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ABSTRACT

Signal Temporal Logic (STL) is a timed temporal logic formalism
that has found widespread adoption for rigorous specification of
properties in Cyber-Physical Systems. However, STL is unable to
specify oscillatory properties commonly required in engineering
design. This limitation can be overcome by the addition of addi-
tional operators, for example, signal-value freeze operators, or with
first order quantification. Previous work on augmenting STL with
such operators has resulted in intractable monitoring algorithms.
We present the first efficient and scalable offline monitoring algo-
rithms for STL augmented with independent freeze quantifiers. Our
final optimized algorithm has a |p| log (|p|) dependence on the trace
length |p| for most traces p arising in practice, and a |p|* depen-
dence in the worst case. We also provide experimental validation
of our algorithms — we show the algorithms scale to traces having
100k time samples.
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1 INTRODUCTION

A core requirement of rigorous system design is a mechanism for
precisely specification and identification of what are good and
what are bad executions. Automata and temporal logics, and cor-
responding monitoring algorithms for executions are two such
commonly used frameworks [1, 3, 20, 25, 26, 30, 32, 33]. In the
context of Cyber-Physical Systems (CPS) and Control, Signal Tem-
poral Logic (STL) has found wide adoption as a specification for-
malism [6, 14, 17, 22, 23, 27-29, 31]. Contributing factors to its
widespread adoption are: (i) its expressivity, allowing precise char-
acterizations of complex timed requirements, (ii) a mechanism to
translate quantitative signal values to Boolean predicates allowing a
move to the timed temporal logic MTL (Metric Temporal Logic) [25],
(iii) fast monitoring algorithms for checking when an execution
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satisfies an STL specification [10, 13]; and (iv) a corresponding ro-
bustness function which quantifies how well an execution satisfies
or violates the given STL specification [16].

The mechanism by which STL translates quantitative signal val-
ues to Boolean predicates — comparing signal values to constant
thresholds - has limitations. For example, STL is unable to specify
oscillatory properties, an important property of interest in biolog-
ical and engineering systems. This limitation has been noted by
researchers, and STL augmentations with freeze or first order quan-
tification have been proposed in order to overcome expressivity
limitations [5, 9]. Both augmentations allow capture of signal val-
ues to be used for comparison with later trace values. Captured
signal values can then be used in constraints such as (example taken
from [9] which presents the logic STL* containing value freezing
quantification) “there repeatedly occur time instants such that for
the corresponding signal value v at such time instants, there are two
near futures (within at most 10s), when the signal value is < v + &,
also > v + J respectively”. Such a constraint specifies oscillations
of amplitude at least §, and it is believed it cannot be encoded in
STL [9]. In this example, the trace values v are repeatedly captured
in a single freeze variable over the duration of the trace.

However, increased expressivity has incurred a heavy algorith-
mic penalty for monitoring and related algorithms in previous
work [5, 9]. Augmentation with signal value freezing operators was
proposed in [9]; the monitoring algorithm is complex, and involves
manipulation of polygons. Even in the case of a single freeze opera-
tor, and even for approximate monitoring in an attempt to make the
problem tractable, the algorithm in [9] is very intricate. Due to the
complicated nature of the algorithm which involves manipulating
polygons, [9] did not obtain a precise complexity bound: it was
only shown that “each of the steps of the algorithm has at most
polynomial complexity to the number of polygons and the number
of polygons grows at most polynomialy in each of the steps”. Their
monitoring experiments showed scalability limitations — over an
hour of running time for signals containing 100 timepoints. First
order quantification similarly leads to a complex algorithm. The

work of [5] proposes a monitoring algorithm, and derives a run-
O(f+D)
ning time bound of 2lel+lp Iy? , where ¢ is the formula in their

logic, p is the trace, and f is the number of freeze quantifiers (for
our discussion [ is not relevant). The constant in the big O in the
second exponent is not derived. They also show that for a subset of
their logic, the length of the trace |p| in the first exponent can be
moved out, but still the big O remains in the second exponent. An
implementation of the algorithms is not presented.

Thus, previous monitoring algorithms for both STL augmented
with signal freeze quantifiers, and for the first order logic of signals,
are prohibitively complicated, and stand in stark contrast to efficient
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monitoring algorithms for STL, which have been implemented in
various tools such as Breach and S-TaLiRo [12, 15]. Efficient moni-
toring algorithms for MTL augmented with time freeze quantifiers
have previously been presented in [11, 18, 19].

Our Contributions. In this work, we consider a fragment of STL*:
one that augments STL with freeze quantifiers such that only one
quantifier is “active” at a time; that is, all freeze variables are inde-
pendent of each other. This fragment, which we denote as STL],
subsumes STL, and is general enough to express all of the STL*
properties, except for one, from [9]. We present efficient and im-
plementable offline monitoring algorithms for this fragment. We
consider two types of traces p with signal values in R": uniformly
time-sampled where the trace is sampled at times 0, A, 2A, 3A, . . .,
and non-uniformly time-sampled where the inter-sample time need
not be a constant. For the uniformly sampled case, a naive algo-
rithm would run in time Q(|p|V*!) where |p| is the number of
trace samples, and V is the number of freeze variables, as we would
need to look at all possible freeze capturings of the V freeze vari-
ables (contributing |p|") , and also iterate over the whole trace
to compute formula satisfaction at different trace timepoints (con-
tributing |p|). We first present a polynomial time algorithm (build-
ing upon the idea in [11]) which leverages independence of the
freeze variables so that we need only consider freeze bindings of
each freeze variable separately (and not in a nested fashion) and
results in a running time of O (c-V-|(p|-|p|2), where ¢ = [a/A]
where a is the largest constant occurring in the temporal operators
in ¢, and A is the period between two consecutive timestamps;
removing the exponential dependence on V. Next, we present an
optimized algorithm that removes the c factor, and also reduces
the quadratic dependence on the trace length for practical traces.
This optimization uses the observation that temporally close sam-
ple values in real world traces have close signal values, and hence
formula satisfaction values are constant for most of the trace time-
points, with satisfaction value “toggles” from true to false, or vice-
versa, occurring at far fewer points as compared to the trace length.
The optimized algorithm uses work done when a freeze variable
was bound to the i-th signal value when it works on the freeze
variable binding to the i + 1-th signal value sample. This results
in O (|p|-log(lpl) + V-l¢|-|p|-|intvl ¢|) running time in practice,
where | intvl ¢| denotes the number of true/false toggles over the
trace for any ¢ subformula. The number | intvl ¢| is much smaller
than the trace length |p| in practice, resulting in a |p| log(|p|) depen-
dence on the trace length rather than |p|? for traces from real-world
systems. The optimized algorithm over the interval data structure
we use also removes the ¢ factor. We also obtain corresponding
algorithms for non-uniformly sampled traces.

Lastly, we present experimental validation for our optimized
algorithm implemented in C++. For both the uniformly sampled
and the non-uniformly sampled cases, our algorithms scale to trace
lengths of 100k. The running times are under 2 minutes even for
such large trace lengths. Our results can be contrasted with the
approximate monitoring results from [9] where the running time
was over an hour even for trace lengths of 100 samples (for the
same STL] fragment we consider). While admittedly the framework
of [9] is over piecewise linear continuous-time traces, and ours is
over time-sampled traces, since we can only observe the real world
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at a sequence of timepoints, a piecewise linear interpretation is still
an approximation of what happens in between observations. One
can simply oversample the traces and use our scalable algorithms.
We also note that our monitoring algorithms are exact monitoring
algorithms for time sampled traces.

2 VALUE-FREEZING SIGNAL TEMPORAL LOGIC

Signals/Traces. A R" valued signal or a trace is a pair (o, 7), where
0 =00,01,.-.,0|p|-1 is a finite sequence of elements from R”, and
T =10,71,-..,T|p|-1 AL€ the corresponding timestamps from R.
The signal value at timestamp 7; is 0; € R™ and i is a position
index. The k-th signal dimension of ¢ = {(ay, ..., a,), namely a,
is denoted (k) = oo(k), 01(k), . . ., 0|p|-1(k). In order to simplify
the presentation, we sometimes assume a timed word to be of the
type (00, 70), - - - (0]p|-1, 7| p|-1)- We require the times to be mono-
tonically increasing, that is 7; < 7j41 for all i. If 7; = i - A for some
A > 0, the traces are said to be uniformly sampled; otherwise the
traces are non-uniformly sampled.

Definition 1 (STL* Syntax). Given a signal arity n, and a finite set
of freeze variables {s}c, o sl'c"} for each signal dimension 1 < k < n,
the formulae of value-freezing signal temporal logic (STL*) are
defined by the grammar:

0= se~r | s~ spxr | =g | o1 X2 | 01 | 010 | 01Ues | 50
where s; and spr € {s1,...,s,} are signal variables (s refers to
the k-th signal dimension), r is a positive real, and I = [a, b] is an
interval where a and b are positive reals, SZ* is a frozen value cor-

responding to signal-value freeze variables SZ for signal dimension
k,and ~ e {<, >, <, >, =} is the standard comparison operator. O

For ease of reference, we have 0O and ¢ as explicit operators.
binds the current value of the k-th signal

»

The freeze operator “s;’.
dimension to the frozen value s]’;*. Note that we allow the frozen

value sZ* for the k-th signal signal dimension to be compared to

a current signal value for a different signal dimension k’ in si’* ~

sk £ r. We refer to s ~ r as a signal predicate, and to SZ* ~Spr T
as a freeze signal constraint.

Definition 2 (Semantics). Let p = (00, 70), (01, 71), .-, (0'|p|_1, Tlpl—l)
be a finite timed signal of arity n. For a given environment & : V —
R binding freeze variables to signal values, and position index
0 < i < |p| - 1, the satisfaction relation (p, i, &) |= ¢ for an STL*
formula ¢ of arity n (with freeze variables in V) is defined as follows.
. Ep, i, 8; = sg ~r iff 0i(k) ~ r for signal variable si.
* (pi,8) F ¢ iff (p,1,8) | ¢
* (p.i.8) [ o1 02 iff (p.1,8) = 91 404 (p. 1. E) = 2.

° (p,i,8) |= Crapeift 3j, 7j € 1; +[[a,b]], st (p,,8) F @.
S S ESent i LT b EE S

e (0,1,8) | p1U g p)02 iff (p, ], E) [£ @2 for some j > i with
1j € 1; +[a,b] and (p, k, &) = @1 Vi < k < j.
o (p,i,8) | s iff (p,i,E[s! := 0i(k)]) | p; where E[s! =
0i(k)] denotes the environment &’ defined as &’(x) = E(x)
for x # sZ, and &’(s") = 5;(k).
e (p,i,E) E sl’C’* ~ s £ riff 8(51’;) ~oij(k’) £r.
We say the trace p satisfies an STL* formula ¢ if (p, 0, E[=0¢]) |= p
where E[=0y] denotes the freeze variable environment where all
variables SZ are mapped to their corresponding oy(k) values. O
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Given a signal of arity n, for the i-th timestamp 7;, we refer to
the k-th signal dimension value as s (7;), which has the value o; (k).
In order to reduce notation clutter, we will simply write (i, &) in-
stead of (p, i, &) in the remainder of this paper since for any given
STL* formula, we will be using the same trace p. We use the phrase

ith instantiation of a freeze variable SZ to mean the environment &

where the freeze variable s]}; is assigned the value o;(k).

Note: We can freeze the same signal dimension multiple times
in an STL* formula. The superscript h € N is used in that case
to indicate which frozen value refers to which signal-value freeze
operator. Thus, le and sZz for hy # hy are considered different
freeze variables, but each freezing the k-th signal dimension at
different times. When we freeze a signal dimension only once in a
STL* formula, we omit the superscript h = 1.

Example 1 (Running example). We consider a single dimension
signal s and we will freeze it twice (h = 1 and h = 2) in the following
formula: ¢y = <>1232.(|:|[1,515 < s A <>Ilsl.(|:|[1,5]s > s1*)). The
requirement of g is: “at some time in the future (during interval Iz),
there is a local maximum, then at another time in the future (during
interval I ), there is a local minimum ”. |
,': [
said to be free if it is not in the scope of a corresponding freeze
operator “s”.”. The set of free variables for a formula ¢ is denoted
by Free(p) (the formal defintion is in the appendix). It can be shown
that the environment & is only relevant for the free variables in an
STL* formula when it comes to the satisfaction relation (i, &) |= ¢.
If Free(p) = 0, then the environment function is irrelevant in the
satisfaction relation (i, &) |= ¢.

Next, we present the STL* fragment in which at most one freeze
variable is free. This fragment is already more expressive than STL,
and we show later, admits efficient monitoring algorithms. Given a
formula ¢, the corresponding set of subformulae Sub(¢) is as usual
(the formal definition is in the appendix).

A freeze variable s;' occuring in a frozen value context s

Definition 3 (STL] fragment). An STL* formula ¢ is an STL]
formula provided all of the following conditions hold.
(1) For every subformula € Sub(¢), we have |Free(y)| < 1, i.e.,
every subformula can have at most one free variable; and
(2) Corresponding to every subformula s]}(‘ . € Sub(p) involving

a freeze operator si‘., we have Free(y) to be either 0, or {SZ}’

that is if le// is a subformula of ¢, then i cannot have any
h
e
(3) All freeze operators are over unique variables. O

free variables apart from s

Example 2. ¢; = s%.(sz >2-> O(s%.()(sz < s;*/\sl < s%*+3))) is
not an STL] formula, as it has the subformula s, < sé* Asp < s%* +3
which has two free variables s%, s%. The formula ¢y from Example

1is an STL] formula even though it has two freeze variables. O

3 EXPRESSIVENESS OF STL]

In this section we present practical specification examples that can
be expressed in STL]. We first present two requirements from [9].

(1) The signal s is oscillating with a period at most 10 time unit

Y1 = Oo,7) (0[0,10]3. ((0[071015* +6< s) A (0[0,10]5* >s— 5))) .
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(2) s1 copies the values of sy with a delay of 4+8 time units

Y2 = 0o, 7152-(O[4-5,4+5153 = S1)-

The first STL] formula says that “for every time instant (from 0
to T), there is a near future (within at most 10) and a value of s, say
«, such that a future value of s will be smaller than & within 10 time
units, and another future value will be greater than a within 10
time units”. The constant § serves as the threshold for the minimum
oscillation amplitude. If we try to express the same requirement
using STL, we may consider the following formula:

O, 71((8 2 0 = Opg 1018 < 0) A (8 £ 0 — Opg 1018 > 0)).

This formula requires first derivatives, and derivatives are fragile
in the presence of noise. Also, this formula lacks the § factor for
specifying the minimum oscillation amplitude.

The second STL] formula shows another example that cannot
be expressed using STL. It falls in the category of requirements
expressing relations between signal components at different times,
but with a time difference that is not a constant. A trick that is
often employed in STL is to have a delayed version of the signal as
another signal component; but this trick does not work in case the
delay is variable as is the case here.

Another important engineering property is checking whether
we have a spike within a signal or not. A spike can be defined as a
sharp change in a signal value (sudden increase then decrease to
the normal value) and in most cases, it is considered undesirable.
We can express a spike in STL] by the following formula:

Y3 = 010, 715-(O[o,w](s = 5" > F A Qg w)ls = 5™ < €)),

where 2w is the spike width, § is the spike height, and € is a small
value. The formula /3 says that the signal must first rapidly have
an increase of at least §, and after the increase, it must come back
down to within a close range € of the pre-spike value. Note that the
formula does not assume a fixed position of the spike, it can start
anywhere within T time units. It also does not assume anything
about the pre-spike value.

In [21], the authors try to express the spike requirement using
STL. They give the following formula:

o, 71((sdiff > 8) A [0, (Sdiff < —9)),
where they define sg; to be the discrete-time derivative of s. The
problem with this requirement is that if we have a high sampling
rate, it could be the case that we cannot detect a sudden increase in
the derivative but we still have a spike.
Another engineering property is to check the settling time. The
following STL] checks if a settling time of a signal s is slow:

Ya = O 7s(Is = 57| 2 B,
where r is the latest time the signal needs to settle before it is
considered to have a slow settling time and f is a threshold. This
requirement cannot be expressed in STL unless we already know
the value that the signal will settle at. A similar formula can be
derived to check if the rise time of a signal is acceptable or not.
Here is another set of useful properties that we can express using
STL] and that we conjecture cannot be expressed using just STL:
o The signal trend is globally increasing, but locally it could
have decreasing segments (e.g., sea level or global tempera-
ture): 5 = Ojg, 715-C[o,10](8* < 9).
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e At some point in the future, the gap between the current
signal value and a future signal value within 10 time units is
larger than A: /g = 5.0, 101(Is" = 5| 2 A).
o All the values of s, in the next 10 time units are always within
d from the current value of s1: Opg 751.(O(g, 10]152 — 571 < 9).
STL] is able to specify requirements that cannot be expressed in
STL when we compare the signal value to a past frozen value, and
the time at which the signal value is frozen needs to be variable.

4 STL* SYNTAX TREES

Each STL* formula has a corresponding syntax tree that depicts
the hierarchical syntactic structure of the formula. Our monitoring
procedure will depend on this syntax tree.

Definition 4 (Syntax Tree). Given an STL* formula ¢, the associ-
ated abstract syntax tree AST(¢) is defined as follows.
o The nodes of the syntax tree are Sub(¢p).
e The root node is ¢.
e The edges in the tree are defined by the operator structure:
~ If s?.y/ € Sub(g), then s .y has the child y.
— If op ¢ € Sub(g), for op € {~,O7, O1},

then op ¢ has the child .
— Ify; op 2 € Sub(g),forop € {A,V, —, U}, then 1 op P
has the two children ¢, ¢. O

In order to check whether a timed word satisfies an STL] for-
mula ¢, we build on the insight of [11] which noted that we can
compute the satisfaction relation for subformulae involving only
one free variable (for various word position indices), and after this
computation, use these values akin to values computed had the
subformula been an STL formula (without any freeze variables).
The basic structure over which our algorithm will operate will be
subtrees corresponding to various freeze variables. The following
example explains subtrees, parents and roots.

Example 3. Consider the formula from Example 1 ([Running ex-
ample]), and its associated syntax tree in Figure 1 The formula sub-
scripts correspond to a reverse topological sort of the syntax tree.
The freeze variable ordering given by a reverse topological sort is
s <revtop s%. The nodes in SubTree , (s!) are {@s, pg}. The nodes in
SubTree, (s?) are {@3, 4, @5, @5, ©7}. The nodes in TopSubTree(¢)
are {¢1, p2}. SubTree, (s1). root = ¢s. SubTree, (s1). parent = ¢7.
SubTree, (s%). oot = ¢3. SubTree, (s?). parent = ¢3. |

] } )
(055 < s%) <507151~ )—*Gsi[][l_SHg:s>slb

Figure 1: Syntax Tree for Example 1 [Running example].
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Example 4. The syntax tree for non STL] formula ¢ from Exam-
ple 2 has 3 subtrees: SubTreey, (s1) = {s1 < s]+3,52 < 55,52 < 55 A
s1 < 57 +3,0(s2 < 55 Asp < s +3)}, SubTree,, (s2) = {remaining
subformulae except ¢1} and TopSubTree(¢1) = {¢1}. O

5 MONITORING ALGORITHMS

Given a trace p, and an STL* formula ¢, the monitoring problem
consists of computing the satisfaction value (0, E[=0p]) |= o, i.e.,
whether trace p starting at position 0 satisfies the given formula
for the environment E[=0y]. In this section, let i € [0, |p| — 1].

A basic STL* monitoring algorithm would be exponential in the
number of freeze variables: if we have |V| freeze variables in ¢,
we need to consider all possible combinations of environments for
all the freeze variables: E[x1 = 03,(j1), x2 = 03,(j2), .. ., x|y| =
iy (jv|)] where iy, .., i|y| are indices referring to timestamps each
ranging from 0 to [p| — 1, and ji, .., jy| are the appropriate signal
dimensions. This leads to a |p| VI search space. Since such an expo-
nential time algorithm for general STL* is not practical, we focus
on STL] formulae in this paper.

Our algorithms have two core ideas. First, suppose we have an
STL] formula ¢ with just one freeze variable, an intuitive algorithm
for the monitoring problem would consist of iterating over all |p|
instantiations (or environments) of the freeze variable, and, for
each environment &, it will have to compute the satisfaction values
(i, 8) [ ¢ for all trace positions i, for every subformulayy € AST(¢p).
Such algorithm will run in quadratic time in terms of the trace
size (|p| environments multiplied by |p| traces positions). In this
work, we will use clever data structures to reuse work across freeze
variable instantiations to reduce the |p|? factor.

Second, suppose our STL] formula has more than just one freeze
variable. A basic algorithm would still have a dependence on |p| VI,
like for STL*. However, we show that we can avoid the exponential
complexity by leveraging independence of the freeze variables. The
isolation idea, as in [11], is to work on SubTree, (x} ) in isolation,
provided the satisfaction relation for all subformulae xj+.¢,, have
been computed for all freeze variables xj such that xj/ <revtop Xk,
where <reyvtop denotes a reverse topological ordering of the freeze
variables in the syntax tree for ¢ (in other words, we freeze a single
freeze variable at a time to avoid the exponential complexity). This
can not be done in the case of a general STL* formula. Conceptually,
when working on the SubTree(xy ) in isolation, the idea is to com-
pute, for all i, the satisfaction values for (i, E[x; = 0i(jx)]) F ¢
for every subformula y € SubTree,(x), for every possible freeze
variable binding x; = 0;(ji). Note here that Free(y) can only be
0 or {x; } since ¢ is an STL] formula; and hence the environment
needed is only E[x; = 0;(ji)]; compared to environments looking
like E[x1 = 03,(j1), x2 = 0i,(j2) . . . x|v| = 0y, (jjv|)] for general
STL* formulae. The environment E[x; = 0;(jx)] only assigns the
value o;(ji ) to the frozen value x7, for the remaining freeze vari-
ables x # xj, we do not need to assign any frozen value since the
values assigned to these freeze variables do not influence the value
of the satisfaction relation of any subformula in SubTree, (x).

In the next two subsections, we present two algorithms that
both use the isolation idea that we mentioned above. The second
optimized algorithm additionally uses the first idea mentioned in
the beginning of the section: for a given freeze variable in a given
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subtree at a given instantiation, it uses (a) the information collected
from the previous instantiation to calculate the information needed
for the current instantiation more efficiently (the first algorithm
calculates the information of each instantiation from scratch), and
(b) more sophisticated data structures.

5.1 STL] Polynomial Time Algorithm

This first algorithm is inspired by the work in [11]. The algorithm
starts by calculating the values (i’, E[x1 = 0i(j1)]) |F ¢ for every
subformula ¢y, € SubTreey(x1), for every environment &[x; :=
0i(j1)], Vi and every i’ € [i, |p| — 1] (here o(j1) is the signal dimen-
sion corresponding to x1). Then it calculates the values (i”’, E[x2 =
0i(j2)]) = @i~ for every subformula ¢~ € SubTreey(x2), for every
environment E[x, := 0i(j2)], Vi and every i”’ € [i, |p|—1] (similarly,
o(j2) is the signal dimension corresponding to x2) and so on till it
reaches TopSubTree(p). The indices 1,2 in x1, x3 do not refer to the
first or second dimension of the signal, they refers to order of the
freeze variables in AST(¢): x1 <revtop X2 -

However, this algorithm, for a given instantiation, is not always
able to calculate the satisfaction relation of a subformula for i times-
tamps in O(i) time; in other words, computing the satisfaction
relation of a given subformula for a given environment at a given
timestamp takes more than O(1). To better explain this, let us recall
the recursive definition of the until operator: (i, &) |= @1 U2 iff

e 0cland(i,&) |= ¢,
e ori <|p|-1land(i,&) |= ¢1 and (i+1,E) |= ¢1Up @2 where
I'=1-71i4y1 +71.

This definition implies that, if we want to compute, for example,
the satisfaction relation (i, &) [= g2 = @oU[3 591, Vi € [0, |p| — 1]
for a given environment &, with a uniformly sampled trace with
a sampling rate of 1 second, we will eventually be calculating
the following satisfaction relations (i,8) | @oU|z 401, (i,E) E
poU[y,3191 and (i, &) |= poU[o,2¢1 for some i values. The subfor-
mulae are not in the syntax tree and we need to calculate these
satisfaction relations as intermediate steps.

As a second example for a non-uniformly sampled trace, suppose
we have the formula ¢z = poU[7,9¢1 and a trace of 5 timestamps
0, 2, 5,7 and 10. If we want to calculate (2,8) |= @2, if (2,E) = ¢o
is TRUE, we will have to check (3, &) = @oU]s 7)01. However, we
do not have that value. To get it, if (3,8) |= ¢o is TRUE, we will
need to also check (4, &) [= @oU[y,4)¢1. Here, we reached the trace
end (timestamp 10, index 4) and we can get the value of (4,8) |=
@oU[2, 4191 without additional steps.

However, in practice, the trace is much longer and to compute
(i,E) F @oUr¢@1, for most i values, we would reach an interval
for the until operator that starts with 0 before we reach the end of
the trace. The steps that we just showed in this second example
must be done for every time stamp in the trace in order to get
(i,8) = @oUse; for every i. This brings the complexity of this
polynomial monitoring algorithm to

O(c- 1AST() - V1 - 1pl2). 1)

where | AST(¢)| is the size of AST(¢) and ¢ = [a/A] where a is the
largest constant occurring in the temporal operators in ¢, and A is
the smallest difference between two consecutive timestamps.
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Algorithms 1 and 2 correspond to the algorithm that we just
described above.

Algorithm 1: ComputeSTL"

Input: ¢;, i, t

Output: TRUE or FALSE

if ¢j = s} ~ sgr £ r thenreturn o4 (k) ~ o3 (k') £ r

-

2 if ¢;j = ¢y, then return -M[m, i]

3 if ¢j = @m V @, then return M[m, i] vV M(n, i]

4 if ¢j = @m U pn then

5 if 0 € I and M[n, i] = T then return TRUE

6 elseif i < |p|—1and M[m, i]=T and
ComputeSTL*(fpm’Lll,THﬁTi @n, i +1,t) =T then return TRUE

7 else return FALSE

Algorithm 2: STL} Polynomial Time Monitoring

Input: AST(¢), p
Output: intvl(¢;)
2 for k « 1to|V|do
fort «— 0to|p|—-1do
for j « SubTree, (x; ). max down to SubTree,(xx ). min do
L fori « |p|—1downtot do

o w R w

| MLj, i] — ComputeSTL (¢, i, t)

% if | TopSubTree(¢)| # 1 then

8 for each subformula ¢; € TopSubTree(¢) do

9 fori « |p|—1downtot do

10 M[j, i] « ComputeSTL*(qu, i, 0) // The 3'¢ argument for
ComputeSTL" does not matter here since we do not have
any signal constraint in the TopSubTree.

11 return M[1, 0]

5.2 Optimized STL] Algorithm

We now present an opimized algorithm in which we improve the
theoretical performance of the algorithm in Subsection 5.1 further
— we remove the ¢ factor in Equation 1, and heuristically lower the
|p|? factor. First, we define notations and the data structures that
we are going to use.

5.2.1 Notation. For any STL* subformula i/, we note

e point(y): a list of length |p| of TRUE and FALSE values where
for each 0 < i < |p| — 1, each value represents whether
(i, &) E ¥ or not for a given environment &.

e intvl(y): a list of intervals [4,, 7a, |, [75,, Tp,] - - - [T2,» T2, ],
where 74,,7q, ... Tz, are timestamps and a; < ap < by <
by - -+ < z1 < z3, covering any sequence of TRUE’s appearing
in point(y)).

Example 5. Suppose we have the following trace (oj,7;),i €
[0,10]: (5,0), (3,1), (7,2), (-2,6), (-5,4), (3,5), (-1,6), (3,7), (4,8), (5,9),
(6,10) and the subformula ¢y = s > 0, then:

e point(po) = [T, T,T,F,F,T,F,T,T,T,T].

e intvl(¢o) = [0, 2], [5,5],[7, 10]. O

5.2.2 Data Structures.

e Timestamps array: an array of size |p| which have the times-
tamps values.
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e Signal dimension array: For each signal dimension, we use
an array of size |p| to store the signal dimension values.

e Doubly Linked List sorted(o(k)): For a signal dimension o (k),
we use sorted(o(k)) to store the sample values in increasing
sorted order, but we also use a reference to link each node in
this linked list to its corresponding node or position index in
the signal dimension array (in other words, we keep track of
the original position before sorting of a given signal dimen-
sion value, check Figure 2). With that, we guarantee O(1)
access time in the list. Each node in the signal dimension
array has a reference to the node with the same value in
the sorted list and vice versa. In case of a value appearing
multiple times in a signal dimension, that value will appear
the same number of times in the sorted list and we assign
each one to its corresponding position index.

e point(p;): an Array of size |p|.

intvl(¢;) = [start;(0), end;(0)], [start;(1), end;(1)],. ..,

[startj(n),end;(n)].

e start; and end;: arrays (of size n < |p| each). We use two
basic operations on start; and end;, add and remove. For
remove, it is a "lazy" remove: instead of removing an element
right away when we call remove, we only do that once we
call sort on the array.

o flip; is an array of size |p| corresponding to each signal
constraint ¢;.

511719 (|1 (3
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Figure 2: A signal dimension Array and the corresp. sorted list

5.2.3 Algorithm Overview. When trying to calculate (i, &) |= ¢
for any given ¢ and any environment &, instead of iterating over
all the timestamps Vi to calculate the different satisfaction relations,
we iterate over the intervals in intvl(y/) where in practice the size of
intvl(y) (the size of intvl(y/) is the number of intervals in intvl(y)))
is way smaller than the number of timestamps. This will give us
the same results in a reduced number of computations. In fact, both
algorithms will go over the same number of instantiations for each
freeze variable, the only difference is that our optimized algorithm
takes O(| intvl(y’)|) when calculating the satisfaction relation of a
given subformula for a given environment while the polynomial
one takes O(c.i)). Let us consider example 5, and suppose we want to
calculate (i, &) |= O[y, 290, Vi, the polynomial STL] algorithm will
need to calculate 10 satisfaction relations (one for each i) while the
new algorithm will calculate just 3 (one for each interval in intvl(¢y),
it has just 3 intervals). Also, in some cases, when a subformula ¥ is
either a signal constraint or of the form x;.¢’, we need to calculate
point(y) (the vector point(y/) represents (i,8) |= ¢,i > i’ for a
given i’ € [0,|p| — 1] and a given &) and not just intvl(}). The
nature of the trace p (pointwise semantics and discrete timestamps
and not a continuous signal) is the main reason why we have to
go over point(y) as a first step and not directly calculate intvl(i}),
in other words, we cannot calculate intvl(y) without calculating
point(y) first, for ¢ of these forms. For the case of a signal constraint,
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we try to update a limited number of values in point(y/) and not
iterate over all values of i.
1. For each freeze variable xj,1 < k < |V such that Ty > . > T > 1

( B
1.1. For instantiation 0 (initialization)

rCompute point(v) for each signal constraint ; € SubTreey, (z). )
Compute intvl(z)) for each ¢p € SubTreey, (zy).

Assign a TRUE or FALSE value to point(SubTree, (zr).parent)[0]
|depending on intvl(SubTree,(xy).root) starts with 0 or not.

—

.2. For each instantiation 1 <7 < [p| —1

(Update values point(1)[l], i <1 < |p| — 1 (some values, not all),
for each signal constraint 1 € SubTree, ().

Update intvl(z)) for each 1) € SubTree, (zy).

Assign a TRUE or FALSE value to point(SubTree, (z).parent)[i]
\depending on intvl(SubT'ree, (xy).root) starts with 7; or not.

J

L J

2. Compute intvl(¢) for each ¢» € TopSubTree(yp)
Figure 3: Optimized algorithm overview

Algorithm Logic: Figure 3 gives an overview of our algorithm
steps. If we consider our running example 1, the algorithm cal-
culates point(¢y), intvl(pg) then intvl(¢g) for each instantiation of
s1 to ¢;(1), for all i and with each instantiation, appends a new
value to point(¢7) based on the condition “intvl(¢s) starts with z;
or not". Then, our algorithm does the same steps for all the instan-
tiations ¢;(2) of the second freeze variable s;. Finally, it finishes by
calculating intvl(¢;).

5.2.4 Transform Algorithm. Given an input point(¢;) and an
integer i, this simple algorithm transforms the values in point(¢;)
starting from position i to intvl(¢;).

Example 6. Suppose we have a uniformly sampled trace with

a sampling rate equal to 1 second and i = 5. Then our algo-
rithm transforms point(¢y) = |F,F,F,T,T,T,T,T,F,F,T,T,T,T]
to intvl(¢1) = [5,7],[10, 13]. O

Algorithm 3: Transform

Input: point(¢;), i
Output: intvl(¢;)
if point(¢;)[i] = TRUE then start; . add(;)
for/ —i+1to|p|—1do
if point(¢;)[!] = TRUE and point(¢;)[I — 1] = FALSE then
start; . add(;)
if point(¢;)[I] = FALSE and point(¢;)[I — 1] = TRUE then
end; . add(r;_,)
if point(¢;)[|p| — 1] = TRUE then end; . add(z),|-1)
return intvl(¢;)

[

w N

'S

@

£

5.2.5 STL] Monitoring Algorithm. This is the main algorithm
and it works as follows: First, It calculates point(¢’) for any ¢’ signal
predicate (Line 1) and sorted(c(j)) for every signal dimension o(j)
(Line 2). Then, for each freeze variable xj. (Line 4) (here, we use the
freeze variable ordering x1 < -+ < xy)):

e The algorithm calculates the values of each subformula in
the SubTree,(xy) for each timestamp 7;, i € [0, |p| — 1]
corresponding to the instantiation of x4 to oy (jx ) (Lines 5-9),
calculates the value of flip;[0] for every subformula ¢; signal
constraint and assigns a TRUE or FALSE value to
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Algorithm 4: STL] Optimized Monitoring

Input: AST(¢), p
Output: intvl(¢;)
1 intvl(¢’) « Transform(point(¢’), 0), V¢’ signal pred.
2 for each signal dimension o (i) do
3 L sorted(o(i)) « sorted o (i) values
4 fork < 1to|V]|do
5 for j « SubTree,(xt ). max down to SubTree,(xx ). min do
6 if ¢; is a signal constraint on the freeze variable x;. then
7 L Calculate flip;[0], point(¢;)

8 intvl(¢;) « Transform(point(¢;), 0)
9 else intvl(¢;) < ComputeIntervals(¢;, 0)

10 if intvl(SubTree (xx ). root) starts with 0 then
point(SubTree, (xx ). parent)[0] < TRUE

1 else point(SubTree, (xy ). parent)[0] < FALSE

12 fori <« 1to|p|—1do

13 for j < SubTree,(x). max down to SubTree, (xg). min
do

14 if ¢; is a signal constraint then

intvl(¢;) < UpdateSignalConstraint(¢j, i)

15 else intvl(¢;) < ComputeIntervals(gj, i)

16 if intvl(SubTree, (xx ). root) starts with ; then
point(SubTree, (xx ). parent)[i] < TRUE

17 else point(SubTree,, (x ). parent)[i] < FALSE

18 intvl(SubTree, (xy ). parent) «

Transform(point(SubTree, (xx ). parent), 0)

19 if | TopSubTree(¢)| # 1 then
20 for each subformula ¢; € TopSubTree(¢) do
21 L intvl(¢;) « ComputeIntervals(g;, 0)

22 return intvl(¢;)

point(SubTree, (xx ). parent)[0], Lines 10-11
(point(SubTree (xy ). parent)[0] represents the first value in
the vector point(SubTree(x} ). parent) corresponding to the
parent node of SubTree,(xy ) as defined in section 4).

e Then, for each timestamp 7;, i € [1,|p| — 1] (Line 12), the
algorithm calculates the new values of each subformula
for each instantiation i (Lines 13-15) and assigns a value
to point(SubTree, (xi ). parent)[i] (Lines 16-17).

e Finally, once we have all the values for point(SubTree, (x)),
the algorithm calculates intvl(SubTree,(xx)) (Line 18).

Once the algorithm finishes the for loop in Line 4 (finishes with all
SubTree,(xy)’s for each freeze variable x), the final step would
be to calculate the values of the TopSubTree(¢p).

5.2.6 UpdateSignalConstraint Algorithm. Let ¢; be a signal
constraint of the form s} ~ s/ £7, the main goal of this algorithm is
to update the values of point(p;) and intvl(¢;) for the instantiation
i+1 given the values of point(¢;) and intvl(¢;) for the instantiation
i. In other words, we want to calculate the satisfaction relation
(i’, 8[s = oi4+1(k)]) |= @j for any i’ > i + 1 given the satisfaction
relation (i’, 8[sg := 03 (k)]) = @), i’ = i.

flip;[i] is the position index where the signal constraint ¢; (in
sorted(o(k))) switches values from TRUE to FALSE or the opposite in
the i instantiation. Here, if we interpret the signal constraint ¢ j as
a function of si-, and since the signal dimension values are sorted
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in sorted(c(k)), we can see that flip;[i] represents a threshold for
when we reach a value in sorted(c(k)) for which ¢; is TRUE (resp.
FALSE) for all the remaining values in sorted(o(k)) and FALSE (resp.
TRUE) for all the previous values.

The algorithm uses flip;’s to track the values that changed from
an instantiation to the next one. We will consider the example from
2 for a better explanation and let us suppose we have the following
signal constraint g5 = s > s*+2 where s* = 5 (instantiation 0). Then
we have flip;[0] = 3. For the next instantiation, we have s* = 17 and
flips[1] = 5. The position indices between flips[0] and flips[1] — 1
are 2 (for the signal value 9) and 1 (for the signal value 17). Now
back to the algorithm, it first removes the no longer needed value
oi(k) from sorted(o(k)) (that value is not needed when calculating
the satisfaction relation (i’,8) | s} ~ sp £ rfori’ > i+ 1) and
updates flip;[i] accordingly (Lines 1-2). Then, it calculates the new
value ﬂipj [i+1]. Given ﬂipj [i] and ﬂipj [i+1], the algorithm updates
certain values in point(pj), start; and end; (values corresponding to
position indices between ﬂipj[i] and ﬂipj[i + 1] —1in sorted(o(k)))
by calling Sub-Update 6.

Finally, the algorithm either sorts the values in start; and end;
to get intvl(p;) (Lines 6-8) (since the values in intvl(¢p;) are initially
from the previous instantiation, it could be the case that the first
interval in intvl(¢;) starts with 7;_1, we use the operation in line 8
to make sure that it starts with 7y where i’ > i) or just calculates
start; and end; from scratch using point(¢;) (Lines 9-11), depending
on which operation is estimated to be faster. In fact, in some cases,
startj and end; can be too long (we use the condition in line 6) and
it will be better to remove all the values from start; and end;, and
iterate over point(¢;) to get the new values sorted (Line 7 takes
O(size(startj).log(size(start;))) while Line 11 takes O(|pl)).

Algorithm 5: UpdateSignalConstraint

Input: intvl(¢;) in i'h - 1 instantiation, i

Output: intvl(¢;) in i instantiation

if flip;[i — 1] > 7;—; then flip;[i — 1] « flip;[i - 1] -1
sorted(o(k)). remove(oi—1(k))

Calculate flip;[i]

-

Y

w

'S

for each position index | between ﬂipj[i — 1] and ﬂipj[i] —1lin
sorted(o(k)) do
L start;, end;, point(¢;) < Sub-Update(z;, start;, end;)

[z

N

if size(start;).log(size(start;)) < |p| then
sort start; and end;
intvl(g;) « intvl(g;) N [7i, 7)p-1|]

<

o

9 else
10 L empty start; and end;

1

oy

intvl(¢;) « Transform(point(¢;), i)

12 return intvl(e;)

5.2.7 Sub-Update Algorithm. Given point(¢;), start;, end; and
a position index [, the goal of this algorithm is to, first, update the
value point(p;)[/] corresponding to the satisfaction relation
(I, E[sg := 0i(k)]) = @j (i is the current value when
UpdateSignalConstraint calls Sub-Update). And, second, make
the necessary changes to start; and end; so that intvl(g;) is also
updated and keeping track of the changes happening to point(¢;).
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For each position index I’ that comes between flip ;[i—1]and /in
sorted(a(k)), Sub-Update has been already called multiple times by
the for loop in Line 5 of algorithm 5 and we already have updated
all the values of point(¢;)[I’] for each I’ from TRUE to FALSE or
the opposite (either all the values become TRUE or the opposite)
corresponding to the satisfaction relation (I, E[sg := oi(k)]) = ¢j,
similarly, updates have been made to intvl(¢;) with each call (check
the last paragraph of this section for an example).

The algorithm updates the value point(¢;)[/] from TRUE to FALSE
(or the opposite) (Lines 6 and 12), and also it checks the values
point(p;)[l + 1] and point(p;)[I — 1] to update start; and end; going
over multiple possible cases (Lines 1-5 and 7-11).

Let us consider the example where intvl(p1) = [2, 10], [20, 35]
(in other words start; = [2,20] and end;[10, 35]) and suppose the
value point(¢1)[8] changes from TRUE to FALSE. Then the algorithm
will change the value point(¢;)[8] to FALSE (Line 6). The conditions
in Lines 2 and 4 are satisfied so the algorithm will add the value 9 to
start; and the value 7 to end; end we end up with start; = [2, 20, 9]
and end[10, 35, 7]. and once we sort end; and start; (this is done
in the UpdateSignalConstraint algorithm), we get intvl(p;) =
[2,7],[9, 10], [20, 35].

Note here, with each call of Sub-Update, the algorithm makes
simple changes to start; and end; while making sure to keep both
arrays (start; and end;) of same size. The algorithm either adds one
value to both arrays, removes one value from both arrays, or, adds
one value to one of the arrays and removes another value from the
same array. Having the same size for start; and end; guarantees
that we have the correct values for intvl(¢;) when we sort start;
and end; in Line 7 of UpdateSignalConstraint.

Algorithm 6: Sub-Update

Input: 7y, start;, end;
Output: start;, end;, point(¢;)

1 if point(¢;)[!] = TRUE then

2 if point(¢;)[l + 1] = TRUE then start; . add(7;.1)
3 else end; . remove(t;)

4 if point(¢;)[! — 1] = TRUE then end; . add(r;_;)
5 else start; . remove(z;)

6 point(¢;)[!] < FALSE

7 if point(¢;)[l] = FALSE then
3 if point(¢;)[I + 1] = FALSE then end; . add(z;)

9 else start; . remove(7y,1)

10 if point(¢;)[! — 1] = FALSE then start; . add(7;)
11 else end; . remove(r;_1)

12 point(¢;)[!] < TRUE

13 return start;, end;, point(¢;)

5.2.8 Computelntervals Algorithm. In this section, we show
how we compute, for a given environment &, intvl(¢;) of subfor-
mula ¢@; with boolean or temporal operators. The idea is based on
[24], we slightly modify it to make it work for pointwise semantics.
Suppose we have two traces with different sampling rates. The first
one, p1, is uniformly sampled of length 100 and the sampling rate is 1
second. And the second one, py, is non-uniformly sampled and it has
the following timestamps: 0, 1, 2, 4, 5, 7, 8, 10, 11, 13, 15, 17, 20, 25, 27,
30,35 and 40. And let us consider two signal predicates ¢; =
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s1 = 5and @2 = sp < 0 such that intvl(¢1) = [2,10],[20,35]
and intvl(¢2) = [7, 15], for both traces p; and p;.

Boolean operators. For Boolean operators, the computation is

straightforward. We have the following:
o For the uniformly sampled trace py:

e intvl(—¢q) = [0, 1],[11, 19], [36, 99]

e intvl(e1 V ¢2) = [2,15],[20,35]

e intvl(p1 A @2) = [7,10]
o For the non-uniformly sampled trace pj:

e intvl(=¢1) = [0,1],[11, 17], [40, 40]

e intvl(p1 V ¢2) = [2,15],[20, 35]

o intvl(g1 A @2) = [7,10]
Computing intvl(¢p;) for Boolean operators takes O(| intvl(¢;)l).

Temporal operators. To treat temporal operators, we need to
define the following [a, b]-back shifting operation as in [24]:

Definition 5. Let I = [m,n] and [a, b] be intervals and k an index
position. The [a, b]-back shifting of I, is

Ielab]l=[m-bn-al

We also define the trim of I, trimk(I), to be the largest possible
interval [7;, 7j],k < i,j < |p — 1] included in I. O

Note 1: When we omit the superscript k, it means k = 0.

Note 2: For the trim operator, given a intvl(p) with | intvl(¢)| inter-
vals, if the trace is uniformly sampled (in other words, for a given
timestamp, we know the next and previous timestamps in O(1)
time), we can calculate trim(intvl(¢)) in O(] intvl(p)|) time. How-
ever, if the trace is not uniformly sampled, calculating trim(intvl(¢))
takes O(| intvl(¢)|.log(|p|)) where the O(log(|p|)) is paid to find the
largest possible interval [7;, 7j],k < i,/ < |p — 1] included in I for
each interval I in intvl(¢) using binary search. Or, we can simply
iterate over all the timestamps in p to find trim(intvl(¢)) since the in-
tervals in intvl(¢) are ordered. This makes calculating trim(intvl(¢))
takes O(|p|).

Eventually operator O, p): To calculate O ), We just do
trim(intvl(¢) © [a, b]). For example,
e For the uniformly sampled trace p1, intvl(<y 3101) = [0, 9],
[17,34]. This will take O(| intvl(¢p)|).
e For the non-uniformly sampled trace pz, intvl(<(y 3101) =
[0, 8],[17, 30]. This will take O(|p|) or O(| intvl(e)|.log(|p|))
(depending on which method used).

Always operator O, p): For Oy 4 )¢, We can abuse notation and
define it as follows intvl(O| 4 @) = intvl(¢) © [b, a]. Note in case
of intvl(p) = [m,n] and n — b < m — a, intvl(QO|4 p)¢) = 0.

e For the uniformly sampled trace py, intvl(Oy ¢)01) = [1,4],
[19, 29].

e For the non-uniformly sampled trace pz, intvl(O[y ¢1¢1) =
[1,4], [20, 27].

Until operator U[, p): For the until operator ¢1U[q p)p2, we will
use the same claim used in [24].

Claim. Letp =1 V2 Vepandy =1 Vi - Vg be two
STL* subformula, each written as a union of unitary subformula
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(with a single interval). Then

P q

¢Upa,p1Y = \/ \/ ¢ilUiap)yj O

i=1j=1

For each interval I in ¢1 and J in @3, we do the following: ((I nje
[a,b]) N I. Then, we apply the trim operation to all intervals.
For example, let us consider first the uniformly sampled trace p;:
for p1U[3, 4102
(@) [2,10] N [7,15] = [7,10], [7,10] ©[2,4] = [3,8],[3,8] N [2,10] =
[3,8] and
(b) [20,35] N [7,15] = 0
= intVl((pl'L[[ZA] ®2) = [3,8].
And, for the non-uniformly sampled trace p2: we have
intvl((plﬂ[z,“(pz) =[4,8].
o Uniformly sampled trace: This operation will take
O(| intvl(p1)] + | intvl(¢2)[)
e Non uniformly sampled trace: This operation will take O(|p|)
or O(|intvl(¢1)| + | intvl(¢2)|-log(|p]))

Algorithm 7: ComputeIntervals

Input: ¢;, i
Output: intvl(¢;)
1 if @5 = =@m// intvl(9m) = ([Tmy> Tmy ] - - - [Tmy, Tm,]) then
intVl(‘Pj) — ([7s, Tma—l]’ [Tmb+1’ Tmc—l] B [Tmz+la T\p\—l])
if 9; = @ V @n then
intvl(p;) < (intvl(¢) U intvl(@n)) N [7i, 75)-1]
if ¢; = (pm"LI[a’b](pn then
intvl(¢;) « ()
for each interval I in intvl(¢,,) do
L for each interval J in intvl(¢,) do

L intvl(tpj).append(((l NnJj)ela bl)n I)

)

o w1 oe W

8 intvl(g;) « trim? (intvl(e;))

9 return intvl(¢;)

Pushing further more. For the trim operator, we can still improve
the complexity. In fact, the goal of the trim operation is, given an
ordered trace and a set of ordered intervals, to try and match the
bounds of each interval to the nearest timestamps from the trace
(timestamps must be included in the interval). We could simply
walk through the trace as we described it in Note 2. Or, even better,
we could use an exponential search [7].

Suppose we have the following trace: 0, 1, 3, 4, 6, 9, 13, 15, 16, 20, 22,
25, 28, 30, 35, and we have the following two intervals we are trying
to trim: [12,17] and [21,30]. First, we start with the right bound of
the first interval, 12. We compare 12 with the first timestamp in
the trace, 0, 12 is bigger so we move to the next timestamp. 12 is
bigger than 1 so we jump two timestamps. 12 is bigger than 4 so
we jump 4 timestamps (we exponentially increase the jump size
each time). 15 is bigger than 12 so we stop and we search for our
target timestamp (which is 13 in this case) using binary search in
the values ranging between 4 and 15.

Once we find the target timestamp, the algorithm will move on
to the second bound which is 17, and repeat what we did in the first
step. The only difference now is that we start from the timestamp
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15 this time and not 0. Similarly, the same steps will be done for all
the bounds of the different intervals that we have.

Clearly, the advantage of this algorithm is that it can skip some
timestamps and it does not need to iterate over all the timestamps.
This algorithm can lower all the O(|p|) (or O(| intvl(¢)|.log|pl) )
complexities that we had in this section to O(log(i1) + log(iz —i1) +
-+ +10g(iz. | intvi(p)| ~ i2.]intvi(p)|-1)) Where the i’s are the indices
of the different target timestamps. We can also simply write down
the previous complexity as O(min(|p|, | intvl(p)|.log|p|)). In other
words, the exponential search algorithm guarantees us to have the
best out of the two complexities O(|p|) and O(| intvl(p)|.log|pl).

6 EXAMPLE

In this section, we will go over the running steps of our algorithm
for the following formula:

0o = 01232.(|:|[1’5]s < ¥ A <>Ilsl.(|:|[1’5]s > s)

We will consider a uniformly sampled trace with a sampling rate
of 1 second. Lines are shown in order as in how the algorithm runs.
If we want to consider a different example with a non-uniformly
sampled trace, the steps would be exactly the same with just one
small difference: for any subformula ¢, calculating intvl(y/) will be
slightly different (the difference is when to apply the trim operator,
this was explained in details in section 5.2.8).

In this example, our signal has just one component and it has the
following values: s = (2, 5,7, 10, 15,13, 11, 6, 3, 1, 7). The algorithm’s
first step is to sort the signal: sorted(s) = (1, 2,3,5,6,7,7,10, 11, 13, 15).

For the first freeze variable s!, we run the different instantiations
i,i € [0,|p|—1]. Below is a breakdown of each variable the algorithm
calculates for the different instantiations:

Instantiation 0: s*! = 2:
flip[0] = 2, point(go) = [F,T,T,T,T,T,T,T,T,F,T]
intvl(¢go) = [1, 8],[10, 10], intvl(¢s) = [0, 3]

Does intvl(gpg) start with 0? Yes = point(¢7)[0] <« T

Instantiation 1: s'* = 5:
sorted(s). remove(2), flipg[0] «— 2 — 1 = 1 and flipy[1] = 3.

We update the values in point(¢g) that correspond to the signal
values with positions 1 and 2 in sorted(s), thatis,s =3 and s = 5
corresponding to position indices 1 and 8 in point(¢g).

point(¢o) = [F,T,T,T,T,T,T,F,F,T]

intvl(gpg) = [2,7],[10, 10], intvl(ps) = [1, 2]

Does intvl(gs) start with 1? Yes = point(p7)[1] « T

Instantiation 2: s'* = 7:
sorted(s). remove(5), flipg[1] «— 3 — 1 = 2 and flipy[2] = 5.

We update the values in point(¢g) that correspond to the signal
values with positions 2,3 and 4 in sorted(s), that is, s = 6,s = 7 and
s = 7 corresponding to position indices 7,2 and 10 in point(¢o).
point(¢o) = [F,T,T,T,T,T,F,F,F,F]

intvl(pg) = [3,7], intvl(ps) = [2, 2]

Does intvl(gs) start with 2? Yes = point(p7)[2] < T

By the end of all the instantiations of the freeze variable s', this
is how point(¢7) and intvl(¢7) look like:
point(¢7) = [T,T,T,F,F,F,F,F,F,F,F], intvl(e7) = [0, 2]

Then the algorithm proceeds to the next iteration of the for loop
in Line 4 of 4 and calculates intvl(gg ), point(¢s), intvl(gs), intvl(¢3)
for all the instantiations of s? to get the values of point(gs) and
eventually intvl(gs).
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Finally, it runs Lines 26-28 to calculate intvl(¢;) and returns it.

7 RUNNING TIME: OPTIMIZED ALGORITHM

Before we give the complexity of our optimized algorithm, let us
first introduce the following variables:

e | SubTree(xy )|: number of sub-formulae in SubTree(xy ).

o V: the number of freeze variables in ¢.

e | intvl(¢)|: maximal size of start; for any subformula in ¢.
e | AST(p)|: number of subformulae in ¢.

We have the following complexities:

e Sorting a signal component (Line 3 of the optimized algo-
rithm) takes O (|p| - log(|pl))

e Transform Algorithm: O(|p|) (for loop in Line 3).

e UpdateSignalConstraint Algorithm: O(|p|) (the Line 5 for
loop has at most |p| iterations. The Line 7 if condition makes
sure Lines 8-12 have at most O(|p|) complexity).

e Sub-Update Algorithm: O(1).

e ComputeIntervals Algorithm: O(| intvl(¢)|) for a uniformly
sampled trace and O (min (|p|, | intvl(¢)| - log(|p|))) for non
uniformly sampled trace (as explained in section 5.2.8).

Now, for our optimized algorithm, calculating intvl(¢;) for all
subformula ¢; (other than signal constraints) in SubTree(xy ) for just
one instantiation (for loop in Line 16-20) takes O(| SubTree(xy)] -
| intvl(g)|) time for a uniformly time-sampled trace and
O (min (|p|, | intvl(p)| - log(|p|))) for non-uniformly time-sampled
trace. However, this is only when we already have intvl(¢p;) for the
signal constraint ¢; (Line 18). Updating a signal constraint takes
O(|p|) for each instantiation.

To sum up, for each freeze variable x; (Line 4), the algorithm
needs to iterate over |p| instantiations (Line 15), and for each in-
stantiation, we need to update all the subformula in SubTree(x})
including signal constraints (Lines 16-20). Thus, the complexity of
the algorithm will be:

e O(|V]-|p| - max(|pl,| AST(¢)| - | intvl(p)|)) for a uniformly
sampled trace.

e |V|-|p|-max( el

pl,
| AST(¢)| - min(|p|, | intvl(¢)] - log|p|) ))
for a non-uniformly sampled trace.

For a non-uniformly sampled trace, updating the signal constraint
takes the same time as in the uniform case - O(|p|), the first term of
the max expressions above. However, calling ComputeIntervals
with each instantiation will take O (min (|p|, | intvl(¢)| - log(|p])))
instead of O(| intvl(¢)|) which explains the higher complexity. Note
that, in our complexity analysis, we assume that we have a constant
number of signal constraints.

In practice, we expect | intvl(¢)| to be very low compared to the
trace size. We also expect that updating the signal constraint will
not require O(|p|) time. In fact, from one instantiation to the next
one, only few values in point ¢ (where ¢ is the signal constraint)
will need updates while the majority of values will remain the same,
this is due to the fact that signals in the real world are continuous
and do not have sudden value shifts.

Overall, we would expect both factors inside the max to be low;
and hence we expect sub-quadratic, O(|p| - log(|p|)) running times
(in terms of trace size) for uniformly sampled traces (at least for
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formulae and traces with a low number of intervals), the |p|-log(|p])
factor is from sorting the signal values (Line 3 of the algorithm).
For the non-uniformly sampled case, we expect similar running
times as the uniformly sampled trace since we similarly expect the
min factor to be low as well.

8 EXPERIMENTS: OPTIMIZED ALGORITHM

Our experiments were conducted on a 64-bit Intel(R) Core(TM)
15-9300H CPU @ 2.40GHz with 16-GB RAM and we implemented
our optimized algorithm using C++. We generated the traces using
Python. Noise was added to all traces by superimposing a noise
signal. Some of the signals that we used in our experiments are
shown in Figure 4. We use the formulae in section 3 in our experi-
ments. In addition, we use the following formula to test our code
for formulae with more than one freeze variable:

Y7 = s1.<>[0’€] (s —s">an s2.(|:|[0’T]s —s* < 5)) .

The obtained results are shown in Table 1 and conform to our
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Figure 4: Some generated signals used in the experiments

complexity analysis. We can see that the size of | intvl(i/;)| depends
on the STL] requirement and the trace. For i/; for example, the
requirement is to check if the signal is oscillating with a period at
most 10-time units, the bigger the trace, the more oscillations we
need to check, the higher | intvl(y;)|. Other formulae like 2, 5, Y6
and /7 check conditions that do not scale with the trace, thus,
| intvl(¥;)| is constant for them.

In the non-uniformly sampled trace case, since our algorithm
calls the trim function to iterate over the intervals of a given sub-
formula, it can perform, in the best case, as well as in the uniform
case . Or, in the worst case, the algorithm runs in quadratic time
complexity in terms of trace size. In practice, in most cases, the
algorithm runs in sub-quadratic time.

Formula ¢35 checks the spike requirement, we ran experimenta
with different numbers of spikes and we noted that each extra spike
adds +1 to the number of intervals of the subformula s.(O[g (s —
s* > 8 A O[g,w]ls — 57| < €)). The position of the spikes does
not affect the running time for the non-uniformly sampled trace
algorithm, or for the uniformly sampled trace case. In table 1, the
trace that we used has 10 spikes.

For 14, we recall that this formula checks if the settling time
of a signal exceeds a certain value. The low running time can be
explained by the fact that the shown high number of intervals is
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[p| = 2500 [p| = 5000 [p| = 10000 [p| = 20000 [p| = 100000
1 A B n A B n A B n A B n A B n
Y7 | 0.086 | 0.091 | 25 | 0.242 | 0.264 | 49 | 0.891 | 0.921 | 97 | 3.394 | 4.576 | 193 | 85.78 | 89.56 957
Yo | 0.024 | 0.024 1 0.035 | 0.036 1 0.055 | 0.053 1 0.097 | 0.101 1 0.503 | 0.514 1
Y3 | 0.038 | 0.045 | 11 | 0.061 | 0.086 | 11 | 0.110 | 0.153 11 0.216 | 0.314 11 1.109 | 2.104 11
Ys | 0.052 | 0.055 | 40 | 0.101 | 0.107 | 80 | 0.278 | 0.292 | 159 | 0.564 | 0.593 | 318 | 1.071 | 1.209 1571
¥s | 0.027 | 0.028 | 2 | 0.038 | 0.040 | 2 | 0.052 | 0.056 2 0.088 | 0.092 2 0.363 | 0.392 2
We | 0.027 | 0.028 | 3 | 0.044 | 0.047 | 3 | 0.068 | 0.072 3 0.123 | 0.131 3 0.417 | 0.431 3
Y7 | 0.025 | 0.025 | 2 | 0.031 | 0.033 | 2 | 0.048 | 0.049 2 0.080 | 0.085 2 0.426 | 0.441 2

A: uniformly sampled trace monitoring times (seconds); B: non-uniformly sampled trace monitoring times (seconds); n = | intvl(y;)|.
Table 1: Results for the different subformulae for different |p| values

only within the first 150 instantiations (for all trace sizes), after that,
the maximum value of | intvl(y4)| is 1. In fact, the average number
of intervals per instantiation and per subformula is 3.37 for all trace
sizes. The obtained running times show that our complexity is an
overestimation and in practice, our algorithm’s running time is
affected by the average number of intervals and not the maximal
number of intervals.

Note that, in our experiments, ¥ is the same formula (7) used
in [9] and ¥5 matches the template of formulae (8) and (9) from
the same work. The authors in [9] claim that “a single run of the
monitoring algorithm for the formulae (7), (8) or (9) over a signal
sampled by 80 points took several hours on a regular PC” while our
algorithm takes milliseconds for a trace of length 2500.

We conduct a second set of experiments on /1. We use a trace that
consists of a periodic signal and we fix the number of timestamps
to |p| = 10000. We vary the signal frequency in order to change the
| intvl(y)| value. We report the obtained results in table 2. Again,
the obtained results conform to our complexity analysis.

n=25|n=49 | n=97 | n=193 | n =383
A 0.266 0.442 0.868 1.704 3.231
B 0.271 0.484 0.941 1.953 4.593

n = |intvl(yy)].
Table 2: Results for the different | intvl(y)| values

9 CONCLUSION

In order to overcome the expressivity limitations of STL, researchers
have investigated augmentations with additional temporal opera-
tors. Apart from [5, 9], the work in [4] which augments STL with
max/min operators over windows, and presents a linear time mon-
itoring procedure, is relevant. While their logic augments STL, it
cannot express many of the properties expressible in STL].

Freeze quantification has been long studied [2, 8], and provides
a natural syntax for expressing many commonly occurring engi-
neering properties that cannot be expressed in STL. Our present
work is the first one to show that monitoring still remains tractable
with the addition of signal-value freeze quantification to STL (pro-
vided that freeze quantifiers are independent of each other). We
provide experimental validation for our monitoring algorithms and
demonstrate that our proposed algorithms scale to trace lengths of
100k. In addition to being the first scalable monitoring algorithms for
signal-value freeze quantification, our algorithms do not use any
specialized libraries such as those for manipulating polyhedra; and
hence are efficiently implementable on a wide range of platforms.
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