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OCCUPATIONAL APPLICATIONS ARTICLE HISTORY
“Overassistive” robots can adversely impact long-term human-robot collaboration in the Received 18 July 2023
workplace, leading to risks of worker complacency, reduced workforce skill sets, and ~ Accepted 7 March 2024
diminished situational awareness. Ergonomics practitioners should thus be cautious about KEYWORDS

solely targeting widely adopted metrics for improving human-robot collaboration, such as Human-robot collaboration;
user trust and comfort. By contrast, introducing variability and adaptation into a collaborative robot-to-human handover;
robot’s behavior could prove vital in preventing the negative consequences of overreliance computational ergonomics
and overtrust in an autonomous partner. This work reported here explored how instilling assessment; human posture
variability into physical human-robot collaboration can have a measurably positive effect on

ergonomics in a repetitive task. A review of principles related to this notion of “stimulating”

robot behavior is also provided to further inform ergonomics practitioners of existing

human-robot collaboration frameworks.

TECHNICAL ABSTRACT

Background: Collaborative robots, or cobots, are becoming ubiquitous in occupational
settings due to benefits that include improved worker safety and increased productivity.
Existing research on human-robot collaboration in industry has made progress in enhancing
workers’ psychophysical states, by optimizing measures of ergonomics risk factors, such as
human posture, comfort, and cognitive workload. However, short-term objectives for robotic
assistance may conflict with the worker’s long-term preferences, needs, and overall wellbeing.
Purpose: To investigate the ergonomic advantages and disadvantages of employing a
collaborative robotics framework that intentionally imposes variability in the robot’s behavior
to stimulate the human partner’s psychophysical state.

Methods: A review of “overassistance” within human-robot collaboration and methods of
addressing this phenomenon via adaptive automation. In adaptive approaches, the robot
assistance may even challenge the user to better achieve a long-term objective while partially
conflicting with their short-term task goals. Common themes across these approaches were
extracted to motivate and support the proposed idea of stimulating robot behavior in physical
human-robot collaboration.

Results: Experimental evidence to justify stimulating robot behavior is presented through a
human-robot handover study. A robot handover policy that regularly injects variability into
the object transfer location led to significantly larger dynamics in the torso rotations and
center of mass of human receivers compared to an “overassistive” policy that constrains
receiver motion. Crucially, the stimulating handover policy also generated improvements in
widely used ergonomics risk indicators of human posture.

Conclusions: Our findings underscore the potential ergonomic benefits of a cobot’s actions
imposing variability in a user’s responsive behavior, rather than indirectly restricting human
behavior by optimizing the immediate task objective. Therefore, a transition from cobot
policies that optimize instantaneous measures of ergonomics to those that continuously
engage users could hold promise for human-robot collaboration in occupational settings
characterized by repeated interactions.

1. Introduction human workers in a shared task by adapting to the
workplace environment, task requirements, and work-
Collaborative robots, or cobots, are a promising tech-  ers’ needs. The adoption of cobots has been shown to

nology for the future of industry. These robots assist  reduce work-related injuries in occupational settings,
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such as the US. and German manufacturing sectors
(Gihleb et al., 2022). Cobots have also led to improve-
ments in productivity by enabling workers to be rede-
ployed to a higher-value-added task (Franklin et al,
2020) or by reducing human error during monoto-
nous jobs (Gihleb et al., 2022), such as quality assur-
ance in personal and protective equipment testing
(Shaham et al., 2022).

One typical cobot scenario in industry is robot-to-
human handover. In this scenario, the cobot helps a
worker lift packages or other heavy loads to alleviate
the risk of work-related musculoskeletal disorders
(MSDs) caused by repetitive or non-neutral body
motion (Schneider et al., 2010). The robot assists in
the handover by determining an object transfer point
(OTP) to optimize one or more indicators of ergo-
nomics (Ortenzi et al., 2021). Ergonomics indicators
are components of workplace processes that can be
used to quantify the ergonomics risk systematically
and periodically along these processes (Sarbat &
Ozmehmet Tasan, 2022). These indicators can encom-
pass static and dynamic risk factors in ergonomics,
such as the effects of human posture and joint veloc-
ities on the incidence of MSDs, respectively (Maurice
et al,, 2017).

Within the robotics literature, there is a diverse
array of common variables considered in ergonomics
cost functions when selecting an OTP for robot-to-
human handover (Ortenzi et al., 2021). These vari-
ables often capture properties on the safety, comfort,
and acceptability for the human receiver, where the
aim is to pick a handover location that maximizes
these properties to decrease MSD risks (Busch et al.,
2017; Parastegari et al., 2017; Ortenzi et al., 2021).
However, when choosing an OTP to maximize a
property, like acceptability, the optimal OTP is often
a single repeated point across handovers. This forces
the receiver to perform repetitive behaviors, which
leads to a suppression of their natural movement
variability. Suppressing variability in receiver move-
ment through the cobot’s assistance is problematic, as
whole-body motion variability during object handover
exchanges is recognized as an effective intervention
against MSDs (Mathiassen et al., 2003; Srinivasan &
Mathiassen, 2012).

In light of this perspective on variability, our prior
work on robot-to-human handover developed a method
to intentionally “stimulate” the receivers motion
(Zolotas et al., 2022). Specifically, we conducted a user
study to compare this stimulating handover policy
against a traditional assistive control mode. The stim-
ulating handover policy resulted in enhanced ergo-
nomics scores based on risk assessments of receiver

posture using the Rapid Entire Body Assessment
(REBA) instrument (Hignett & McAtamney, 2000).
The current report expands on the cobot framework
presented in the earlier Zolotas et al. (2022) study, by
extending the experimental results to include new
ergonomic indices, including velocity and jerk in
receiver movement. Moreover, we explore the related
concept of “overassistive” cobots, which we regard as
collaborative autonomous agents with a behavior policy
focused entirely on optimizing an objective function
for immediate task assistance. We also discuss the sig-
nificance of conducting longitudinal studies on
human-robot collaboration frameworks in occupational
settings. The overarching goal of the current study was
to provide further insight into how an adaptive cobot
that induces motor variability in its human partner
compares to an overassistive cobot, particularly when
considering ergonomics during extended interactions,
like repeated robot-to-human handovers.

2, Background and Motivation

In human factors research, the importance of straying
away from prescribed movement and enabling free
motion is often highlighted for its benefits on motor
variability (Stapley et al., 1999; Mathiassen et al., 2003;
Srinivasan & Mathiassen, 2012). Our recent study
probed this concept in the context of robot-to-human
handovers by injecting variability into the cobot
behavior, hence “stimulating” receiver motion (Zolotas
et al, 2022). In this section, we first examine the
occurrence of motor variability in the workplace to
better understand its influences on worker wellbeing
and productivity, specifically when the worker’s task is
repetitive. 'We then review
human-robot collaboration, discussing its hindrances
on motor variability and the ergonomics of workplace
processes. Methods of mitigating overassistance will
also be provided to motivate the cobot framework
depicted in Section 3.

« . b2l .
overassistance in

2.1. Motor Variability in the Workplace

Repetitive movements constitute a major risk factor for
occupational MSDs in regions of the human body,
such as the neck, shoulders, and arms (Luttmann et al,,
2003; Srinivasan & Mathiassen, 2012). Consequently,
motor variability is frequently investigated in the work-
place, with stimulated movement hypothesized to be
less restraining and less likely to incur MSDs in the
workforce population (Punnett & Wegman, 2004). For
example, active workstations that prevent prolonged
static posture (e.g., standing or treadmill desks)
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potentially have a range of biomechanical and physio-
logical benefits (Dupont et al, 2019). While these
workstations offer a promising ergonomic solution for
many occupational roles associated with sedentary
behavior, the outcomes of their long-term usage require
further scrutiny (Dupont et al., 2019).

A longitudinal perspective on motor variability
during repetitive work was obtained from a study that
analyzed the arm, trunk, and electromyography vari-
ability of butchers performing cutting tasks over a
6-month period (Madeleine et al., 2008). The focus of
this study was to observe the effects of employment
duration and pain development on motor patterns,
where variability between experienced and inexperi-
enced butchers was compared. The results demon-
strated that experienced butchers had greater motor
variability than inexperienced butchers, yet as novices
approached the end of the 6-month experiment dura-
tion, they exhibited more varijability in the presence of
sub-chronic neck-shoulder pain. The authors con-
cluded that the lack of motor variability in repetitive
tasks leads to work-related MSDs over time.

Another study evaluated the variability of exposure
to physical risk factors within and between operators
when executing a truck assembly task (Zare et al.,
2018). The aim of this study was to assess the poten-
tial reduction in work-related MSDs resulting from
variations in operator strategies. Depending on the
operational leeway in operator strategies allowed by
companies, the authors observed two extremes. Firstly,
manufacturers that strive for higher production levels
by heavily enforcing standardized task operation and
disabling operational leeway face the risk of causing
musculoskeletal problems due to the repetition of
tasks without variation. In contrast, companies that
are too lenient in enabling operators to have more
variability in tasks could lead to workers overexposing
themselves to risks. The fundamental challenge is to
then find a reasonable compromise between standard-
ization of operation and allowed variability in opera-
tors, which will attain high production quality and
reduce physical risk factors.

2.2. “Overassistive” Collaborative Robots

By our definition, “overassistive” cobots repeatedly select
assistive actions according to a policy that optimizes for
a short-term task objective. Although reliable and con-
sistent, these cobots can have negative repercussions on
human partners by neglecting to consider off-policy
behaviors that may vyield long-term advantages
(Parasuraman & Riley, 1997). In occupational settings,
“overassistive” action-selection can build overreliance

and/or overtrust in human workers, which may gradu-
ally lead to complacency, skill degradation, and dimin-
ished situational awareness (Parasuraman et al., 2007;
Onnasch et al, 2014). The following describes how
cobots exhibit overassistance and how adaptive automa-
tion offers a favorable alternative.

In industrial cobot frameworks, a common strategy
is to first define one or more ergonomics metrics, and
then to frame these metrics as an optimization prob-
lem to find an “optimal” control strategy (Busch et al.,
2017; Maurice et al., 2017; Kim et al, 2019; Shafti
et al., 2019; Fortini et al., 2020). A range of ergonom-
ics indicators can be derived from a human’s biome-
chanical and/or cognitive state, including rotational
head movement, dynamic balance, joint torque, human
posture, fatigue, stress levels, and so forth (Maurice
et al, 2017; Kim et al., 2019; Merlo et al., 2023). The
robot’s cost function can then be expressed as either a
single ergonomics indicator or a weighted sum of
multiple indicators. Optimizing this cost function
results in a cobot control policy that is intended to
guide the human’s biomechanical state into an “opti-
mal” configuration. For instance, Kim et al. (2019)
employed a control module for a robotic arm, where
the robots planned path approached a destination
pose corresponding to the optimal posture configura-
tion, as determined by the human partner’s joint
torques and base of support.

While these optimization formulations are effective
for short-term human-robot exchanges, the cobot’s
behavior may be liable to overassistance. This out-
come primarily stems from the fact that most ergo-
nomics metrics are based on kinematic descriptions of
the human’s biomechanical state, e.g., body posture
(Hignett & McAtamney, 2000). As a result, the human’s
dynamics (e.g., joint velocities) and the associated
risks on ergonomics are not necessarily taken into
account (Maurice et al, 2017; Merlo et al., 2023).
Dynamic measurements in ergonomics indicators play
a pivotal role when evaluating the efficacy of a cobot’s
actions on the human’s state beyond the current
instant (Maurice et al., 2017). If the optimal control
policy is obtained solely from static ergonomic metrics
within a single work cycle, then temporal risk factors,
such as task repetitiveness or duration, will go unde-
tected (Merlo et al., 2023). Furthermore, kinematic-only
control policies are more likely to constrain joint and
center of mass displacement, which is unnatural for
whole-body human motion (Commissaris et al., 2001).

To overcome the risk of constraining human motion
via an overassistive control policy, the cobot behavior
can instead opt to impose variability in their human
partner’s movement. An interesting research question
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that arises in such collaborations is whether a robot’s
control policy should continuously adapt to the human
partner, or whether it should remain fixed (Ajoudani
et al, 2018). In the former case, the human partner is
forced to keep re-adapting to the changing robot pol-
icy, while the latter enables the human to swiftly learn
the robot’s capabilities. However, long-term human-robot
collaborations under the latter scheme could lead to
complacency, or worse, a decline in human capabilities
(Parasuraman et al., 2007).

The essential idea behind the cobot policy that we
present here and in our earlier work (Zolotas et al,
2022) is to thus favor variable robot behavior when-
ever the collaboration consists of repeated work cycles.
One simple means of bestowing variability in the
robot’s control policy is to inject noise into the behav-
ior, under the constraint that robot motion always
preserves human safety. In the next section, we exem-
plify how this can prove effective through a robot-to-
human handover use-case.

3. Methods

In the current work, we extend the results of our
recent robot-to-human handover study, which was
motivated by the relevant literature on inciting motor
variability to deter overassistance in human-robot col-
laboration (Zolotas et al., 2022). Here, we place
emphasis on evaluating the study’s data for ergonom-
ics indicators with dynamic risk factors, such as
smoothness in receiver movement. We first introduce
the cobots method of eliciting motor variability in
human receivers. The earlier study’s experimental
setup is then summarized. Lastly, a new set of metrics
and experiment hypotheses will be introduced to tease
out the potential ergonomics benefits of the cobot
framework proposed in Zolotas et al. (2022).

3.1. Stimulating Robot-to-Human Handover

In robot-to-human handover, a cobot helps a human
partner lift packages or other heavy loads to mitigate
the risk of injury. The traditional perception-action cycle
of robot-to-human handover begins with the cobot esti-
mating the receiver’s biomechanical properties (e.g., joint
angles), then computing an ergonomics indicator accord-
ing to these properties, such as a REBA score (Hignett
& McAtamney, 2000), and finally selecting an OTP to
improve this indicator (Ortenzi et al., 2021). The follow-
ing briefly describes two robot handover policies that
adhere to this cycle: Assistive and Stimulating. These pol-
icies can be seen as overassistive and motion-triggering
forms of cobot handover behavior, respectively.

To produce an estimate of the receiver’s biome-
chanical features, we require accurate real-time 3D
position estimation of multiple body segments. Many
contemporary works use full-body motion capture
systems to estimate these body segment positions (van
der Spaa et al, 2020). In contrast, markerless
vision-based approaches that use RGB-D cameras are
often cheaper, easier to configure, and less invasive on
the worker, therefore providing a suitable fit for regu-
lar work environments. We opt for a vision-based
tracking method to estimate body joint poses from an
RGB camera (Bazarevsky et al., 2020).

Our handover methods utilize two essential kine-
matic parameters of a human receiver: the whole-body
center of mass (CoM) and the base of support (BoS).
To estimate CoM in real-time, a human’s body can be
approximated as a system of particles, with each par-
ticle representing a body segment (Eng & Winter,
1993). Each body segment is assigned a percentage of
body mass, such that the CoM is the weighted average
of all segment positions using segment masses as
weights (Plagenhoef et al., 1983; Eng & Winter, 1993).
To account for the mass of the package being lifted,
hands can be assigned different masses before and
after handover. For the BoS, the area beneath the per-
son that includes every point of contact made with
the ground can be approximated as the convex hull
between the left and right heels, and the intersection
of the first toe tips with each foots outermost toe
edges (see Figure 1).

Numerous prior studies focused on human biome-
chanics to determine “optimal” OTPs, where the devi-
ation of a receiver's CoM is minimized while
maintaining it within their BoS (Peternel et al., 2017;

Figure 1. Two handover policies to govern the collaborative
robot’s behavior. The arrows indicate the Object Transfer Point
(OTP) from one handover to the next, as well as the intended
motion of the human subject’s center of mass (CoM) around
their base of support (BoS).
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Kim et al, 2019). However, constraining whole-body
movement is unnatural for humans (Commissaris
et al., 2001). Zolotas et al. (2022) posited that provok-
ing posture variability leads to handovers with better
ergonomics indicator scores as movement constraints
are relaxed. To explore this claim, two handover poli-
cies were developed: Assistive and Stimulating. The
OTP selection in the two modes is shown in Figure 1.
Given the current transfer point, OTP,, the Assistive
mode selected the next transfer point, OTP,, to shift
the human receiver’s CoM further inside the BoS
polygon. More specifically, the handover pushed the
human’s CoM toward the BoS polygon’s centroid
marked by the cross. The Stimulating mode instead
chose the next transfer point, OTP,, based on a ran-
domly selected BoS corner (e.g., C), such that the
human receiver’s CoM moved momentarily outside
the BoS polygon.

3.2. Experiment Setup & Protocol

We conducted a within-subjects experiment to inves-
tigate whether the Stimulating handover policy could
encourage a human worker to be more attentive and
cognizant of their posture during human-robot han-
dover than with the Assistive handover mode. The
experiment emulated industrial pick-and-place tasks,
such as in seafood processing (Figure 2), by having
participants retrieve packages from the end-effector of
a long-reaching robotic arm and then carry these

Figure 2. Workers packaging and transferring boxes of seafood
in a seafood processing facility.

packages over to a drop-off location, roughly 4m
away from the package exchange region. The overall
experimental setup is illustrated in Figure 3. For each
handover, the robotic arm picked up a 6.8kg package
from a pile and held the package at an OTP for the
receiver to collect it. Before participants performed
the experiment, they familiarized themselves with the
task by performing a Training session that involved
seven package handovers, where the robot always
selected the same OTP.

A total of 16 participants (6 female, 10 male) were
recruited from the Northeastern University student
community, as well as the MassRobotics facility in
Boston, MA where the experiment was situated. The
subjects were young (aged 20-34, median 23) and pre-
dominantly had some experience working on robots,
with 75% of the subject pool claiming prior experi-
ence in a survey question. Table 1 presents an over-
view of the subject pool. The study reported here was
reviewed and approved by Northeastern University
Institutional Review Board (#19-06-14), and partici-
pants provided their written informed consent.
Interested readers are encouraged to refer to Zolotas

Figure 3. Experimental setup. Top: an overview of how the
collaborative robot exchanges packages with a user while
human posture is tracked by an external camera. Bottom: a
top-down perspective of the experiment workspace.
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Table 1. Demographic information of the robot-to-human handover study participants. Entries are means (SD).

Gender Age Range Height (m) Mass (kg)
Male (n=10) 21 - 34 1.73 (0.13) 75.6 (11.8)
Female (n=6) 20 - 23 1.66 (0.05) 58.7 (5.0
All Subjects (n=16) 20 - 34 1.71 (0.11) 69.6 (12.8)

et al. (2022) for more details on the experiment design
and procedures.

3.3. Evaluation Metrics

We asked subjects to perform multiple repeated han-
dovers per experiment mode in order to discern the
prolonged effects on human posture and other ergo-
nomics risk factors. Participants engaged in 39 pack-
age handovers with the cobot per control mode, which
took a mean (SD) of 7.93 (1.12) minutes to complete.
The order of experiment modes was randomized and
then counterbalanced across participants to ensure
each possible order was presented to an equal number
of participants. Subjects were allowed a break when
switching experiment modes and were unaware of
how/whether the robot control policies differed
between the two trials.

In our previous work (Zolotas et al, 2022), we
reported on three quantitative metrics to assess the
ergonomic quality of subject handovers: REBA scores,
CoM displacements, and torso rotation angles. We
elected the REBA scale (Hignett & McAtamney, 2000),
as it is pervasively used to score whole-body posture
ergonomics in robot-to-human handover (Busch et al,,
2017; Shafti et al., 2019; Ortenzi et al., 2021). CoM
displacements and torso rotation angles were also eval-
uated to capture the extent of unconstrained receiver
movement (Stapley et al., 1999). All three metrics were
calculated from joint poses detected using an external
camera (see Figure 3). Other dependent measures
included user-reported workload via NASA-TLX (Hart
& Staveland, 1988), as well as post-experiment survey
responses on frustration, alertness, and preference
between the two control modes. The post-experiment
survey questions were structured as comparisons, for
example: “Which mode did you feel more alert during?
(Mode 1, Mode 2, or No difference)”.

This report augments our prior quantitative analyses
with three new ergonomics indicators: instantaneous
velocity in CoM, jerk in CoM motion, and the balance
stability margin. Second-order central differences of
CoM position data were used to approximate velocity
within a handover exchange. Here, we replace CoM dis-
placements for velocities in our analysis to better repre-
sent the dynamic demands on participants (Maurice
et al, 2017). Jerk is also computed using the mean
squared measure provided in Hogan and Sternad (2009)

to express smoothness in receiver movement. The bal-
ance stability margin is then evaluated as the squared
distance between the CoM and BoS edges. Margin of
stability is a widely used objective measure of dynamic
stability in human movement (Watson et al, 2021).
Finally, we report on the coefficient of variation for
recorded REBA scores and the mean proportion of a
trial that receivers’ body postures spent in a “high risk”
state for MSDs, as classified by the REBA tool (Hignett
& McAtamney, 2000).

3.4. Experiment Hypotheses

The following experimental hypotheses were tested in
this work:

o HI: Stimulating mode will increase human
receiver movement variability, as measured by
CoM velocities and torso rotations.

o H2: Stimulating mode will yield less ergonom-
ics risk on body posture based on the REBA
and balance stability margin measures.

o H3: No difference in smoothness of receiver
movement will be observed between the
Assistive and Stimulating modes, as signified by
CoM jerk.

Treating the cobots handover policy as the indepen-
dent variable (within-subjects factor), either two-tailed
paired-samples t-tests or Wilcoxon signed-rank tests
were performed on the dependent variables. If the
dependent data fulfilled the normality assumption
(Shapiro-Wilk test) and the sphericity assumption
(Mauchly’s test), then two-tailed paired-samples t-tests
were conducted. Only REBA and torso rotations met
these assumptions. For the other measures, Wilcoxon
signed-rank tests were utilized.

4, Results

With regards to movement variability, the Stimulating
mode elicited higher maximum torso rotation angles
and larger CoM velocities than those of the Assistive
condition, supporting H1. A paired-samples t-test
showed a significant effect of the robot control mode
on maximum torso angle (F(1,15)=4.89,p:0.043),
with larger angles observed for the Stimulating mode.
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Velocity estimates for subjects’ CoM between hando-
ver policies were also shown to be significantly differ-
ent via a Wilcoxon signed-rank test (p <0.001). Figure
4 illustrates CoM velocities averaged across all partic-
ipants per handover. A related measure to velocity is
jerk, which had a strong significant effect depending
on the handover policy according to the Wilcoxon
signed-rank test (p<0.001). This result does not align
with H3, as smoothness of receiver movement was
found to be jerkier when exposed to the Stimulating
condition (see Figure 4). The raw quantitative mea-
sures used to produce the above observations are pre-
sented in Table 2.

In terms of the subjects postural state, the
Stimulating mode nudged subjects toward improved
ergonomic posture measures. A significant main effect
on REBA was found using a paired-samples t-test

Figure 4. Box plots of the mean squared velocity and jerk val-
ues of participants’ Center of Mass (CoM) per handover.

(F(1,15)=9.88,p<0.01), with Stimulating acquiring
lower scores than Assistive, where smaller values are
preferable (Table 3). Not only were the REBA scores
lower on average, but the percentage of data samples
that possessed a REBA score greater than 7 (referred
to as a “high risk” REBA score), was also lowest for
the Stimulating condition. This reduction was even
more pronounced than when subjects lifted packages
during the initial Training session. By contrast, a
Wilcoxon signed-rank test showed no significant effect
between handover policies on the balance stability
margin measure (p=0.226), thereby only partially sup-
porting H2. Table 3 outlines the above results and
Figure 5 illustrates a trend toward higher margins for

Table 3. Mean and standard deviations per handover of Rapid
Entire Body Assessment (REBA) scores for all samples collected
across the three experimental conditions.

Balance

Stability
Experiment Coefficient of % >Risk Limit ~ Margin
Mode REBA Score Variation (7) (cm)
Training 5.06+0.67 13.2 9.02+6.48 833
Assistive 5.51+0.65 11.9 13.86+5.24 8.44
Stimulating 5.25+0.67 12.8 8.87+6.54 8.91

Notes: A higher REBA score denotes a higher degree of risk. Any score
above 7 is categorized as “high risk’, therefore the percentage of task
time spent in this danger zone is also reported. Coefficient of variation
values in the REBA metric and balance stability margins are also pro-
vided. Higher margins indicate better postural support.

Figure 5. Box plot of the balance stability margins averaged
across participant handovers. Larger values signify a more sta-
ble posture configuration.

Table 2. Aggregate statistics per handover of participants’ center of mass (CoM) velocities, torso rotation angles, and jerk in

Max. Torso Rotation Angle (°) CoM Jerk (m/s3)

movement.

Experiment Mode CoM Velocity (m/s)
Assistive 0.34
Stimulating 0.90

63.54
68.73

2.1x10°
7.4%x10°
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the Stimulating condition, with larger values suggest-
ing enhanced postural stability.

One of the key underlying reasons for promoting
motion variability in workers is to elevate their alert-
ness levels, which in turn can help workers maintain
awareness of risk factors in their surroundings (Tee
et al,, 2017). In our post-experiment survey, multiple
subjects commented on how the Stimulating mode
required them to be “aware/alert about where boxes
may end up,” creating “more excitement” or a “more
engaging experience” in comparison to the Assistive
policy. A few participants stated that the Assistive vari-
“more convenient/artificial,” whereas the
Stimulating mode was “more random,” as one would
expect from their respective designs. Table 4 reinforces
these remarks by demonstrating that most experiment
participants (9 of the 16) claimed to be “more alert”
during the Stimulating handover strategy. There were
mixed results reported by subjects on their perceived
workload (NASA-TLX), preference, and frustration, as
portrayed in Table 4.

ant was

5. Discussion
5.1. Overview

The robot-to-human handover study presented here
builds on our prior work (Zolotas et al., 2022) by
further investigating the ergonomic benefits of incor-
porating a “stimulating” control policy into the
human-robot collaboration. A cobot was developed to
employ such a policy by selecting OTPs with random
patterns, under certain BoS constraints, hence inject-
ing variability into the human receiver’s motion.
Motivated by ergonomics studies that reported results
in favor of enabling variability in the workplace, we
hypothesized that a robot handover policy capable of
stimulating human receiver movement would vyield
improvements in posture (Stapley et al., 1999;
Mathiassen et al., 2003; Srinivasan & Mathiassen,
2012). In contrast, a traditional Assistive handover
policy focused on maintaining a receiver’s CoM to be
within their BoS would restrict motor variability and
adversely impact human posture.

Table 4. Subjective questionnaire responses, with total
NASA-TLX scores (Hart & Staveland, 1988), preference, alert-
ness, and frustration choices indicated by experiment mode.

Experiment NASA-TLX More More
Mode Total Preferred? Alert? Frustrating?
Assistive 19.8 7 3 6
Stimulating 209 6 9 6

No Difference Not reported 3 4 4

To test our main hypotheses on how Stimulating
and Assistive handover policies would affect a receiv-
er’s kinematic posture and dynamic movement, sub-
jects performed multiple handovers with the cobot in
order to imitate multiple work cycles. As anticipated,
the Stimulating control mode heightened receiver’s
motion dynamics, with significantly larger maximum
torso rotation angles (68.73°) and CoM velocities
(0.9m/s) than those in the Assistive condition (63.54°
and 0.34m/s for torso rotation and velocity, respec-
tively). Figure 6 demonstrates this heightened motion
pattern across two consecutive handovers of each con-
trol mode for a specific subject. In general, we
observed that participants spread out across a greater
proportion of the handover zone wunder the
Stimulating policy.

Of major importance to our experiment is the
exploration of ergonomics indicators on postural risk
factors. The Stimulating methodology significantly
improved ergonomics scores by a mean difference of
0.26 in the REBA scale. However, there were no sig-
nificant effects on the balance stability margin indica-
tor, with a mean score of 8.91 for Stimulating than
8.44 in Assistive. While a 0.26 difference in REBA
scores is only slight, the OTPs generated by the
Stimulating mode also exhibited less “high risk” pos-
tural states for approximately 5% of the trial than
those recorded for Assistive runs (Table 3). One might
also argue that motion variability helped prevent sub-
jects from losing attention, thus evading sloppy pos-
tural awareness. This argument was reinforced by six
more participants choosing the Stimulating policy as
“more alert” than the Assistive condition (Table 4).

Despite the potential benefits of the Stimulating
handover method, it is worth highlighting a few open
research questions regarding the experimental find-
ings. Most notably, aggregating an instantaneous
kinematic-based ergonomic metric, like REBA, over
repeated interactions does not necessarily capture risk
factors dependent on the task duration, repetitiveness,
and past activities (Merlo et al, 2023). Therefore,
future work should re-calibrate the experiment to
investigate an appropriate kinematics “wear” index
(Merlo et al., 2023), as well as scrutinize further the
dynamics risk factors on ergonomics, e.g., overload-
ing forces when exchanging objects (Maurice et al,
2017). Our findings on jerk in CoM may also hint at
the adverse impact on smoothness of the Stimulating
handover method, given jerk measures are frequently
utilized in discerning movement fluency (Hogan &
Sternad, 2009). Future adaptations to the proposed
handover policy will need to consider techniques for
selecting random OTPs around the BoS that will



IISETRANSACTIONS ON OCCUPATIONAL ERGONOMICS AND HUMAN FACTORS . 131

Figure 6. lllustration of the difference between two consecutive handover exchanges using the Assistive mode (top row) and
Stimulating mode (bottom row). Less constrained motion is depicted when using the Stimulating mode, where the center of mass
displacement is clearly of greater magnitude across the two selected handovers.

prevent constrained receiver motion while simultane-
ously reducing jerk. This objective falls in line with
the desire to strike a balance between enforcing
constraints on operations in the workplace and
allowing variability (Ajoudani et al, 2018; Zare
et al., 2018).

5.2. Implications for Human-Robot Collaboration

The work presented here has several implications for
stakeholders of ergonomic human-robot collaboration.
For instance, the current findings reinforce the possi-
ble risks of overassistance (Parasuraman et al., 2007;
Onnasch et al,, 2014) when cobots choose OTPs that
keep human posture fixed or unvaried. The robotics

community should thus be cautious about developing
collaborative frameworks that impose a stabilizing pol-
icy on human motion. Additionally, ergonomics prac-
titioners within the robotics domain should transition
from single work cycle evaluations of the human-robot
collaboration toward longitudinal studies composed of
multiple work cycles. This will be integral in uncover-
ing novel ergonomic indicators that possess a temporal
nature and are only applicable to longer time scales
(Merlo et al., 2023).

The concept of deliberately introducing “stimulus”
into the physical collaboration extends beyond the scope
of robot-to-human handover, as can be demonstrated by
drawing connections to other robotics domains focused
on user development, such as rehabilitation robots. In
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rehabilitation robotics, assist-as-needed controllers chal-
lenge a user by dynamically adjusting the robot’s behav-
jor to encourage motor learning, engagement, and
overall betterment (Rauter et al., 2011; Pehlivan et al.,
2017). Many robotic tools have been developed to pur-
posefully challenge the subject, such as by disturbing
their posture (Peshkin et al,, 2005) or by generating a
stumbling-like response (Schmidt et al., 2005). Some
studies have shown that, when applied in a controlled
setting, counteracting force perturbations can even lead
to improved reactions for loss of balance (Matjacdi¢
et al,, 2018; Olensek et al., 2018). In essence, the pur-
pose for many cobots is to provide “conditional assis-
tance” as opposed to overassistance (Parasuraman et al.,
2007; Demiris, 2009; Onnasch et al., 2014). Consequently,
we believe that cobots can indirectly improve ergonom-
ics in occupational settings by relying on the human
worker’s adaptive capabilities under exposure to stimu-
lating behavior strategies, rather than by directly opti-
mizing instantaneous ergonomic metrics.

5.3. Future Research

Various research avenues can be envisioned from the
presented cobot framework. In robot-to-human han-
dover, ensuing experiments should analyze varying
package weights or recruit a more diverse subject pool
with a wider demographic that is representative of
the entire workforce. While MSDs are more prevalent
in older workforces, they are also a significant con-
cern for younger workers (Summers et al, 2015).
Furthermore, no task performance metric was consid-
ered when gauging productivity in the handover study.
Completion times could not be evaluated as the robot’s
generated trajectories were conditioned on the control
mode, thereby influencing timing. As a result, future
work must assess the impact of “stimulating” robot
behavior on both a task-dependent cue for perfor-
mance (e.g., time-to-completion, accuracy, efficiency)
and the human’s ergonomic state (e.g., body posture).

Beyond handover collaborations, transparency could
also be established in later extensions of the proposed
framework, whereby the cause and reason for unpre-
dictable or random robot behavior is made apparent
to a user (Kim & Hinds, 2006; Ajoudani et al., 2018).
This will prove essential in addressing subjects’ feed-
back on the Stimulating variants “randomness” as
being “too inconsistent” or “harder to predict” It may
also alleviate the significant jerkiness in receiver
motion found for this handover method. Fostering
transparency could be attained through feedback
interfaces that visualize the robots internal models of

reasoning (Zolotas & Demiris, 2019), for example by
visually portraying the robots planned handover
trajectory. A final direction of research is to better
formalize methods of detecting overassistance in
real-time, which will likely require ergonomic indica-
tors suitable for assessing multiple work cycles to be
defined (Merlo et al., 2023). These indicators will then
become cost functions for a new suite of optimization
problems to circumvent repetitiveness in the workplace.

6. Conclusions

We interrogated the role of motor variability in
enhancing the ergonomics of physical human-robot
collaboration. A specific use-case was presented for
robot-to-human handover, where two control policies
were compared in terms of subjects’ motion dynamics,
posture, and subjective perceptions. By employing a
robot handover policy that selected OTPs to “stimu-
late” rather than restrict human receivers movement,
with the latter being a typical byproduct of an “over-
assistive” policy, we observed significantly higher ergo-
nomics indicator scores on body posture and a trend
toward better balance margins. Prior findings from
research driven by augmenting long-term factors of
wellbeing, such as studies on variability in the work-
place, were also discussed as a source of inspiration
for our cobots handover policy design. These findings
combined with the positive results on posture and
balance from our handover experiment suggest that a
shift from optimization-based approaches, which con-
strain human behavior, is necessary for human-robot
collaboration in occupational settings.

Conflict of interest

The authors declare no conflict of interest.

Funding

This material is based upon work supported by the National
Science Foundation under Award No. 1928654.

ORCID

Mark Zolotas {2 http://orcid.org/0000-0002-7672-940X

References

Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schiffer, A,
Kosuge, K., & Khatib, O. (2018). Progress and prospects
of the human-robot collaboration. Autonomous Robots,
42(5), 957-975. https://doi.org/10.1007/s10514-017-9677-2


https://doi.org/10.1007/s10514-017-9677-2

IISETRANSACTIONS ON OCCUPATIONAL ERGONOMICS AND HUMAN FACTORS . 133

Bazarevsky, V., Grishchenko, I, Raveendran, K., Zhu, T,
Zhang, FE, & Grundmann, M. (2020). Blazepose:
On-device real-time body pose tracking. arXiv Preprint
arXiv, 2006, 10204.

Busch, B., Maeda, G., Mollard, Y., Demangeat, M., & Lopes,
M. (2017). Postural optimization for an ergonomic
human-robot interaction. In IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS)
(pp. 2778-2785). IEEE.

Commissaris, D. A., Toussaint, H. M., & Hirschfeld, H.
(2001). Anticipatory postural adjustments in a bimanual,
whole-body lifting task seem not only aimed at minimis-
ing anterior-posterior centre of mass displacements. Gait
& Posture, 14(1), 44-55. https://doi.org/10.1016/s0966-
6362(01)00098-4

Demiris, Y. (2009). Knowing when to assist: Developmental
issues in lifelong assistive robotics [Paper presentation].
Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (pp. 3357-3360). IEEE.
https://doi.org/10.1109/IEMBS.2009.5333182

Dupont, E, Léger, P. M., Begon, M., Lecot, E, Sénécal, S.,
Labonté-Lemoyne, E., & Mathieu, M. E. (2019). Health
and productivity at work: Which active workstation for
which benefits: A systematic review. Occupational and
Environmental Medicine, 76(5), 281-294. https://doi.
org/10.1136/oemed-2018-105397

Eng, J. J., & Winter, D. A. (1993). Estimations of the horizon-
tal displacement of the total body centre of mass:
Considerations during standing activities. Gait ¢ Posture,
1(3), 141-144. https://doi.org/10.1016/0966-6362(93)90055-6

Fortini, L., Lorenzini, M., Kim, W, De Momi, E., &
Ajoudani, A. (2020). A framework for real-time and per-
sonalisable human ergonomics monitoring. In IEEE/RS]
International Conference on Intelligent Robots and
Systems (IROS) (pp. 11101-11107.). IEEE.

Franklin, C. S., Dominguez, E. G., Fryman, J. D, &
Lewandowski, M. L. (2020). Collaborative robotics: New
era of human-robot cooperation in the workplace. Journal
of Safety Research, 74, 153-160. https://doi.org/10.1016/j.
j$1.2020.06.013

Gihleb, R., Giuntella, O., Stella, L., & Wang, T. (2022).
Industrial robots, workers safety, and health. Labour
Economics, 78, 102205. https://doi.org/10.1016/j.la-
beco.2022.102205

Hart, S. G., & Staveland, L. E. (1988). Development of
NASA-TLX (Task Load Index): Results of empirical and
theoretical research. In Advances in psychology (Vol. 52,
pp- 139-183). North-Holland.

Hignett, S., & McAtamney, L. (2000). Rapid entire body as-
sessment (REBA). Applied Ergonomics, 31(2), 201-205.
https://doi.org/10.1016/50003-6870(99)00039-3

Hogan, N., & Sternad, D. (2009). Sensitivity of smoothness
measures to movement duration, amplitude, and arrests.
Journal of Motor Behavior, 41(6), 529-534. https://doi.
org/10.3200/35-09-004-RC

Kim, T, & Hinds, P. (2006). Who should I blame? Effects of
autonomy and transparency on attributions in human-robot
interaction. In IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN) (pp. 80-
85). IEEE.

Kim, W.,, Lorenzini, M., Balatti, ., Wu, Y., & Ajoudani, A.
(2019). Towards ergonomic control of collaborative effort

in multi-human mobile-robot
International Conference on Intelligent
Systems (IROS) (pp. 3005-3011). IEEE.

Luttmann, A., Jager, M., Griefahn, B., Caffier, G., & Liebers,
E (2003). Preventing musculoskeletal disorders in the
workplace.

Madeleine, P, Voigt, M., & Mathiassen, S. E. (2008). The
size of cycle-to-cycle variability in biomechanical expo-
sure among butchers performing a standardised cutting
task.  Ergonomics,  51(7), 1078-1095.  https://doi.
org/10.1080/00140130801958659

Mathiassen, S. E., Moller, T, & Forsman, M. (2003).
Variability in mechanical exposure within and between
individuals performing a highly constrained industrial
work task. Ergonomics, 46(8), 800-824. https://doi.
org/10.1080/0014013031000090125

Matjaci¢, Z., Zadravec, M., & Olensek, A. (2018). Feasibility
of robot-based perturbed-balance training during tread-
mill walking in a high-functioning chronic stroke subject:
A case-control study. Journal of Neuroengineering and
Rehabilitation, 15(1), 32. https://doi.org/10.1186/
$12984-018-0373-z

Maurice, P, Padois, V., Measson, Y., & Bidaud, P. (2017).
Human-oriented  design  of  collaborative  robots.
International Journal of Industrial Ergonomics, 57, 88-102.
https://doi.org/10.1016/j.ergon.2016.11.011

Merlo, E., Lamon, E., Fusaro, F, Lorenzini, M., Carfi, A,
Mastrogiovanni, F, & Ajoudani, A. (2023). An ergonomic
role allocation framework for dynamic human-robot col-
laborative tasks. Journal of Manufacturing Systems, 67,
111-121. https://doi.org/10.1016/j.jmsy.2022.12.011

Olensek, A., Zadravec, M., Rudolf, M., Humar, M. G,
Tomsic, I, Bizovicar, N., Goljarm, N., & Matjaci¢, Z.
(2018). A novel approach to robot-supported training of
symmetry, propulsion and balance during walking after
stroke: A case study. In IEEE International Conference on
Biomedical Robotics and Biomechatronics (Biorob) (pp.
408-413). IEEE.

Onnasch, L., Wickens, C. D., Li, H., & Manzey, D. (2014).
Human performance consequences of stages and levels of
automation: An integrated meta-analysis. Human Factors,
56(3), 476-488. https://doi.org/10.1177/0018720813501549

Ortenzi, V., Cosgun, A., Pardi, T., Chan, W. P, Croft, E., &
Kulic, D. (2021). Object handovers: A review for robotics.
IEEE Transactions on Robotics, 37(6), 1855-1873. https://
doi.org/10.1109/TRO.2021.3075365

Parastegari, S., Abbasi, B., Noohi, E., & Zefran, M. (2017).
Modeling human reaching phase in human-human object
handover with application in robot-human handover. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (pp. 3597-3602). IEEE.

Parasuraman, R., Barnes, M., Cosenzo, K., & Mulgund, S.
(2007). Adaptive automation for human-robot teaming in
future command and control systems. The International
C2 Journal, 1(2), pp.43-68.

Parasuraman, R., & Riley, V. (1997). Humans and automation:
Use, misuse, disuse, abuse. Human Factors: The Journal of
the Human Factors and Ergonomics Society, 39(2), 230-253.
https://doi.org/10.1518/001872097778543886

Pehlivan, A. U, Losey, D. P, Rose, C. G., & O’Malley,
M. K. (2017). Maintaining subject engagement during
robotic rehabilitation with a minimal assist-as-needed

teams. In IEEE/RSJ
Robots and


https://doi.org/10.1016/s0966-
https://doi.org/10.1016/s0966-
https://doi.org/10.1109/IEMBS.2009.5333182
https://doi.org/10.1136/oemed-2018-105397
https://doi.org/10.1136/oemed-2018-105397
https://doi.org/10.1016/0966-6362(93)90055-6
https://doi.org/10.1016/j.jsr.2020.06.013
https://doi.org/10.1016/j.jsr.2020.06.013
https://doi.org/10.1016/j.labeco.2022.102205
https://doi.org/10.1016/j.labeco.2022.102205
https://doi.org/10.1016/s0003-6870(99)00039-3
https://doi.org/10.3200/35-09-004-RC
https://doi.org/10.3200/35-09-004-RC
https://doi.org/10.1080/00140130801958659
https://doi.org/10.1080/00140130801958659
https://doi.org/10.1080/0014013031000090125
https://doi.org/10.1080/0014013031000090125
https://doi.org/10.1186/s12984-018-0373-z
https://doi.org/10.1186/s12984-018-0373-z
https://doi.org/10.1016/j.ergon.2016.11.011
https://doi.org/10.1016/j.jmsy.2022.12.011
https://doi.org/10.1177/0018720813501549
https://doi.org/10.1109/TRO.2021.3075365
https://doi.org/10.1109/TRO.2021.3075365
https://doi.org/10.1518/001872097778543886

134 M. ZOLOTAS ET AL.

(mAAN) controller [Paper presentation]. In International
Conference on Rehabilitation Robotics (ICORR) (pp. 62-
67). IEEE. https://doi.org/10.1109/ICORR.2017.8009222

Peshkin, M., Brown, D. A., Santos-Munné, J. J., Makhlin, A.,
Lewis, E., Colgate, J. E., Patton, J., & Schwandt, D. (2005).
KineAssist: A robotic overground gait and balance train-
ing device. In International Conference on Rehabilitation
Robotics (ICORR) (pp. 241-246). IEEE.

Peternel, L., Kim, W, Babi¢, ], & Ajoudani, A. (2017,
November). Towards ergonomic control of human-robot
co-manipulation and handover [Paper presentation]. 2017
IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids) (pp. 55-60). IEEE. https://doi.
org/10.1109/HUMANOIDS.2017.8239537

Plagenhoef, S., Evans, E G., & Abdelnour, T. (1983).
Anatomical data for analyzing human motion. Research
Quarterly for Exercise and Sport, 54(2), 169-178. https://
doi.org/10.1080/02701367.1983.10605290

Punnett, L., & Wegman, D. H. (2004). Work-related muscu-
loskeletal disorders: The epidemiologic evidence and the
debate. Journal of Electromyography and Kinesiology:
Official ~ Journal of the International Society of
Electrophysiological Kinesiology, 14(1), 13-23. https://doi.
org/10.1016/j.jelekin.2003.09.015

Rauter, G., Sigrist, R., Marchal-Crespo, L., Vallery, H.,
Riener, R., & Wolf, P. (2011). Assistance or challenge?
Filling a gap in user-cooperative control. In IEEE/RS]
International Conference on Intelligent Robots and
Systems (pp. 3068-3073.). IEEE.

Sarbat, I., & Ozmehmet Tasan, S. (2022). Ergonomics indi-
cators: A proposal for sustainable process performance
measurement in ergonomics. Ergonomics, 65(1), 3-38.
https://doi.org/10.1080/00140139.2021.1953614

Schmidt, H., Hesse, S., Bernhardt, R., & Kriiger, J. (2005).
HapticWalker - A novel haptic foot device. ACM
Transactions on Applied Perception, 2(2), 166-180. https://
doi.org/10.1145/1060581.1060589

Schneider, E., Copsey, S., & Irastorza, X. (2010). OSH
[Occupational safety and health] in figures: Work-related
musculoskeletal disorders in the EU-facts and figures. Office
for Official Publications of the European Communities.

Shafti, A., Ataka, A., Lazpita, B. U., Shiva, A., Wurdemann,
H. A., & Althoefer, K. (2019). Real-time robot-assisted
ergonomics. In International Conference on Robotics and
Automation (ICRA) (pp. 1975-1981). IEEE.

Shaham, M. H., Skopin, M., Hochsztein, H., Mabulu, K.,
Milburn, L., Tukpah, J., Tunik, A., Winn, J., Zolotas, M.,

Erdogmus, D., & Padi, T. (2022). Human-supervised
automation test cell to accelerate personal protective
equipment manufacturing during the COVID-19 pan-
demic. In IEEE International Symposium on Technologies
for Homeland Security (HST) (pp. 1-8). IEEE.

Srinivasan, D., & Mathiassen, S. E. (2012). Motor variability
in occupational health and performance. Clinical
Biomechanics (Bristol, Avon), 27(10), 979-993. https://doi.
org/10.1016/j.clinbiomech.2012.08.007

Stapley, P. J., Pozzo, T., Cheron, G., & Grishin, A. (1999).
Does the coordination between posture and movement
during human whole-body reaching ensure center of
mass stabilization? Experimental Brain Research, 129(1),
134-146. https://doi.org/10.1007/s002210050944

Summers, K., Jinnett, K., & Bevan, S. (2015). Musculoskeletal
disorders, workforce health and productivity in the United
States. The center for workforced health and performance.
Lancaster University.

Tee, K. S., Low, E., Saim, H., Zakaria, W. N. W,, Khialdin,
S. B. M,, Isa, H,, Awad, M. 1., & Soon, C. F. (2017).
A study on the ergonomic assessment in the work-
place. In AIP Conference Proceedings, 1883(1): 020034-
1-020034-11.

van der Spaa, L., Gienger, M., Bates, T., & Kober, J. (2020).
Predicting and optimizing ergonomics in physical human-
robot cooperation tasks. In IEEE International Conference
on Robotics and Automation (ICRA) (pp. 1799-1805). IEEE.

Watson, E, Fino, P. C., Thornton, M., Heracleous, C.,
Loureiro, R., & Leong, J. J. (2021). Use of the margin of
stability to quantify stability in pathologic gait-a qualita-
tive systematic review. BMC Musculoskeletal Disorders,
22(1), 597. https://doi.org/10.1186/s12891-021-04466-4

Zare, M., Sagot, J. C., & Roquelaure, Y. (2018). Within and
between individual variability of exposure to work-related
musculoskeletal disorder risk factors. International Journal
of Environmental Research and Public Health, 15(5), 1003.
https://doi.org/10.3390/ijerph15051003

Zolotas, M., & Demiris, Y. (2019). Towards explainable
shared control using augmented reality. In IEEE/RS]
International Conference on Intelligent Robots and
Systems (IROS) (pp. 3020-3026). IEEE.

Zolotas, M., Luo, R, Bazzi, S., Saha, D., Mabulu, K,
Kloeckl, K., & Padir, T. (2022). Productive inconvenience:
Facilitating posture variability by stimulating robot-to-
human handovers. In IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN)
(pp. 122-128). IEEE.


https://doi.org/10.1109/ICORR.2017.8009222
https://doi.org/10.1109/HUMANOIDS.2017.8239537
https://doi.org/10.1109/HUMANOIDS.2017.8239537
https://doi.org/10.1080/02701367.1983.10605290
https://doi.org/10.1080/02701367.1983.10605290
https://doi.org/10.1016/j.jelekin.2003.09.015
https://doi.org/10.1016/j.jelekin.2003.09.015
https://doi.org/10.1080/00140139.2021.1953614
https://doi.org/10.1145/1060581.1060589
https://doi.org/10.1145/1060581.1060589
https://doi.org/10.1016/j.clinbiomech.2012.08.007
https://doi.org/10.1016/j.clinbiomech.2012.08.007
https://doi.org/10.1007/s002210050944
https://doi.org/10.1186/s12891-021-04466-4
https://doi.org/10.3390/ijerph15051003

	Imposing Motion Variability for Ergonomic Human-Robot Collaboration
	OCCUPATIONAL APPLICATIONS
	Funding
	ORCID
	References



