.5. For a minor-closed class \scrG , f(\scrG ) \leqslant 1 if and only if \scrG has
bounded treewidth.

Proof. Dvo\v r\'ak and Wood [13, Theorem 8 with t= 1] proved that every n-vertex
graph with treewidth k is contained in H\boxtimes Km, where H is a star and m\leqslant 

\sqrt{} 
(k+ 1)n.

Since a star has treewidth 1, if \scrG has bounded treewidth, then f(\scrG ) \leqslant 1. For the
converse, if \scrG has unbounded treewidth, then by the grid minor theorem [25], every
planar graph is in \scrG , and thus f(\scrG )\geqslant f(\scrL ) = 2, as desired.

We conclude by mentioning the following related definition and results. Campbell
et al. [3] defined the underlying treewidth of a graph class \scrG to be the minimum integer
k such that for some function g every graph G \in \scrG is contained in H \boxtimes Km, where
tw(H)\leqslant k and m\leqslant g(tw(G)). Here m is required to depend only on tw(G), whereas
the present paper allows m \in O(

\surd 
n). Among other results, Campbell et al. [3]

showed1 that the underlying treewidth of \scrG t equals t  - 2. Thus, in the underlying
treewidth setting, no absolute bound on tw(H) is possible, unlike in the setting of

1In the result of Campbell et al. [3], g(w) \in Ot(w2 logw), which was improved to Ot(w) by
Illingworth et al. [18].
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2098 DISTEL ET AL.

\scrO (
\surd 
n) blowups, where Theorem 1.1 achieves tw(H)\leqslant 4. There is a similar distinction

for planar graphs. Campbell et al. [3] showed that the underlying treewidth of the
class of planar graphs equals 3. So in Theorem 1.2 with tw(H) \leqslant 2, the bound of
m\in \scrO (

\surd 
n) cannot be improved to m\leqslant g(tw(G)) for any function g. See [8] for recent

results on underlying treewidth.

2. Background. For m,n \in Z with m \leqslant n, let [m,n] := \{ m,m+ 1, . . . , n\} and
[n] := [1, n].

We consider simple, finite, undirected graphs G with vertex-set V (G) and edge-
set E(G). For a graph G and set S \subseteq V (G), let NG(S) := \{ v \in V (G) \setminus S : \exists vw \in 
E(G),w \in S\} and let NG[S] :=NG(S) \cup S. We drop the subscript G if the graph in
question is clear.

A tree-decomposition of a graph G is a collection \scrT = (Bx : x \in V (T )) of subsets
of V (G) (called bags) indexed by the vertices of a tree T , such that (a) for every edge
uv \in E(G), some bag Bx contains both u and v, and (b) for every vertex v \in V (G),
the set \{ x\in V (T ) : v \in Bx\} induces a nonempty (connected) subtree of T . The width
of \scrT is max\{ | Bx| : x \in V (T )\}  - 1. The treewidth of a graph G, denoted by tw(G), is
the minimum width of a tree-decomposition of G.

Consider a tree-decomposition \scrT = (Bx : x\in V (T )) of a graph G. The adhesion of
\scrT is max\{ | Bx\cap By| : xy \in E(T )\} . The torso of a bag Bx (with respect to \scrT ), denoted
by G\langle Bx\rangle , is the graph obtained from the induced subgraph G[Bx] by adding edges
so that Bx\cap By is a clique for each edge xy \in E(T ). We say \scrT is rooted if T is rooted.
Then, for each x \in V (T ), a clique C in the torso G\langle Bx\rangle is a child-adhesion clique if
there is a child y of x such that C \subseteq Bx \cap By.

A path-decomposition is a tree-decomposition in which the underlying tree is a
path, simply denoted by the corresponding sequence of bags (B1, . . . ,Bn).

A graph H is a minor of a graph G if H is isomorphic to a graph that can be
obtained from a subgraph of G by contracting edges. A graph G is H-minor-free if
H is not a minor of G. A graph class \scrG is minor-closed if every minor of every graph
in \scrG is in \scrG . A graph class is proper if it is not the class of all graphs. The graph
minor structure theorem of Robertson and Seymour [26] shows that every Kt-minor-
free graph has a tree-decomposition where each torso can be constructed using three
ingredients: graphs on surfaces, vortices, and apex vertices. To describe this formally,
we need the following definitions.

Let G0 be a graph embedded in a surface \Sigma . A closed disc D in \Sigma is G0-clean if
its only points of intersection with G0 are vertices of G0 that lie on the boundary of
D. Let x1, . . . , xb be the vertices of G0 on the boundary of D in the order around D.
A D-vortex (with respect to G0) of a graph H is a path-decomposition (B1, . . . ,Bb)
of H such that xi \in Bi for each i\in [b], and V (G0 \cap H) = \{ x1, . . . , xb\} .

For integers g, p, a\geqslant 0 and k\geqslant 1, a graph G is (g, p, k, a)-almost-embeddable if for
some set A\subseteq V (G) with | A| \leqslant a, there are graphs G0,G1, . . . ,Gp such that

\bullet G - A=G0 \cup G1 \cup \cdot \cdot \cdot \cup Gp,
\bullet G1, . . . ,Gp are pairwise vertex-disjoint,
\bullet G0 is embedded in a surface \Sigma of Euler genus at most g,
\bullet there are p pairwise disjoint G0-clean closed discs D1, . . . ,Dp in \Sigma , and
\bullet for i\in [p], there is a Di-vortex (B1, . . . ,Bbi) of Gi of width at most k.

The vertices in A are called apex vertices---they can be adjacent to any vertex in
G. A graph is \ell -almost-embeddable if it is (g, p, k, a)-almost-embeddable for some
g, p, k, a\leqslant \ell .
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PRODUCT STRUCTURE EXTENSION OF ALON--SEYMOUR--THOMAS 2099

We use the following version of the graph minor structure theorem, which is
implied by a result of [4, Theorem 4].

Theorem 2.1 (see [4]). For every integer t\geqslant 1 there exists an integer k\geqslant 1 such
that every Kt-minor-free graph G has a rooted tree-decomposition (Bx : x \in V (T ))
such that for every node x \in V (T ), the torso G\langle Bx\rangle is k-almost-embeddable and if
Ax is the apex-set of G\langle Bx\rangle , then for every child-adhesion clique C of G\langle Bx\rangle , either
C \setminus Ax is contained in a bag of a vortex of G\langle Bx\rangle , or | C \setminus Ax| \leqslant 3.

The strong product of graphs A and B, denoted by A\boxtimes B, is the graph with vertex-
set V (A)\times V (B), where distinct vertices (v,x), (w,y) \in V (A)\times V (B) are adjacent if
v=w and xy \in E(B), or x= y and vw \in E(A), or vw \in E(A) and xy \in E(B).

Let G be a graph. A partition of G is a collection \scrP of sets of vertices in G such
that each vertex of G is in exactly one element of \scrP . Each element of \scrP is called a
part. Empty parts are allowed. The width of \scrP is the maximum number of vertices in
a part. The quotient of \scrP (with respect to G) is the graph, denoted by G/\scrP , whose
vertices are the nonempty parts in \scrP , where distinct nonempty parts A,B \in \scrP are
adjacent in G/\scrP if and only if some vertex in A is adjacent in G to some vertex in
B. For a graph H, an H-partition of G is a partition \scrP = (\scrP x \subseteq V (G) : x \in V (H))
of G indexed by V (H), such that for each edge vw \in E(G), if v \in \scrP x and w \in \scrP y

then x= y or xy \in E(H). That is, G/\scrP is contained in H. The following observation
connects partitions and products.

Observation 2.2 (see [9]). For all graphs G and H and any integer p \geqslant 1, G is
contained in H \boxtimes Kp if and only if G has an H-partition with width at most p.

A layering of a graph G is a partition \scrP of G, whose parts are ordered \scrP =
(V0, V1, . . . ) such that for each edge vw \in E(G), if v \in Vi and w \in Vj , then | i - j| \leqslant 1.
Equivalently, a layering is a P -partition for some path P . Consider a connected
graph G. Let r \in V (G) and let Vi := \{ v \in V (G) : distG(v, r) = i\} for each i\geqslant 0. Then
(V0, V1, . . . ) is a bfs-layering of G rooted at r. Let T be a spanning tree of G, where
for each non-root vertex v \in Vi there is a unique edge vw in T for some w \in Vi - 1.
Then T is called a bfs-spanning tree of G. (These trees are a superset of the trees
that can be generated by the breadth-first search algorithm.)

If T is a tree rooted at a vertex r, then a nonempty path P in T is vertical if the
vertex of P closest to r in T is an end-vertex of P .

Many recent results show that certain graphs can be described as subgraphs of the
strong product of a graph with bounded treewidth and a path [5, 7, 9, 11, 16, 17, 27].
For example, Distel et al. [5] proved the following result (building on the work of
Dujmovi\'c et al. [9]).

Lemma 2.3 (see [5]). Every connected graph G of Euler genus at most g is
contained in H \boxtimes P \boxtimes Kmax\{ 2g,3\} for some planar graph H with treewidth 3, and for
some path P . In particular, for every rooted spanning tree T of G, there is a planar
graph H with treewidth at most 3 and there is an H-partition \scrP of G such that each
part of \scrP is a subset of the union of at most max\{ 2g,3\} vertical paths in T .

3. Proof of Theorem 1.1. This section proves Theorem 1.1 for Kt-minor-free
graphs, where the graph minor structure theorem is our main tool. We first prove
an analogue of Theorem 1.1 for almost-embeddable graphs with several additional
properties that will be needed later.

Lemma 3.1. For integers g, p, a\geqslant 0 and k,n\geqslant 1 and d\geqslant 4, for every (g, p, k, a)-
almost embeddable n-vertex graph G with apex set A, there exists a set S \subseteq V (G)
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2100 DISTEL ET AL.

where | S| \leqslant n
d - 3 +a such that G - S has an H-partition with width at most (2g+4p+

3)(2
\sqrt{} 
(k+ 1)n+ d+ 2k+ 2), where H is planar with treewidth at most 3. Moreover,

A\subseteq S and any clique in a vortex of G is contained in at most two parts.

Proof. Let G0,G1, . . . ,Gp and D1, . . . ,Dp be as in the definition of (g, p, k, a)-
almost embeddable. Let G\prime 

0 be obtained from G0 as follows. Initialize G\prime 
0 :=G0 and

add edges to G\prime 
0 so that it is connected and is still embedded in the same surface as

G0, and D1, . . . ,Dp are G\prime 
0-clean.

For each i \in [p], modify G\prime 
0 as follows. Say the vertices around Di are x1, . . . , xb.

In G\prime 
0, add edges so that (x1, . . . , xb) is a path, and add a vertex zi into the disc Di

adjacent to x1, . . . , xb. Note that since Di was initially G\prime 
0-clean for each i \in [p] and

D1, . . . ,Dp are pairwise disjoint, this can be done while maintaining an embedding of
G\prime 

0 in the same surface as G0.
Now apply the following operation for each i\in [p]. Let (B1, . . . ,Bb) be a Di-vortex

of Gi with width at most k, where xj \in Bj for each j \in [b]. Greedily find an increasing
sequence of integers a1, . . . , aq+1 so that a1 = 1, aq+1 = b + 1, and for each j \in [q],
if Zi := Ba1

\cup Ba2
\cup \cdot \cdot \cdot \cup Baq

and Yi,j := (Baj+1 \cup Baj+2 \cup \cdot \cdot \cdot \cup Baj+1 - 1) \setminus Zi, then

\lceil 
\sqrt{} 
(k+ 1)n\rceil \leqslant | Yi,j | \leqslant \lceil 

\sqrt{} 
(k+ 1)n\rceil +k for each j \in [q - 1] and | Yi,q| \leqslant \lceil 

\sqrt{} 
(k+ 1)n\rceil +k.

Note that n \geqslant (q  - 1)
\sqrt{} 

(k+ 1)n, so | Zi| \leqslant (k + 1)q \leqslant (k + 1)(n/
\sqrt{} 
(k+ 1)n + 1) =\sqrt{} 

(k+ 1)n+ k+ 1.
Every clique in Gi is contained in Yi,j \cup Zi for some j \in [q]. In G\prime 

0 contract the
path (xaj+1, xaj+2, . . . , xaj+1 - 1) into a vertex yi,j , for each j \in [q]. In G\prime 

0 contract the
edge zixaj

into zi for each j \in [q]. Call the vertices yi,j and zi of G
\prime 
0 special.

For each i\in [p], let F \prime 
i be some face of G\prime 

0 incident to zi. If p= 0, then add a vertex
r to G\prime 

0 adjacent to some vertex of G0. If p\geqslant 1, then for each i\in [p - 1], add a handle to
the surface in which G\prime 

0 is embedded between F \prime 
i and F \prime 

i+1. The resulting embedding
of G\prime 

0 has a single face F \prime incident to each of z1, . . . , zp. Add a vertex r to G\prime 
0 adjacent

to z1, . . . , zp. Embed r and the edges incident to r in F \prime . Note that (for any value of
p) the resulting surface has Euler genus at most g+ 2max\{ 0, p - 1\} \leqslant g+ 2p.

Let T be a bfs-spanning tree of G\prime 
0 rooted at r (which exists since G\prime 

0 is con-
nected). Let (V0, V1, . . . ) be the corresponding bfs-layering of G\prime 

0. So V0 = \{ r\} ,
and if p \geqslant 1, then V1 = \{ z1, . . . , zp\} and V2 contains all yi,j vertices (plus possibly
others). By Lemma 2.3 there is an H \prime -partition \scrP \prime of G\prime 

0 where H \prime is planar with
treewidth at most 3 such that each part of \scrP \prime is a subset of the union of at most
max\{ 2g + 4p,3\} \leqslant 2g + 4p+ 3 vertical paths in T . Note that each vertical path in T
has at most two special vertices (some zi and some yi,j).

For each i\in [3, d - 1], let \widehat Vi := Vi\cup Vi+d\cup Vi+2d\cup \cdot \cdot \cdot . Since | \widehat V3| +| \widehat V4| +\cdot \cdot \cdot +| \widehat Vd - 1| \leqslant 
n, there exists \ell \in [3, d  - 1] such that | \widehat V\ell | \leqslant n/(d  - 3). Let S := \widehat V\ell \cup A. Then
| S| \leqslant n/(d - 3) + a.

Let Vi := ∅ for i < 0, and for any integer j \geqslant 0, let \scrP \prime 
j be the H \prime 

j-partition of
G\prime 

0[V\ell +(j - 1)d+1\cup \cdot \cdot \cdot \cup V\ell +jd - 1] induced by \scrP \prime , whereH \prime 
j is a copy ofH \prime (andH \prime 

0,H
\prime 
1, . . .

are pairwise disjoint). Then \scrP \prime 
j has width at most (2g + 4p+ 3)d.

Let H be the disjoint union of H \prime 
0,H

\prime 
1, . . . . Then H is planar with treewidth at

most 3. Now \scrP \prime 
0 \cup \scrP \prime 

1 \cup \cdot \cdot \cdot is an H-partition of G\prime 
0  - S where each part is a subset of

the union of at most (2g+4p+3) vertical paths of length at most d - 1 in T . Hence,
the width of this partition is smaller than (2g + 4p+ 3)d.

We now modify this partition of G\prime 
0 - S into a partition of G - S. By construction

(since \ell \geqslant 3), \scrP \prime 
0 is a partition of G\prime 

0[V0\cup V1\cup V2\cup \cdot \cdot \cdot \cup V\ell  - 1]. In particular, each vertex
yi,j (which is in V2) is in some part X of \scrP \prime 

0. Replace yi,j in X by Yi,j . Similarly, each
vertex zi (which is in V1) is in some part X of \scrP \prime 

0. Replace zi in X by Zi. Remove r
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from the part of \scrP \prime 
0 that contains r. This defines an H-partition \scrP of G - S where

every clique in a vortex of G is contained in at most two parts.
It remains to bound the width of \scrP . Let X \in \scrP . If X comes from \scrP \prime 

j for some
j \geqslant 1, then | X| \leqslant (2g + 4p + 3)d. Now suppose X comes from \scrP \prime 

0. Each vertical
path in T has at most two special vertices (some zi and some yi,j). The correspond-
ing replacements contribute at most 2

\sqrt{} 
(k+ 1)n + 2k + 2 vertices to X. Since X

corresponds to the union of at most 2g + 4p+ 3 vertical paths (before replacement)
in T ,

| X| \leqslant (2g+ 4p+ 3)d+ (2g+ 4p+ 3)(2
\sqrt{} 
(k+ 1)n+ 2k+ 2)

= (2g+ 4p+ 3)(2
\sqrt{} 
(k+ 1)n+ d+ 2k+ 2).

So \scrP has width at most (2g + 4p+ 3)(2
\sqrt{} 
(k+ 1)n+ d+ 2k+ 2), as required.

To handle tree-decompositions we need the following standard separator lemma.
For a tree T rooted at r \in V (T ), the root of a subtree T \prime of T is the vertex in V (T \prime )
that is closest to r. A weighted tree is a tree T together with a weighting function
\gamma : V (T )\rightarrow R+. The weight of a subtree T \prime of T is

\sum 
v\in V (T \prime ) \gamma (v).

Lemma 3.2. For every integer q \geqslant 0 and n \in R+, every weighted tree T with
weight at most n has a set Z of at most q vertices such that each component of T  - Z
has weight at most n

q+1 .

Proof. We proceed by induction on q. The q= 0 case holds trivially with Z =∅.
Now assume that q\geqslant 1 and the result holds for q - 1. Root T at an arbitrary vertex r.
For each vertex v, let Tv be the maximal subtree of T rooted at v. Let v be a vertex
in T furthest from r such that Tv has weight greater than n

q+1 . (If no such v exists,
then T has weight at most n

q+1 and Z =∅ satisfies the claim). Let T \prime := T  - V (Tv).
So T \prime has weight at most qn

q+1 . By induction, T \prime has a set Z \prime of at most q - 1 vertices
such that each component of T \prime  - Z \prime has weight at most n

q+1 . Let Z := Z \prime \cup \{ v\} .
By the choice of v, each component of Tv  - v has weight at most n

q+1 . Thus each
component of T  - Z has weight at most n

q+1 .

The next lemma handles tree-decompositions.

Lemma 3.3. Let a, b, k,n,w \geqslant 1 be integers, and let G be an n-vertex graph that
has a rooted tree-decomposition (Bx : x \in V (T )) of adhesion at most k such that for
each x\in V (T ) there exists Sx \subseteq Bx such that

\bullet | Sx| \leqslant | Bx| /
\surd 
n+ a,

\bullet G\langle Bx\rangle  - Sx has a Jx-partition \scrP x of width at most b where tw(Jx)\leqslant w, and
\bullet for every child-adhesion clique C of G\langle Bx\rangle , the set C \setminus Sx is contained in at
most w parts in \scrP x.

Then G has an H-partition of width at most max\{ b, (a + 2k + 1)\lceil 
\surd 
n\rceil \} such that

tw(H)\leqslant w+ 1. Moreover, H contains a vertex \alpha such that tw(H  - \alpha )\leqslant w.

Proof. Let r \in V (T ) be the root of T . For every node x \in V (T ) with parent y,
let Xx :=Bx \cap By (where Xr =∅) and let B\prime 

x :=Bx  - Xx. For each node x \in V (T ),
let \gamma (x) = | B\prime 

x| . Observe that (B\prime 
x : x \in V (T )) is a partition of V (G), so the total

weight equals n. By Lemma 3.2 with q := \lceil 
\surd 
n\rceil  - 1, there is a set Z \prime \subseteq V (T ) where

| Z \prime | \leqslant q such that each component of T  - Z \prime has total weight at most n
q+1 \leqslant 

\surd 
n. Let

Z := Z \prime \cup \{ r\} . For each z \in Z, let Tz be the maximal subtree of T rooted at z such
that Tz \cap Z = \{ z\} . Let Q :=

\bigcup 
(Xz : z \in Z) and observe that | Q| \leqslant k(q + 1) \leqslant k

\surd 
n.

For each z \in Z, let Gz :=G[
\bigcup 
(B\prime 

x : x \in V (Tz))] - Xz. If there is an edge xy \in E(T ),
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2102 DISTEL ET AL.

where y is the parent of x, and x \in V (Tz) and y \in V (Tz\prime ) for some distinct z, z\prime \in Z,
then x= z. Thus G - Q is the disjoint union of (Gz : z \in Z).

Claim 3.4. For each z \in Z, there exists Sz \subseteq V (Gz) where | Sz| \leqslant | Bz| /
\surd 
n+ a

such that Gz  - Sz has an Hz-partition of width at most max\{ b,
\surd 
n\} for some graph

Hz with treewidth at most w.

Proof. Let T \prime 
1, . . . , T

\prime 
f be the components of Tz  - z. For each j \in [f ], let Cj be the

subgraph of Gz induced by (B\prime 
x : x\in V (T \prime 

j)). Note that V (Gz) is the disjoint union of
B\prime 

z, V (C1), . . . , V (Cf ). By Lemma 3.2, | V (Cj)| \leqslant | 
\bigcup 
(B\prime 

x : x \in V (T \prime 
j))| = \gamma (T \prime 

j) \leqslant 
\surd 
n.

By assumption, there is a set Sz \subseteq Bz where | Sz| \leqslant | Bz| /
\surd 
n+a such that G\langle Bz\rangle  - Sz

has a Jz-partition \scrP \prime 
z with width at most b where tw(Jz) \leqslant w, and for every child-

adhesion clique C in G\langle Bz\rangle , C \setminus Sz is contained in at most w parts in \scrP \prime 
z. Let

(W
(z)
x : x \in V (T (z))) be a tree-decomposition of Jz with width at most w. Add

V (C1), . . . , V (Cf ) to the partition \scrP \prime 
z to obtain a partition \scrP z of Gz - Sz with quotient

Hz. Then \scrP z has width at most max\{ b,
\surd 
n\} . For each j \in [f ], let \alpha j \in V (Hz) be

the vertex that indexes V (Cj) and let Nj be the neighborhood of \alpha j . Since the
neighborhood of Cj in Gz is a child-adhesion clique of G\langle Bz\rangle , it follows that Nj is a

clique in Jz of size at most w. Thus there is a node x\in V (T (z)) such that Nj \subseteq W
(z)
x .

Add a leaf node \ell adjacent to x and let W
(z)
\ell :=Nj \cup \{ \alpha j\} . Repeat this procedure for

all j \in [f ] to obtain a tree-decomposition of Hz with width at most w.

Observe that

\sum 
z\in Z

| Bz| \leqslant 
\sum 
z\in Z

(| B\prime 
z| + | Xz| ) =

\Biggl( \sum 
z\in Z

| B\prime 
z| 

\Biggr) 
+

\Biggl( \sum 
z\in Z

| Xz| 

\Biggr) 
\leqslant n+ k| Z| .

Since | Q| \leqslant k| Z| and | Z| \leqslant q+ 1= \lceil 
\surd 
n\rceil ,\bigm| \bigm| \bigm| Q\cup 

\Bigl( \bigcup 
Sz : z \in Z

\Bigr) \bigm| \bigm| \bigm| \leqslant | Q| +
\sum 
z\in Z

\bigl( 
| Bz| /

\surd 
n+ a

\bigr) 
\leqslant (k+ a)| Z| + (n+ k| Z| )/

\surd 
n

< (2k+ a+ 1)\lceil 
\surd 
n\rceil .

Let H be the graph obtained from the disjoint union of (Hz : z \in Z) by adding one
dominant vertex \alpha . So tw(H - \alpha )\leqslant w and tw(H)\leqslant w+1. By associating Q\cup (

\bigcup 
Sz :

z \in Z) with \alpha , we obtain an H-partition of G with width at most max\{ b, (a+ 2k +
1)\lceil 

\surd 
n\rceil \} .
Proof of Theorem 1.1. Let G be an n-vertex Kt-minor-free graph. By Theorem

2.1, G has a rooted tree-decomposition (Bx : x\in V (T )), such that for each x\in V (T ),
the torso G\langle Bx\rangle is k-almost-embeddable (for some k= k(t)), and if Ax is the apex-set
of G\langle Bx\rangle , then for every child-adhesion clique C of G\langle Bx\rangle , either C \setminus Ax is contained
in a vortex of G\langle Bx\rangle , or | C \setminus Ax| \leqslant 3. [10, Lemma 21] showed that every clique in a k-
almost-embeddable graph has at most 9k vertices. So the adhesion of (Bx : x\in V (T ))
is at most 9k. We may assume that n \geqslant k. By Lemma 3.1 with d := \lceil 

\surd 
n\rceil + 3, for

each torso G\langle Bx\rangle there exists a set Sx \subseteq Bx such that | Sx| \leqslant | Bx| 
\lceil 
\surd 
n\rceil + k \leqslant | Bx| \surd 

n
+ k

and G\langle Bx\rangle  - Sx has a Jx-partition \scrP x, where tw(Jx) \leqslant 3 and the width of \scrP x is at
most (2k+4k+3)(2

\sqrt{} 
(k+ 1)n+ \lceil 

\surd 
n\rceil +3+2k+2)\leqslant (6k+3) \cdot 9

\sqrt{} 
(k+ 1)n (because

n\geqslant k\geqslant 1).
Moreover, Ax \subseteq Sx and any clique in a vortex of G\langle Bx\rangle is contained in at most two

parts in \scrP x. As such, for every child-adhesion clique C of G\langle Bx\rangle , C \setminus Sx is contained
in at most three parts of \scrP x. By Lemma 3.3, G has an H-partition with width at most
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m :=max\{ (6k+3) \cdot 9
\sqrt{} 
(k+ 1)n, (k+18k+1)\lceil 

\surd 
n\rceil \} \leqslant (6k+3) \cdot 9

\sqrt{} 
(k+ 1)n, where H

contains a vertex \alpha such that tw(H  - \alpha ) \leqslant 3. It therefore follows from Observation
2.2 that G is contained in H \boxtimes K\lfloor m\rfloor where tw(H)\leqslant 4.

4. Proof of Theorem 1.3. This section proves Theorem 1.3 for K3,t-minor-
free graphs, where we assume throughout that t \geqslant 1. We use the following extremal
function for K\ast 

3,t-minor-free graphs by Kostochka and Prince [19]. Here K\ast 
3,t is the

graph obtained from K3,t by adding an edge between each pair of vertices in the side
of the bipartition with three vertices.

Lemma 4.1 (see [19]). Every K\ast 
3,t-minor-free graph G satisfies | E(G)| \leqslant \alpha t | V (G)| 

for some constant \alpha \geqslant 1.

The following notation will be useful in the proof of Theorem 1.3. For a graph G,
an induced subgraph C of G, and sets X,Y \subseteq V (G) such that X,Y,V (C) are pairwise
disjoint, let \kappa G(X,C,Y ) be the maximum number of vertex-disjoint paths in C, each
with an endpoint in NG(X)\cap C and an endpoint in NG(Y )\cap C. By Menger's theorem
there is a set S \subseteq V (C) of size \kappa G(X,C,Y ) separating NG(X)\cap C and NG(Y )\cap C in
C. If X = \{ x\} , then replace X by x in this notation, and similarly for Y .

The following lemma is the key to the proof of Theorem 1.3. Here \alpha is from
Lemma 4.1.

Lemma 4.2. Let G be a K\ast 
3,t-minor-free graph on n vertices. Let X and Y be

disjoint nonempty sets of vertices in G such that G[X], G[Y ], and G[X \cup Y ] are
connected. Then there is a set S \subseteq V (G - X  - Y ) such that

\bullet | NG[S]| \leqslant t
\surd 
3\alpha n,

\bullet \kappa G(X,C,Y )\leqslant t
\surd 
3\alpha n for every component C of G - X  - Y  - S, and

\bullet G[X \cup S] and G[Y \cup S] are connected.

Proof. LetQ1, . . . ,Qm be a maximum-size set of vertex-disjoint paths in G - X - Y
between NG(X) \setminus Y and NG(Y ) \setminus X. If m = 0, then the lemma holds trivially with
S = ∅, and thus we may assume m \geqslant 1. Define J to be the auxiliary graph with
vertex set \{ q1, . . . , qm\} where qiqj \in E(J) whenever there is a path in G  - X  - Y
joining Qi and Qj , and avoiding each Q\ell with \ell \not \in \{ i, j\} .

Consider a component J \prime of J . Let (V0, V1, . . . ) be a bfs-layering of J \prime . So
| V0| = 1. We claim that | Vi| < t for each i\geqslant 1. Suppose for the sake of contradiction
that | Vi| \geqslant t for some i \geqslant 1. Without loss of generality, q1, . . . , qt \in Vi. Let A be the
union of (1) all paths Qj corresponding to vertices in V0 \cup \cdot \cdot \cdot \cup Vi - 1, (2) all paths in
G - X - Y corresponding to edges in J [V0\cup \cdot \cdot \cdot \cup Vi - 1], and (3) all paths in G - X - Y
corresponding to edges in J between a vertex in Vi - 1 and q1, . . . , qt, not including the
vertex in Q1 \cup \cdot \cdot \cdot \cup Qt. By construction, A is a connected subgraph of G - X  - Y
disjoint from Q1 \cup \cdot \cdot \cdot \cup Qt and adjacent to each of Q1, . . . ,Qt. Each of A,Q1, . . . ,Qt

intersect NG(X) and NG(Y ). Thus X,Y,A,Q1, . . . ,Qt form a K\ast 
3,t-model in G. This

contradiction shows that | Vi| < t for each i\geqslant 0.
Concatenate the above-mentioned layerings of each component of J to obtain a

layering (V0, V1, . . . ) of J with | Vi| < t for each i. Assign each vertex qj in J a weight
of | NG[Qj ]| . The total weight is at most | V (G)| + 2| E(G)| , which by Lemma 4.1
is at most (2\alpha t + 1)n \leqslant 3\alpha tn since t \geqslant 1. Weight each set Vi by the total weight
of the vertices in Vi. Let p := \lceil 

\surd 
3\alpha n\rceil . There exists i \in \{ 0, . . . , p  - 1\} such that

Z :=
\bigcup 
\{ Vj : j \equiv i (mod p)\} has weight at most 3\alpha tn/p\leqslant t

\surd 
3\alpha n, and each component

of J  - Z has less than (p  - 1)t \leqslant t
\surd 
3\alpha n vertices. Let S :=

\bigcup 
\{ Qi : qi \in Z\} . By

construction, | NG[S]| is at most the weight of Z, which is at most t
\surd 
3\alpha n. Moreover,
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2104 DISTEL ET AL.

since G[X \cup Qi] and G[Y \cup Qi] are connected for all i \in [m], it follows that G[X \cup S]
and G[Y \cup S] are connected.

Consider a component C of G - X - Y  - S. Since each component of J - Z has at
most t

\surd 
3\alpha n vertices, the number of paths Qi that pass through C is at most t

\surd 
3\alpha n.

By the choice of Q1, . . . ,Qm, we have \kappa G(X,C,Y )\leqslant t
\surd 
3\alpha n.

Theorem 1.3 follows from Observation 2.2 and the next lemma.

Lemma 4.3. Let G be a K\ast 
3,t-minor-free graph on n vertices. Let Q be a clique

in G with | Q| \leqslant 2 such that if Q = \{ x, y\} with x \not = y, then \kappa G(x,C, y) \leqslant 2t
\surd 
3\alpha n for

every component C of G - x - y, where \alpha is from Lemma 4.1. Then G has a partition
\scrP with nonempty parts, with width at most \leqslant 4t

\surd 
3\alpha n, with tw(G/\scrP ) \leqslant 2, and with

\{ v\} \in \scrP for each v \in Q.

Proof. We proceed by induction on | V (G) \setminus Q| . The result is trivial if V (G) =Q.
Now assume that V (G) \not = Q. If Q = ∅, then the result follows by induction where
Q := \{ v\} and v is any vertex in G. Now assume that Q \not = ∅. If G is disconnected,
then the result follows by applying induction in each component C of G with the
clique Q \cap V (C). Now assume that G is connected. First consider the case in which
Q= \{ x\} . Since G is connected and V (G) \not =Q, there is a neighbor v of x. By Lemma
4.2 applied to (G,\{ x\} ,\{ v\} ), there is a set S \subseteq V (G - x - v) such that

\bullet | NG[S]| \leqslant t
\surd 
3\alpha n,

\bullet \kappa G(x,C, v)\leqslant t
\surd 
3\alpha n for each component C of G - x - v - S, and

\bullet G[S \cup \{ v\} ] is connected.
Let G\prime be obtained from G by contracting S \cup \{ v\} into a single vertex v\prime . So G\prime 

is K\ast 
3,t-minor-free and xv\prime is an edge of G\prime . For each component C \prime of G\prime  - x - v\prime ,

we have \kappa G\prime (x,C \prime , v\prime ) \leqslant \kappa G(x,C
\prime , v) + | NG[S]| \leqslant 2t

\surd 
3\alpha n. Apply induction to G\prime 

and Q\prime := \{ x, v\prime \} to obtain a partition \scrP \prime of G\prime of width at most 4t
\surd 
3\alpha n such that

tw(G\prime /\scrP \prime ) \leqslant 2 and \{ x\} ,\{ v\prime \} \in \scrP \prime . Let \scrP be the partition of G obtained from \scrP \prime by
replacing \{ v\prime \} by S \cup \{ v\} . So \scrP has width at most max\{ 4t

\surd 
3\alpha n, | S| + 1\} = 4t

\surd 
3\alpha n

and \{ x\} \in \scrP . Since G/\scrP \sim =G\prime /\scrP \prime we have tw(G/\scrP )\leqslant 2.
Now consider the case in which | Q| = 2 and Q= \{ x, y\} .
First, suppose that no component of G - x - y intersects NG(x) and NG(y). Let

Gx be the subgraph of G induced by \{ x\} and the components of G  - x  - y that
intersect NG(x). Let Gy be the subgraph of G induced by \{ y\} and the components of
G - x - y that intersect NG(y). By induction, Gx has a partition \scrP x of width at most
4t
\surd 
3\alpha n such that tw(Gx/\scrP x)\leqslant 2 and \{ x\} \in \scrP x. Similarly, Gy has a partition \scrP y of

width at most 4t
\surd 
3\alpha n such that tw(Gy/\scrP y) \leqslant 2 and \{ y\} \in \scrP y. Let \scrP := \scrP x \cup \scrP y.

So \scrP is a partition of G, and G/\scrP is obtained from the disjoint union of Gx/\scrP x and
Gy/\scrP y by adding the edge \{ x\} \{ y\} . So tw(G/\scrP )\leqslant 2.

Now assume that some component C of G  - x  - y intersects both NG(x) and
NG(y). By assumption, \kappa G(x,C, y) \leqslant 2t

\surd 
3\alpha n. By Menger's theorem, there exists

S \subseteq V (C) such that | S| \leqslant 2t
\surd 
3\alpha n and S separates NG(x)\cap V (C) and NG(y)\cap V (C)

in C. Choose S to be minimal. Observe that S \not = ∅. No component of C  - S
intersects both NG(x) and NG(y). Let Dx be the union of the components of C  - S
that intersect NG(x). Let Dy be the union of the components of C - S that intersect
NG(y). Let F be the union of the components of C  - S that intersect neither NG(x)
nor NG(y). Let GC :=G[(V (C)\cup \{ x, y\} ) \setminus V (F )].

Let Y := \{ y\} \cup V (Dy) \cup S. By the minimality of S, G[Y ] is connected, and
G[\{ x\} \cup Y ] is connected since xy \in E(G). By Lemma 4.2 applied to (GC ,\{ x\} , Y ),
there is a set Sx \subseteq V (GC  - x - Y ) = V (Dx) such that
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\bullet | NGC
[Sx]| \leqslant t

\surd 
3\alpha n,

\bullet \kappa GC
(x,C \prime , Y )\leqslant t

\surd 
3\alpha n for every component C \prime of Dx  - Sx, and

\bullet GC [Sx \cup Y ] is connected.
Let Gx be the graph obtained from GC by contracting Sx \cup Y into a single vertex
z. Thus Gx is K\ast 

3,t-minor-free and xz is an edge of Gx. Consider a component C \prime of
Gx  - x - z. Then C \prime is a component of Dx  - Sx, and

\kappa Gx(x,C
\prime , z) = \kappa GC

(x,C \prime , Sx \cup Y )\leqslant \kappa GC
(x,C \prime , Y ) + | NGC

[Sx]| \leqslant 2t
\surd 
3\alpha n.

By induction, Gx has a partition \scrP x of width at most 4t
\surd 
3\alpha n such that tw(Gx/\scrP x)\leqslant 

2 and \{ x\} ,\{ z\} \in \scrP x. (Note that | V (Gx)| < | V (G)| since S \not = ∅, so we may apply
induction.)

Let X := \{ x\} \cup V (Dx) \cup S. By an argument symmetric to the above, there is a
set Sy \subseteq V (Dy) such that

\bullet | NGC
[Sy]| \leqslant t

\surd 
3\alpha n,

\bullet \kappa GC
(y,C \prime ,X)\leqslant t

\surd 
3\alpha n for every component C \prime of Dy  - Sy, and

\bullet GC [Sy \cup X] is connected.
Let Gy be the graph obtained from GC by contracting Sy \cup X into a single vertex z.
Thus Gy is K\ast 

3,t-minor-free and yz is an edge of Gy. By a symmetric argument, Gy has

a partition \scrP y of width at most 4t
\surd 
3\alpha n such that tw(Gy/\scrP y)\leqslant 2 and \{ y\} ,\{ z\} \in \scrP y.

Note that G[X \cup Y ] is connected. Let GF be the graph obtained from G[\{ x, y\} \cup 
V (C)] by contracting X \cup Y into a single vertex z. So V (GF ) = \{ z\} \cup V (F ), and GF

is K\ast 
3,t-minor-free. By induction, GF has a partition \scrP F of width at most 4t

\surd 
3\alpha n

such that tw(GF /\scrP F )\leqslant 2 and \{ z\} \in \scrP F .
Let G\prime := G  - V (C). So G\prime is K\ast 

3,t-minor-free, and xy is an edge of G\prime . By

induction, G\prime has a partition \scrP \prime of width at most 4t
\surd 
3\alpha n such that tw(G\prime /\scrP \prime ) \leqslant 2

and \{ x\} ,\{ y\} \in \scrP \prime .
Let \scrP be the partition of G obtained from \scrP x\cup \scrP y \cup \scrP F \cup \scrP \prime by replacing each of

the three instances of \{ z\} by S \cup Sx \cup Sy. The width of \scrP is at most 4t
\surd 
3\alpha n. Note

that G/\scrP is obtained by pasting the four graphs Gx/\scrP x, Gy/\scrP y, GF /\scrP F , and G\prime /\scrP \prime 

on the triangle \{ x\} ,\{ y\} , S \cup Sx \cup Sy, where each of the four graphs contains vertices
in two of \{ x\} , \{ y\} and S \cup Sx \cup Sy. Thus G/\scrP is obtained from graphs of treewidth
at most 2 by pasting on edges. Hence tw(G/\scrP )\leqslant 2 and \{ x\} ,\{ y\} \in \scrP .

5. Open problems. It is an intriguing open problem to determine f(\scrG ) for a
given proper minor-class \scrG . It is possible that f(\scrG ) \leqslant 2 for every minor-closed class
\scrG . This is open even when \scrG is the class of K5-minor-free graphs [18]. Let \scrA be
the class of apex graphs,2 which is minor-closed. It is open whether f(\scrA ) \leqslant 2. This
is equivalent to the following open problem (which would strengthen Theorem 1.2):
for every n-vertex planar graph G, does there exist an apex-forest3 H such that G is
contained in H \boxtimes Km where m\in \scrO (

\surd 
n)?

It is also open whether treewidth can be replaced by pathwidth in Theorems 1.1
to 1.3. That is, for a proper minor-closed class \scrG , are there integers k, c such that
every n-vertex graph in \scrG is contained in H\boxtimes Km for some graph H with pathwidth at
most k, where m\leqslant c

\surd 
n? Two pieces of evidence suggest a positive answer. First, n-

vertex graphs in a proper minor-closed class have pathwidth \scrO (
\surd 
n); see [2]. Second,

if \scrG has bounded treewidth, then the answer is ``yes"" with k = 1, since Dvo\v r\'ak and
Wood [13] showed that n-vertex graphs in \scrG have H-partitions of width \scrO (

\surd 
n) where

H is a star, which has pathwidth 1. This question is open for planar graphs.

2A graph H is apex if H  - v is planar for some vertex v of H.
3A graph H is an apex forest if H  - v is a forest for some vertex v of H.
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Analogous questions are interesting and open for several non-minor-closed classes
[13].
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