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ABSTRACT

Signal Temporal Logic (STL) is a timed temporal logic formalism

that has found widespread adoption for rigorous specification of

properties in Cyber-Physical Systems. However, STL is unable to

specify oscillatory properties commonly required in engineering

design. This limitation can be overcome by the addition of addi-

tional operators, for example, signal-value freeze operators, or with

first order quantification. Previous work on augmenting STL with

such operators has resulted in intractable monitoring algorithms.

We present the first efficient and scalable offline monitoring algo-

rithms for STL augmented with independent freeze quantifiers. Our

final optimized algorithm has a |ρ | log (|ρ |) dependence on the trace

length |ρ | for most traces ρ arising in practice, and a |ρ |2 depen-

dence in the worst case. We also provide experimental validation

of our algorithms ś we show the algorithms scale to traces having

100k time samples.
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1 INTRODUCTION

A core requirement of rigorous system design is a mechanism for

precisely specification and identification of what are good and

what are bad executions. Automata and temporal logics, and cor-

responding monitoring algorithms for executions are two such

commonly used frameworks [1, 3, 20, 25, 26, 30, 32, 33]. In the

context of Cyber-Physical Systems (CPS) and Control, Signal Tem-

poral Logic (STL) has found wide adoption as a specification for-

malism [6, 14, 17, 22, 23, 27ś29, 31]. Contributing factors to its

widespread adoption are: (i) its expressivity, allowing precise char-

acterizations of complex timed requirements, (ii) a mechanism to

translate quantitative signal values to Boolean predicates allowing a

move to the timed temporal logic MTL (Metric Temporal Logic) [25],

(iii) fast monitoring algorithms for checking when an execution
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satisfies an STL specification [10, 13]; and (iv) a corresponding ro-

bustness function which quantifies how well an execution satisfies

or violates the given STL specification [16].

The mechanism by which STL translates quantitative signal val-

ues to Boolean predicates ś comparing signal values to constant

thresholds ś has limitations. For example, STL is unable to specify

oscillatory properties, an important property of interest in biolog-

ical and engineering systems. This limitation has been noted by

researchers, and STL augmentations with freeze or first order quan-

tification have been proposed in order to overcome expressivity

limitations [5, 9]. Both augmentations allow capture of signal val-

ues to be used for comparison with later trace values. Captured

signal values can then be used in constraints such as (example taken

from [9] which presents the logic STL∗ containing value freezing

quantification) łthere repeatedly occur time instants such that for

the corresponding signal valuev at such time instants, there are two

near futures (within at most 10s), when the signal value is ≤ v + δ ,

also ≥ v + δ respectivelyž. Such a constraint specifies oscillations

of amplitude at least δ , and it is believed it cannot be encoded in

STL [9]. In this example, the trace values v are repeatedly captured

in a single freeze variable over the duration of the trace.

However, increased expressivity has incurred a heavy algorith-

mic penalty for monitoring and related algorithms in previous

work [5, 9]. Augmentation with signal value freezing operators was

proposed in [9]; the monitoring algorithm is complex, and involves

manipulation of polygons. Even in the case of a single freeze opera-

tor, and even for approximate monitoring in an attempt to make the

problem tractable, the algorithm in [9] is very intricate. Due to the

complicated nature of the algorithm which involves manipulating

polygons, [9] did not obtain a precise complexity bound: it was

only shown that łeach of the steps of the algorithm has at most

polynomial complexity to the number of polygons and the number

of polygons grows at most polynomialy in each of the stepsž. Their

monitoring experiments showed scalability limitations ś over an

hour of running time for signals containing 100 timepoints. First

order quantification similarly leads to a complex algorithm. The

work of [5] proposes a monitoring algorithm, and derives a run-

ning time bound of 2( |φ |+ |ρ |)
2O (f +l )

, where φ is the formula in their

logic, ρ is the trace, and f is the number of freeze quantifiers (for

our discussion l is not relevant). The constant in the big O in the

second exponent is not derived. They also show that for a subset of

their logic, the length of the trace |ρ | in the first exponent can be

moved out, but still the big O remains in the second exponent. An

implementation of the algorithms is not presented.

Thus, previous monitoring algorithms for both STL augmented

with signal freeze quantifiers, and for the first order logic of signals,

are prohibitively complicated, and stand in stark contrast to efficient
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monitoring algorithms for STL, which have been implemented in

various tools such as Breach and S-TaLiRo [12, 15]. Efficient moni-

toring algorithms for MTL augmented with time freeze quantifiers

have previously been presented in [11, 18, 19].

Our Contributions. In this work, we consider a fragment of STL∗:

one that augments STL with freeze quantifiers such that only one

quantifier is łactivež at a time; that is, all freeze variables are inde-

pendent of each other. This fragment, which we denote as STL∗1,

subsumes STL, and is general enough to express all of the STL∗

properties, except for one, from [9]. We present efficient and im-

plementable offline monitoring algorithms for this fragment. We

consider two types of traces ρ with signal values in Rn : uniformly

time-sampled where the trace is sampled at times 0,∆, 2∆, 3∆, . . .,

and non-uniformly time-sampled where the inter-sample time need

not be a constant. For the uniformly sampled case, a naive algo-

rithm would run in time Ω(|ρ |V+1) where |ρ | is the number of

trace samples, andV is the number of freeze variables, as we would

need to look at all possible freeze capturings of the V freeze vari-

ables (contributing |ρ |V ) , and also iterate over the whole trace

to compute formula satisfaction at different trace timepoints (con-

tributing |ρ |). We first present a polynomial time algorithm (build-

ing upon the idea in [11]) which leverages independence of the

freeze variables so that we need only consider freeze bindings of

each freeze variable separately (and not in a nested fashion) and

results in a running time of O
(

c ·V · |φ | · |ρ |2
)

, where c = ⌈a/∆⌉

where a is the largest constant occurring in the temporal operators

in φ, and ∆ is the period between two consecutive timestamps;

removing the exponential dependence on V . Next, we present an

optimized algorithm that removes the c factor, and also reduces

the quadratic dependence on the trace length for practical traces.

This optimization uses the observation that temporally close sam-

ple values in real world traces have close signal values, and hence

formula satisfaction values are constant for most of the trace time-

points, with satisfaction value łtogglesž from true to false, or vice-

versa, occurring at far fewer points as compared to the trace length.

The optimized algorithm uses work done when a freeze variable

was bound to the i-th signal value when it works on the freeze

variable binding to the i + 1-th signal value sample. This results

in O (|ρ | ·log(|ρ |) + V · |φ | · |ρ | · | intvlφ |) running time in practice,

where | intvlφ | denotes the number of true/false toggles over the

trace for any φ subformula. The number | intvlφ | is much smaller

than the trace length |ρ | in practice, resulting in a |ρ | log(|ρ |) depen-

dence on the trace length rather than |ρ |2 for traces from real-world

systems. The optimized algorithm over the interval data structure

we use also removes the c factor. We also obtain corresponding

algorithms for non-uniformly sampled traces.

Lastly, we present experimental validation for our optimized

algorithm implemented in C++. For both the uniformly sampled

and the non-uniformly sampled cases, our algorithms scale to trace

lengths of 100k. The running times are under 2 minutes even for

such large trace lengths. Our results can be contrasted with the

approximate monitoring results from [9] where the running time

was over an hour even for trace lengths of 100 samples (for the

same STL∗1 fragment we consider). While admittedly the framework

of [9] is over piecewise linear continuous-time traces, and ours is

over time-sampled traces, since we can only observe the real world

at a sequence of timepoints, a piecewise linear interpretation is still

an approximation of what happens in between observations. One

can simply oversample the traces and use our scalable algorithms.

We also note that our monitoring algorithms are exact monitoring

algorithms for time sampled traces.

2 VALUE-FREEZING SIGNAL TEMPORAL LOGIC

Signals/Traces.ARn valued signal or a trace is a pair (σ ,τ ), where

σ = σ0,σ1, . . . ,σ |ρ |−1 is a finite sequence of elements from Rn , and

τ = τ0,τ1, . . . ,τ |ρ |−1 are the corresponding timestamps from R+.

The signal value at timestamp τi is σi ∈ R
n and i is a position

index. The k-th signal dimension of σ = ⟨a1, . . . ,an⟩, namely ak ,

is denoted σ (k) = σ0(k),σ1(k), . . . ,σ |ρ |−1(k). In order to simplify

the presentation, we sometimes assume a timed word to be of the

type (σ0,τ0), . . . (σ |ρ |−1,τ |ρ |−1). We require the times to be mono-

tonically increasing, that is τi < τi+1 for all i . If τi = i · ∆ for some

∆ > 0, the traces are said to be uniformly sampled; otherwise the

traces are non-uniformly sampled.

Definition 1 (STL∗ Syntax). Given a signal arity n, and a finite set

of freeze variables {s1
k
, . . . , sm

k
} for each signal dimension 1 ≤ k ≤ n,

the formulae of value-freezing signal temporal logic (STL∗) are

defined by the grammar:

φ := sk ∼r | s
h∗
k
∼ sk ′±r | ¬φ | φ1

∨
∧φ2 | □Iφ | ^Iφ | φ1UIφ2 | s

h
k
.φ

where sk and sk ′ ∈ {s1, . . . , sn } are signal variables (sk refers to

the k-th signal dimension), r is a positive real, and I = [a,b] is an

interval where a and b are positive reals, sh∗
k

is a frozen value cor-

responding to signal-value freeze variables sh
k
for signal dimension

k , and ∼ ∈ {<, >, ≤, ≥,=} is the standard comparison operator. □

For ease of reference, we have □ and ^ as explicit operators.

The freeze operator łsh
k
.ž binds the current value of the k-th signal

dimension to the frozen value sh∗
k
. Note that we allow the frozen

value sh∗
k

for the k-th signal signal dimension to be compared to

a current signal value for a different signal dimension k ′ in sh∗
k
∼

sk ′ ± r . We refer to sk ∼ r as a signal predicate, and to sh∗
k
∼ sk ′ ± r

as a freeze signal constraint.

Definition 2 (Semantics). Let ρ = (σ0,τ0), (σ1,τ1), .., (σ |ρ |−1,τ |ρ |−1)

be a finite timed signal of arity n. For a given environment E : V →

R binding freeze variables to signal values, and position index

0 ≤ i ≤ |ρ | − 1, the satisfaction relation (ρ, i, E) |= φ for an STL∗

formula φ of arity n (with freeze variables inV ) is defined as follows.
• (ρ, i, E) |= sk ∼r iff σi (k) ∼ r for signal variable sk .
• (ρ, i, E) |= ¬φ iff (ρ, i, E) ̸|= φ.
• (ρ, i, E) |= φ1

∨
∧φ2 iff (ρ, i, E) |= φ1

or
and (ρ, i, E) |= φ2.

• (ρ, i, E) |= ^[a,b]φ iff ∃j, τj ∈ τi + [a,b], s.t. (ρ, j, E) |= φ.
• (ρ, i, E) |= □[a,b]φ iff ∀j, τj ∈ τi + [a,b], s.t. (ρ, j, E) |= φ.
• (ρ, i, E) |= φ1U[a,b]φ2 iff (ρ, j, E) |= φ2 for some j ≥ i with

τj ∈ τi + [a,b] and (ρ,k, E) |= φ1 ∀i ≤ k < j.

• (ρ, i, E) |= sh
k
.φ iff (ρ, i, E[sh

k
:= σi (k)]) |= φ; where E[s

h
k
:=

σi (k)] denotes the environment E ′ defined as E ′(x) = E(x)

for x , sh
k
, and E ′(sh

k
) = σi (k).

• (ρ, i, E) |= sh∗
k
∼ sk ′ ± r iff E(s

h
k
) ∼ σi (k

′) ± r .

We say the trace ρ satisfies an STL∗ formula φ if (ρ, 0, E[≡σ0]) |= ρ

where E[≡σ0] denotes the freeze variable environment where all

variables sh
k
are mapped to their corresponding σ0(k) values. □
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Given a signal of arity n, for the i-th timestamp τi , we refer to

the k-th signal dimension value as sk (τi ), which has the value σi (k).

In order to reduce notation clutter, we will simply write (i, E) in-

stead of (ρ, i, E) in the remainder of this paper since for any given

STL∗ formula, we will be using the same trace ρ. We use the phrase

ith instantiation of a freeze variable sh
k
to mean the environment E

where the freeze variable sh
k
is assigned the value σi (k).

Note:We can freeze the same signal dimension multiple times

in an STL∗ formula. The superscript h ∈ N>0 is used in that case

to indicate which frozen value refers to which signal-value freeze

operator. Thus, sh1
k

and sh2
k

for h1 , h2 are considered different

freeze variables, but each freezing the k-th signal dimension at

different times. When we freeze a signal dimension only once in a

STL∗ formula, we omit the superscript h = 1.

Example 1 (Running example). We consider a single dimension

signal s and we will freeze it twice (h = 1 andh = 2) in the following

formula: φ0 = ^I2s
2
.(□[1,5]s < s2∗ ∧ ^I1s

1
.(□[1,5]s > s1∗)). The

requirement of φ0 is: łat some time in the future (during interval I2),

there is a local maximum, then at another time in the future (during

interval I1), there is a local minimum ž. □

A freeze variable sh
k
occuring in a frozen value context sh∗

k
is

said to be free if it is not in the scope of a corresponding freeze

operator łsh
k
.ž. The set of free variables for a formula φ is denoted

by Free(φ) (the formal defintion is in the appendix). It can be shown

that the environment E is only relevant for the free variables in an

STL∗ formula when it comes to the satisfaction relation (i, E) |= φ.

If Free(φ) = ∅, then the environment function is irrelevant in the

satisfaction relation (i, E) |= φ.

Next, we present the STL∗ fragment in which at most one freeze

variable is free. This fragment is already more expressive than STL,

and we show later, admits efficient monitoring algorithms. Given a

formula φ, the corresponding set of subformulae Sub(φ) is as usual

(the formal definition is in the appendix).

Definition 3 (STL∗1 fragment). An STL∗ formula φ is an STL∗1
formula provided all of the following conditions hold.

(1) For every subformulaψ ∈ Sub(φ), we have |Free(ψ )| ≤ 1, i.e.,

every subformula can have at most one free variable; and

(2) Corresponding to every subformula sh
k
.ψ ∈ Sub(φ) involving

a freeze operator sh
k
., we have Free(ψ ) to be either ∅, or {sh

k
},

that is if sh
k
.ψ is a subformula of φ, thenψ cannot have any

free variables apart from sh
k
.

(3) All freeze operators are over unique variables. □

Example 2. φ1 = s
1
2 .(s2 ≥ 2→ ^(s11 .^(s2 ≤ s

1∗
2 ∧s1 ≤ s

1∗
1 +3))) is

not an STL∗1 formula, as it has the subformula s2 ≤ s
1∗
2 ∧s1 ≤ s

1∗
1 +3

which has two free variables s11 , s
1
2 . The formula φ0 from Example

1 is an STL∗1 formula even though it has two freeze variables. □

3 EXPRESSIVENESS OF STL∗1
In this section we present practical specification examples that can

be expressed in STL∗1. We first present two requirements from [9].

(1) The signal s is oscillating with a period at most 10 time unit

ψ1 = □[0,T ]

(

^[0,10]s .
((

^[0,10]s
∗
+ δ < s

)

∧
(

^[0,10]s
∗
> s − δ

)))

.

(2) s1 copies the values of s2 with a delay of 4±δ time units

ψ2 = □[0,T ]s2.(□[4−δ,4+δ ]s
∗
2 = s1).

The first STL∗1 formula says that łfor every time instant (from 0

to T), there is a near future (within at most 10) and a value of s , say

α , such that a future value of s will be smaller than α within 10 time

units, and another future value will be greater than α within 10

time unitsž. The constant δ serves as the threshold for the minimum

oscillation amplitude. If we try to express the same requirement

using STL, we may consider the following formula:

□[0,T ]((Ûs ≥ 0→ ^[0,10] Ûs < 0) ∧ (Ûs ≤ 0→ ^[0,10] Ûs > 0)).

This formula requires first derivatives, and derivatives are fragile

in the presence of noise. Also, this formula lacks the δ factor for

specifying the minimum oscillation amplitude.

The second STL∗1 formula shows another example that cannot

be expressed using STL. It falls in the category of requirements

expressing relations between signal components at different times,

but with a time difference that is not a constant. A trick that is

often employed in STL is to have a delayed version of the signal as

another signal component; but this trick does not work in case the

delay is variable as is the case here.

Another important engineering property is checking whether

we have a spike within a signal or not. A spike can be defined as a

sharp change in a signal value (sudden increase then decrease to

the normal value) and in most cases, it is considered undesirable.

We can express a spike in STL∗1 by the following formula:

ψ3 = ^[0,T ]s .(^[0,w ](s − s
∗
> δ ∧ ^[0,w ] |s − s

∗ | ≤ ϵ)),

where 2w is the spike width, δ is the spike height, and ϵ is a small

value. The formulaψ3 says that the signal must first rapidly have

an increase of at least δ , and after the increase, it must come back

down to within a close range ϵ of the pre-spike value. Note that the

formula does not assume a fixed position of the spike, it can start

anywhere within T time units. It also does not assume anything

about the pre-spike value.

In [21], the authors try to express the spike requirement using

STL. They give the following formula:

^[0,T ]((sdiff > δ ) ∧ ^[0,w ](sdiff < −δ )),

where they define sdiff to be the discrete-time derivative of s . The

problem with this requirement is that if we have a high sampling

rate, it could be the case that we cannot detect a sudden increase in

the derivative but we still have a spike.

Another engineering property is to check the settling time. The

following STL∗1 checks if a settling time of a signal s is slow:

ψ4 = ^[r,T ]s .(|s − s
∗ | ≥ β),

where r is the latest time the signal needs to settle before it is

considered to have a slow settling time and β is a threshold. This

requirement cannot be expressed in STL unless we already know

the value that the signal will settle at. A similar formula can be

derived to check if the rise time of a signal is acceptable or not.

Here is another set of useful properties that we can express using

STL∗1 and that we conjecture cannot be expressed using just STL:

• The signal trend is globally increasing, but locally it could

have decreasing segments (e.g., sea level or global tempera-

ture):ψ5 = □[0,T ]s .^[0,10](s
∗
< s).
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• At some point in the future, the gap between the current

signal value and a future signal value within 10 time units is

larger than ∆:ψ6 = ^s .^[0,10](|s
∗ − s | ≥ ∆).

• All the values of s2 in the next 10 time units are always within

δ from the current value of s1: □[0,T ]s1.(□(0,10] |s2 − s
∗
1 | ≤ δ ).

STL∗1 is able to specify requirements that cannot be expressed in

STL when we compare the signal value to a past frozen value, and

the time at which the signal value is frozen needs to be variable.

4 STL∗ SYNTAX TREES

Each STL∗ formula has a corresponding syntax tree that depicts

the hierarchical syntactic structure of the formula. Our monitoring

procedure will depend on this syntax tree.

Definition 4 (Syntax Tree). Given an STL∗ formula φ, the associ-

ated abstract syntax tree AST(φ) is defined as follows.

• The nodes of the syntax tree are Sub(φ).

• The root node is φ.

• The edges in the tree are defined by the operator structure:

ś If sh
k
.ψ ∈ Sub(φ), then sh

k
.ψ has the childψ .

ś If opψ ∈ Sub(φ), for op ∈ {¬,□I ,^I },

then opψ has the childψ .

ś Ifψ1 opψ2 ∈ Sub(φ), for op ∈ {∧,∨,→,UI }, thenψ1 opψ2
has the two childrenψ1,ψ2. □

In order to check whether a timed word satisfies an STL∗1 for-

mula φ, we build on the insight of [11] which noted that we can

compute the satisfaction relation for subformulae involving only

one free variable (for various word position indices), and after this

computation, use these values akin to values computed had the

subformula been an STL formula (without any freeze variables).

The basic structure over which our algorithm will operate will be

subtrees corresponding to various freeze variables. The following

example explains subtrees, parents and roots.

Example 3. Consider the formula from Example 1 ([Running ex-

ample]), and its associated syntax tree in Figure 1 The formula sub-

scripts correspond to a reverse topological sort of the syntax tree.

The freeze variable ordering given by a reverse topological sort is

s1 <revtop s
2. The nodes in SubTreeφ0 (s

1) are {φ8,φ9}. The nodes in

SubTreeφ0 (s
2) are {φ3,φ4,φ5,φ6,φ7}. The nodes in TopSubTree(φ)

are {φ1,φ2}. SubTreeφ0 (s
1). root = φ8. SubTreeφ0 (s

1). parent = φ7.

SubTreeφ0 (s
2). root = φ3. SubTreeφ0 (s

2). parent = φ2. □

ϕ9 : s > s1∗ϕ5 : s < s2∗ [1.5]

[1.5]

ϕ7 : s1.

ϕ3 : ∧

ϕ2 : s2.

I1

I1
ϕ1 :

ϕ4 : ϕ6 :

ϕ8 :

Figure 1: Syntax Tree for Example 1 [Running example].

Example 4. The syntax tree for non STL∗1 formula φ1 from Exam-

ple 2 has 3 subtrees: SubTreeφ1 (s1) = {s1 ≤ s
∗
1 +3, s2 ≤ s

∗
2 , s2 ≤ s

∗
2∧

s1 ≤ s
∗
1 + 3,^(s2 ≤ s

∗
2 ∧ s1 ≤ s

∗
1 + 3)}, SubTreeφ1 (s2) = {remaining

subformulae except φ1} and TopSubTree(φ1) = {φ1}. □

5 MONITORING ALGORITHMS

Given a trace ρ, and an STL∗ formula φ, the monitoring problem

consists of computing the satisfaction value (0, E[≡σ0]) |= φ, i.e.,

whether trace ρ starting at position 0 satisfies the given formula

for the environment E[≡σ0]. In this section, let i ∈ [0, |ρ | − 1].

A basic STL∗ monitoring algorithm would be exponential in the

number of freeze variables: if we have |V | freeze variables in φ,

we need to consider all possible combinations of environments for

all the freeze variables: E[x1 := σi1 (j1),x2 := σi2 (j2), . . . ,x |V | :=

σi |V | (j |V |)]where i1, .., i |V | are indices referring to timestamps each

ranging from 0 to |ρ | − 1, and j1, .., j |V | are the appropriate signal

dimensions. This leads to a |ρ | |V | search space. Since such an expo-

nential time algorithm for general STL∗ is not practical, we focus

on STL∗1 formulae in this paper.

Our algorithms have two core ideas. First, suppose we have an

STL∗1 formula φ with just one freeze variable, an intuitive algorithm

for the monitoring problem would consist of iterating over all |ρ |

instantiations (or environments) of the freeze variable, and, for

each environment E, it will have to compute the satisfaction values

(i, E) |= ψ for all trace positions i , for every subformulaψ ∈ AST(φ).

Such algorithm will run in quadratic time in terms of the trace

size (|ρ | environments multiplied by |ρ | traces positions). In this

work, we will use clever data structures to reuse work across freeze

variable instantiations to reduce the |ρ |2 factor.

Second, suppose our STL∗1 formula has more than just one freeze

variable. A basic algorithm would still have a dependence on |ρ | |V | ,

like for STL∗. However, we show that we can avoid the exponential

complexity by leveraging independence of the freeze variables. The

isolation idea, as in [11], is to work on SubTreeφ (xk ) in isolation,

provided the satisfaction relation for all subformulae xk ′ .ψxk′ have

been computed for all freeze variables xk ′ such that xk ′ <revtop xk ,

where <revtop denotes a reverse topological ordering of the freeze

variables in the syntax tree for φ (in other words, we freeze a single

freeze variable at a time to avoid the exponential complexity). This

can not be done in the case of a general STL∗ formula. Conceptually,

when working on the SubTreeφ (xk ) in isolation, the idea is to com-

pute, for all i , the satisfaction values for (i, E[xk = σi (jk )]) |= ψ

for every subformulaψ ∈ SubTreeφ (xk ), for every possible freeze

variable binding xk = σi (jk ). Note here that Free(ψ ) can only be

∅ or {xk } since φ is an STL∗1 formula; and hence the environment

needed is only E[xk = σi (jk )]; compared to environments looking

like E[x1 = σi1 (j1),x2 = σi2 (j2) . . . x |V | = σi |V | (j |V |)] for general

STL∗ formulae. The environment E[xk = σi (jk )] only assigns the

value σi (jk ) to the frozen value x∗
k
, for the remaining freeze vari-

ables x , xk , we do not need to assign any frozen value since the

values assigned to these freeze variables do not influence the value

of the satisfaction relation of any subformula in SubTreeφ (xk ).

In the next two subsections, we present two algorithms that

both use the isolation idea that we mentioned above. The second

optimized algorithm additionally uses the first idea mentioned in

the beginning of the section: for a given freeze variable in a given
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subtree at a given instantiation, it uses (a) the information collected

from the previous instantiation to calculate the information needed

for the current instantiation more efficiently (the first algorithm

calculates the information of each instantiation from scratch), and

(b) more sophisticated data structures.

5.1 STL∗1 Polynomial Time Algorithm

This first algorithm is inspired by the work in [11]. The algorithm

starts by calculating the values (i ′, E[x1 := σi (j1)]) |= φk ′ for every

subformula φk ′ ∈ SubTreeφ (x1), for every environment E[x1 :=

σi (j1)],∀i and every i ′ ∈ [i, |ρ | − 1] (here σ (j1) is the signal dimen-

sion corresponding to x1). Then it calculates the values (i ′′, E[x2 :=

σi (j2)]) |= φk ′′ for every subformula φk ′′ ∈ SubTreeφ (x2), for every

environment E[x2 := σi (j2)],∀i and every i
′′ ∈ [i, |ρ |−1] (similarly,

σ (j2) is the signal dimension corresponding to x2) and so on till it

reaches TopSubTree(φ). The indices 1,2 in x1,x2 do not refer to the

first or second dimension of the signal, they refers to order of the

freeze variables in AST(φ): x1 <revtop x2 .

However, this algorithm, for a given instantiation, is not always

able to calculate the satisfaction relation of a subformula for i times-

tamps in O(i) time; in other words, computing the satisfaction

relation of a given subformula for a given environment at a given

timestamp takes more thanO(1). To better explain this, let us recall

the recursive definition of the until operator: (i, E) |= φ1UIφ2 iff

• 0 ∈ I and (i, E) |= φ2,

• or i < |ρ | −1 and (i, E) |= φ1 and (i+1, E) |= φ1UI ′φ2 where

I ′ = I − τi+1 + τi .

This definition implies that, if we want to compute, for example,

the satisfaction relation (i, E) |= φ2 = φ0U[3,5]φ1,∀i ∈ [0, |ρ | − 1]

for a given environment E, with a uniformly sampled trace with

a sampling rate of 1 second, we will eventually be calculating

the following satisfaction relations (i, E) |= φ0U[2,4]φ1, (i, E) |=

φ0U[1,3]φ1 and (i, E) |= φ0U[0,2]φ1 for some i values. The subfor-

mulae are not in the syntax tree and we need to calculate these

satisfaction relations as intermediate steps.

As a second example for a non-uniformly sampled trace, suppose

we have the formula φ2 = φ0U[7,9]φ1 and a trace of 5 timestamps

0, 2, 5, 7 and 10. If we want to calculate (2, E) |= φ2, if (2, E) |= φ0
is true, we will have to check (3, E) |= φ0U[5,7]φ1. However, we

do not have that value. To get it, if (3, E) |= φ0 is true, we will

need to also check (4, E) |= φ0U[2,4]φ1. Here, we reached the trace

end (timestamp 10, index 4) and we can get the value of (4, E) |=

φ0U[2,4]φ1 without additional steps.

However, in practice, the trace is much longer and to compute

(i, E) |= φ0UIφ1, for most i values, we would reach an interval

for the until operator that starts with 0 before we reach the end of

the trace. The steps that we just showed in this second example

must be done for every time stamp in the trace in order to get

(i, E) |= φ0UIφ1 for every i . This brings the complexity of this

polynomial monitoring algorithm to

O
(

c · |AST(φ)| · |V | · |ρ |2
)

, (1)

where |AST(φ)| is the size of AST(φ) and c = ⌈a/∆⌉ where a is the

largest constant occurring in the temporal operators in φ, and ∆ is

the smallest difference between two consecutive timestamps.

Algorithms 1 and 2 correspond to the algorithm that we just

described above.

Algorithm 1: ComputeSTL*

Input: φ j , i, t

Output: true or false

1 if φ j = s
∗
k
∼ sk′ ± r then return σt (k ) ∼ σi (k

′) ± r

2 if φ j = ¬φm then return ¬M [m, i]

3 if φ j = φm ∨ φn then return M [m, i] ∨M [n, i]

4 if φ j = φmUIφn then

5 if 0 ∈ I and M [n, i] = T then return true

6 else if i < |ρ | − 1 and M [m, i] = T and

ComputeSTL*(φmUI−τi+1+τi φn, i + 1, t ) = T then return true

7 else return false

Algorithm 2: STL∗1 Polynomial Time Monitoring

1

Input: AST(φ), ρ

Output: intvl(φ1)

2 for k ← 1 to |V | do

3 for t ← 0 to |ρ | − 1 do

4 for j ← SubTreeφ (xk ).max down to SubTreeφ (xk ).min do

5 for i ← |ρ | − 1 down to t do

6 M [j, i] ← ComputeSTL*(φ j , i, t )

7 if | TopSubTree(φ) | , 1 then

8 for each subformula φ j ∈ TopSubTree(φ) do

9 for i ← |ρ | − 1 down to t do

10 M [j, i] ← ComputeSTL*(φ j , i, 0) // The 3
rd argument for

ComputeSTL* does not matter here since we do not have

any signal constraint in the TopSubTree.

11 return M [1, 0]

5.2 Optimized STL∗1 Algorithm

We now present an opimized algorithm in which we improve the

theoretical performance of the algorithm in Subsection 5.1 further

Ð we remove the c factor in Equation 1, and heuristically lower the

|ρ |2 factor. First, we define notations and the data structures that

we are going to use.

5.2.1 Notation. For any STL
∗ subformulaψ , we note

• point(ψ ): a list of length |ρ | of true and false values where

for each 0 ≤ i ≤ |ρ | − 1, each value represents whether

(i, E) |= ψ or not for a given environment E.

• intvl(ψ ): a list of intervals [τa1 ,τa2 ], [τb1 ,τb2 ] . . . [τz1 ,τz2 ],

where τa1 ,τa2 . . . τz2 are timestamps and a1 ≤ a2 < b1 ≤

b2 · · · < z1 ≤ z2, covering any sequence of true’s appearing

in point(ψ ).

Example 5. Suppose we have the following trace (σi ,τi ), i ∈

[0, 10]: (5,0), (3,1), (7,2), (-2,6), (-5,4), (3,5), (-1,6), (3,7), (4,8), (5,9),

(6,10) and the subformula φ0 = s ≥ 0, then:

• point(φ0) = [T ,T ,T , F , F ,T , F ,T ,T ,T ,T ].

• intvl(φ0) = [0, 2], [5, 5], [7, 10]. □

5.2.2 Data Structures.

• Timestamps array: an array of size |ρ | which have the times-

tamps values.
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• Signal dimension array: For each signal dimension, we use

an array of size |ρ | to store the signal dimension values.

• Doubly Linked List sorted(σ (k)): For a signal dimensionσ (k),

we use sorted(σ (k)) to store the sample values in increasing

sorted order, but we also use a reference to link each node in

this linked list to its corresponding node or position index in

the signal dimension array (in other words, we keep track of

the original position before sorting of a given signal dimen-

sion value, check Figure 2). With that, we guarantee O(1)

access time in the list. Each node in the signal dimension

array has a reference to the node with the same value in

the sorted list and vice versa. In case of a value appearing

multiple times in a signal dimension, that value will appear

the same number of times in the sorted list and we assign

each one to its corresponding position index.

• point(φ j ): an Array of size |ρ |.

• intvl(φ j ) = [startj (0), endj (0)], [startj (1), endj (1)], . . . ,

[startj (n), endj (n)].

• startj and endj : arrays (of size n ≤ |ρ | each). We use two

basic operations on startj and endj , add and remove. For

remove, it is a "lazy" remove: instead of removing an element

right away when we call remove, we only do that once we

call sort on the array.

• flipj is an array of size |ρ | corresponding to each signal

constraint φ j .

5 17 9 1 3

5 91 3 17

Figure 2: A signal dimension Array and the corresp. sorted list

5.2.3 Algorithm Overview. When trying to calculate (i, E) |= ψ

for any given φ and any environment E, instead of iterating over

all the timestamps ∀i to calculate the different satisfaction relations,

we iterate over the intervals in intvl(ψ )where in practice the size of

intvl(ψ ) (the size of intvl(ψ ) is the number of intervals in intvl(ψ ))

is way smaller than the number of timestamps. This will give us

the same results in a reduced number of computations. In fact, both

algorithms will go over the same number of instantiations for each

freeze variable, the only difference is that our optimized algorithm

takes O(| intvl(ψ )|) when calculating the satisfaction relation of a

given subformula for a given environment while the polynomial

one takesO(c .i)). Let us consider example 5, and supposewewant to

calculate (i, E) |= □[1,2]φ0,∀i , the polynomial STL∗1 algorithm will

need to calculate 10 satisfaction relations (one for each i) while the

new algorithmwill calculate just 3 (one for each interval in intvl(φ0),

it has just 3 intervals). Also, in some cases, when a subformulaψ is

either a signal constraint or of the form xk .ψ
′, we need to calculate

point(ψ ) (the vector point(ψ ) represents (i, E) |= ψ , i ≥ i ′ for a

given i ′ ∈ [0, |ρ | − 1] and a given E) and not just intvl(ψ ). The

nature of the trace ρ (pointwise semantics and discrete timestamps

and not a continuous signal) is the main reason why we have to

go over point(ψ ) as a first step and not directly calculate intvl(ψ ),

in other words, we cannot calculate intvl(ψ ) without calculating

point(ψ ) first, forψ of these forms. For the case of a signal constraint,

we try to update a limited number of values in point(ψ ) and not

iterate over all values of i .

Compute point(ψ) for each signal constraint ϕj ∈ SubTreeϕ(xk).
Compute intvl(ψ) for each ψ ∈ SubTreeϕ(xk).

1.1. For instantiation 0 (initialization)

1.2. For each instantiation 1 ≤ i ≤ |ρ| − 1

Assign a true or false value to point(SubTreeϕ(xk).parent)[0]

Assign a true or false value to point(SubTreeϕ(xk).parent)[i]

2. Compute intvl(ψ) for each ψ ∈ TopSubTree(ϕ)

Update values point(ψ)[l], i ≤ l ≤ |ρ| − 1 (some values, not all),

Update intvl(ψ) for each ψ ∈ SubTreeϕ(xk).

1. For each freeze variable xk, 1 ≤ k ≤ |V | such that x|V | > . . . > x2 > x1

for each signal constraint ψ ∈ SubTreeϕ(xk).

depending on intvl(SubT reeϕ(xk).root) starts with 0 or not.

depending on intvl(SubT reeϕ(xk).root) starts with τi or not.

Figure 3: Optimized algorithm overview

Algorithm Logic: Figure 3 gives an overview of our algorithm

steps. If we consider our running example 1, the algorithm cal-

culates point(φ9), intvl(φ9) then intvl(φ8) for each instantiation of

s1 to σi (1), for all i and with each instantiation, appends a new

value to point(φ7) based on the condition łintvl(φ8) starts with τi
or not". Then, our algorithm does the same steps for all the instan-

tiations σi (2) of the second freeze variable s2. Finally, it finishes by

calculating intvl(φ1).

5.2.4 Transform Algorithm. Given an input point(φ j ) and an

integer i , this simple algorithm transforms the values in point(φ j )

starting from position i to intvl(φ j ).

Example 6. Suppose we have a uniformly sampled trace with

a sampling rate equal to 1 second and i = 5. Then our algo-

rithm transforms point(φ1) = [F , F , F ,T ,T ,T ,T ,T , F , F ,T ,T ,T ,T ]

to intvl(φ1) = [5, 7], [10, 13]. □

Algorithm 3: Transform

Input: point(φ j ), i

Output: intvl(φ j )

1 if point(φ j )[i] = true then startj . add(τi )

2 for l ← i + 1 to |ρ | − 1 do

3 if point(φ j )[l ] = true and point(φ j )[l − 1] = false then

startj . add(τl )

4 if point(φ j )[l ] = false and point(φ j )[l − 1] = true then

endj . add(τl−1)

5 if point(φ j )[ |ρ | − 1] = true then endj . add(τ |ρ |−1)

6 return intvl(φ j )

5.2.5 STL∗1 Monitoring Algorithm. This is the main algorithm

and it works as follows: First, It calculates point(φ ′) for anyφ ′ signal

predicate (Line 1) and sorted(σ (j)) for every signal dimension σ (j)

(Line 2). Then, for each freeze variable xk (Line 4) (here, we use the

freeze variable ordering x1 < · · · < x |V |):

• The algorithm calculates the values of each subformula in

the SubTreeφ (xk ) for each timestamp τi , i ∈ [0, |ρ | − 1]

corresponding to the instantiation of xk to σ0(jk ) (Lines 5-9),

calculates the value of flipj [0] for every subformula φ j signal

constraint and assigns a true or false value to
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Algorithm 4: STL∗1 Optimized Monitoring

Input: AST(φ), ρ

Output: intvl(φ1)

1 intvl(φ′) ← Transform(point(φ′), 0), ∀φ′ signal pred.

2 for each signal dimension σ (i) do

3 sorted(σ (i)) ← sorted σ (i) values

4 for k ← 1 to |V | do

5 for j ← SubTreeφ (xk ).max down to SubTreeφ (xk ).min do

6 if φ j is a signal constraint on the freeze variable xk then

7 Calculate flipj [0], point(φ j )

8 intvl(φ j ) ← Transform(point(φ j ), 0)

9 else intvl(φ j ) ← ComputeIntervals(φ j , 0)

10 if intvl(SubTreeφ (xk ). root) starts with 0 then

point(SubTreeφ (xk ). parent)[0] ← true

11 else point(SubTreeφ (xk ). parent)[0] ← false

12 for i ← 1 to |ρ | − 1 do

13 for j←SubTreeφ (xk ).max down to SubTreeφ (xk).min

do

14 if φ j is a signal constraint then

intvl(φ j ) ← UpdateSignalConstraint(φ j , i)

15 else intvl(φ j ) ← ComputeIntervals(φ j , i)

16 if intvl(SubTreeφ (xk ). root) starts with τi then

point(SubTreeφ (xk ). parent)[i] ← true

17 else point(SubTreeφ (xk ). parent)[i] ← false

18 intvl(SubTreeφ (xk ). parent) ←

Transform(point(SubTreeφ (xk ). parent), 0)

19 if | TopSubTree(φ) | , 1 then

20 for each subformula φ j ∈ TopSubTree(φ) do

21 intvl(φ j ) ← ComputeIntervals(φ j , 0)

22 return intvl(φ1)

point(SubTreeφ (xk ). parent)[0], Lines 10-11

(point(SubTreeφ (xk ). parent)[0] represents the first value in

the vector point(SubTreeφ (xk ). parent) corresponding to the

parent node of SubTreeφ (xk ) as defined in section 4).

• Then, for each timestamp τi , i ∈ [1, |ρ | − 1] (Line 12), the

algorithm calculates the new values of each subformula

for each instantiation i (Lines 13-15) and assigns a value

to point(SubTreeφ (xk ). parent)[i] (Lines 16-17).

• Finally, once we have all the values for point(SubTreeφ (xk )),

the algorithm calculates intvl(SubTreeφ (xk )) (Line 18).

Once the algorithm finishes the for loop in Line 4 (finishes with all

SubTreeφ (xk )’s for each freeze variable xk ), the final step would

be to calculate the values of the TopSubTree(φ).

5.2.6 UpdateSignalConstraint Algorithm. Let φ j be a signal

constraint of the form s∗
k
∼ sk ′±r , the main goal of this algorithm is

to update the values of point(φ j ) and intvl(φ j ) for the instantiation

i+1 given the values of point(φ j ) and intvl(φ j ) for the instantiation

i . In other words, we want to calculate the satisfaction relation

(i ′, E[sk := σi+1(k)]) |= φ j for any i
′ ≥ i + 1 given the satisfaction

relation (i ′, E[sk := σi (k)]) |= φ j , i
′ ≥ i .

flipj [i] is the position index where the signal constraint φ j (in

sorted(σ (k))) switches values from true to false or the opposite in

the ith instantiation. Here, if we interpret the signal constraint φ j as

a function of sk ′ , and since the signal dimension values are sorted

in sorted(σ (k)), we can see that flipj [i] represents a threshold for

when we reach a value in sorted(σ (k)) for which φ j is true (resp.

false) for all the remaining values in sorted(σ (k)) and false (resp.

true) for all the previous values.

The algorithm uses flipj ’s to track the values that changed from

an instantiation to the next one. We will consider the example from

2 for a better explanation and let us suppose we have the following

signal constraintφ5 = s ≥ s
∗
+2where s∗ = 5 (instantiation 0). Then

we have flip5[0] = 3. For the next instantiation, we have s∗ = 17 and

flip5[1] = 5. The position indices between flip5[0] and flip5[1] − 1

are 2 (for the signal value 9) and 1 (for the signal value 17). Now

back to the algorithm, it first removes the no longer needed value

σi (k) from sorted(σ (k)) (that value is not needed when calculating

the satisfaction relation (i ′, E) |= s∗
k
∼ sk ′ ± r for i

′ ≥ i + 1) and

updates flipj [i] accordingly (Lines 1-2). Then, it calculates the new

value flipj [i+1]. Given flipj [i] and flipj [i+1], the algorithm updates

certain values in point(φ j ), startj and endj (values corresponding to

position indices between flipj [i] and flipj [i + 1] − 1 in sorted(σ (k)))

by calling Sub-Update 6.

Finally, the algorithm either sorts the values in startj and endj
to get intvl(φ j ) (Lines 6-8) (since the values in intvl(φ j ) are initially

from the previous instantiation, it could be the case that the first

interval in intvl(φ j ) starts with τi−1, we use the operation in line 8

to make sure that it starts with τi′ where i
′ ≥ i) or just calculates

startj and endj from scratch using point(φ j ) (Lines 9-11), depending

on which operation is estimated to be faster. In fact, in some cases,

startj and endj can be too long (we use the condition in line 6) and

it will be better to remove all the values from startj and endj , and

iterate over point(φ j ) to get the new values sorted (Line 7 takes

O(size(startj ).log(size(startj ))) while Line 11 takes O(|ρ |)).

Algorithm 5: UpdateSignalConstraint

Input: intvl(φ j ) in i
th − 1 instantiation, i

Output: intvl(φ j ) in i
th instantiation

1 if flipj [i − 1] ≥ τi−1 then flipj [i − 1] ← flipj [i − 1] − 1

2 sorted(σ (k )). remove(σi−1(k ))

3 Calculate flipj [i]

4 for each position index l between flipj [i − 1] and flipj [i] − 1 in

sorted(σ (k )) do

5 startj , endj , point(φ j ) ← Sub-Update(τl , startj , endj )

6 if size(startj ).log(size(startj )) < |ρ | then

7 sort startj and endj

8 intvl(φ j ) ← intvl(φ j ) ∩ [τi , τ |ρ−1|]

9 else

10 empty startj and endj

11 intvl(φ j ) ← Transform(point(φ j ), i)

12 return intvl(φ j )

5.2.7 Sub-Update Algorithm. Given point(φ j ), startj , endj and

a position index l , the goal of this algorithm is to, first, update the

value point(φ j )[l] corresponding to the satisfaction relation

(l , E[sk := σi (k)]) |= φ j (i is the current value when

UpdateSignalConstraint calls Sub-Update). And, second, make

the necessary changes to startj and endj so that intvl(φ j ) is also

updated and keeping track of the changes happening to point(φ j ).
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For each position index l ′ that comes between flipj [i−1] and l in

sorted(σ (k)), Sub-Update has been already called multiple times by

the f or loop in Line 5 of algorithm 5 and we already have updated

all the values of point(φ j )[l
′] for each l ′ from true to false or

the opposite (either all the values become true or the opposite)

corresponding to the satisfaction relation (l ′, E[sk := σi (k)]) |= φ j ,

similarly, updates have been made to intvl(φ j )with each call (check

the last paragraph of this section for an example).

The algorithm updates the value point(φ j )[l] from true to false

(or the opposite) (Lines 6 and 12), and also it checks the values

point(φ j )[l +1] and point(φ j )[l −1] to update startj and endj going

over multiple possible cases (Lines 1-5 and 7-11).

Let us consider the example where intvl(φ1) = [2, 10], [20, 35]

(in other words start1 = [2, 20] and end1[10, 35]) and suppose the

value point(φ1)[8] changes from true to false. Then the algorithm

will change the value point(φ1)[8] to false (Line 6). The conditions

in Lines 2 and 4 are satisfied so the algorithm will add the value 9 to

start1 and the value 7 to end1 end we end up with start1 = [2, 20, 9]

and end1[10, 35, 7]. and once we sort end1 and start1 (this is done

in the UpdateSignalConstraint algorithm), we get intvl(φ1) =

[2, 7], [9, 10], [20, 35].

Note here, with each call of Sub-Update, the algorithm makes

simple changes to startj and endj while making sure to keep both

arrays (startj and endj ) of same size. The algorithm either adds one

value to both arrays, removes one value from both arrays, or, adds

one value to one of the arrays and removes another value from the

same array. Having the same size for startj and endj guarantees

that we have the correct values for intvl(φ j ) when we sort startj
and endj in Line 7 of UpdateSignalConstraint.

Algorithm 6: Sub-Update

Input: τl , startj , endj
Output: startj , endj , point(φ j )

1 if point(φ j )[l ] = true then

2 if point(φ j )[l + 1] = true then startj . add(τl+1)

3 else endj . remove(τl )

4 if point(φ j )[l − 1] = true then endj . add(τl−1)

5 else startj . remove(τl )

6 point(φ j )[l ] ← false

7 if point(φ j )[l ] = false then

8 if point(φ j )[l + 1] = false then endj . add(τl )

9 else startj . remove(τl+1)

10 if point(φ j )[l − 1] = false then startj . add(τl )

11 else endj . remove(τl−1)

12 point(φ j )[l ] ← true

13 return startj , endj , point(φ j )

5.2.8 ComputeIntervals Algorithm. In this section, we show

how we compute, for a given environment E, intvl(φ j ) of subfor-

mula φ j with boolean or temporal operators. The idea is based on

[24], we slightly modify it to make it work for pointwise semantics.

Suppose we have two traces with different sampling rates. The first

one, ρ1, is uniformly sampled of length 100 and the sampling rate is 1

second. And the second one, ρ2, is non-uniformly sampled and it has

the following timestamps: 0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 15, 17, 20, 25, 27,

30, 35 and 40. And let us consider two signal predicates φ1 =

s1 ≥ 5 and φ2 = s2 ≤ 0 such that intvl(φ1) = [2, 10], [20, 35]

and intvl(φ2) = [7, 15], for both traces ρ1 and ρ2.

Boolean operators. For Boolean operators, the computation is

straightforward. We have the following:

◦ For the uniformly sampled trace ρ1:

• intvl(¬φ1) = [0, 1], [11, 19], [36, 99]

• intvl(φ1 ∨ φ2) = [2, 15], [20, 35]

• intvl(φ1 ∧ φ2) = [7, 10]

◦ For the non-uniformly sampled trace ρ2:

• intvl(¬φ1) = [0, 1], [11, 17], [40, 40]

• intvl(φ1 ∨ φ2) = [2, 15], [20, 35]

• intvl(φ1 ∧ φ2) = [7, 10]

Computing intvl(φ j ) for Boolean operators takes O(| intvl(φ j )|).

Temporal operators. To treat temporal operators, we need to

define the following [a,b]-back shifting operation as in [24]:

Definition 5. Let I = [m,n] and [a,b] be intervals and k an index

position. The [a,b]-back shifting of I, is

I ⊖ [a,b] = [m − b,n − a]

We also define the trim of I, trimk (I ), to be the largest possible

interval [τi ,τj ],k ≤ i, j ≤ |ρ − 1| included in I . □

Note 1: When we omit the superscript k , it means k = 0.

Note 2: For the trim operator, given a intvl(φ) with | intvl(φ)| inter-

vals, if the trace is uniformly sampled (in other words, for a given

timestamp, we know the next and previous timestamps in O(1)

time), we can calculate trim(intvl(φ)) in O(| intvl(φ)|) time. How-

ever, if the trace is not uniformly sampled, calculating trim(intvl(φ))

takesO(| intvl(φ)|.log(|ρ |))where theO(log(|ρ |)) is paid to find the

largest possible interval [τi ,τj ],k ≤ i, j ≤ |ρ − 1| included in I for

each interval I in intvl(φ) using binary search. Or, we can simply

iterate over all the timestamps in ρ to find trim(intvl(φ)) since the in-

tervals in intvl(φ) are ordered. This makes calculating trim(intvl(φ))

takes O(|ρ |).

Eventually operator ^[a,b]: To calculate ^[a,b]φ, we just do

trim(intvl(φ) ⊖ [a,b]). For example,

• For the uniformly sampled trace ρ1, intvl(^[1,3]φ1) = [0, 9],

[17, 34]. This will take O(| intvl(φ)|).

• For the non-uniformly sampled trace ρ2, intvl(^[1,3]φ1) =

[0, 8], [17, 30]. This will take O(|ρ |) or O(| intvl(φ)|.log(|ρ |))

(depending on which method used).

Always operator □[a,b]: For □[a,b]φ, we can abuse notation and

define it as follows intvl(□[a,b]φ) = intvl(φ) ⊖ [b,a]. Note in case

of intvl(φ) = [m,n] and n − b < m − a, intvl(□[a,b]φ) = ∅.

• For the uniformly sampled trace ρ1, intvl(□[1,6]φ1) = [1, 4],

[19, 29].

• For the non-uniformly sampled trace ρ2, intvl(□[1,6]φ1) =

[1, 4], [20, 27].

Until operatorU[a,b]: For the until operator φ1U[a,b]φ2, we will

use the same claim used in [24].

Claim. Let φ = φ1 ∨ φ2 · · · ∨ φp andψ = ψ1 ∨ψ2 · · · ∨ψq be two

STL∗ subformula, each written as a union of unitary subformula
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(with a single interval). Then

φU[a,b]ψ =

p
∨

i=1

q
∨

j=1

φiU[a,b]ψj □

For each interval I in φ1 and J in φ2, we do the following:
(

(I ∩ J ) ⊖

[a,b]
)

∩ I . Then, we apply the trim operation to all intervals.

For example, let us consider first the uniformly sampled trace ρ1:

for φ1U[2,4]φ2,

(a) [2, 10] ∩ [7, 15] = [7, 10], [7, 10] ⊖ [2, 4] = [3, 8], [3, 8] ∩ [2, 10] =

[3, 8] and

(b) [20, 35] ∩ [7, 15] = ∅

⇒ intvl(φ1U[2,4]φ2) = [3, 8].

And, for the non-uniformly sampled trace ρ2: we have

intvl(φ1U[2,4]φ2) = [4, 8].

• Uniformly sampled trace: This operation will take

O(| intvl(φ1)| + | intvl(φ2)|)

• Non uniformly sampled trace: This operation will takeO(|ρ |)

or O(| intvl(φ1)| + | intvl(φ2)|.log(|ρ |))

Algorithm 7: ComputeIntervals

Input: φ j , i

Output: intvl(φ j )

1 if φ j = ¬φm// intvl(φm ) = ([τma , τmb
] . . . [τmy , τmz ]) then

intvl(φ j ) ← ([τi , τma−1], [τmb+1, τmc−1] . . . [τmz+1, τ |ρ |−1])

2 if φ j = φm ∨ φn then

intvl(φ j ) ← (intvl(φm ) ∪ intvl(φn )) ∩ [τi , τ |ρ |−1]

3 if φ j = φmU[a,b]φn then

4 intvl(φ j ) ← ()

5 for each interval I in intvl(φm ) do

6 for each interval J in intvl(φn ) do

7 intvl(φ j ).append
(

(

(I ∩ J ) ⊖ [a, b]
)

∩ I
)

8 intvl(φ j ) ← trimi (intvl(φ j ))

9 return intvl(φ j )

Pushing further more. For the trim operator, we can still improve

the complexity. In fact, the goal of the trim operation is, given an

ordered trace and a set of ordered intervals, to try and match the

bounds of each interval to the nearest timestamps from the trace

(timestamps must be included in the interval). We could simply

walk through the trace as we described it in Note 2. Or, even better,

we could use an exponential search [7].

Supposewe have the following trace: 0, 1, 3, 4, 6, 9, 13, 15, 16, 20, 22,

25, 28, 30, 35, and we have the following two intervals we are trying

to trim: [12,17] and [21,30]. First, we start with the right bound of

the first interval, 12. We compare 12 with the first timestamp in

the trace, 0, 12 is bigger so we move to the next timestamp. 12 is

bigger than 1 so we jump two timestamps. 12 is bigger than 4 so

we jump 4 timestamps (we exponentially increase the jump size

each time). 15 is bigger than 12 so we stop and we search for our

target timestamp (which is 13 in this case) using binary search in

the values ranging between 4 and 15.

Once we find the target timestamp, the algorithm will move on

to the second bound which is 17, and repeat what we did in the first

step. The only difference now is that we start from the timestamp

15 this time and not 0. Similarly, the same steps will be done for all

the bounds of the different intervals that we have.

Clearly, the advantage of this algorithm is that it can skip some

timestamps and it does not need to iterate over all the timestamps.

This algorithm can lower all the O(|ρ |) (or O(| intvl(φ)|.log|ρ |) )

complexities that we had in this section toO(log(i1)+ log(i2 − i1)+

· · · + log(i2. | intvl(φ) | − i2. | intvl(φ) |−1)) where the i’s are the indices

of the different target timestamps. We can also simply write down

the previous complexity as O(min(|ρ |, | intvl(φ)|.log|ρ |)). In other

words, the exponential search algorithm guarantees us to have the

best out of the two complexities O(|ρ |) and O(| intvl(φ)|.log|ρ |).

6 EXAMPLE

In this section, we will go over the running steps of our algorithm

for the following formula:

φ0 = ^I2s
2
.(□[1,5]s < s

2∗ ∧ ^I1s
1
.(□[1,5]s > s

1∗))

We will consider a uniformly sampled trace with a sampling rate

of 1 second. Lines are shown in order as in how the algorithm runs.

If we want to consider a different example with a non-uniformly

sampled trace, the steps would be exactly the same with just one

small difference: for any subformulaψ , calculating intvl(ψ ) will be

slightly different (the difference is when to apply the trim operator,

this was explained in details in section 5.2.8).

In this example, our signal has just one component and it has the

following values: s = (2, 5, 7, 10, 15, 13, 11, 6, 3, 1, 7). The algorithm’s

first step is to sort the signal: sorted(s) = (1, 2, 3, 5, 6, 7, 7, 10, 11, 13, 15).

For the first freeze variable s1, we run the different instantiations

i, i ∈ [0, |ρ |−1]. Below is a breakdown of each variable the algorithm

calculates for the different instantiations:

Instantiation 0: s∗1 = 2:

flip9[0] = 2, point(φ9) = [F ,T ,T ,T ,T ,T ,T ,T ,T , F ,T ]

intvl(φ9) = [1, 8], [10, 10], intvl(φ8) = [0, 3]

Does intvl(φ8) start with 0? Yes⇒ point(φ7)[0] ← T

Instantiation 1: s1∗ = 5:

sorted(s). remove(2), flip9[0] ← 2 − 1 = 1 and flip9[1] = 3.

We update the values in point(φ9) that correspond to the signal

values with positions 1 and 2 in sorted(s), that is, s = 3 and s = 5

corresponding to position indices 1 and 8 in point(φ9).

point(φ9) = [F ,T ,T ,T ,T ,T ,T , F , F ,T ]

intvl(φ9) = [2, 7], [10, 10], intvl(φ8) = [1, 2]

Does intvl(φ8) start with 1? Yes⇒ point(φ7)[1] ← T

Instantiation 2: s1∗ = 7:

sorted(s). remove(5), flip9[1] ← 3 − 1 = 2 and flip9[2] = 5.

We update the values in point(φ9) that correspond to the signal

values with positions 2,3 and 4 in sorted(s), that is, s = 6,s = 7 and

s = 7 corresponding to position indices 7,2 and 10 in point(φ9).

point(φ9) = [F ,T ,T ,T ,T ,T , F , F , F , F ]

intvl(φ9) = [3, 7], intvl(φ8) = [2, 2]

Does intvl(φ8) start with 2? Yes⇒ point(φ7)[2] ← T

By the end of all the instantiations of the freeze variable s1, this

is how point(φ7) and intvl(φ7) look like:

point(φ7) = [T ,T ,T , F , F , F , F , F , F , F , F ], intvl(φ7) = [0, 2]

Then the algorithm proceeds to the next iteration of the f or loop

in Line 4 of 4 and calculates intvl(φ6), point(φ5), intvl(φ5), intvl(φ3)

for all the instantiations of s2 to get the values of point(φ2) and

eventually intvl(φ2).
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|ρ | = 2500 |ρ | = 5000 |ρ | = 10000 |ρ | = 20000 |ρ | = 100000

ψ A B n A B n A B n A B n A B n

ψ1 0.086 0.091 25 0.242 0.264 49 0.891 0.921 97 3.394 4.576 193 85.78 89.56 957

ψ2 0.024 0.024 1 0.035 0.036 1 0.055 0.053 1 0.097 0.101 1 0.503 0.514 1

ψ3 0.038 0.045 11 0.061 0.086 11 0.110 0.153 11 0.216 0.314 11 1.109 2.104 11

ψ4 0.052 0.055 40 0.101 0.107 80 0.278 0.292 159 0.564 0.593 318 1.071 1.209 1571

ψ5 0.027 0.028 2 0.038 0.040 2 0.052 0.056 2 0.088 0.092 2 0.363 0.392 2

ψ6 0.027 0.028 3 0.044 0.047 3 0.068 0.072 3 0.123 0.131 3 0.417 0.431 3

ψ7 0.025 0.025 2 0.031 0.033 2 0.048 0.049 2 0.080 0.085 2 0.426 0.441 2

A: uniformly sampled trace monitoring times (seconds); B: non-uniformly sampled trace monitoring times (seconds); n = | intvl(ψi ) |.

Table 1: Results for the different subformulae for different |ρ | values

only within the first 150 instantiations (for all trace sizes), after that,

the maximum value of | intvl(ψ4)| is 1. In fact, the average number

of intervals per instantiation and per subformula is 3.37 for all trace

sizes. The obtained running times show that our complexity is an

overestimation and in practice, our algorithm’s running time is

affected by the average number of intervals and not the maximal

number of intervals.

Note that, in our experiments,ψ1 is the same formula (7) used

in [9] and ψ5 matches the template of formulae (8) and (9) from

the same work. The authors in [9] claim that ła single run of the

monitoring algorithm for the formulae (7), (8) or (9) over a signal

sampled by 80 points took several hours on a regular PCž while our

algorithm takes milliseconds for a trace of length 2500.

We conduct a second set of experiments onψ1. We use a trace that

consists of a periodic signal and we fix the number of timestamps

to |ρ | = 10000. We vary the signal frequency in order to change the

| intvl(ψ1)| value. We report the obtained results in table 2. Again,

the obtained results conform to our complexity analysis.

n = 25 n = 49 n = 97 n = 193 n = 383

A 0.266 0.442 0.868 1.704 3.231

B 0.271 0.484 0.941 1.953 4.593

n = | intvl(ψ1) |.

Table 2: Results for the different | intvl(ψ1)| values

9 CONCLUSION

In order to overcome the expressivity limitations of STL, researchers

have investigated augmentations with additional temporal opera-

tors. Apart from [5, 9], the work in [4] which augments STL with

max/min operators over windows, and presents a linear time mon-

itoring procedure, is relevant. While their logic augments STL, it

cannot express many of the properties expressible in STL∗1.

Freeze quantification has been long studied [2, 8], and provides

a natural syntax for expressing many commonly occurring engi-

neering properties that cannot be expressed in STL. Our present

work is the first one to show that monitoring still remains tractable

with the addition of signal-value freeze quantification to STL (pro-

vided that freeze quantifiers are independent of each other). We

provide experimental validation for our monitoring algorithms and

demonstrate that our proposed algorithms scale to trace lengths of

100k. In addition to being the first scalable monitoring algorithms for

signal-value freeze quantification, our algorithms do not use any

specialized libraries such as those for manipulating polyhedra; and

hence are efficiently implementable on a wide range of platforms.
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