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OCCUPATIONAL APPLICATIONS
“Overassistive” robots can adversely impact long-term human-robot collaboration in the 
workplace, leading to risks of worker complacency, reduced workforce skill sets, and 
diminished situational awareness. Ergonomics practitioners should thus be cautious about 
solely targeting widely adopted metrics for improving human-robot collaboration, such as 
user trust and comfort. By contrast, introducing variability and adaptation into a collaborative 
robot’s behavior could prove vital in preventing the negative consequences of overreliance 
and overtrust in an autonomous partner. This work reported here explored how instilling 
variability into physical human-robot collaboration can have a measurably positive effect on 
ergonomics in a repetitive task. A review of principles related to this notion of “stimulating” 
robot behavior is also provided to further inform ergonomics practitioners of existing 
human-robot collaboration frameworks.

TECHNICAL ABSTRACT
Background: Collaborative robots, or cobots, are becoming ubiquitous in occupational 
settings due to benefits that include improved worker safety and increased productivity. 
Existing research on human-robot collaboration in industry has made progress in enhancing 
workers’ psychophysical states, by optimizing measures of ergonomics risk factors, such as 
human posture, comfort, and cognitive workload. However, short-term objectives for robotic 
assistance may conflict with the worker’s long-term preferences, needs, and overall wellbeing.
Purpose: To investigate the ergonomic advantages and disadvantages of employing a 
collaborative robotics framework that intentionally imposes variability in the robot’s behavior 
to stimulate the human partner’s psychophysical state.
Methods: A review of “overassistance” within human-robot collaboration and methods of 
addressing this phenomenon via adaptive automation. In adaptive approaches, the robot 
assistance may even challenge the user to better achieve a long-term objective while partially 
conflicting with their short-term task goals. Common themes across these approaches were 
extracted to motivate and support the proposed idea of stimulating robot behavior in physical 
human-robot collaboration.
Results: Experimental evidence to justify stimulating robot behavior is presented through a 
human-robot handover study. A robot handover policy that regularly injects variability into 
the object transfer location led to significantly larger dynamics in the torso rotations and 
center of mass of human receivers compared to an “overassistive” policy that constrains 
receiver motion. Crucially, the stimulating handover policy also generated improvements in 
widely used ergonomics risk indicators of human posture.
Conclusions: Our findings underscore the potential ergonomic benefits of a cobot’s actions 
imposing variability in a user’s responsive behavior, rather than indirectly restricting human 
behavior by optimizing the immediate task objective. Therefore, a transition from cobot 
policies that optimize instantaneous measures of ergonomics to those that continuously 
engage users could hold promise for human-robot collaboration in occupational settings 
characterized by repeated interactions.

1.	 Introduction

Collaborative robots, or cobots, are a promising tech-
nology for the future of industry. These robots assist 

human workers in a shared task by adapting to the 
workplace environment, task requirements, and work-
ers’ needs. The adoption of cobots has been shown to 
reduce work-related injuries in occupational settings, 
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such as the U.S. and German manufacturing sectors 
(Gihleb et  al., 2022). Cobots have also led to improve-
ments in productivity by enabling workers to be rede-
ployed to a higher-value-added task (Franklin et  al., 
2020) or by reducing human error during monoto-
nous jobs (Gihleb et  al., 2022), such as quality assur-
ance in personal and protective equipment testing 
(Shaham et  al., 2022).

One typical cobot scenario in industry is robot-to-
human handover. In this scenario, the cobot helps a 
worker lift packages or other heavy loads to alleviate 
the risk of work-related musculoskeletal disorders 
(MSDs) caused by repetitive or non-neutral body 
motion (Schneider et  al., 2010). The robot assists in 
the handover by determining an object transfer point 
(OTP) to optimize one or more indicators of ergo-
nomics (Ortenzi et  al., 2021). Ergonomics indicators 
are components of workplace processes that can be 
used to quantify the ergonomics risk systematically 
and periodically along these processes (Sarbat & 
Ozmehmet Tasan, 2022). These indicators can encom-
pass static and dynamic risk factors in ergonomics, 
such as the effects of human posture and joint veloc-
ities on the incidence of MSDs, respectively (Maurice 
et  al., 2017).

Within the robotics literature, there is a diverse 
array of common variables considered in ergonomics 
cost functions when selecting an OTP for robot-to-
human handover (Ortenzi et  al., 2021). These vari-
ables often capture properties on the safety, comfort, 
and acceptability for the human receiver, where the 
aim is to pick a handover location that maximizes 
these properties to decrease MSD risks (Busch et  al., 
2017; Parastegari et  al., 2017; Ortenzi et  al., 2021). 
However, when choosing an OTP to maximize a 
property, like acceptability, the optimal OTP is often 
a single repeated point across handovers. This forces 
the receiver to perform repetitive behaviors, which 
leads to a suppression of their natural movement 
variability. Suppressing variability in receiver move-
ment through the cobot’s assistance is problematic, as 
whole-body motion variability during object handover 
exchanges is recognized as an effective intervention 
against MSDs (Mathiassen et  al., 2003; Srinivasan & 
Mathiassen, 2012).

In light of this perspective on variability, our prior 
work on robot-to-human handover developed a method 
to intentionally “stimulate” the receiver’s motion 
(Zolotas et  al., 2022). Specifically, we conducted a user 
study to compare this stimulating handover policy 
against a traditional assistive control mode. The stim-
ulating handover policy resulted in enhanced ergo-
nomics scores based on risk assessments of receiver 

posture using the Rapid Entire Body Assessment 
(REBA) instrument (Hignett & McAtamney, 2000). 
The current report expands on the cobot framework 
presented in the earlier Zolotas et  al. (2022) study, by 
extending the experimental results to include new 
ergonomic indices, including velocity and jerk in 
receiver movement. Moreover, we explore the related 
concept of “overassistive” cobots, which we regard as 
collaborative autonomous agents with a behavior policy 
focused entirely on optimizing an objective function 
for immediate task assistance. We also discuss the sig-
nificance of conducting longitudinal studies on 
human-robot collaboration frameworks in occupational 
settings. The overarching goal of the current study was 
to provide further insight into how an adaptive cobot 
that induces motor variability in its human partner 
compares to an overassistive cobot, particularly when 
considering ergonomics during extended interactions, 
like repeated robot-to-human handovers.

2.	 Background and Motivation

In human factors research, the importance of straying 
away from prescribed movement and enabling free 
motion is often highlighted for its benefits on motor 
variability (Stapley et  al., 1999; Mathiassen et  al., 2003; 
Srinivasan & Mathiassen, 2012). Our recent study 
probed this concept in the context of robot-to-human 
handovers by injecting variability into the cobot 
behavior, hence “stimulating” receiver motion (Zolotas 
et  al., 2022). In this section, we first examine the 
occurrence of motor variability in the workplace to 
better understand its influences on worker wellbeing 
and productivity, specifically when the worker’s task is 
repetitive. We then review “overassistance” in 
human-robot collaboration, discussing its hindrances 
on motor variability and the ergonomics of workplace 
processes. Methods of mitigating overassistance will 
also be provided to motivate the cobot framework 
depicted in Section 3.

2.1.	 Motor Variability in the Workplace

Repetitive movements constitute a major risk factor for 
occupational MSDs in regions of the human body, 
such as the neck, shoulders, and arms (Luttmann et  al., 
2003; Srinivasan & Mathiassen, 2012). Consequently, 
motor variability is frequently investigated in the work-
place, with stimulated movement hypothesized to be 
less restraining and less likely to incur MSDs in the 
workforce population (Punnett & Wegman, 2004). For 
example, active workstations that prevent prolonged 
static posture (e.g., standing or treadmill desks) 
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potentially have a range of biomechanical and physio-
logical benefits (Dupont et  al., 2019). While these 
workstations offer a promising ergonomic solution for 
many occupational roles associated with sedentary 
behavior, the outcomes of their long-term usage require 
further scrutiny (Dupont et  al., 2019).

A longitudinal perspective on motor variability 
during repetitive work was obtained from a study that 
analyzed the arm, trunk, and electromyography vari-
ability of butchers performing cutting tasks over a 
6-month period (Madeleine et  al., 2008). The focus of 
this study was to observe the effects of employment 
duration and pain development on motor patterns, 
where variability between experienced and inexperi-
enced butchers was compared. The results demon-
strated that experienced butchers had greater motor 
variability than inexperienced butchers, yet as novices 
approached the end of the 6-month experiment dura-
tion, they exhibited more variability in the presence of 
sub-chronic neck-shoulder pain. The authors con-
cluded that the lack of motor variability in repetitive 
tasks leads to work-related MSDs over time.

Another study evaluated the variability of exposure 
to physical risk factors within and between operators 
when executing a truck assembly task (Zare et  al., 
2018). The aim of this study was to assess the poten-
tial reduction in work-related MSDs resulting from 
variations in operator strategies. Depending on the 
operational leeway in operator strategies allowed by 
companies, the authors observed two extremes. Firstly, 
manufacturers that strive for higher production levels 
by heavily enforcing standardized task operation and 
disabling operational leeway face the risk of causing 
musculoskeletal problems due to the repetition of 
tasks without variation. In contrast, companies that 
are too lenient in enabling operators to have more 
variability in tasks could lead to workers overexposing 
themselves to risks. The fundamental challenge is to 
then find a reasonable compromise between standard-
ization of operation and allowed variability in opera-
tors, which will attain high production quality and 
reduce physical risk factors.

2.2.	 “Overassistive” Collaborative Robots

By our definition, “overassistive” cobots repeatedly select 
assistive actions according to a policy that optimizes for 
a short-term task objective. Although reliable and con-
sistent, these cobots can have negative repercussions on 
human partners by neglecting to consider off-policy 
behaviors that may yield long-term advantages 
(Parasuraman & Riley, 1997). In occupational settings, 
“overassistive” action-selection can build overreliance 

and/or overtrust in human workers, which may gradu-
ally lead to complacency, skill degradation, and dimin-
ished situational awareness (Parasuraman et  al., 2007; 
Onnasch et  al., 2014). The following describes how 
cobots exhibit overassistance and how adaptive automa-
tion offers a favorable alternative.

In industrial cobot frameworks, a common strategy 
is to first define one or more ergonomics metrics, and 
then to frame these metrics as an optimization prob-
lem to find an “optimal” control strategy (Busch et  al., 
2017; Maurice et  al., 2017; Kim et  al., 2019; Shafti 
et  al., 2019; Fortini et  al., 2020). A range of ergonom-
ics indicators can be derived from a human’s biome-
chanical and/or cognitive state, including rotational 
head movement, dynamic balance, joint torque, human 
posture, fatigue, stress levels, and so forth (Maurice 
et  al., 2017; Kim et  al., 2019; Merlo et  al., 2023). The 
robot’s cost function can then be expressed as either a 
single ergonomics indicator or a weighted sum of 
multiple indicators. Optimizing this cost function 
results in a cobot control policy that is intended to 
guide the human’s biomechanical state into an “opti-
mal” configuration. For instance, Kim et  al. (2019) 
employed a control module for a robotic arm, where 
the robot’s planned path approached a destination 
pose corresponding to the optimal posture configura-
tion, as determined by the human partner’s joint 
torques and base of support.

While these optimization formulations are effective 
for short-term human-robot exchanges, the cobot’s 
behavior may be liable to overassistance. This out-
come primarily stems from the fact that most ergo-
nomics metrics are based on kinematic descriptions of 
the human’s biomechanical state, e.g., body posture 
(Hignett & McAtamney, 2000). As a result, the human’s 
dynamics (e.g., joint velocities) and the associated 
risks on ergonomics are not necessarily taken into 
account (Maurice et  al., 2017; Merlo et  al., 2023). 
Dynamic measurements in ergonomics indicators play 
a pivotal role when evaluating the efficacy of a cobot’s 
actions on the human’s state beyond the current 
instant (Maurice et  al., 2017). If the optimal control 
policy is obtained solely from static ergonomic metrics 
within a single work cycle, then temporal risk factors, 
such as task repetitiveness or duration, will go unde-
tected (Merlo et al., 2023). Furthermore, kinematic-only 
control policies are more likely to constrain joint and 
center of mass displacement, which is unnatural for 
whole-body human motion (Commissaris et  al., 2001).

To overcome the risk of constraining human motion 
via an overassistive control policy, the cobot behavior 
can instead opt to impose variability in their human 
partner’s movement. An interesting research question 
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that arises in such collaborations is whether a robot’s 
control policy should continuously adapt to the human 
partner, or whether it should remain fixed (Ajoudani 
et  al., 2018). In the former case, the human partner is 
forced to keep re-adapting to the changing robot pol-
icy, while the latter enables the human to swiftly learn 
the robot’s capabilities. However, long-term human-robot 
collaborations under the latter scheme could lead to 
complacency, or worse, a decline in human capabilities 
(Parasuraman et  al., 2007).

The essential idea behind the cobot policy that we 
present here and in our earlier work (Zolotas et  al., 
2022) is to thus favor variable robot behavior when-
ever the collaboration consists of repeated work cycles. 
One simple means of bestowing variability in the 
robot’s control policy is to inject noise into the behav-
ior, under the constraint that robot motion always 
preserves human safety. In the next section, we exem-
plify how this can prove effective through a robot-to-
human handover use-case.

3.	 Methods

In the current work, we extend the results of our 
recent robot-to-human handover study, which was 
motivated by the relevant literature on inciting motor 
variability to deter overassistance in human-robot col-
laboration (Zolotas et  al., 2022). Here, we place 
emphasis on evaluating the study’s data for ergonom-
ics indicators with dynamic risk factors, such as 
smoothness in receiver movement. We first introduce 
the cobot’s method of eliciting motor variability in 
human receivers. The earlier study’s experimental 
setup is then summarized. Lastly, a new set of metrics 
and experiment hypotheses will be introduced to tease 
out the potential ergonomics benefits of the cobot 
framework proposed in Zolotas et  al. (2022).

3.1.	 Stimulating Robot-to-Human Handover

In robot-to-human handover, a cobot helps a human 
partner lift packages or other heavy loads to mitigate 
the risk of injury. The traditional perception-action cycle 
of robot-to-human handover begins with the cobot esti-
mating the receiver’s biomechanical properties (e.g., joint 
angles), then computing an ergonomics indicator accord-
ing to these properties, such as a REBA score (Hignett 
& McAtamney, 2000), and finally selecting an OTP to 
improve this indicator (Ortenzi et  al., 2021). The follow-
ing briefly describes two robot handover policies that 
adhere to this cycle: Assistive and Stimulating. These pol-
icies can be seen as overassistive and motion-triggering 
forms of cobot handover behavior, respectively.

To produce an estimate of the receiver’s biome-
chanical features, we require accurate real-time 3D 
position estimation of multiple body segments. Many 
contemporary works use full-body motion capture 
systems to estimate these body segment positions (van 
der Spaa et  al., 2020). In contrast, markerless 
vision-based approaches that use RGB-D cameras are 
often cheaper, easier to configure, and less invasive on 
the worker, therefore providing a suitable fit for regu-
lar work environments. We opt for a vision-based 
tracking method to estimate body joint poses from an 
RGB camera (Bazarevsky et  al., 2020).

Our handover methods utilize two essential kine-
matic parameters of a human receiver: the whole-body 
center of mass (CoM) and the base of support (BoS). 
To estimate CoM in real-time, a human’s body can be 
approximated as a system of particles, with each par-
ticle representing a body segment (Eng & Winter, 
1993). Each body segment is assigned a percentage of 
body mass, such that the CoM is the weighted average 
of all segment positions using segment masses as 
weights (Plagenhoef et  al., 1983; Eng & Winter, 1993). 
To account for the mass of the package being lifted, 
hands can be assigned different masses before and 
after handover. For the BoS, the area beneath the per-
son that includes every point of contact made with 
the ground can be approximated as the convex hull 
between the left and right heels, and the intersection 
of the first toe tips with each foot’s outermost toe 
edges (see Figure 1).

Numerous prior studies focused on human biome-
chanics to determine “optimal” OTPs, where the devi-
ation of a receiver’s CoM is minimized while 
maintaining it within their BoS (Peternel et  al., 2017; 

Figure 1.  Two handover policies to govern the collaborative 
robot’s behavior. The arrows indicate the Object Transfer Point 
(OTP) from one handover to the next, as well as the intended 
motion of the human subject’s center of mass (CoM) around 
their base of support (BoS).
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Kim et  al., 2019). However, constraining whole-body 
movement is unnatural for humans (Commissaris 
et  al., 2001). Zolotas et  al. (2022) posited that provok-
ing posture variability leads to handovers with better 
ergonomics indicator scores as movement constraints 
are relaxed. To explore this claim, two handover poli-
cies were developed: Assistive and Stimulating. The 
OTP selection in the two modes is shown in Figure 1. 
Given the current transfer point, OTP0, the Assistive 
mode selected the next transfer point, OTP1, to shift 
the human receiver’s CoM further inside the BoS 
polygon. More specifically, the handover pushed the 
human’s CoM toward the BoS polygon’s centroid 
marked by the cross. The Stimulating mode instead 
chose the next transfer point, OTP1, based on a ran-
domly selected BoS corner (e.g., C), such that the 
human receiver’s CoM moved momentarily outside 
the BoS polygon.

3.2.	 Experiment Setup & Protocol

We conducted a within-subjects experiment to inves-
tigate whether the Stimulating handover policy could 
encourage a human worker to be more attentive and 
cognizant of their posture during human-robot han-
dover than with the Assistive handover mode. The 
experiment emulated industrial pick-and-place tasks, 
such as in seafood processing (Figure 2), by having 
participants retrieve packages from the end-effector of 
a long-reaching robotic arm and then carry these 

packages over to a drop-off location, roughly 4 m 
away from the package exchange region. The overall 
experimental setup is illustrated in Figure 3. For each 
handover, the robotic arm picked up a 6.8 kg package 
from a pile and held the package at an OTP for the 
receiver to collect it. Before participants performed 
the experiment, they familiarized themselves with the 
task by performing a Training session that involved 
seven package handovers, where the robot always 
selected the same OTP.

A total of 16 participants (6 female, 10 male) were 
recruited from the Northeastern University student 
community, as well as the MassRobotics facility in 
Boston, MA where the experiment was situated. The 
subjects were young (aged 20-34, median 23) and pre-
dominantly had some experience working on robots, 
with 75% of the subject pool claiming prior experi-
ence in a survey question. Table 1 presents an over-
view of the subject pool. The study reported here was 
reviewed and approved by Northeastern University 
Institutional Review Board (#19-06-14), and partici-
pants provided their written informed consent. 
Interested readers are encouraged to refer to Zolotas 

Figure 2.  Workers packaging and transferring boxes of seafood 
in a seafood processing facility.

Figure 3.  Experimental setup. Top: an overview of how the 
collaborative robot exchanges packages with a user while 
human posture is tracked by an external camera. Bottom: a 
top-down perspective of the experiment workspace.
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et al. (2022) for more details on the experiment design 
and procedures.

3.3.	 Evaluation Metrics

We asked subjects to perform multiple repeated han-
dovers per experiment mode in order to discern the 
prolonged effects on human posture and other ergo-
nomics risk factors. Participants engaged in 39 pack-
age handovers with the cobot per control mode, which 
took a mean (SD) of 7.93 (1.12) minutes to complete. 
The order of experiment modes was randomized and 
then counterbalanced across participants to ensure 
each possible order was presented to an equal number 
of participants. Subjects were allowed a break when 
switching experiment modes and were unaware of 
how/whether the robot control policies differed 
between the two trials.

In our previous work (Zolotas et  al., 2022), we 
reported on three quantitative metrics to assess the 
ergonomic quality of subject handovers: REBA scores, 
CoM displacements, and torso rotation angles. We 
elected the REBA scale (Hignett & McAtamney, 2000), 
as it is pervasively used to score whole-body posture 
ergonomics in robot-to-human handover (Busch et  al., 
2017; Shafti et  al., 2019; Ortenzi et  al., 2021). CoM 
displacements and torso rotation angles were also eval-
uated to capture the extent of unconstrained receiver 
movement (Stapley et  al., 1999). All three metrics were 
calculated from joint poses detected using an external 
camera (see Figure 3). Other dependent measures 
included user-reported workload via NASA-TLX (Hart 
& Staveland, 1988), as well as post-experiment survey 
responses on frustration, alertness, and preference 
between the two control modes. The post-experiment 
survey questions were structured as comparisons, for 
example: “Which mode did you feel more alert during? 
(Mode 1, Mode 2, or No difference)”.

This report augments our prior quantitative analyses 
with three new ergonomics indicators: instantaneous 
velocity in CoM, jerk in CoM motion, and the balance 
stability margin. Second-order central differences of 
CoM position data were used to approximate velocity 
within a handover exchange. Here, we replace CoM dis-
placements for velocities in our analysis to better repre-
sent the dynamic demands on participants (Maurice 
et  al., 2017). Jerk is also computed using the mean 
squared measure provided in Hogan and Sternad (2009) 

to express smoothness in receiver movement. The bal-
ance stability margin is then evaluated as the squared 
distance between the CoM and BoS edges. Margin of 
stability is a widely used objective measure of dynamic 
stability in human movement (Watson et  al., 2021). 
Finally, we report on the coefficient of variation for 
recorded REBA scores and the mean proportion of a 
trial that receivers’ body postures spent in a “high risk” 
state for MSDs, as classified by the REBA tool (Hignett 
& McAtamney, 2000).

3.4.	 Experiment Hypotheses

The following experimental hypotheses were tested in 
this work:

•	 H1: Stimulating mode will increase human 
receiver movement variability, as measured by 
CoM velocities and torso rotations.

•	 H2: Stimulating mode will yield less ergonom-
ics risk on body posture based on the REBA 
and balance stability margin measures.

•	 H3: No difference in smoothness of receiver 
movement will be observed between the 
Assistive and Stimulating modes, as signified by 
CoM jerk.

Treating the cobot’s handover policy as the indepen-
dent variable (within-subjects factor), either two-tailed 
paired-samples t-tests or Wilcoxon signed-rank tests 
were performed on the dependent variables. If the 
dependent data fulfilled the normality assumption 
(Shapiro-Wilk test) and the sphericity assumption 
(Mauchly’s test), then two-tailed paired-samples t-tests 
were conducted. Only REBA and torso rotations met 
these assumptions. For the other measures, Wilcoxon 
signed-rank tests were utilized.

4.	 Results

With regards to movement variability, the Stimulating 
mode elicited higher maximum torso rotation angles 
and larger CoM velocities than those of the Assistive 
condition, supporting H1. A paired-samples t-test 
showed a significant effect of the robot control mode 
on maximum torso angle F p1 15 4 89 0 043, . , .( ) = =( ), 
with larger angles observed for the Stimulating mode. 

Table 1. D emographic information of the robot-to-human handover study participants. Entries are means (SD).
Gender Age Range Height (m) Mass (kg)

Male (n = 10) 21 – 34 1.73 (0.13) 75.6 (11.8)
Female (n = 6) 20 – 23 1.66 (0.05) 58.7 (5.0)
All Subjects (n = 16) 20 – 34 1.71 (0.11) 69.6 (12.8)
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Velocity estimates for subjects’ CoM between hando-
ver policies were also shown to be significantly differ-
ent via a Wilcoxon signed-rank test p <( )0 001. . Figure 
4 illustrates CoM velocities averaged across all partic-
ipants per handover. A related measure to velocity is 
jerk, which had a strong significant effect depending 
on the handover policy according to the Wilcoxon 
signed-rank test p <( )0 001. . This result does not align 
with H3, as smoothness of receiver movement was 
found to be jerkier when exposed to the Stimulating 
condition (see Figure 4). The raw quantitative mea-
sures used to produce the above observations are pre-
sented in Table 2.

In terms of the subject’s postural state, the 
Stimulating mode nudged subjects toward improved 
ergonomic posture measures. A significant main effect 
on REBA was found using a paired-samples t-test 

F p1 15 9 88 0 01, . , .( ) = ≤( ), with Stimulating acquiring 
lower scores than Assistive, where smaller values are 
preferable (Table 3). Not only were the REBA scores 
lower on average, but the percentage of data samples 
that possessed a REBA score greater than 7 (referred 
to as a “high risk” REBA score), was also lowest for 
the Stimulating condition. This reduction was even 
more pronounced than when subjects lifted packages 
during the initial Training session. By contrast, a 
Wilcoxon signed-rank test showed no significant effect 
between handover policies on the balance stability 
margin measure ( . )p = 0 226 , thereby only partially sup-
porting H2. Table 3 outlines the above results and 
Figure 5 illustrates a trend toward higher margins for 

Figure 4.  Box plots of the mean squared velocity and jerk val-
ues of participants’ Center of Mass (CoM) per handover.

Table 2. A ggregate statistics per handover of participants’ center of mass (CoM) velocities, torso rotation angles, and jerk in 
movement.
Experiment Mode CoM Velocity (m/s) Max. Torso Rotation Angle (°) CoM Jerk (m/s3)

Assistive 0.34 63.54
2 1 10

6
. ×

Stimulating 0.90 68.73
7 4 10

5
. ×

Table 3. M ean and standard deviations per handover of Rapid 
Entire Body Assessment (REBA) scores for all samples collected 
across the three experimental conditions.

Experiment 
Mode REBA Score

Coefficient of 
Variation

% >Risk Limit 
(7)

Balance 
Stability 
Margin 

(cm)

Training 5.06 ± 0.67 13.2 9.02 ± 6.48 8.33
Assistive 5.51 ± 0.65 11.9 13.86 ± 5.24 8.44
Stimulating 5.25 ± 0.67 12.8 8.87 ± 6.54 8.91

Notes: A higher REBA score denotes a higher degree of risk. Any score 
above 7 is categorized as “high risk”, therefore the percentage of task 
time spent in this danger zone is also reported. Coefficient of variation 
values in the REBA metric and balance stability margins are also pro-
vided. Higher margins indicate better postural support.

Figure 5.  Box plot of the balance stability margins averaged 
across participant handovers. Larger values signify a more sta-
ble posture configuration.
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the Stimulating condition, with larger values suggest-
ing enhanced postural stability.

One of the key underlying reasons for promoting 
motion variability in workers is to elevate their alert-
ness levels, which in turn can help workers maintain 
awareness of risk factors in their surroundings (Tee 
et  al., 2017). In our post-experiment survey, multiple 
subjects commented on how the Stimulating mode 
required them to be “aware/alert about where boxes 
may end up,” creating “more excitement” or a “more 
engaging experience” in comparison to the Assistive 
policy. A few participants stated that the Assistive vari-
ant was “more convenient/artificial,” whereas the 
Stimulating mode was “more random,” as one would 
expect from their respective designs. Table 4 reinforces 
these remarks by demonstrating that most experiment 
participants (9 of the 16) claimed to be “more alert” 
during the Stimulating handover strategy. There were 
mixed results reported by subjects on their perceived 
workload (NASA-TLX), preference, and frustration, as 
portrayed in Table 4.

5.	 Discussion

5.1.	 Overview

The robot-to-human handover study presented here 
builds on our prior work (Zolotas et  al., 2022) by 
further investigating the ergonomic benefits of incor-
porating a “stimulating” control policy into the 
human-robot collaboration. A cobot was developed to 
employ such a policy by selecting OTPs with random 
patterns, under certain BoS constraints, hence inject-
ing variability into the human receiver’s motion. 
Motivated by ergonomics studies that reported results 
in favor of enabling variability in the workplace, we 
hypothesized that a robot handover policy capable of 
stimulating human receiver movement would yield 
improvements in posture (Stapley et  al., 1999; 
Mathiassen et  al., 2003; Srinivasan & Mathiassen, 
2012). In contrast, a traditional Assistive handover 
policy focused on maintaining a receiver’s CoM to be 
within their BoS would restrict motor variability and 
adversely impact human posture.

To test our main hypotheses on how Stimulating 
and Assistive handover policies would affect a receiv-
er’s kinematic posture and dynamic movement, sub-
jects performed multiple handovers with the cobot in 
order to imitate multiple work cycles. As anticipated, 
the Stimulating control mode heightened receiver’s 
motion dynamics, with significantly larger maximum 
torso rotation angles (68.73°) and CoM velocities 
(0.9 m/s) than those in the Assistive condition (63.54° 
and 0.34 m/s for torso rotation and velocity, respec-
tively). Figure 6 demonstrates this heightened motion 
pattern across two consecutive handovers of each con-
trol mode for a specific subject. In general, we 
observed that participants spread out across a greater 
proportion of the handover zone under the 
Stimulating policy.

Of major importance to our experiment is the 
exploration of ergonomics indicators on postural risk 
factors. The Stimulating methodology significantly 
improved ergonomics scores by a mean difference of 
0.26 in the REBA scale. However, there were no sig-
nificant effects on the balance stability margin indica-
tor, with a mean score of 8.91 for Stimulating than 
8.44 in Assistive. While a 0.26 difference in REBA 
scores is only slight, the OTPs generated by the 
Stimulating mode also exhibited less “high risk” pos-
tural states for approximately 5% of the trial than 
those recorded for Assistive runs (Table 3). One might 
also argue that motion variability helped prevent sub-
jects from losing attention, thus evading sloppy pos-
tural awareness. This argument was reinforced by six 
more participants choosing the Stimulating policy as 
“more alert” than the Assistive condition (Table 4).

Despite the potential benefits of the Stimulating 
handover method, it is worth highlighting a few open 
research questions regarding the experimental find-
ings. Most notably, aggregating an instantaneous 
kinematic-based ergonomic metric, like REBA, over 
repeated interactions does not necessarily capture risk 
factors dependent on the task duration, repetitiveness, 
and past activities (Merlo et  al., 2023). Therefore, 
future work should re-calibrate the experiment to 
investigate an appropriate kinematics “wear” index 
(Merlo et  al., 2023), as well as scrutinize further the 
dynamics risk factors on ergonomics, e.g., overload-
ing forces when exchanging objects (Maurice et  al., 
2017). Our findings on jerk in CoM may also hint at 
the adverse impact on smoothness of the Stimulating 
handover method, given jerk measures are frequently 
utilized in discerning movement fluency (Hogan & 
Sternad, 2009). Future adaptations to the proposed 
handover policy will need to consider techniques for 
selecting random OTPs around the BoS that will 

Table 4.  Subjective questionnaire responses, with total 
NASA-TLX scores (Hart & Staveland, 1988), preference, alert-
ness, and frustration choices indicated by experiment mode.
Experiment 
Mode

NASA-TLX 
Total Preferred?

More 
Alert?

More 
Frustrating?

Assistive 19.8 7 3 6
Stimulating 20.9 6 9 6
No Difference Not reported 3 4 4
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prevent constrained receiver motion while simultane-
ously reducing jerk. This objective falls in line with 
the desire to strike a balance between enforcing  
constraints on operations in the workplace and  
allowing variability (Ajoudani et  al., 2018; Zare 
et  al., 2018).

5.2.	 Implications for Human-Robot Collaboration

The work presented here has several implications for 
stakeholders of ergonomic human-robot collaboration. 
For instance, the current findings reinforce the possi-
ble risks of overassistance (Parasuraman et  al., 2007; 
Onnasch et  al., 2014) when cobots choose OTPs that 
keep human posture fixed or unvaried. The robotics 

community should thus be cautious about developing 
collaborative frameworks that impose a stabilizing pol-
icy on human motion. Additionally, ergonomics prac-
titioners within the robotics domain should transition 
from single work cycle evaluations of the human-robot 
collaboration toward longitudinal studies composed of 
multiple work cycles. This will be integral in uncover-
ing novel ergonomic indicators that possess a temporal 
nature and are only applicable to longer time scales 
(Merlo et  al., 2023).

The concept of deliberately introducing “stimulus” 
into the physical collaboration extends beyond the scope 
of robot-to-human handover, as can be demonstrated by 
drawing connections to other robotics domains focused 
on user development, such as rehabilitation robots. In 

Figure 6.  Illustration of the difference between two consecutive handover exchanges using the Assistive mode (top row) and 
Stimulating mode (bottom row). Less constrained motion is depicted when using the Stimulating mode, where the center of mass 
displacement is clearly of greater magnitude across the two selected handovers.
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rehabilitation robotics, assist-as-needed controllers chal-
lenge a user by dynamically adjusting the robot’s behav-
ior to encourage motor learning, engagement, and 
overall betterment (Rauter et  al., 2011; Pehlivan et  al., 
2017). Many robotic tools have been developed to pur-
posefully challenge the subject, such as by disturbing 
their posture (Peshkin et  al., 2005) or by generating a 
stumbling-like response (Schmidt et  al., 2005). Some 
studies have shown that, when applied in a controlled 
setting, counteracting force perturbations can even lead 
to improved reactions for loss of balance (Matjačić 
et  al., 2018; Olensek et  al., 2018). In essence, the pur-
pose for many cobots is to provide “conditional assis-
tance” as opposed to overassistance (Parasuraman et  al., 
2007; Demiris, 2009; Onnasch et al., 2014). Consequently, 
we believe that cobots can indirectly improve ergonom-
ics in occupational settings by relying on the human 
worker’s adaptive capabilities under exposure to stimu-
lating behavior strategies, rather than by directly opti-
mizing instantaneous ergonomic metrics.

5.3.	 Future Research

Various research avenues can be envisioned from the 
presented cobot framework. In robot-to-human han-
dover, ensuing experiments should analyze varying 
package weights or recruit a more diverse subject pool 
with a wider demographic that is representative of  
the entire workforce. While MSDs are more prevalent 
in older workforces, they are also a significant con-
cern for younger workers (Summers et  al., 2015). 
Furthermore, no task performance metric was consid-
ered when gauging productivity in the handover study. 
Completion times could not be evaluated as the robot’s 
generated trajectories were conditioned on the control 
mode, thereby influencing timing. As a result, future 
work must assess the impact of “stimulating” robot 
behavior on both a task-dependent cue for perfor-
mance (e.g., time-to-completion, accuracy, efficiency) 
and the human’s ergonomic state (e.g., body posture).

Beyond handover collaborations, transparency could 
also be established in later extensions of the proposed 
framework, whereby the cause and reason for unpre-
dictable or random robot behavior is made apparent 
to a user (Kim & Hinds, 2006; Ajoudani et  al., 2018). 
This will prove essential in addressing subjects’ feed-
back on the Stimulating variant’s “randomness” as 
being “too inconsistent” or “harder to predict.” It may 
also alleviate the significant jerkiness in receiver 
motion found for this handover method. Fostering 
transparency could be attained through feedback 
interfaces that visualize the robot’s internal models of 

reasoning (Zolotas & Demiris, 2019), for example by 
visually portraying the robot’s planned handover  
trajectory. A final direction of research is to better 
formalize methods of detecting overassistance in 
real-time, which will likely require ergonomic indica-
tors suitable for assessing multiple work cycles to be 
defined (Merlo et  al., 2023). These indicators will then 
become cost functions for a new suite of optimization 
problems to circumvent repetitiveness in the workplace.

6.	 Conclusions

We interrogated the role of motor variability in 
enhancing the ergonomics of physical human-robot 
collaboration. A specific use-case was presented for 
robot-to-human handover, where two control policies 
were compared in terms of subjects’ motion dynamics, 
posture, and subjective perceptions. By employing a 
robot handover policy that selected OTPs to “stimu-
late” rather than restrict human receivers’ movement, 
with the latter being a typical byproduct of an “over-
assistive” policy, we observed significantly higher ergo-
nomics indicator scores on body posture and a trend 
toward better balance margins. Prior findings from 
research driven by augmenting long-term factors of 
wellbeing, such as studies on variability in the work-
place, were also discussed as a source of inspiration 
for our cobot’s handover policy design. These findings 
combined with the positive results on posture and 
balance from our handover experiment suggest that a 
shift from optimization-based approaches, which con-
strain human behavior, is necessary for human-robot 
collaboration in occupational settings.
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