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Abstract—Directly parameterizing and learning gradients of
functions has widespread significance, with specific applications
in inverse problems, generative modeling, and optimal transport.
This paper introduces gradient networks (GradNets): novel
neural network architectures that parameterize gradients of var-
ious function classes. GradNets exhibit specialized architectural
constraints that ensure correspondence to gradient functions.
We provide a comprehensive GradNet design framework that
includes methods for fransforming GradNets into monotone
gradient networks (mGradNets), which are guaranteed fo repre-
sent gradients of convex functions. Our results establish that our
proposed GradNet (and mGradNet) universally approximate
the gradients of (convex) functions. Furthermore, these networks
can be customized to correspond to specific spaces of potential
functions, including transformed sums of (convex) ridge func-
tions. Our analysis leads to two distinct GradNet architectures,
GradNet-C and GradNet-M, and we describe the correspond-
ing monotone versions, mGradNet-C and mGradNet-M. Our
empirical results demonstrate that these architectures provide
efficient parameterizations and outperform existing methods by
up to 15 dB in gradient field tasks and by up to 11 dB in
Hamiltonian dynamics learning tasks.

Index Terms—Neural networks, learning gradients, convex,
monotone, universal gradient function approximation, subgra-
dients, gradient fields, Hamiltonian mechanics.

I. INTRODUCTION

EEP neural networks are prized for their ability to param-
D eterize and easily learn complicated, high-dimensional
functions. Researchers have devoted substantial effort to devel-
oping deep neural networks that achieve state-of-the-art perfor-
mance on numerous tasks spanning computer vision [1], natural
language processing [2], and reinforcement learning [3]. These
neural networks are commonly unconstrained and effectively
parameterize the space of all functions. Many applications in-
stead require learned functions that exhibit specific properties,
which necessitates the design of neural networks corresponding
to specific function classes — a problem that has seldom been
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studied. Constraining neural networks to belong to a particular
function class not only enhances interpretability, but also leads
to theoretical performance guarantees essential for deploying
trained models in safety-critical applications.

In particular, neural networks corresponding to gradients of
functions hold significant importance across several science and
engineering disciplines. For example, physicists often wish to
use a finite set of measurements to characterize the gradient field
of a potential function, such as the temperature gradient over
a surface. Score-based generative models are another applica-
tion of learning gradient functions, where neural networks are
trained to learn V log p(), the score function of an unknown
probability distribution [4], [5]. These methods have been ap-
plied to image [6], [7] and 3D shape [8] generation.

Learning gradients of convex functions holds particular sig-
nificance in optimal transport theory. Brenier’s theorem states
that the unique solution to the Monge problem with Euclidean
cost is given by the gradient of a convex function [9], [10].
The theorem has inspired methods for learning Monge maps
[11], [12], [13], [14] using gradients of parameterized convex
functions. Applications of learned gradients of convex func-
tions also extend to gradient-based optimization. Optimization
routines can incorporate a learned gradient function to define
a set of iterative updates that map an input to a desired out-
put [15]. In particular, gradients of convex functions can be
used to define gradients of regularization terms in optimization
objectives, as in the regularization by denoising (RED) [16],
[17] and plug-and-play (PnP) [18], [19] frameworks for solving
inverse problems. In order to enhance interpretability and obtain
convergence guarantees, recent works have designed denoisers
for these frameworks that have symmetric Jacobians [20], [21],
[22], thereby ensuring that the denoisers are gradient functions.

Previously in [14], we considered learning gradients of
convex functions and proposed monotone gradient networks.
In this paper, we generalize the problem setting in [14] to con-
sider significantly broader function classes. We introduce new
GradNet architectures for learning gradients of these func-
tion classes, provide extensive theoretical analysis concerning
GradNet universal approximation capabilities, and validate
our methods with extensive experiments.

Contributions: We  propose  gradient  networks
(GradNets), neural networks for directly parameterizing
gradients of arbitrary functions. We adapt GradNets to
monotone gradient networks (mGradNets) that correspond
to gradients of convex functions. Our proposed neural network
architectures directly model the gradient function V F without
first learning the underlying potential function F. We also
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Fig. 1. Relationships between relevant function classes considered in cor-
responding theory sections of this paper: (a) all functions; (b) monotone
functions; Section V-A: (c) gradients, (d) monotone gradients; Section V-C:
(e) gradients of transformed sums of ridges, () gradients of transformed sums
of convex ridges: Section V-B: (g) gradients of sums of ridges, (h) gradients
of sums of convex ridges: Section V-D: respective subgradients.

analyze the expressivity of our proposed GradNet and
mGradNet networks and prove that they are universal
approximators of gradients of general and convex functions,
respectively. We further describe methods for modifying
these networks to represent popular subsets of these function
classes, including gradients of sums of (convex) ridge
functions and their (convexity-preserving) transformations.
Our theoretical results translate into improved experimental
results over existing works. In our gradient field approximation
experiments, we find that our architectures achieve up to
15 dB lower mean squared error (MSE) than existing methods.
Additionally, we predict the dynamics of the two-body problem
and demonstrate an 11 dB improvement over existing methods.

Paper Organization: We first review existing methods for
parameterizing and learning gradients of functions in Sec. II.
We then present gradient networks (GradNets) for learning
gradients of arbitrary functions in Sec. III. In Sec. IV, we
describe monotone gradient networks (mGradNets): modi-
fied GradNets for representing gradients of convex functions.
We analyze the expressivity of our proposed GradNets and
mGradNets in Sec. V and demonstrate methods for compos-
ing GradNets and mGradNets to learn (sub)gradients of the
function classes described in Fig. 1. We present architectural
modifications in Sec. VI that empirically yield efficient param-
eterizations. Finally, in Sec. VII, we evaluate our proposed mod-
els on gradient field and Hamiltonian dynamics learning tasks.

Notation: w and W respectively denote vectors and matri-
ces. VF'(x) is the gradient of a potential function F' at a point
x and is a vector-valued function. H p(x) is the Hessian of
F at x, the matrix of second-order partial derivatives. When a
function f is vector-valued, .J ;(z) denotes the Jacobian of f at
x, the matrix of partial derivatives. A = 0 indicates that A is
symmetric positive semidefinite (PSD). diag(-) is the vector-
to-diagonal-matrix operator. C°(D) and C*(D) respectively
denote the space of continuous and k-times continuously differ-
entiable functions that map from domain D to the real numbers
R. C¥ (D) are the convex functions in C*(D).

II. RELATED WORK

Several existing works use standard neural networks to di-
rectly model the gradient of a potential function [7], [17],
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[23], [24]. While these methods demonstrate satisfactory em-
pirical performance, they lack theoretical justification and are
often considered heuristic approaches. It is not guaranteed, and
in fact highly unlikely, that an arbitrary neural network with
matching input and output dimension corresponds to the gradi-
ent of a scalar-valued function. More formally, let F be a set
such that each function F' € F is the gradient of a scalar-valued
function. Given an F' € F, standard neural network architec-
tures, e.g., multilayer perceptrons (MLPs) and convolutional
neural networks (CNNs), with nonpolynomial activations, can
be used to approximate F. However, these architectures of-
fer no guarantee that the learned function F is itself in F.
In contrast, the methods and network architectures discussed in
this paper ensure that the approximator Fis always a member
of F, thereby enhancing interpretability and enabling robust
theoretical guarantees in practice.

Rather than directly approximating the gradient of a function
using a standard neural network, an alternative approach may
be to first parameterize and learn the underlying scalar potential
function using a standard neural network. Subsequently differ-
entiating the network with respect to its input yields the desired
gradient. However, closely approximating a target function F
with an arbitrary approximator G does not guarantee that VG
closely approximates V F' [25]. Empirical evidence in [26] con-
firms this fact when the approximating functions are neural net-
works. Other works directly train the gradient map of a neural
network that parameterizes a potential function. For instance,
[21] considers the potential F(x) = &||z — fg(x)||3 with neu-
ral network fg:R™ — R"™ and uses automatic differentiation
to obtain a gradient network architecture VF'(x). Nevertheless,
these approaches often exhibit ill-behaved product structures in
practice [27] and, due to the Runge phenomena [28], optimizing
their parameters becomes cumbersome as the input dimension
grows [29].

Feedforward neural networks have also been proposed to
directly parameterize gradients of specific classes of poten-
tial functions, namely potentials F'(x) expressible as the sum
of ridge functions: F(z) =31, ¢i(w; ). Such potentials
were considered in the fields of experts framework proposed
in [30]. The fields of experts framework has inspired several
methods for learning image priors that effectively generalize
the “transform domain thresholding” approach discussed in
[17], [31]. These include works like [32], [33] that correspond
to nonconvex potentials and respectively achieve commend-
able performance for image restoration and magnetic reso-
nance imaging reconstruction. More recently, [34], [35] pro-
pose neural networks with elementwise, learnable spline ac-
tivations to learn gradients of potentials expressible as sums
of ridge functions (class G in Fig. 1). The networks can be
modified to correspond to gradients of sums of convex ridge
functions (class H in Fig. 1) by restricting the splines to be
nondecreasing. In this paper, we consider parameterizing the
activations as learnable neural networks and discuss how these
networks can be adapted to represent (sub)gradients of convex
potentials. Furthermore, the class of functions expressible as a
sum of convex ridges as in [34], [35] does not include several
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common convex functions including

Infinity Norm : max{|z1|, |z2|,- - ., |zn|}

n
Exponential Product : exp (Z :::i)
i=1
Thus, we also use group activations to yield universal approx-
imation of gradients of (convex) function classes that extend
beyond those expressible as sums of ridges.

The literature on parameterizing and learning the gradients
of convex functions (monotone gradient functions) includes
various approaches. Input Convex Neural Networks (ICNN)
[36] parameterize only convex functions by requiring posi-
tive weight matrices and convex, monotonically increasing el-
ementwise activation functions. To extract the gradient, [13],
[371, [38] use a two-step approach of first evaluating a convex
potential parameterized by an ICNN and then differentiating
the network with respect to its input (via backpropagation).
While [38] provides theoretical justification for this approach,
the ICNN’s architectural restrictions result in well-documented
training difficulties in practice [11], [29], [39], [40]. In this pa-
per, we avoid these challenges and bypass the two-step process
by directly characterizing and learning the gradient.

Input Convex Gradient Networks (ICGNs) [29] extend the
approach in [41] and characterize the gradient of twice-
differentiable convex functions by exploiting the symmetric
positive semidefinite structure of their Hessians. ICGNs specif-
ically parameterize a Gram factor of the Hessian. The gradient
map is then obtained by numerically integrating the learned
Hessian. However, as noted in [29], the only known architecture
suitable for parameterizing the Gram factor is o(Wx + b),
for which numerical integration is not required and serves
only as a proof of concept. These architectures, for which
numerical integration is not required, parameterize gradients
of sums of convex ridges (class H in Fig. 1). Meanwhile, in
this work we consider parameterizing functions for several
other larger classes of functions, including transformations of
sums of (convex) ridges, differentiable convex functions, and
L-smooth nonconvex functions. Additionally, the existence of
deeper networks suitable for parameterizing the Gram factor of
the ICGN is conjectured in [29], but have not been identified
to date. Numerical integration for deeper networks would also
introduce computational challenges in high dimensions (e.g.,
error accumulation, convergence) [42].

I11. GRADIENT NETWORKS (GRADNET)

In this section, we introduce gradient networks (GradNets)
for parameterizing and learning gradients of continuously dif-
ferentiable functions. We first state sufficient conditions for a
neural network to be a GradNet and then discuss various
approaches for constructing GradNets.

Definition 1 (GradNet): A gradient network (GradNet) is
a neural network f satisfying f = VF for some F € C* (R9).

By Def. 1, differentiating a neural network that parameter-
izes a function F € C'(R?) yields a GradNet. However, due
to the discussion in Sec. II, we focus on directly modeling
and learning VF' (without first learning F'). We now consider
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methods for parameterizing GradNets. In the case where a
GradNet parameterizes the gradient of a twice continuously
differentiable function, we use the following known result.

Lemma 1 (Antiderivatives and Symmetric Jacobians): A dif-
ferentiable function f : R? — R has a scalar-valued antideriva-
tive if and only if its Jacobian is symmetric everywhere, i.e.,
Vee R Js(z)=Js(x)".

The sufficient condition in Lemma 1 follows from the the-
orem of symmetric second derivatives credited to Clairaut,
Schwarz, Young, and others [43]. The necessary condition fol-
lows from a slight modification of Prop. 1 in [29] to consider all
functions with symmetric Jacobians. Thus, a neural network is a
GradNet if its Jacobian with respect to its input is everywhere
symmetric. We use Lemma 1 to provide a neural GradNet
parameterization in Prop. 1 below.

Proposition 1: The neural network

W'o(Wz+a)+b 1)

is a GradNet if there exists ¥ € C1(R™) such that o = V).
In particular, such a 7 exists if activation o : R™ — R™ is
differentiable and its Jacobian J, is everywhere symmetric.
Proof: (1) is the gradient of )(Wxz +a)+b' x. If o is
additionally differentiable with J , everywhere symmetric then,
by Lemma 1, there exists ¢ € C?(R?) such that c =Vv. [0

Prop. 1 states that (1) is a GradNet if the activation func-
tion o has an antiderivative. It hence permits the use of group
activations such as softmax. Furthermore, to guarantee exis-
tence of an antiderivative, it is sufficient, but not necessary,
that o is differentiable and its Jacobian is symmetric every-
where. For example, the elementwise activation ReLU(x) =
max (0, x) is continuous and nondifferentiable, but it is the
gradient of ) °, max(0, % E). Architectures of the form in (1),
with a continuous elementwise activation function o(x) =
[o1(z1) .. Jm(z:m)]T,include “transform domain threshold-
ing” methods [17], [31] where the activation is a continu-
ous thresholding operator. Similar architectures appear in [35],
which uses linear spline activations, and in [33], which parame-
terizes each o; as a linear combination of Gaussian radial basis
functions. An alternative approach is to use neural networks to
parameterize the elementwise activation functions.

Remark 1: (1) is a GradNet if o(x) is an elementwise
activation where each o; is a neural network in C1(R).

We later prove in Sec. V-B that the network in Rem. 1 can
approximate the gradient of any differentiable function that is
the sum of ridge functions. In addition, if we restrict the domain
of the GradNet to be compact, then it is sufficient for (1) to
have continuous elementwise activation o, since all continuous
o; are integrable on compact subsets of R. Lastly, by linearity of
the gradient operator, the networks in (1), and other GradNet
parameterizations, can be linearly combined to yield another
GradNet.

Remark 2: Linear combinations of GradNets are also
GradNets.

This section established methods for designing GradNets:
neural networks guaranteed to correspond to gradients of
continuously differentiable functions. It introduced a specific
GradNet architecture, which we analyze in Sec. V, and serves
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as a foundation for designing other GradNet architectures like
monotone gradient networks in the following section.

IV. MONOTONE GRADIENT NETWORKS (MGRADNET)

Monotone gradient networks (mGradNets) are neural net-
works guaranteed to represent gradients of convex functions
and are a subclass of gradient networks (GradNet) [14]. This
section introduces mGradNets in a manner similar to the
presentation of GradNets in Sec. III. We first define mGrad-
Nets and then discuss examples and their properties.

Definition 2 (mGradNet): A monotone gradient network
(mGradNet) is a neural network f satisfying f = VF for some
convex F € C} (R?).

In Sec. V-D, we extend Def. 2 to accommodate subgradients
of non-differentiable convex functions. Next, we recall that a
differentiable function is convex if and only if its gradient is
monotone [44]. Therefore, mGradNets are guaranteed to be
monotone functions.

Definition 3 (Monotonicity): f: R? — R? is monotone if:

vz,y eRY, (f(z) — f(y) (. —y) >0 )

It is generally challenging to design an mGradNet satisfying
(2) for all possible pairs of inputs. Instead, it is more tractable to
rely on single-input characterizations of monotonicity. First, we
provide an approach to parameterize gradients of convex func-
tions using GradNets (from Sec. III) and known Lipschitz
regularity techniques.

Remark 3: let L >0 and f be a GradNet that is
L-Lipschitz, ie., Vz,yeRe, ||f(z)— f(y)|| < Lz — |
Then g(x) = Lz — f(x) is an mGradNet.

Rem. 3 follows from Def. 1 and Remark 2.2 in [35]. which
implies monotonicity of g. It demonstrates how to construct an
mGradNet using a GradNet with known Lipschitz constant.
Rem. 3 relates to several Regularization by Denoising (RED)
works that design learnable functions of the form x — f(x)
where f(x) is constrained to be nonexpansive [45], [46]. These
methods differ from our approach as they do not guarantee that
the Jacobian of & — f(x) is symmetric.

Next, we propose an alternative method that directly param-
eterizes monotone gradients and avoids Lipschitz assumptions.
We use the fact that F' € C?(R?) is convex if and only if its Hes-
sian H ; is everywhere positive semidefinite (PSD) [47]. Since
H p = JY,», using a differentiable mGradNet to parameterize
a monotone VF requires the Jacobian of the mGradNet, with
respect to its input, to be PSD everywhere.

Proposition 2: The neural network in (1) is an mGradNet if
there exists convex ¢ € CL (R™) such that o = V). In particu-
lar, such a v exists if activation o : R™ — R™ is differentiable
and its Jacobian .J, is everywhere PSD.

Proof: (1) is the gradient of »(W x + a) + b @, which is
convex since 7 is convex. If ¢ is additionally differentiable with
Js = 0, then by Lemma 1 and the fact that a twice differentiable
function is convex if and only if its Hessian is PSD [47], there
exists ¥ € C?(R?) such that o = V. O

‘We highlight three key points concerning Prop. 2: 1) A neural
network with Jacobian that is everywhere PSD is guaranteed
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to be an mGradNet; specifically, a GradNet in Prop. 1 with
elementwise, monotone activation o is an mGradNet. 2) Most
popular elementwise activations, including softplus', tanh, and
sigmoid, are nondecreasing and can be used to specify o in
Prop. 2. 3) Similar to the discussion on GradNets in Sec. I1I:
if the activation o in Prop. 2 has an antiderivative, it need not
be differentiable; if we consider a compact domain, continuity
of an elementwise activation o is sufficient.

We leverage the generality of Prop. 2 to propose mGrad-
Nets with group activation o and show that they universally
approximate gradients of all differentiable convex functions.
These mGradNets with group activations are provably more
expressive than the methods in [30], [31], [32], [33], [34], [35].
Specifically, in Sec. V-A, we prove that there exist sequences of
mGradNets with softmax activation functions that can univer-
sally approximate gradients of differentiable convex functions.
The generality of Prop. 2 also permits neural parameterizations
of elementwise activations.

Remark 4: (1) is an mGradNet if o(x) is an elementwise
activation where each o; is an mGradNet in C*(R).

The mGradNets specified by Rem. 4 are more amenable
for direct implementation than the spline activations proposed
in [34], [35], while being provably as expressive. In particular,
the spline activations in [34], [35] are defined using a fixed
grid and hence require careful tuning of the grid domain and
a large number of knots to achieve satisfactory performance.
In contrast, we observe in Sec. VII that mGradNets in Rem. 4
provide more efficient parameterizations of the activations.

Similar to techniques described in [35], [48], mGradNets
can be modified to correspond to gradients of p-strongly convex
functions.

Remark 5: Let p > 0 and f be an mGradNet. The function
g(x) = f(x) + px is an mGradNet corresponding to the gra-
dient of a p-strongly convex function.

As gradients of strongly convex functions are invertible,
the method in Rem. 5 parameterizes invertible mGradNets,
which, for example, can be employed in normalizing flows [38].
If an mGradNet corresponds to the gradient of a strongly
convex function F, then its inverse corresponds to the gradient
of the Fenchel dual F'* [49]. Lastly, we note that conical com-
binations of convex functions are also convex [47]. Analogous
to Rem. 2, mGradNets can be combined to produce other
mGradNets.

Remark 6: Conical combinations (linear combinations with
nonnegative coefficients) of mGradNets yield mGradNets.

V. UNIVERSAL APPROXIMATION RESULTS

In this section, we analyze the expressivity of GradNet
and mGradNet architectures respectively specified by Propo-
sitions 1 and 2. We show that these architectures can universally
approximate various function classes. We first formally define
universal approximation and a set of gradient functions, which
we use throughout the section.

IThe softplus function %log{l + exp(fBx)), with scaling factor 3, is a
smooth approximation of the commonly used ReLU activation.
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Definition 4 (Universal Approximation): Let S C R? be
compact, F : S — R? be a class of continuous functions, and
G : S — R be a class of approximators. G universally approx-
imates JF if for any f € F, there exists a sequence of g, € G
that uniformly converges to f.

Def. 4 is equivalent to G being dense in F with respect to the
supremum norm. Since S must be a subset of some scaled and
shifted version of [0, 1]¢, our universal approximation proofs,
without loss of generality, consider the domain [0, 1]¢.

Definition 5 (Set of Gradient Functions): Let F be a set of
differentiable functions. Then the set VF = {VF:F € F}.

In Sec. V-A, we prove that the mGradNet in (1) with scaled
softmax activation and increasing hidden dimension can univer-
sally approximate the gradient of any convex function. We ex-
tend this result to show that the difference of two mGradNets
can universally approximate the gradient of any L-smooth
function.

In Sec. V-B, we analyze the impact of the activation function
on the approximation capabilities of the networks. We show that
GradNets and mGradNets with nonpolynomial activations
can learn the gradient of any function expressible as the sum
of ridge and convex ridge functions, respectively. In Sec. V-C,
we introduce a simple augmentation that enables our networks
to universally approximate the gradient of a transformed sum
of (convex) ridges. Finally, in Sec. V-D, we extend mGradNet
results to subgradients of convex functions.

A. (Monotone) Gradient Functions

We start by proving that mGradNet s of the form (1) can uni-
versally approximate monotone gradients of convex functions.
The proof uses the following lemma: differentiating convex
approximators of a convex potential yields monotone approxi-
mators of the monotone gradient of the potential.

Lemma 2 (Convex Function and Monotone Gradient Ap-
proximation: [49] Theorem 25.7): Let S C R? be open, convex
and let F € CL(S) be finite. Let G; € CL(S) be a sequence
of finite functions such that Vo € S, lim; .. G;(x) = F(x).
Then Vz € S, lim;_, VG;(x) = VF(x). The sequence VG;
converges uniformly to VF' on every compact subset of S.

Lemma 2 is specific to convex functions and generally does
not extend to arbitrary functions [25]. We prove that mGrad-
Nets can universally approximate monotone gradients by first
constructing a sequence of convex functions that approximates
any continuous convex function, and then applying Lemma 2.
To construct the sequence, we use the class of scaled LogSum-
Exp (LSE) functions with scaling factor £ > 0:

LSE,(U) = % log (Z exp(tu))

ueld

We first present a result of independent interest in Lemma 3
below, where we derive an upper bound on the approximation
error incurred when using the scaled LSE of affine functions to
approximate continuous convex functions.

Lemma 3 (Bound on Convex Function Approximation
by LSE): Let convex F eCY ([0,1]%) and e>0. There
exist scaling factor ¢ > 0 and parameters {w;, b;}I-;, where
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n=(2"—-1)% and m >0 depend on F, such that the
scaled LSE of affine functions G(z)=LSE,({w]z+
bi,...,w] &+ b,}) satisfies

|F(z) — G(z)| < (d+ 1)e+l°% 3)

sup
xe[0,1]d

Proof: Let e>0 and F € C2([0,1]%). By the Heine-
Cantor Theorem [50], F is uniformly continuous on [0, 1]¢,
meaning 35 > 0 such that Vz,y € [0,1]4, ||z —y|| <d =
|F(x) — F(y)| < e. We select m € N such that 2~™ < § and
define X' as the set of points with coordinates lying in {i2~™ :
1 <i<2™ —1}. This means n = |X| = (2™ — 1)2. For each
y € X, let Ly(x)=v'(x—y)+ F(y) be a supporting hy-
perplane of F' at y, where v is a subgradient of F' at y, i.e.,
v (x—y) < F(z)— F(y). With z € [0,1]%, £ >0, and U =
{Ly(x) : y € X}, the triangle inequality implies

|F () — LSE, (U)|

< s =
< |F(x) — max Ly () —1—‘1;}93;%{[,5,(3:) LSE; (U)

logn
t

<(d+1)e+§log(2m—1):(d+ 1)e+ “)
The first term of (4) uses Appendix C Prop. 2 of [38] and the
second term uses LSE, (/) < max(U) + L log(|U|) [51]. O

In Lemma 3, choosing small € and large scaling factor ¢
corresponds to closely approximating a convex function F' with
a scaled LSE of affine functions. In the bound (3), n is the
number of affine functions and is equivalent to the number of
hidden neurons in the neural networks we propose and analyze
in Thm. 1. The number of neurons n depends on € and uniform
continuity properties of F.

To illustrate the utility of the error bound, we consider the
case where the convex function F' is L-Lipschitz on [0,1]%.
This encompasses a wide range of functions, including mean
squared error and polynomial functions. The variables ¢ and e
in the proof of Lemma 3 can then be related by taking § < €/L,

leading to the following bound on the number of neurons n:
n> (& - l)d. The bound on n indicates the rate at which
the number of neurons must increase when either the input
dimension increases, the Lipschitz constant of F' increases, or
we demand closer approximations (e decreases). To achieve
a desired approximation error, the scaling factor ¢ should be
increased logarithmically with respect to n. If we wish to
approximate F' with the sum of k identical LSE; functions,

then each LSE, function must approximate ¢ F, which is £-

Lipschitz and n > (& — 1)d. Approximating F as a sum of
identical functions, each being a scaled LSE of affine functions,
thus allows each individual L. SE; to use fewer affine functions.
This observation motivates our design of mGradNet-Ms in
Sec. VI-A.

Before leveraging Lemma 2 to show universal approximation
results for mGradNets, we first include the following result
from [51], which states that scaled LSE functions universally
approximate convex functions.
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Lemma 4 (Scaled LSE as Universal Approximator of Convex
Functions: [51] Theorem 2): Let © € R? and G be scaled LSE
of affine functions LSE;({w{  +b1,...,w} x +b,}) with
scaling factor ¢ > 0. G universally approximates C? ([0, 1]%).

We defer the proof of Lemma 4 to [51].2 Combining
Lemma 2 with Lemma 4 enables us to show in Thm. 1 below
that the mGradNet in Prop. 2 can universally approximate
gradients of convex functions. The proof is constructive and
demonstrates that the sequence of approximating functions cor-
responds to a sequence of mGradNet s with softmax activation
and increasing hidden dimension.

Theorem 1 (Universal Gradient Approximation for Convex
Functions): Let F = CL ([0 — 4,1 + 6]¢) with § > 0. mGrad-
Nets in Prop. 2 with scaled softmax activation universally
approximate V.F on [0, 1]9.

Proof: Let F € F and let G, € C2([0— 6,1+ 6]%) be a
sequence of the form LSE;({w] @ + by, ..., w,} x + b,}) that
converges uniformly to F' by Lemma 4. By the extreme value
theorem [25], F and all G, are finite. We consider the open con-
vex subset A= (0—4,1+6)? C[0— 45,1+ 6]¢ and observe
that the GG, also converge uniformly to " on 4. By Lemma 2,
VG, — VF uniformly on compact subsets of A, including
[0,1]%. Note that ¥n, VG,, is an mGradNet in Prop. 2 with
scaled softmax activation and the ith row of W being w, :
VG, =W "softmax(t(Wx + b)) |

Using the fact that mGradNet s can universally approximate
all monotone gradient functions, we show that the difference
of two mGradNets with softmax activations can universally
approximate the gradient of any L-smooth function.

Theorem 2 (Universal Gradient Approximation for L-smooth
Functions): Let 6 > 0 and F be L-smooth functions in C*([0 —
8,1+ 8]9). Let g1(x) and ga(x) be mGradNets in Prop. 2
with scaled softmax activations. GradNets g(x) = gi(x) —
go(x) universally approximate V.F on [0, 1].

Proof: Let F € F, implying VF is L-Lipschitz continu-
ous. We can write VF = Lz — (Lx — VF (x)), where Lz is
clearly monotone and Lz — VF () is monotone by Rem. 3.
By Thm. 1, there exist sequences of mGradNets uniformly
converging to Lz and Lz — VF(z) on [0, 1]%. By Rem. 2, the
difference of these sequences is a sequence of GradNets that
converges uniformly to VF. O

B. Gradients of Sums of (Convex) Ridge Functions

Elementwise activations o(z) = [o1(z1) ... crn(:r;n_)]T are
highly parallellizable in practice and are more commonly used
than group activation functions like softmax. Prior works [30],
[311, [32], [33]. [34], [35], demonstrated the empirical success
of elementwise activations used in GradNets of the form in
(1). While we proved universal approximation for any (convex)
gradient in Sec. V, this section demonstrates that using an ele-
mentwise activation function in (1) compromises representation
power. Specifically, it leads to learning gradients of sums of
(convex) ridge functions.

ZA different approach to the proof in [51] easily follows from Lemma 3.
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Definition 6 (Sum of (Convex) Ridge Functions): F €
C*(IR?) is expressible as the finite sum of ridge functions if

N
F(x)=>) i(a] z+1b) (5)

=1

where each profile function 1; € C*(R). F is expressible as the
sum of convex ridge functions if each ¢; € C¥ (R).

Thm. 3 below shows that GradNets with scaled elemen-
twise activations (e.g., scaled sigmoid, tanh, ReLU) can learn
the gradient of any function that is the sum of ridges. It extends
the result in [34], which considers approximating gradients of
sums of convex ridges using learnable linear spline activations.

Theorem 3 (Universal Gradient Approximation for Sums
of Ridges): Let F be functions in C?([0, 1]?) expressible as
a finite sum of ridge functions. GradNets of the form in (1)
with continuous, scaled, elementwise nonpolynomial activation
o universally approximate V.F.

Proof: If F € F, t_l;en Ve F(x)= Zi\;l at-qb;(@gm + b;).
LetA=[a; ... any] ,¥(:)=[¥{() ... ¥§()] ,andb=
[b1 ... by] . Then V,F(z) = ATU(Az + b), where each
al (-) +b; is a continuous affine transformation that maps
[0, 1]% to a compact subset S; C R. We now consider the Grad-
Net in Prop. 1 with N x d matrix W = A and continuous ele-
mentwise activation o (z) = [o1(z1) ... oﬂ{:::n)]T. For each
continuous 2/, let €; > 0 and consider a corresponding o; satis-
fying Yz € S;, |¢i(x) — 0i(x)| < €. This GradNet's approx-
imation error is bounded as follows:

N N
<D a4 b) —ou(a) @ +bi)| llas| <Y eillal]

i=1

N
> ai@i(af z +b;) —oi(af = +b;))
=1

i=1

Given any error threshold e > 0, there exist sufficiently small €;,
and corresponding o, such that the RHS of the final inequality
above is bounded by e.

Next, we parameterize each o; as a neural network of the
form oy(z) = u s(viz + B;), ui,vi, B; € R™ with continu-
ous, elementwise nonpolynomial activation s (e.g., tanh, sig-
moid). By Thm. 1 in [52], for each !, there exists o; sat-
isfying Vz € S;, |¢}(z) — 0i(x)| < €. Substituting the spec-
ified form of o; into the aforementioned GradNet yields
Z?:z a;u] s(v; - (a] x +b;) + B3;). This can be rewritten
as YN | A diag(u.)s(diag(v:)(Asx + bi) + B3;), where the
m; X d matrix A; contains a;r as its rows. Since s operates
elementwise, we can again rewrite the GradNet as

ATUs(V(Az +b) + ) (6)
where the (IV - H?‘;l m;) x d matrix A vertically stacks the A;
matrices and the vector 3 stacks the 3, vectors. The diagonal
matrices U, V respectively have diag(u; ), diag(v;) along their
diagonals. Therefore, (6) is a GradNet in (1) with interme-
diate diagonal matrices corresponding to scaled elementwise
nonpolynomial activations. O
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The proof of Thm. 3 uses the fact that neural networks
with elementwise nonpolynomial activations universally ap-
proximate continuous functions on compact subsets of R [52].
In fact, the proof permits any elementwise activation that is a
universal approximator.

Corollary 3.1: Let F be functions in C*([0, 1]%) expressible
as a finite sum of ridge functions. Let o be an elementwise
activation where each o; € C°(R) is a universal approximator
of continuous functions on compact subsets of R. GradNets
in (1) with activation ¢ universally approximate V.F.

Cor. 3.1 also applies to other architectures for approximating
gradients. For example, variational networks proposed in [33]
use Gaussian radial basis functions (RBFs) for elementwise
activations, making them universal approximators of sums of
ridge functions [53]. Similarly, the weakly convex ridge reg-
ularizers in [35], use elementwise learnable spline activations,
which are also dense in the space of continuous functions.

Now, we shift focus to convex ridges and similarly prove
that mGradNet s with elementwise, nondecreasing activations
can learn the gradient of any function expressible as the sum
of convex ridges. The proof proceeds as follows: we first show
that mGradNets in Prop. 2 with elementwise activations can
universally approximate monotone functions on R; similar to
the proof of Thm. 3, we then employ this mGradNet to learn
1}, the monotone derivatives of the convex ridges. These results
also motivate compositions of mGradNets in Sec. V-C and
deeper networks in Sec. VI-B.

Lemma 5 (Universal Approximation for Scalar Monotone
Functions): Let F be nondecreasing functions in C?([0, 1]).
Let o be an elementwise activation where each o}, € C°(R) is
bounded, nondecreasing, and has finite asymptotic end behav-
ior. mGradNet s of the form (1) with activation o universally
approximate JF.

Proof: Let f e F and, without loss of generality, let
each oy (z) : R — [0,1] with limy , o, =0 and limg_,o, = 1.
We uniformly partition [0, 1] into subintervals Z,, = [£52, 5]
for k€ {1,2,...,2"} and consider the approximators

-
Gnt(2) = F(0) + 3 Ap 03 (6272 — 2i + 1))

i=1

where £t > 1, eaqh o satisﬁes conditions given in the lemma,
and A, ;= f (35) — f (52) > 0. Next, we bound

aar |f(x) — gne(z)| = Mim pss |[f(z) — gne(z)] (D

To do so, we introduce gy, ;, which has the same form as g, ;
except each o; is replaced by o:

E(I):{Oifusg—l; zif —l<z<l; lifz>1

In each of the 2" subintervals, g, ; interpolates f. For a specific
k on the RHS of (7), triangle inequality implies

Jnax |f(z) = gnalz)]

< maX [£(@) = Gna(@)] + [ne(2) — gne(2)] )
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Let € > 0. For any n € N, ¢ > 1, monotonicity of f implies that
the first term on the RHS of (8) is bounded as follows:
108X | £(2) = Grne(2)] < An

Now, by the Heine-Cantor Theorem [50], f is uniformly con-
tinuous on [0, 1]. Hence, let n > ng € N such that V&, An x =
f(k/2™) — f((k—1)/2™) < €/3. For each k, the second
term on the RHS of (8) can be bounded by separately consid-
ering the absolute difference between g(r) and g(z) in three
different intervals: ¢ < k, i =k, and ¢ > k.

:Fgffk |§n?t(:5) == gn,t(I” <

€L, k

max {Z Angll — os(#(2" x — 2i 4 1))]
i<k
+ Ap ko2 z — 2k + 1)) — ok (2™ z — 2k + 1))

+) Anoi(t2 Mz —2i+ 1))} )
i>k

By boundedness of ¢ and oy, we have ¥z, |o(z) — or(z)| <1
and the middle term in (9) is upper-bounded by A, < €/3.
Using the aforementioned value of n, there exists corresponding
t > 1 such that the sum of the remaining terms of (9) is bounded
by €/3. Therefore, maxycpo,1) |f(2) — gn.t(x)| <€ and gn;
universally approximates J. We note that g, , can be written
in the form of (1) with nondecreasing activations:

gnt = f(0) +1"5(1z + b)

where by = (—2k + 1)/2"+! and 7 is an elementwise activa-
tion composed of Tx(z) = Ay xok (2" tz). O

Lemma 5 states that a sufficiently wide mGradNet with
scaled activations, like sigmoids, can closely approximate any
continuous, monotone function on [R. It shows that a broader set
of functions than the linear splines considered in [34] is dense in
the space of continuous nondecreasing functions on R. Next, we
give universal approximation results for sums of convex ridges
that generalize Prop. II1.5 of [34]. These results use Lemma 5
and are similar to the proofs in Thm. 3 and Cor. 3.1 that pertain
to sums of general ridge functions.

Theorem 4 (Universal Gradient Approximation for Sums
of Convex Ridges): Let F be convex functions in C} ([0, 1]9)
expressible as a finite sum of convex ridge functions. Let
o be an elementwise activation where each oy € C°(R) is
bounded, nondecreasing, and has finite asymptotic end behav-
ior. mGradNet s in Prop. 2 with scaled activation o universally
approximate V.F.

Proof: F is of the form (5), where each ; is convex. By
Lemma 5, an mGradNet of the form (10) can approximate
each nondecreasing 2/ on a compact subset of R within arbi-
trary error. The remainder of the proof follows from the proof
of Thm. 3. O

Similar to Cor. 3.1, the proof of Thm. 4 permits the activation
to be any elementwise function that is a universal approximator
of nondecreasing functions.

Corollary 4.1: Let F be convex functions in CL([0,1]%)
expressible as the finite sum of convex ridge functions. Let

(10)
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o be an elementwise activation where each o; € C°(R) is a
universal approximator of continuous, nondecreasing functions
on compact subsets of R. mGradNets in (1) with activation o
universally approximate V.F.

C. Gradients of (Convex Monotone) Transformations of
Sums of (Convex) Ridges

This section presents architectures that parameterize a
broader subset of (monotone) gradient functions than those dis-
cussed in Sec. V-B. We specifically examine methods for com-
posing vector-valued gradient networks with scalar-valued net-
works to learn gradients of transformations of sums of ridges.
We then adapt these networks to learn gradients of convex,
monotone transformations of sums of convex ridges.

Definition 7 ((Convex monotone) transformation of a sum
of (convex) ridge functions): F € C*(R?) is a transformation
of a finite sum of ridge functions if it can be written as

N
F(z)=T (Z Yi(a]  + b,—))

i=1

where ¢;, T € C* (R). F is a convex, monotone transformation
of a finite sum of convex ridge functions if ;, T € C* (R) and
T is additionally nondecreasing [47].

Def. 7 closely resembles Def. 6 with the addition of a trans-
formation T" applied to the sum of ridges. Before describing
methods for learning gradients of such functions, we prove a
useful lemma which shows that approximating VF with VG
implies that G can approximate F'.

Lemma 6: Lete > 0, and £, f : [0,1]9 — R be differentiable.
If sup,cpg 454 IVF(x) — Vf(z)| < e and there exists xo €
[0, 1]% such that f () is known, then f can approximate f such
that supgcp 174 | f(2) — f(z)| < eVd.

Proof: Let p(x) = f(a:) — f(x), where f(a‘:) is the an-
tiderivative of the known Vf with a constant of integration
determined by zo. Note that Vp(z) =V f(x) — Vf(x). By
the multivariate mean value theorem [25], Yz, y € [0, 1]¢, Jc €
(0,1) such that z = (1 — ¢)x + cy and

p(x) — p(y) =Vp(z) (z —y)
f@)— f(x)— Fy) + fy) = (VF(z) - Vf(z) (x—y)

Let y = @ so that — f(y) + f(y) = 0. By the Cauchy-Schwarz
inequality and an upper bound on ||z — xg||,

|F(@) — f(@)| < |[VF(z) = VF(2)|llz — o] < eVd

We note that if Vﬁl is a sequence of functions that converges
to V f, with a corresponding sequence of e, > 0 converging
to 0, then the sequence of antiderivatives ﬁ; converges to f
regardless of the dimension d. |

Using the above lemma, we describe a method for learning
gradients of functions specified in Def. 7.

Theorem 5 (Universal Gradient Approximation for Trans-
formed Sums of Ridges): Let F be functions in C*([0,1]%)
expressible as transformations of finite sums of ridge functions.
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Let G e Cl([O, l]d), g(x) =VzG(z), and v € CO(R). Let h
be of the form

h(z) =~(G(z) + B) - g(z) (11)

where 8 € R is a learnable bias. If ~ universally approximates
continuous functions on any compact subset of R and g uni-
versally approximates gradients of sums of ridge functions on
[0,1]9, then functions of the form h are GradNets that uni-
versally approximate V F.

Proof: If F' € F, then VF is of the same form as h:

N N
V= (Z bi(a] T+ bi)) : (Z aai(a; = + bi)) (12)
i=1 i=1
By definition, v can approximate 7" and g(x) can ap-
proximate N | ;¢! (a, @ + b;) within arbitrary error. By
Lemma 6, we get that G(x) + /3 can simultaneously approxi-
mate Ei\;l yf}i(ag—x + b;). Thus, each function in (11) can learn
the corresponding function in (12) within arbitrary error. Fur-
thermore, (12) is a GradNet as it corresponds to VI'(G(x) +
). where, by continuity of v on R, I is the antiderivative of
on the compact codomain of G(x) + 3. O

Thm. 5 demonstrates that gradients of functions specified by
Def. 7 can be learned by parameterizing -y as a scalar-valued
neural network (since neural networks are universal function
approximators [54]) and taking g(x) to be a network of the
form given in Thm. 3, which can approximate gradients of sums
of ridges to arbitrary error. Furthermore, Cor. 3.1 allows us to
parameterize g with a single hidden layer neural network whose
antiderivative is simple to compute, hence we can easily obtain
the form for G, the antiderivative of g, in Thm. 5.

We now extend Thm. 5 to specifically use mGradNets to
learn gradients of monotone convex transformations of sums
of convex ridges. The parameterization requires a function -~y
that universally approximates monotone nonnegative functions.
The following construction of -y leverages the universality of the
mGradNet on R, as proved in Lemma 5.

Lemma 7: Let F be the set of nondecreasing functions in
C([0, 1]). Let 7 universally approximate nondecreasing func-
tions in C°([0, 1]) and p be uniformly continuous and strictly
increasing. Then functions of the form p(7(x)) universally ap-
proximate F.

Proof: Let f € F and € > 0. Since p is strictly increasing, it
is invertible. Since p—!( f()) is continuous and nondecreasing,
there exists T that approximates p~!(f(z)) with arbitrary error
¢ > 0. By uniform continuity of p there exists § > 0 such that
Vz, |r(z) — p~(f(2))| < 6 implies |p(r(z)) — f(z)| <e. D

Lemma 7 demonstrates how composing a universal approxi-
mator of differentiable monotone functions with another func-
tion can yield a universal approximator of differentiable mono-
tone functions that map to a subset of R. Lipschitz functions are
uniformly continuous, thus taking p to be softplus and 7 to be
an mGradNet in Lemma 5 yields a universal approximator of
differentiable, nonnegative, monotone functions . We extend
Thm. 5 with this construction for ~.

Theorem 6 (Universal Gradient Approximation for Trans-
formed Sums of Convex Ridges): Let F be functions in
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C1 ([0, 1]%) expressible as convex monotone transformations of
finite sums of convex ridge functions. Let & be as in (11), where
G e CL([0,1]%), B € R is a learnable bias, and v € C°(R) is
nondecreasing and nonnegative. Let -y universally approximate
nondecreasing and nonnegative functions in C°(R) on compact
subset of R. Let g(x) = VG(x) universally approximate gra-
dients of sums of convex ridge functions on [0, 1]%. Functions of
the form h are mGradNets that universally approximate V.F.
Proof: Let F € F. Then VF(x) is as in (12), where
convexity of ¢, and convex monotonicity of T respectively
imply that the «] are monotone and 7” is monotone non-
negative. Lemma 7 provides a construction for continuous -y
that can approximate 7" within arbitrary error. For instance,
T can be as described in Lemma 5 and p can be any uni-
formly continuous, nondecreasing function such as softplus or
ReLU. The remainder of the proof is nearly identical to that of
Thm. 5 with G, g appropriately corresponding to convex ridge
functions. O
Thm. 6 demonstrates that h can be parameterized using an
mGradNet to yield the gradient of any function expressible
as the convex monotone transformation of a sum of convex
ridges. As in Thm. 5, knowledge of the antiderivative of the
mGradNet g(x) is required. However, as shown in Cor. 4.1,
there exist mGradNets with known antiderivatives that can
learn the gradient of any sum of convex ridges.

D. Learning Subgradients of Convex Functions

The previous subsections discussed parameterizing and
learning gradients of differentiable convex functions. In this
section, we relax the differentiability assumption and show
that mGradNets can effectively characterize subgradients of
subdifferentiable convex functions.

Definition 8 (Subgradient, Subdifferential): A subgradient of
F e CY%(R9) at a point « is any v that satisfies

v'(y—z) < F(y) - F(z), Yy €R?

The subdifferential of F' at x, denoted by F (x), is the set of
all subgradients of F' at x.

If F is convex and differentiable at a point z, then the
subgradient at @ is uniquely the gradient of F' at z. We also note
that any convex function is subdifferentiable on the interior of
its domain [49]. To learn subgradients of convex functions, we
use the following lemma.

Lemma 8 ([49] Theorem 24.5): Let S C R be open, convex
and let F € C2(S) be finite. Let G; € CY(S) be a sequence of
finite functions converging pointwise to " on S. For any € > 0,
there exists index iy such that Vi > ig, 0G;(xz) C F(x) + B
where B is the Euclidean unit ball of R?.

The lemma states that if a sequence of convex approximators
converges pointwise to a target convex function, then the sub-
differentials of the approximators become increasingly similar
to those of the target function. If the approximators are addi-
tionally differentiable, the subdifferential 0G;(x) is the gradi-
ent VG;(z) and can be made arbitrarily close to an element
in OF (x). Therefore, the existing results in Sec. V based on
Lemma 2 can be readily adapted to handle subdifferentiable
convex functions.
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V1. GRADNET ARCHITECTURE VARIANTS

In this section, we propose specific neural network architec-
tures for parameterizing GradNets and mGradNets. The ar-
chitectures we propose exhibit universal approximation prop-
erties while empirically being more amenable for optimization
(as seen in Sec. VII). In the following subsections, we initially
describe conditions under which our proposed architectures are
GradNets and then discuss stricter conditions under which the
networks become mGradNets.

A. Modular (Monotone) Gradient Networks (GradNet-M,
mGradNet -M)

Here we describe modular gradient networks (GradNet -
M) and their monotone counterparts (mGradNet -M), which
are motivated by the discussion of Lemma 3 in Sec.V. These
networks achieve wide, modular architectures by respectively
using GradNets and mGradNet s, with different weight ma-
trices, as building blocks. GradNet -Ms (mGradNet -Ms) can
universally approximate a broader range of functions than just
those expressible as the sum of (convex) ridges, and thus are
more expressive than existing methods [30], [31], [32], [33],
[34], [35]. GradNet -Ms universally approximate gradients of
L-smooth functions and transformations of sums of ridges, as
shown in Thm. 2 and Thm. 5 respectively. Similarly, mGrad-
Nets universally approximate gradients of convex functions
and gradients of transformations of sums of ridges, as demon-
strated in Thm. 1 and Thm. 6.

The design of GradNet -Ms leverages the facts that a linear
combinations of GradNets and a composition of a Grad-
Net with a scalar-valued, differentiable function both yield
GradNets, as described respectively in Rem. 2 and Thm. 5.
The following equations define the GradNet -M and generalize
the architecture we previously proposed in [14]:

Zm =W+ bn (13)
M
GradNet-M(z)=a+ Y pm(bm (2m))W 0m (2m) (14)
m=1

where a denotes a learnable bias and M denotes the number of
modules — a hyperparameter tunable based on the application.
Om, W m and b,, respectively denote the activation function,
weight matrix, and bias corresponding to the m®* module.
The ¢, are vector-to-scalar functions and p,,, are scalar-to-
scalar functions. The block diagram corresponding to a single
module output is shown in Fig. 2. In the following theorem,
we provide conditions for ¢, pm, and oy, under which the
GradNet-M is a GradNet.

Theorem 7 (GradNet -M conditions): If pm, ¢m, om are all
differentiable and o, = V,,,, the GradNet-Min (13)-(14) is
a GradNet.

Proof: Consider the m! module p,,(¢m(zm))
W;om(zm). The Jacobian of the m!* module with respect
to x is

I (Z) = Pl (m(2m)) (W 3,0m (2m)) (W 0m(2m)) T
+ P (Gm(2m) )W m T, (Zm)Wm (15)
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Fig. 2. Single module of the modular gradient network (GradNet-M)
defined in (13)-(14).

The first term on the RHS is a Gram matrix scaled by
Pro(m(Zm)), and hence symmetric. The second term on the
RHS is symmetric by Lemma 1 since .J Im = H,, _.Thus, each
module is a GradNet and the result holds by Rem. 2. O

Next, we introduce the monotone GradNet -M:

Corollary 7.1 (mGradNet-M conditions): The Grad
Net -M defined by (13)-(14) is an mGradNet, and referred to
as mGradNet -M if, for each module,

a) ¢m :R? = I, CR is convex, twice differentiable

b) pm : Im — R is differentiable and monotone

¢) om=Vom

Proof: The Jacobian of the m®" module is given by (15).
Convexity of ¢,,, implies .J,_ is everywhere PSD. Since p,, is
nonnegative-valued, the second term on the RHS of (15) is PSD.
Monotonicity of p,, implies that p},, is everywhere nonnegative,
making the first term of (15) also PSD. Hence, each module is
an mGradNet and the result holds by Rem. 6. |

There are several suitable choices for pn, Om,
and o,, in Cor. 7.1. For example, ¢, (x)=LSE(z),
om () =softmax(x) and pn can be any differentiable,
monotone, and nonnegative function on R such as softplus.
As another example, one can take o,, to be the elementwise
sigmoid activation function with ¢n,(x)=>)", softplus(x;)
and p(r) = ax + 3, where a > 0.

B. Cascaded (Monotone) Gradient Networks (GradNet -C,
mGradNet -C)

In this section we generalize the GradNet and mGradNet,
described by (1), to achieve deeper networks. The architecture
is inspired by Thm. 3, which states that the GradNet in (1)
with elementwise neural network activations can universally
approximate the gradient of any function expressible as the sum
of ridges. The networks we propose in this section, namely
GradNet-C and mGradNet -C, are consequently as expres-
sive as the methods in [30], [31], [32]. [33]. [34], [35] while
featuring a novel and more efficient parameterization of the ele-
mentwise activation functions. We propose a cascaded gradient
network (GradNet - C), illustrated in Fig. 3 and defined by the
layerwise equations:

zo=PBo @ Wzx+ by
z=B, 0Wzx+a;®op(ze_1)+ b
GradNet-C(z) =W [ar © oy (z1_1)] + br

(16)

a7
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B,W Ay A; wTa,
X l 0'1 —o@—r 0'2 —b$—ro-o
Blw] 82W]
X X
Fig. 3. Cascaded gradient network (GradNet-C), defined in (16)-(17),

with A, = diag (o) , By = diag (3,).

where z;, by, and oy respectively denote the output, bias, and
activation function at layer ¢ of the network and ® is the
Hadamard (entrywise) vector product. The weight matrix W is
shared across all layers whereas the intermediate scaling weight
vectors o, (3, are unique to each layer.

Theorem 8 (GradNet -C conditions): The GradNet-C in
(16)-(17) is a GradNet if the o, are differentiable elementwise
activations.

Proof: Let Ay =diag(ay),B;=diag(3,). The Jaco-
bian of GradNet -C(x) with respect to x is:

Jeraavet-c(@)=W T DW

L L—¢
D=Y (HAL_E-JUL_i (zL_t-_l)) By,

=1 \i=0
(19)

(18)

The activation Jacobians J, are diagonal matrices since each
o operates elementwise on the input. Therefore I is a diagonal
matrix and Jeragnet-c iS symmetric. O

The activation o; in Thm. 8 can be a fixed function applied
elementwise, e.g., tanh, softplus, and sigmoid, or a learnable
function that operates on individual elements of the input vector.
Thus, the proposed approach also permits elementwise acti-
vations parameterized by scalar-valued neural networks previ-
ously highlighted in Cor. 3.1. The proposed cascaded networks
also remain GradNets if all 3, are 0. However, as shown in
[55], [56], skip connections accelerate training as they address
the vanishing gradient problem in deep networks and smoothen
the loss landscape. Next, we introduce the monotone variant of
the GradNet-C.

Corollary 8.1 (mGradNet -C conditions): The GradNet -
Cin(16)-(17) is an mGradNet, and referred to asmGradNet -
C, if, at each layer, the scaling weights ai;, 3, are nonnegative
and the oy are differentiable, monotonically-increasing elemen-
twise activation functions.

Proof: Consider Jgraanet-c from (18)-(19). By the as-
sumptions in the theorem, for all £, A,, B, are nonnegative
diagonal matrices and the activation Jacobians .J,, are also
nonnegative diagonal matrices. Thus, D is everywhere PSD and
it follows that Jgraanet-c is everywhere PSD. O

The condition in Cor. 8.1 states that the activations o, of an
mGradNet - C should be monotonically increasing. Most pop-
ular elementwise activation functions, e.g., tanh, softplus, and
sigmoid, satisfy this requirement. Cor. 8.1 also permits the use
of learned, elementwise mGradNet activations as discussed in
Thm. 4. When considering GradNet-C and mGradNet-C
on compact domains in practice, the activations o need only
be continuous rather than differentiable. The requirement that

Authorized licensed use limited to: Camegie Mellon University Libraries. Downloaded on March 12,2025 at 12:13:03 UTC from IEEE Xplore. Restrictions apply.



334

the intermediate elementwise scaling weights of mGradNet -C
at each layer are nonnegative vectors is easy to parameterize
in practice. Moreover, we empirically observe in Sec. VII that
imposing nonnegativity constraints on the intermediate weight
vectors does not impair optimization or final performance.

VII. EXPERIMENTS
A. Gradient Field

We demonstrate the proficiency of our networks in learn-
ing gradients of scalar functions over the unit cube [0, 1]¢. To
visualize the error incurred by each network, we consider a
low-dimensional setting with d =2 in Sec. VII-Al. We find
that our methods result in error plots with fewer irregulari-
ties than baseline methods. In Sec. VII-A2, we consider high-
dimensional settings with d € {32, 256, 1024} and demonstrate
that our methods achieve an improvement of up to 10 dB when
learning the gradient of a convex potential. For nonconvex
potentials, the improvement reaches as high as 15 dB.

1) 2D Gradient Field: We start with d = 2, where the error
incurred by each method can be visualized on the unit square.
For the convex test function, we consider learning the gradient
of the following benchmark potential function from [29], which
is convex on the unit square z1, x5 € [0, 1]:

¥ mze 322 B

Flaym)=sit+5+—+5 -3

For the nonconvex test function, we consider learning the gra-
dient of the following potential over the unit square:

(20)

IjIa2 IE%
B B
Contour plots of F' and G, along with their corresponding
gradients, are shown in Fig. 4. For the convex test function
F(x) in (20), we compare the proposed mGradNet-C and
mGradNet -M, respectively defined in (16)-(17) and (13)-(14),
with the Input Convex Neural Network (ICNN) [36], Input
Convex Gradient Network (ICGN) [29], and Convex Ridge
Regularizer (CRR) [34]. Similarly for the nonconvex test func-
tion G(x) in (21), we compare the proposed modular gra-
dient network (GradNet-M) and cascaded gradient network
(GradNet-C) to a multilayer perceptron (MLP) and to the
ridge regularizer (RR) network proposed in [35]. The input to
all models is a point € [0,1]2, and all networks, excluding
the ICNN and MLP, are trained to directly output VF(x) or
VG(z). The input to the ICNN and MLP is also « and the gra-
dient of the networks, with respect to x, are trained to approxi-
mate V F(x) or VG(x), respectively. The specific architecture
configurations for each model are provided in Appendix A.
All models are constrained to have roughly 100 parameters.
We sample 100,000 training points uniformly at random on the
unit square and separately sample 10,000 validation points. All
models are trained using mean squared error (MSE) loss and
their performance is evaluated on a uniform grid of points in
the unit square. The ¢> norm of the gradient prediction error is
shown for each model in Fig. 5.

We observe from Fig. 5 that, for learning VF(x), the pro-
posed mGradNet -M and mGradNet -C exhibit significantly
lower error rates than that of the ICNN, ICGN, and CRR. Fig. 5

G(r1,12) = % sin(2mwz1) cos(mza) + (21)
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Fig. 4. Test functions F' in (20) and G in (21), along with their gradients,
for d = 2 over the unit square.
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Fig. 5.

also shows that the mGradNet -M and mGradNet -C are able
to effectively learn the gradient at all areas of the unit square,
whereas the ICNN, ICGN, and CRR tend to underperform
around the edges of square. Similar trends are observed in the
nonconvex case where the GradNet -C, GradNet-M, and RR
outperform the MLP.

2) d-Dimensional Gradient Field, d > 32: We proceed to
consider gradient field learning in higher dimensions. Our main
findings are as follows. We observe that our mGradNet -C and
GradNet-C architectures consistently outperform the CRR
[34] and RR [35], both of which also use elementwise acti-
vations. Our mGradNet -M consistently outperforms all other
methods for learning the gradient of a convex potential across
all settings considered. Meanwhile, for the nonconvex potential,
the best-performing method is consistently either our proposed
GradNet-C or the GradNet-M.

For the convex test function we use the following positive
definite matrices defined in [57]:

G 2 4 sin(4may;) P 1+ 20
YT A +li—j|nd) U0 +i—j|md)
3— 20y itj—2 .
N i e S gy TR
Q= Arr—jimd W 2d—g SO UYL

where 1 <1i,7 <d and S;; denotes entry ij of the matrix S.
We consider learning the gradient (where it exists) of the con-
vex, piecewise quadratic function:

F(x)=max{z'Sz,2"Pz,z' Qz} (22)

over the unit hypercube x € [0,1]? for d € {32,256,1024}.
We also consider a nonconvex setting in which we train the
appropriate models to learn the score function of a Gaussian

Gradient field learning results for d = 2.

mixture model (GMM), V, In G(x), where In G(z) is the log
probability density function:

i
InG(z) =In (Z CT z,.))

i=1

(23)

In (23) above, N(z;pu,,%;) denotes the probability density
function of a multivariate normal distribution with mean g, €
R9 and d x d covariance matrix X;. Since most of the proba-
bility mass of a d-dimensional standard normal distribution lies
in a thin annulus that is centered at the origin and has inner
and outer radii close to v/d [58], we ensure interesting score
functions in the unit hypercube by drawing each component of
1, uniformly at random from [0.3, 0.7] and setting X = 2v/dI.
We select equal weights for the Gaussians. We train all mod-
els in these experiments for 10,000 iterations, where at each
iteration we randomly sample 100 points from [0, 1]¢ to update
the model parameters. The specific model configurations and
additional training details are provided in Appendix B.

The results for learning the gradients of (22) and (23) are
shown in Tables I and II respectively. We observe in Table I
that the mGradNet - M outperforms the baseline methods by up
to 10 dB in the high-dimensional setting of d = 1024. Further-
more, although they parameterize the same space of functions,
we observe that the mGradNet - C outperforms the CRR from
[34] in the settings d = 256 and d = 1024 by margins of roughly
4 dB and 2 dB respectively.

Similarly for the score learning task, we observe in Table II
that the GradNet-M and GradNet-C significantly outper-
form all other methods. The GradNet -C outperforms the RR
by nearly 8 dB for d =32 and by over 4 dB for d = 256.
The GradNet-M outperforms the RR by a margin of over
5 dB for d =1024, thus demonstrating its effectiveness in
high dimensions. The MLP baseline underperformed all other
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TABLE 1
LEARNING THE GRADIENT OF CONVEX POTENTIAL (22) (15 TRIALS).
*0QUR METHODS

d=32 d =256 d=1024
Model MSE (dB) MSE (dB) MSE (dB)
ICNN [36] 1276 £ 003 983 £ 001  -0.36 % 0.01
CRR [34] 1386 £ 003 624 £ 004 653 & 001
mGradNet-C* -12.80 £ 003 -10.64 & 001  -8.75 & 0.02
mGradNet-M* -15.34 £ 003 -11.30 £ 002 -10.42 & 001
TABLE I

LEARNING THE NONCONVEX SCORE FUNCTION CORRESPONDING TO
(23) (15 TRIALS). *OUR METHODS

d=32 d =256 d=1024
Model MSE (dB) MSE (dB) MSE (dB)
MLP 3320 £ 004 -1821 £014 278 & 001
RR [35] 3250 £ 030 20304+276 -11.26 4+ 0.89
GradNet-c* -44.43 £ 0.07 -24.90 £ 0.07 -12.84 + 0.04
GradNet-M* -37.66 £ 002 21.72+£0.14 -17.02 £ 0.03

considered methods, especially for d = 1024, where its perfor-
mance lagged by nearly 9 dB behind the second worst model,
namely the RR. In both the convex and nonconvex experiments,
the modular architectures, mGradNet-M and GradNet-M,
perform better than the other methods in the high-dimensional
setting d = 1024.

B. Hamiltonian Gradients for Two-Body Dynamics

In this section, we train GradNets to learn gradients of
the Hamiltonian function for the two-body problem and sub-
sequently use the learned models to predict the trajectories of
the two objects. We observe that our GradNet -M outperforms
the baseline Hamiltonian NN [59] by over 3 dB and the RR
[35] by over 11 dB. As in the gradient field experiments, our
GradNet-C architecture again outperforms the RR [35] —
this time by over 3 dB. The performance gaps that arise in
this experiment directly validate the theoretical differences in
approximation capabilities between the baseline methods and
GradNets (see Sec. V).

Hamiltonian mechanics has many fundamental applications
ranging from classical mechanics and thermodynamics to quan-
tum physics. In fact, predicting the dynamics of objects in a
system can be achieved by learning the gradient of the corre-
sponding scalar-valued Hamiltonian function. We define g and
p respectively as the vectorized position and momentum infor-
mation of all objects in the system. The Hamiltonian H(g, p)
characterizes the total energy of the system and offers a com-
plete description of the system. The time derivatives of the po-
sition g and momentum p (which are respectively the velocities
and forces) of all objects can be obtained by differentiating the
Hamiltonian of the system:

dq _ oM

oH o 0N
dt op

- L 24
dt  Jdq .
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TABLE III
OBJECT COORDINATE MSE AND TOTAL SYSTEM ENERGY MSE OF
2-.BODY PROBLEM TRAJECTORIES UNROLLED USING (24) AND
HAMILTONIAN GRADIENTS ESTIMATED BY EACH MODEL (15 TRIALS).
*OUR METHODS

Model Coordinate MSE (dB)  Energy MSE (dB)
Baseline NN -4.90 + 249 -9.06 + 1.79
Hamiltonian NN [59] -20.01 £ 1.28 -51.43 + 0.68
RR [34] -12.77 £ 1.74 -19.53 + 2.82
GradNet-C* -16.32 £+ 1.70 -44.29 + 0.55
GradNet-M* -23.84 + 1.61 -52.31 + 0.59

Hence, the Hamiltonian formulation of the system dynamics
provides a simple method for obtaining position, momentum,
velocity, and force information. Following the procedure in
[59], we train models to take g, p as input and output dq/dt and
—dp/dt. By (24), training these models corresponds to learning
gradients of an unknown Hamiltonian function — a direct and
quintessential application for GradNets.

The system for the two-body problem is composed of two
point particles interacting through an attractive force like grav-
ity. It has the following nontrivial, nonconvex Hamiltonian:

2 2 2
P P2 TP gmimsa
%(q,p) = il CM”Z 1 ” 1”'2 || 2”2

mi + ma 2p

: = 7 (25)

lla; — q.ll3

where p is the reduced mass and p.,, is the momentum of
the center of mass. Using the experimental setup and training
procedure® in [59], we consider a two-dimensional physical
ambient space that induces eight degrees of freedom for the
system: two-dimensional position and momentum for each ob-
ject. This means g, p € R®. We compare our networks with the
Hamiltonian neural network (NN) and multi-layer perceptron
baseline from [59]. Unlike the GradNets introduced in this
paper, the Hamiltonian NN does not offer theoretical guarantees
concerning universal approximation of gradient functions.

In Fig. 6, we plot the ground truth trajectories of the two
bodies along with the trajectories unrolled using the estimated
gradients of the Hamiltonian in (25). Table III shows the cor-
responding coordinate MSEs for the unrolled trajectories and
reflects the results in Fig. 6. Since the energy in the system
should remain constant, the energy MSEs in Table III reflect
how effectively the Hamiltonian gradient predictions of each
method conserve the total energy of the system. We see that
the GradNet -M outperforms the Hamiltonian NN baseline by
over 3 dB in terms of coordinate MSE and by approximately
1 dB in terms of energy MSE. Similarly, the GradNet-M
outperforms the RR by 11 dB for coordinate MSE and 32 dB
for energy MSE. We attribute this gain to the universal approx-
imation capabilities of the GradNet -M discussed in Sec. V.
The GradNet -C outperforms the RR and demonstrates better
approximation capabilities for the gradient of (25), which is not
easily approximated by a sum of ridge functions.

30ur results are obtained by evaluating all models trained using the
hyperparameter search detailed in Appendix C.
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Fig. 6. 2-body problem object trajectories from unrolling dynamics using models that learn gradients of the Hamiltonian. Our proposed methods are

in green.

VIII. CONCLUSION

In this work, we presented gradient networks (GradNets):
novel classes of neural networks for directly parameterizing
and learning gradients of functions. We first introduced gra-
dient networks that are guaranteed to be gradients of scalar-
valued functions. We subsequently demonstrated methods to
convert gradient networks into monotone gradient networks
(mGradNets) that are guaranteed to correspond to the gra-
dients of convex functions. Notably, we proposed a general
framework for designing (monotone) gradient networks and rig-
orously established their universal approximation capabilities
for several key function classes. Our experimental results on
gradient field and dynamics learning problems showcase the
practical utility of GradNets and reinforce our theoretical
findings. We observed improvements of up to 15 dB over ex-
isting methods for approximating gradient fields and achieved
improvements of up to 11 dB for predicting the dynamics of
the two-body problem.

APPENDIX

All models are trained using the Adam optimizer with stan-
dard momentum parameters 0.9 and 0.999.

A. Gradient Field Experiment Details: d =2

The mGradNet -M has 4 modules, each with hidden dimen-
sion7, p(x) =1, and o(x) as the softmax function. The module

outputs are conically combined via learnable, nonnegative
parameters. The GradNet-M is identical to the described
mGradNet -M, however the module outputs are combined lin-
early rather than conically. The mGradNet-C has L = 3 hid-
den layers, each with a hidden dimension of 7, elementwise tanh
activation, and intermediate nonnegative weight vectors oy, 3,.
The GradNet -C is identical to the mentioned mGradNet -
C except «, 3 are unconstrained. We compare to a 2 hidden
layer ICNN with hidden dimension 7 and softplus activations.
The ICGN has the form o(Wx + b) with hidden dimension
32 and sigmoid activation. The CRR has hidden dimension 10
and each learnable spline activation has 7 knots. The RR has
the same architecture as the CRR except the spline activation
functions are not constrained to be nondecreasing. The MLP
has 3 hidden layers and hidden dimension 6. All models are
trained for 200 epochs with batch size 1000 and learning rate
0.005.

B. Gradient Field Experiment Details: d > 32

All models have the same architecture as described in
Appendix A with some minor modifications. The CRR and
RR each have 41 knots. The mGradNet-C has interme-
diate, learnable activations of the form atanh(z)+ S(z —
tanh(z)) where o, are constrained to be nonnegative.
The GradNet-C uses the same activation, but with uncon-
strained «, 5. The mGradNet-M has intermediate, learnable
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activation asoftmax(z) — Bsoftmin(x) where a, 3 are con-
strained to be nonnegative. The GradNet -M uses the same
activation with unconstrained «, 5. The hidden dimension of
each model is scaled such that each model has 1024 - d param-
eters. All models are trained for 10,000 iterations with randomly
sampled batches of size 1,000 from [0, 1]2. We test learning
rates of 0.01, 0.001, and 0.0001 for each model, and report
results corresponding to the learning rate that achieves the best
performance. For each test trial, we evaluate the trained models
on 10,000 points randomly sampled from [0, 1]%.

C. Hamiltonian Experiment Details

We use the baseline MLP and Hamiltonian NN architectures
described in [59] and tune over the hyperparameters listed in
the appendix of [59]. To closely match the number of parame-
ters used in the best-performing Hamiltonian NN with hidden
dimension 100, we use a GradNet-M with 4 modules and
hidden dimension 256, with p(z) = 1, and o(x) as the softmax
function. The outputs of the modules are linearly combined
via arbitrary learnable parameters. The GradNet-Chas L =4
hidden layers, each with a hidden dimension of 256, elemen-
twise tanh activation, and intermediate weight vectors a, 3,.
The RR has a hidden dimension of 220 and each learnable spline
activation has 41 knots. We tuned the RR’s range parameter
over 0.01, 0.1, 1, and 10, and sparsity parameter over 0, le-1,
le-2, 1e-4, 1e-6, and 1e-8. Like [59], we use a batch size of 200
and train for 10,000 steps. We tuned over learning rates le-1,
le-2, 1e-3, le-4 and le-5 for each model, and report results
corresponding to the best-performing model. For each trial at
test time, we unroll from ¢ =0 to ¢ =60, where At=0.03
(2000 steps).

SOFTWARE AVAILABILITY STATEMENT

Code https://github.com/SPronav/Gradient

Networks.

available at
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