

Cross-Shelf Exchange in Prograde Antarctic Troughs Driven by Offshore Propagating Dense Water Eddies

Alan Gaul,^{a,b} Weifeng (Gordon) Zhang,^c Claudia Cenedese,^a

^a *Physical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States*

^b *MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, United States*

^c *Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States*

¹⁰ *Corresponding author: Alan Gaul, agaul@mit.edu*

11 ABSTRACT: This study examines the link between near-bottom outflows of dense water formed
12 in Antarctic coastal polynyas and onshore intrusions of Circumpolar Deep Water (CDW) through
13 prograde troughs cutting across the continental shelf. Numerical simulations show that the dense
14 water outflow is primarily in the form of cyclonic eddies. The trough serves as a topographic guide
15 that organizes the offshore-moving dense water eddies into a chain pattern. The offshore migration
16 speed of the dense water eddies is similar to the velocity of the dense water offshore flow in the
17 trough, which scaling analysis finds to be proportional to the reduced gravity of the dense water
18 and the slope of the trough side walls and to be inversely proportional to the Coriolis parameter.
19 Our model simulations indicate that, as these cyclonic dense water eddies move across the trough
20 mouth into the deep ocean, they entrain CDW from offshore and carry CDW clockwise along their
21 periphery into the trough. Subsequent cyclonic dense water eddies then entrain the intruding CDW
22 further toward the coast along the trough. This process of recurring onshore entrainment of CDW
23 by a topographically constrained chain of offshore-flowing dense water eddies is consistent with
24 topographic hotspots of onshore intrusion of CDW around Antarctica identified by other studies.
25 It can bring CDW from offshore to close to the coast and thus impact the heat flux into Antarctic
26 coastal regions, affecting interactions among ocean, sea ice, and ice shelves.

27 **SIGNIFICANCE STATEMENT:** Troughs cutting across the Antarctic continental shelf are a
28 major conduit for the transport of dense shelf water from coastal formation regions to the shelf
29 break. This study describes a process in which clockwise-spinning eddies moving offshore in
30 prograde troughs successively entrain filaments of relatively warm Circumpolar Deep Water from
31 offshore across the entire shelf and into the coastal region. This eddy-induced transport provides
32 a new understanding of the shelf edge exchange process identified in previous studies and a
33 mechanism for further onshore intrusion of the warm Circumpolar Deep Water over parts of the
34 Antarctic shelf. The resultant onshore heat flux could potentially bring a substantial amount of
35 heat from offshore into the coastal region and thus affect ice-ocean interactions through melting
36 sea ice and ice shelves.

37 **1. Introduction**

38 Processes at the Antarctic coast affect the boundary conditions of both the Antarctic Ice Sheet
39 and the abyssal ocean, and thus can greatly impact the climate system. Brine rejection during sea
40 ice formation in coastal polynyas creates cold and saline Dense Shelf Water (DSW) that sinks to
41 the shelf bottom and then flows offshore, forming Antarctic Bottom Water, the deepest water mass
42 in the global ocean (Johnson 2008; Snow et al. 2016). Additionally, intrusions of relatively warm
43 Circumpolar Deep Water (CDW) onto the continental shelf and then the coastal region can melt
44 ice shelves (Jacobs et al. 1996) and reduce sea ice production (Guo et al. 2019).

45 Numerical simulations of polynya-sourced dense waters flowing offshore across gently sloped
46 continental shelves show flows that are mostly in the form of eddies (Gawarkiewicz and Chapman
47 1995). Several factors, such as the Coriolis parameter, bottom slope, water depth, and ambient
48 stratification, affect the dynamics of these dense water eddies – particularly their geometry, prop-
49 agation speed, resting depth, and transport pathway (Gawarkiewicz 2000; Zhang and Cenedese
50 2014). While these studies of dense water outflow dynamics used idealized, along-shelf uniform
51 topography, observations on the Antarctic shelf often show DSW flowing offshore in bathymetric
52 troughs (Gordon et al. 2009). These troughs connect the shelf break directly to the Antarctic
53 coast in the Antarctic Peninsula, the Adélie Coast, Prydz Bay, and the Bellingshausen, Amundsen,
54 Weddell, and Ross Seas (Livingstone et al. 2012). They facilitate the offshore flow of dense water
55 on the bottom via an along-isobath gravity current in the same direction as the phase propaga-

56 tion of coastal trapped waves (Chapman and Gawarkiewicz 1995; Wåhlin 2004; Kämpf 2005). As
57 Chapman and Gawarkiewicz (1995) and Kämpf (2005) examined dense water offshore flows on the
58 shelf in the initial transient state before dense water reaches the shelf break, the equilibrium-state
59 dynamics of DSW flows in troughs on the shelf and its impact, upon reaching the shelf break, on
60 onshore intrusions of offshore waters remains unexplored.

61 Studies have identified many mechanisms driving CDW intrusions onto the Antarctic continental
62 shelf, such as along-isopycnal lateral eddy fluxes (Stewart et al. 2018), inertial overshoot of
63 a shelf break jet across a curving shelf edge (Dinniman et al. 2003), and wind-driven coastal
64 upwelling (Thoma et al. 2008). Some of these mechanisms are region-specific. For example, in
65 the Bellingshausen Sea and West Antarctic Peninsula, the Antarctic Circumpolar Current impinges
66 on the shelf edge, driving onshore CDW transport through bottom Ekman transport, shoaling of
67 isopycnals, or flow instabilities (Klinck et al. 2004; Thoma et al. 2008; Zhang et al. 2011; Klinck
68 and Dinniman 2010). In the Amundsen Sea, onshore flux of CDW through a submarine trough
69 provides most of the heat required for ice shelf melting in the region (Walker et al. 2007). Multiple
70 processes could induce such a localized CDW intrusion in a trough, including wind-forced Ekman
71 pumping (Kim et al. 2017), interaction between along-shelf currents and irregular bathymetry
72 (St-Laurent et al. 2013; Liu et al. 2022), an outflow of ice shelf meltwater (St-Laurent et al. 2013),
73 and an outflow of DSW (Kämpf 2005; Morrison et al. 2020). A recent modeling study (Morrison
74 et al. 2020) has shown that most CDW intrusions onto the Antarctic shelf happen in regions of
75 strong DSW formation. As DSW flows offshore in a trough, the overlying sea surface height (SSH)
76 lowers, creating a cross-trough (along-shelf) sea level gradient and driving onshore geostrophic
77 flows of CDW. This mechanism can also be viewed as interfacial form stresses driving an eddy flux
78 of CDW across the shelf break (Morrison et al. 2020). These studies focus on prominent retrograde
79 troughs that are at least an order of magnitude wider than the typical baroclinic deformation radius
80 over the Antarctic shelf and slope, which is 1.8 to 5.5 km (Morrison et al. 2020). A correlation
81 between offshore dense water flow and onshore flow has also been observed at narrow irregular
82 topography on the continental slope (Darelius et al. 2023). In narrower troughs, with widths of the
83 same order of magnitude as the baroclinic deformation radius, baroclinic eddies might be confined
84 by the topography. As a result, the flow dynamics in these narrower troughs may differ from those
85 explored in previous studies.

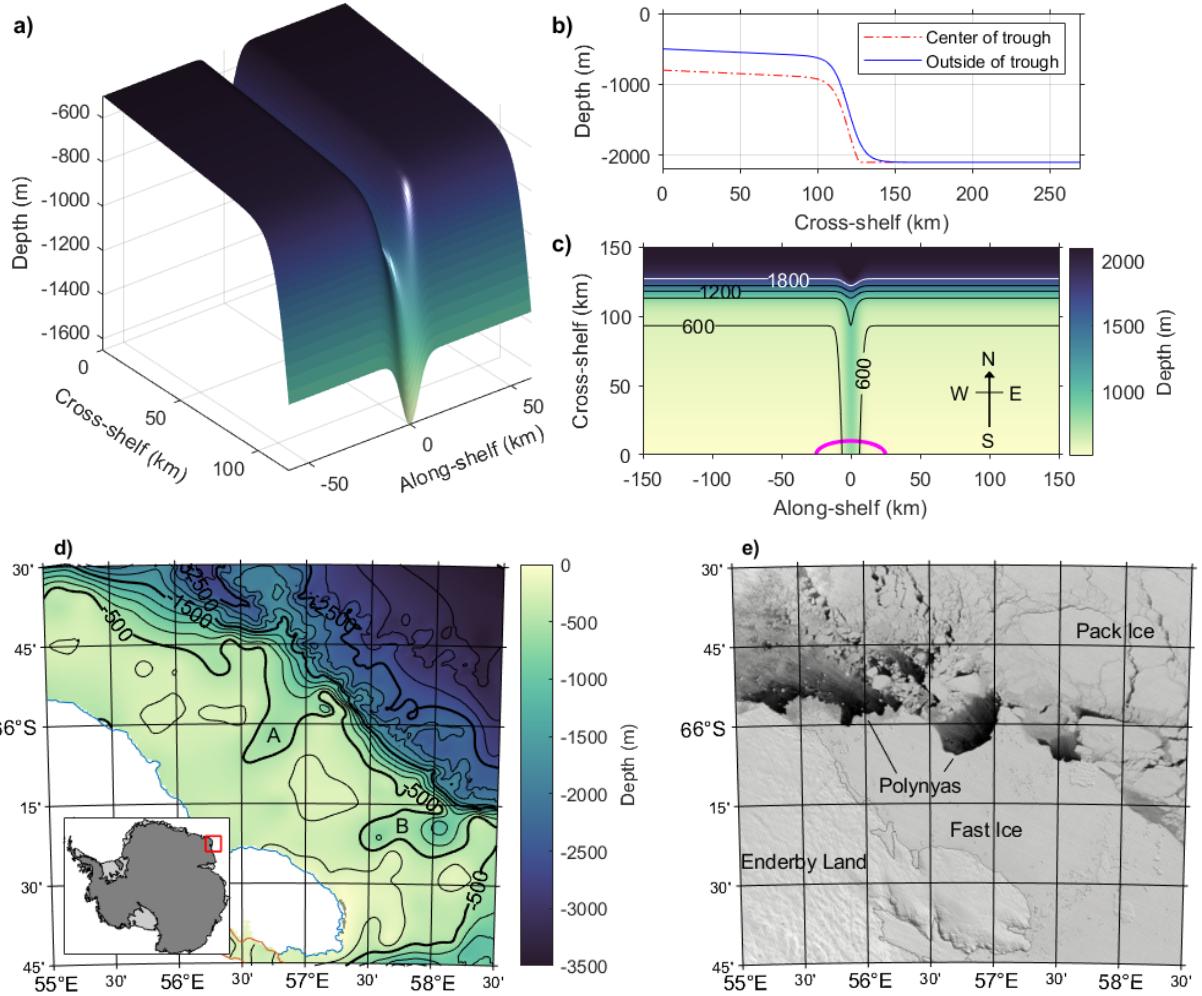
As a step toward understanding the processes of trough-induced cross-shelf exchange on the Antarctic shelf, this study examines the dynamical process linking offshore flows of DSW with onshore flows of CDW in a narrow, prograde, submarine trough using idealized numerical simulations. The idealized trough in the model is qualitatively based on two troughs adjacent to the Enderby Land polynya in East Antarctica (Fig. 1d). Prograde troughs of similar geometry exist in other regions of the Antarctic shelf, such as a trough near Oates Land at 157°E, 68.85°S and the wider Hughes Trough in the Weddell shelf at 45°W, 74°S. The following section outlines the numerical setup used in this study. Section 3 presents results from a control simulation to give an overview of the general flow pattern of DSW outflow and CDW intrusion in a trough. Section 4 analyzes the impacts of trough geometry, stratification, and other parameters on dynamics of the exchange flow. Section 5 provides a general context for the model results. Section 6 summarizes key findings.

2. Methods

Numerical simulations presented in this study are based on the Regional Ocean Modeling System (ROMS), which integrates the hydrostatic, Boussinesq Navier-Stokes equations on an Arakawa C-grid (Haidvogel et al. 2008). Temperature variation is neglected for simplicity, as salinity has a leading impact on density for seawater around freezing temperatures. A salinity equation is integrated along with a linear equation of state with a haline contraction coefficient of 760 ppm kg g⁻¹. The rectangular model domain covers an area of 18,000 km × 900 km, which is much larger than the central study region of 300 km × 150 km where an idealized prograde trough is placed (Fig. 1c). The vast along-shelf span of the model domain is used along with boundary sponge layers to prevent long topographic waves from affecting the flow within and near the trough.

The shelf is oriented in the east-west direction with the coast along the southern boundary. The ambient bathymetry outside of the trough consists of a gently sloping continental shelf and a steep continental slope. Following that in Zhang and Lentz (2017), the seafloor depth, h_a , increases toward the north as

$$h_a = \max \left[0, \frac{h_f - H_c}{l_f} (l_f + y) \right] + h_p \left(\tanh \frac{y - y_p}{l_p} - 1 \right) - h_f. \quad (1)$$


112 Here, the water depth at the coast has a default value of $H_c = 500$ m. The shelf depth scale $h_f =$
113 600 m and shelf width scale $l_f = 100$ km, such that the continental shelf has an offshore slope of
114 0.1%. The continental slope has a vertical scale of $h_p = 750$ m over a horizontal scale of $l_p = 10$
115 km, centered around the y coordinate $y_p = 120$ km. The shelf break is defined to be at the 600 m
116 isobath, which is 93 km offshore (north) of the coast. A Gaussian-shaped trough is added to the
117 ambient shelf and slope, and the total water depth is given by

$$h = h_a - h_t e^{-(x-x_0)^2/W_c^2}. \quad (2)$$

118 Here, W_c is an along-shelf topographic length scale in the trough, and the trough width, $w_t = 4W_c$,
119 is defined to encompass all areas with a topographic drop of at least 2% of the maximum trough
120 depth h_t . To study a geometrically simple case, h_t is held constant with respect to y , resulting
121 in a prograde trough. The implications of prograde versus retrograde troughs are discussed in
122 section 3a. For the control simulations (Fig. 1a-c), these topographic parameters are chosen to
123 approximate troughs in Enderby Land, East Antarctica (Fig. 1d).

131 The model has a horizontal grid resolution of 750 m x 750 m in a high resolution region that
132 spans an area of 300 km x 225 km, a portion of which is shown in Fig. 1c. The model grid gradually
133 coarsens to 105 km x 19.5 km toward the outer boundaries. Sponge regions are applied both at
134 the east and west ends of the model domain. These regions are 7,500 km wide with horizontal
135 viscosity and diffusivity increasing from zero within 2,000 km of the central study region to 100 m^2
136 s^{-1} at the boundary. Similarly, a 600 km wide sponge region is applied on the northern end of the
137 model domain. The sponge regions damp long topographic waves generated by flow disturbances
138 at the trough, preventing the waves from re-entering the study region after propagating through
139 the periodic east-west boundaries. The model has 120 vertical terrain-following sigma levels
140 (Shchepetkin and McWilliams 2005).

141 Periodic boundary conditions are used at the east and west boundaries. The coastal southern
142 boundary is closed. Radiation boundary conditions for momentum and tracers (Orlanski 1976) and
143 the Chapman boundary condition for sea surface height (Chapman 1985) are used on the northern
144 boundary in the deep ocean. The Coriolis parameter, f , is uniform across the entire domain. A
145 quadratic bottom friction parameterization with drag coefficient of 0.003 is used. The k - kl generic
146 length scale turbulence closure scheme is used to parameterize vertical mixing.

124 FIG. 1. (a-c) Model bathymetry for the control runs, from an (a) isometric, (b) side, and (c) birds-eye view.
 125 In panel (c), the magenta half-ellipse is the region of surface buoyancy forcing, and the black and white lines
 126 denote isobath contours. The coast is located on the southern boundary with a cross-shelf distance of zero km.
 127 While the full model domain extends 1,000 km offshore and 9,000 km east and west of the trough, only the
 128 area shown in panel (c) is analyzed in this study. d) RTopo-2 bathymetry near Enderby Land, East Antarctica.
 129 Idealized troughs used in this study are based upon troughs marked A and B. e) *Terra* MODIS satellite image of
 130 the Enderby polynya on 8 Sep. 2015.

147 All simulations start from rest with zero velocity and sea surface height. The control runs are
 148 initialized with an unstratified water column with a uniform salinity of 32. To simulate brine
 149 rejection in the polynya region, a constant evaporative freshwater flux, Q , is applied inside a coastal

TABLE 1. Parameters varied in sensitivity simulations, and their default values in control runs.

Sensitivity set	Varied parameter	Symbol	Units	Control value	Min. value	Max. value	# of runs
S-N _{ini}	Initial salinity stratification	$\Delta S/\Delta z$	psu km ⁻¹	0	0	0.5	20
S-Q	Surface buoyancy flux	Q	10 ⁻⁷ m ² s ⁻³	5.5	1.4	22.1	3
S-f	Coriolis parameter	f	10 ⁻⁴ s ⁻¹	-1.37	-0.30	-2.74	4
S-H _c	Water depth at coast	H_c	m	500	100	700	5
S-h _t	Trough depth	h_t	m	300	100	800	7
S-w _t	Trough width	w_t	km	24	8	40	6
S-b	Elliptical forcing region minor axis	b	km	10	2	30	6

150 half-ellipse with an along-shelf major axis of $a = 25$ km and a cross-shelf minor axis of b (Fig. 1c).
 151 While past studies have allowed the buoyancy forcing to gradually decay outward to approximate
 152 a time-averaged fluctuating forcing region (i.e. Chapman 1999), in this study the decay region is
 153 omitted in order to measure dense water flow speeds more precisely. Five control simulations are
 154 run, each with randomly perturbed initial salinity at each surface grid cell in the forcing region (the
 155 salinity perturbations have a normal distribution centered around zero with a variance of 10⁻⁴), to
 156 estimate the model uncertainty associated with nonlinearity of the circulation system.

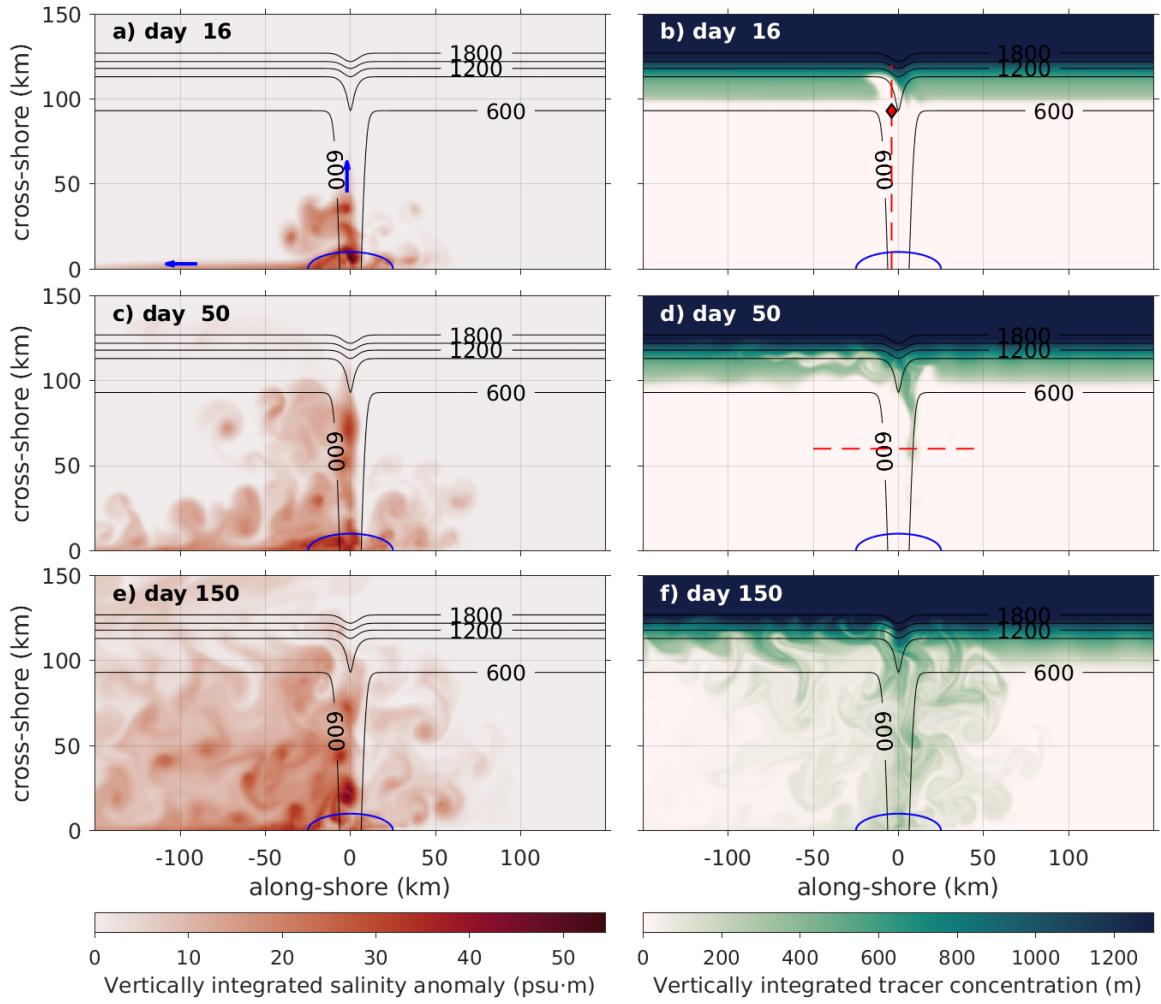
157 Seven sets of sensitivity simulations with a trough (S-N_{ini}, S-Q, S-f, S-H_c, S-h_t, S-w_t, and S-b) are conducted to examine the dynamical impact of seven parameters: initial stratification $\Delta S/\Delta z$, surface evaporative flux Q , Coriolis parameter f , coastal water depth H_c , trough depth h_t , trough width w_t , and minor axis of buoyancy forcing region b . Each set consists of multiple simulations that vary only one parameter while holding all others equal to the control values. Table 1 shows values used in both the control runs and sensitivity simulations. Note that to vary the initial stratification, the bottom salinity is modified while holding the surface salinity fixed, such that salinity increases linearly with depth.

165 Two additional simulations, one without a trough and another with enhanced horizontal viscosity are run to test how the trough and eddies impact cross-shelf exchange. Both simulations have the same sensitivity parameter values as the control runs. The former has no trough. The latter has a trough, but its explicit horizontal viscosity is increased to 350 m² s⁻¹ in the part of the central study region with $y > 25$ km to suppress eddies, while remaining at 0 m² s⁻¹ in the coastal region to allow DSW formation in the forcing area. All other simulations have explicit horizontal viscosities

171 of $0 \text{ m}^2 \text{ s}^{-1}$ everywhere. All simulations are run for 152 model days. A total of 56 simulations are
172 presented in this work.

173 To quantify the influence of eddies on water mass exchange, we employ an eddy tracking
174 algorithm from Faghmous et al. (2015). Cyclonic (anticyclonic) eddies are identified by finding
175 the outermost closed contour containing a local maximum (minimum) in free surface height, and
176 then these eddies are tracked from model days 80 to 152. Eddy kinetic energy (EKE) in the trough
177 region from model days 80 to 150 is calculated following

$$EKE = \frac{(u - \bar{u})^2}{2} + \frac{(v - \bar{v})^2}{2}, \quad (3)$$

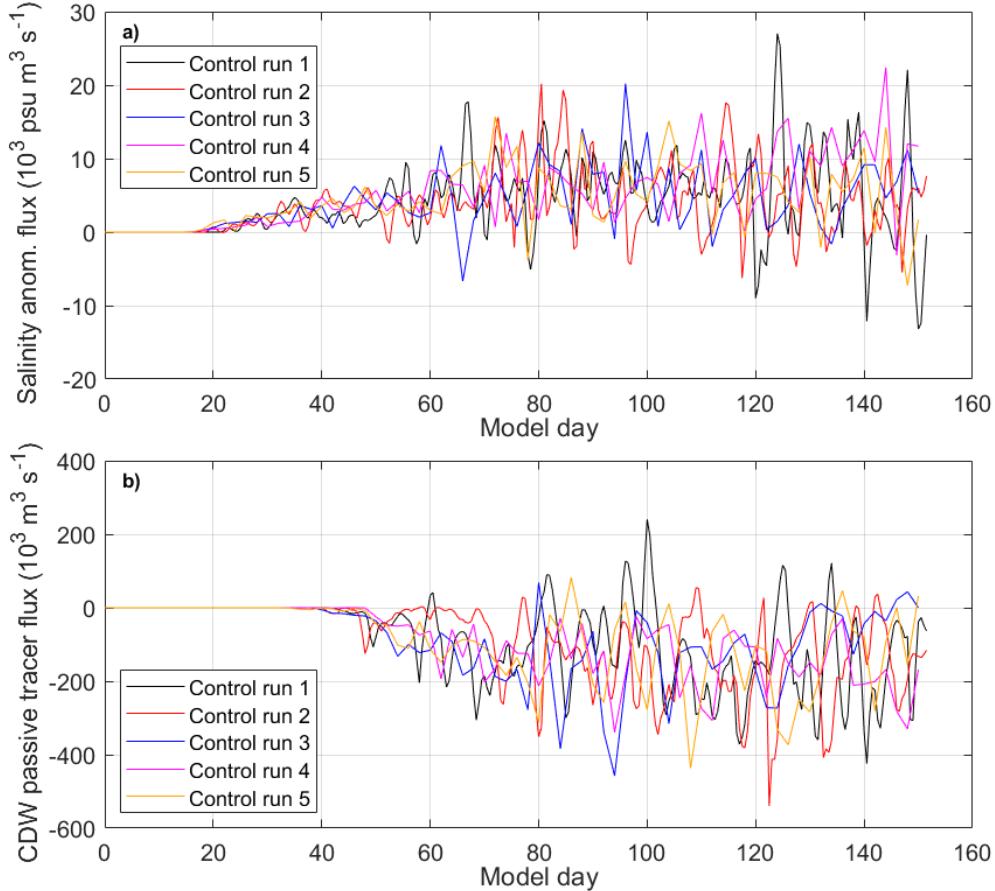

178 where \bar{u} and \bar{v} denote velocities averaged over a 70-day window, and u and v are snapshots of
179 velocity recorded every two days.

180 To simulate the offshore dispersal of DSW and the onshore intrusions of CDW, two inert passive
181 tracers are used. To represent the continuous generation of DSW at the polynya surface, the DSW
182 passive tracer is continually set to a fixed concentration of 100% in the surface layer of the buoyancy
183 forcing region. Along with the dense water, some of the DSW passive tracer sinks and propagates
184 away from the source region. The CDW passive tracer is set to an initial concentration of 100%
185 at every subsurface offshore location, which is defined as below 300 m depth and more than 7 km
186 offshore of the shelf break (100 km offshore of the coast). Subject to advection and mixing, the
187 CDW passive tracer evolves over time.

188 3. Results

189 a. General flow pattern

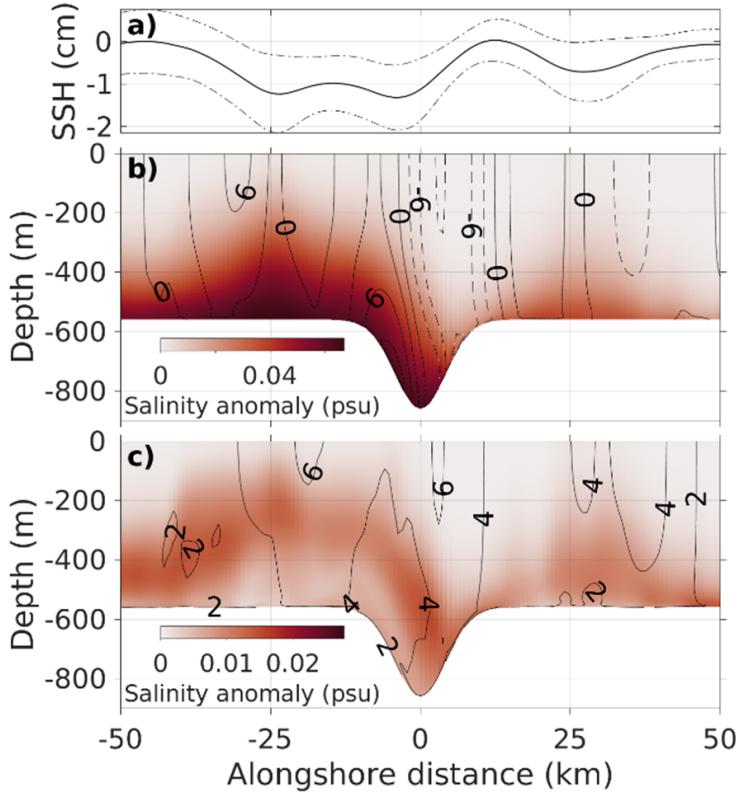
190 Results of Control Run 1 on Day 16 (Fig. 2) show a clear pattern of DSW, represented by a
191 positive salinity anomaly, spreading outwards from the forcing region in both a westward-flowing
192 current along the coast and an offshore-flowing bottom gravity current concentrated along the
193 trough. Note that the offshore gravity current comprises of individual eddies translating offshore,
194 as indicated by the localized maxima in vertically integrated salinity anomaly (Fig. 2). This
195 pattern is consistent across all 5 control runs (not shown). The offshore speed of the nose of
196 the DSW gravity current is discussed in section 4a. Similar to those in previous studies (e.g.
197


190 FIG. 2. Vertically integrated (a, c, e) salinity anomaly and (b, d, f) CDW tracer from Control Run 1 at model
 191 days 16, 50, and 150. Black lines denote isobath contours. Blue half-ellipse shows the region of surface buoyancy
 192 forcing. Note the color range for b, d, and f is saturated to highlight the CDW that has intruded onto the shelf.
 193 The blue arrows in (a) denote primary westward and offshore flow directions. The red dashed lines in (d) and
 194 (b) indicate the locations of the transects shown in Figs. 4 and 12, respectively. The red diamond in (b) is the
 195 location of the velocity spectrum shown in Fig. 15. Videos of these variables are provided in the supplementary
 196 material.

204 Chapman and Gawarkiewicz 1995; Zhang and Cenedese 2014), these DSW eddies are cyclonic
 205 (clockwise-rotating) vortices that likely form through baroclinic instability and conservation of
 206 potential vorticity (PV). Detailed dynamics of DSW eddy formation are discussed in section 4a.

207 By Day 50, the furthest offshore dense water eddy has reached the trough mouth at the shelf break
208 and begun cascading down the western continental slope. Meanwhile, several offshore flowing
209 dense water eddies have lined up in the trough, flowing along the western side of the trough with
210 shallower isobaths on their left. This orientation is consistent with the translation of isolated dense
211 water eddies on a sloping bottom, which is in the same direction as the propagation of topographic
212 waves (Nof 1983). The along-isobath propagation of the eddies is associated with a cross-isobath
213 (cross-trough, in this case) momentum balance between a down-slope gravitational force and an
214 up-slope Coriolis force (Nof 1983). By the end of the control runs, on average, the volume of
215 DSW that has moved offshore of the shelf break in the form of eddies is about two times the DSW
216 volume that has propagated westward along the coast on the shelf. Therefore, the eddy-induced
217 offshore transport in the trough represents a major transport pathway of the modeled DSW.

221 The model results also show that as DSW flows offshore in the trough, CDW intrudes into the
222 trough and then onto the shelf. On Day 50, a filament of CDW over 50 km long intrudes into the
223 trough, hugging the eastern flank of the DSW eddy (Fig. 2d). By Day 150, CDW has reached the
224 coast and is mixed across the trough and continental shelf (Fig. 2f). The highest concentrations of
225 CDW are over the eastern slope of the trough and the shelf to its east, while CDW on the shelf to
226 the west of the trough is more spread out and diluted.


227 Time series of modeled cross-shelf fluxes can be divided into three phases. Before Day 20, DSW
228 has not yet reached the shelf-break, so the cross-shelf salinity anomaly flux across the shelf-break
229 is zero (Fig. 3a). After Day 20, the flux grows linearly as the model continues to spin up. Finally,
230 by Day 80, the flux levels off as the system reaches equilibrium with no statistically significant
231 trends. The shelf-break salinity anomaly flux at the trough, averaged over Days 80-152 and over
232 the control runs, is 6×10^3 psu m³ s⁻¹. The standard deviations of salinity anomaly flux in Days
233 80-152, averaged across the control runs, is 5×10^3 psu m³ s⁻¹. The eddy-driven variability in
234 salinity anomaly flux thus has the same magnitude as the mean flux. Similarly, the cross-shelf flux
235 of CDW tracer across a transect at 60 km offshore has comparable phases and reaches equilibrium
236 by Day 80 (Fig. 3b), with an average equilibrium flux of -1.4×10^5 m³ s⁻¹ and an average standard
237 deviation of 1.2×10^5 m³ s⁻¹. Furthermore, the equilibrium CDW tracer flux in Control Run 1 can
238 be decomposed into a mean flux of $\bar{v} \overline{\Delta C} = -24$ m³ s⁻¹ and an eddy flux of $\overline{v' \Delta C'} = -1.3 \times 10^5$ m³ s⁻¹,
239 where the overbars denote average over Days 80-152 and C is the volume-integrated concentration
240

218 FIG. 3. Timeseries of cross-shelf flux of (a) salinity anomaly across the blue line in Fig. 10d, summed over
 219 the entire water column, and (b) CDW tracer across a similar line at 60 km offshore, for each control run. Note
 220 negative flux corresponds to onshore flow.

245 of CDW tracer. The relatively large eddy flux indicates that the modeled cross-shelf CDW flux is
 246 episodic and likely driven by eddies.

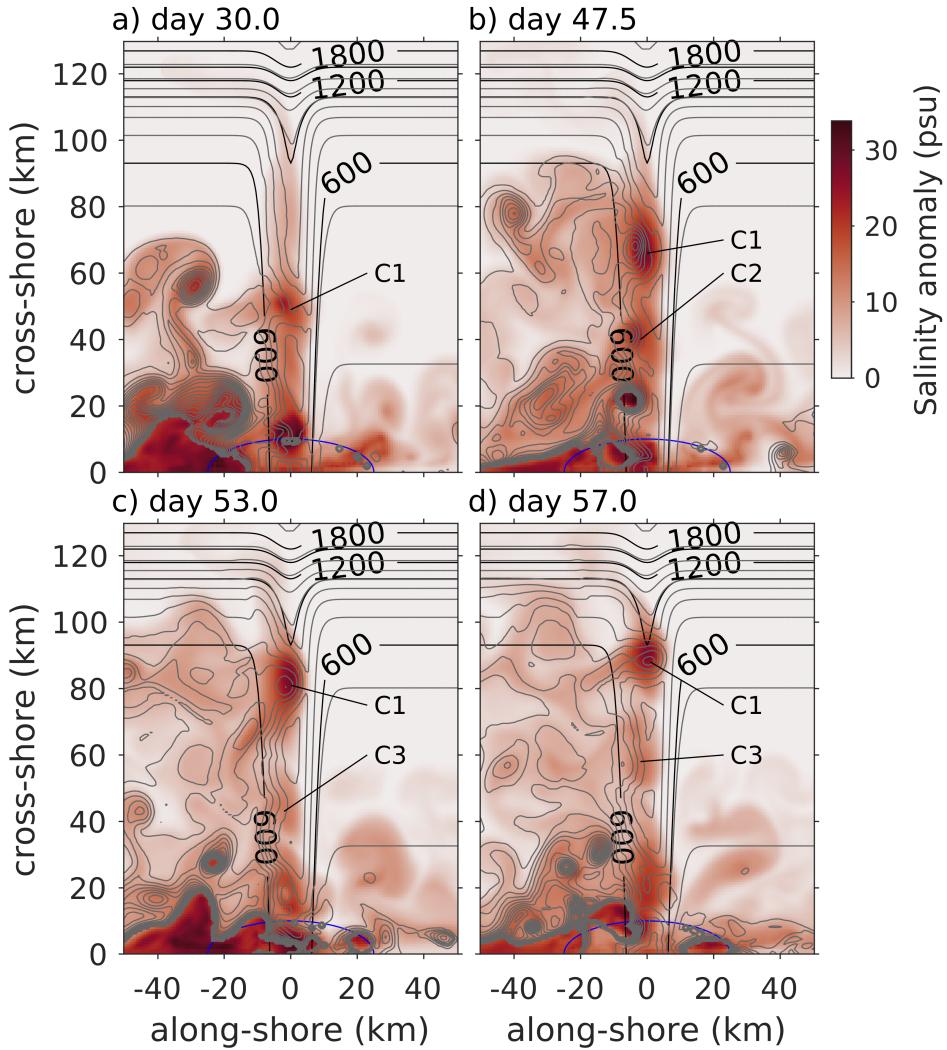
247 An along-shelf transect across the trough at $y = 60$ km shows that the core of the time-averaged
 248 offshore current of DSW is bottom-intensified and concentrated on the western side of the trough
 249 (Fig. 4b). The time-averaged flow on the eastern side of the trough is onshore and largely
 250 barotropic, similar to the trough-steered CDW inflow modeled by Morrison et al. (2020). Our
 251 model shows a localized SSH lowering (raising) over the western (eastern) slope of the trough (Fig.
 252 4a), similar to the model result in Morrison et al. (2020). The dynamics causing this SSH gradient

227 FIG. 4. (a) Sea surface height along an along-shelf transect at 60 km offshore of the coast (dashed line in Fig.
228 2d) from Control Run 1, averaged over days 100-150. The dash-dotted line shows \pm one standard deviation.
229 (b) Vertical section of salinity anomaly (color) and cross-shelf velocity in cm s^{-1} (contours) along the transect,
230 also averaged over days 100-150. Positive velocities (solid lines) are directed offshore. (c) Vertical section of
231 standard deviation of salinity anomaly (color) and cross-shelf velocity (contours) along the transect.

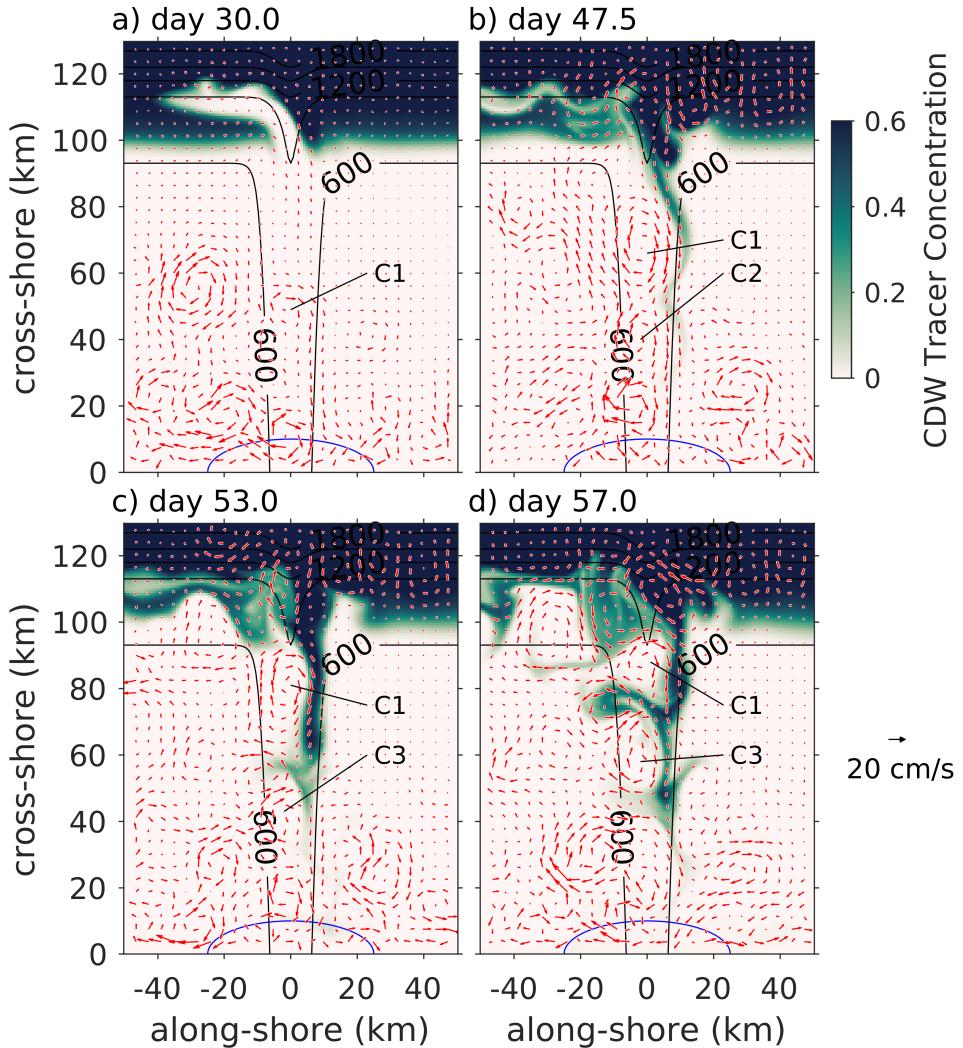
253 over the eastern slope of the trough (Fig. 4a) will be discussed in section 4b. This onshore flow on
254 the eastern slope of the trough has a high variability due to its eddy-dominated nature (Fig. 4c).

255 *b. CDW intrusion event case study*

256 Intrusion of CDW into the trough and then onto the continental shelf in Control Run 1 appears to
257 be associated with the offshore-moving DSW eddies in the trough (Fig. 2c-d). Before explaining
258 the dynamics driving this intrusion (section 4b), we here examine the detailed behavior of DSW
259 and CDW near the shelf break and in the trough in Control Run 1 to qualitatively illustrate the
260 cross-shelf exchange of these water masses. Because the pattern of CDW intrusion at the beginning

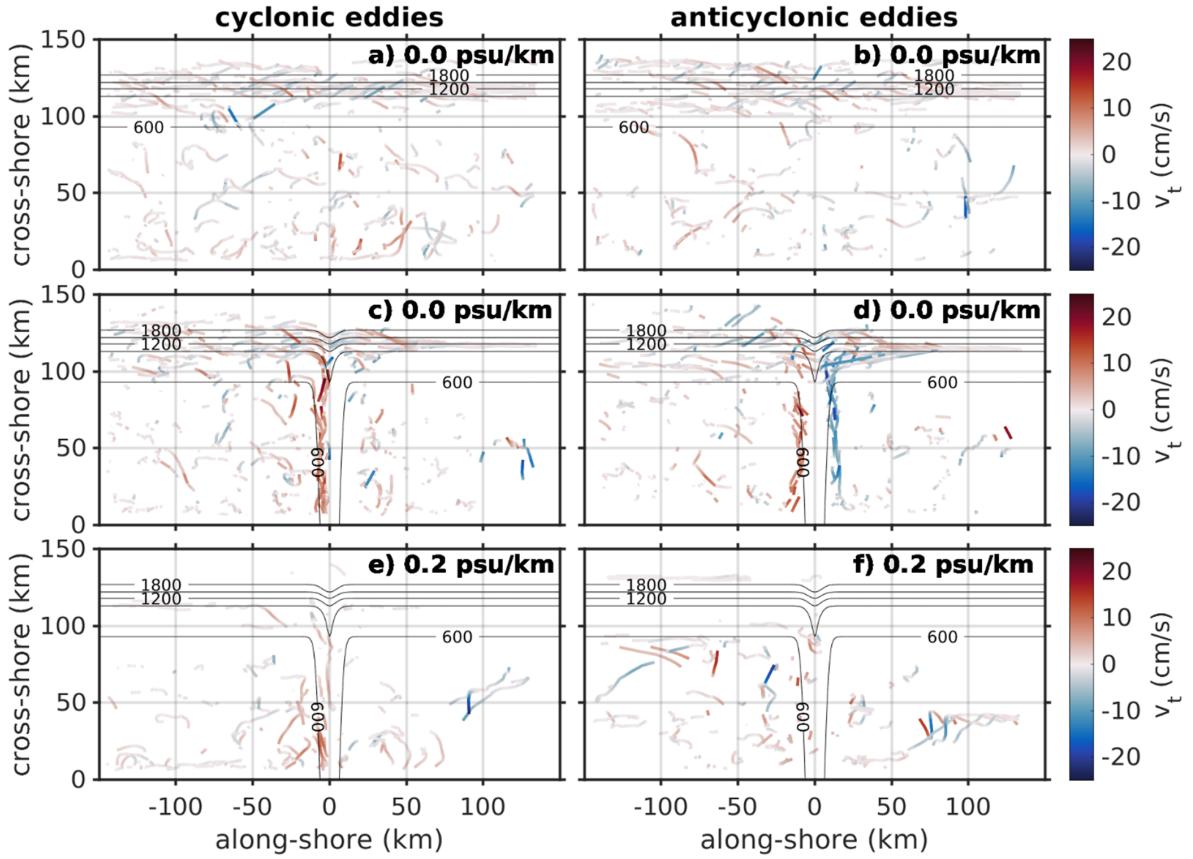

261 of the simulation is clearer, with less background variation than later in the simulation, we here
262 use the initial CDW intrusion to illustrate the process. However, the process of CDW intrusion
263 remains qualitatively similar later in the simulations.

273 On Day 30, a filament of DSW extends northwestward from the trough onto the continental slope
274 (Fig. 5a). This DSW gravity current flows in the same direction as coastal trapped waves. A
275 cyclone, C1, is visible in the trough at 50 km offshore as a local maximum in salinity anomaly and
276 a perturbation in PV in the overlying layer of ambient water. CDW has not yet intruded onshore
277 of the shelf break (Fig. 6a). By Day 47.5, DSW cyclone C1 has moved 20 km closer to the shelf
278 break and intensified into an eddy with closed contours of PV (Fig. 5b). A second eddy, C2,
279 follows C1 through the trough. Meanwhile, a filament of CDW flows shoreward on the eastern
280 flanks of both eddies (Fig. 6b). The onshore intruding CDW is concentrated on the eastern slope
281 of the trough. By Day 53, the leading DSW eddy, C1, reaches the trough mouth at the shelf break
282 (Fig. 5c), C2 has merged into C1, and another DSW cyclone, C3, has formed inside the trough at
283 40 km offshore. Meanwhile, the CDW filament has extended further southward along the eastern
284 slope of the trough, reaching the eastern flank of C3 (Fig. 6c). Close examination of the model
285 result shows that the nose of the CDW filament has already reached the coastal buoyancy forcing
286 region by Day 53. However, due to mixing, CDW passive tracer concentration in the nose has been
287 diluted, and its signal is faint (Fig. 6c). By Day 57, the trailing DSW cyclone, C3, has moved
288 farther northward, reaching 60 km offshore (Fig. 5d), and the CDW filament has intruded farther
289 onshore, closer to the coast. Meanwhile, some CDW has flowed westward across the trough along
290 the southern flank of Eddy C1 at 75 km offshore. These results suggest that the initial shoreward
291 intrusion of the CDW filament into the trough is associated with the successive offshore-moving
292 DSW eddies in the trough. Note that, at any time, between 1 and 3 DSW eddies reside within the
293 trough. After this initial stage, CDW that has intruded into the trough mixes with ambient waters
294 and propagates onto the neighboring continental shelf (Fig. 2f).


295 **4. Dynamics**

296 *a. Eddy formation and propagation*

297 Examination of the model results indicates that eddies of DSW flowing offshore along the trough
298 are coupled with cyclonic eddies in the overlying ambient fluid. Some of the DSW eddies form by


264 FIG. 5. Salinity anomaly vertically integrated over the entire water column (color) and potential vorticity of
 265 the overlying ambient water layer (grey contours with intervals of $2 \times 10^{-8} \text{ m}^{-1} \text{ s}^{-1}$) from Control Run 1, at model
 266 Days (a) 30, (b) 47.5, (c) 53, and (d) 57. Black lines show isobath contours. The blue half-ellipse shows the
 267 region of surface buoyancy forcing. Potential vorticity is only shown when the ambient layer is thicker than 200
 268 meters. The ambient layer depth is defined as the depth at which the salinity anomaly exceeds 0.045 psu.

269 FIG. 6. Vertically averaged CDW passive tracer concentration (color) and velocity (arrows) from Control Run
 270 1, at model days (a) 30, (b) 47.5, (c) 53, and (d) 57. Black lines show isobath contours. The blue half-ellipse
 271 shows the region of surface buoyancy forcing. Note the color range is saturated to highlight structure at small
 272 concentrations.

pinching off from a baroclinically unstable circum-polynya current that is generated through thermal wind balance on the periphery of the polynya (Gawarkiewicz and Chapman 1995). Initially, these features are nonlinear Topographic Vorticity Wave (TVW) solitons associated with open contours of PV in the overlying ambient water layer (Fig. 5a, c). As these TVW solitons descend along the deepening trough, they bring along a Taylor column of overlying ambient water, consistent with Swaters (1998) and Zhang and Cenedese (2014). The ambient water stretches vertically and, to conserve PV, develops positive relative vorticity, spinning cyclonically (clockwise). Similar eddy formation is observed in laboratory studies of dense water outflows over continental slopes (Lane-Serff and Baines 2000; Cenedese et al. 2004). Correspondingly, the depth-averaged flow field in Control Run 1 is dominated by cyclonic rotation (Fig. 6). Some of the TVW solitons intensify over time due to continued vortex stretching as they move further along the trough into deeper waters, such that the entire water column (including the bottom DSW layer) spins faster cyclonically, forming mesoscale eddies with closed contours of PV (Fig. 5b, d). For brevity, we refer to both TVW solitons and eddies as eddies in this paper.

We now compare eddy propagation pathways in the simulations with and without a trough. In the simulation without a trough, eddies are scattered over the continental shelf, with no consistent spatial pattern (Fig. 7a-b). The average cross-shelf translational velocity of these eddies is not significantly different from zero ($0 \pm 2 \text{ cm s}^{-1}$). Eddy-driven advection is the main, albeit slow, mechanism by which DSW flows offshore and CDW moves shoreward. When a trough is added, cyclonic eddies propagate offshore along isobath contours on the western side of the trough (red tracks in Fig. 7c). These cyclonic DSW eddies in the trough move offshore at speeds of $4 \pm 4 \text{ cm s}^{-1}$ in Control Run 1, when averaging over all cyclonic eddies in the trough for model days 80 to 150. The corresponding speed in Control Run 2 is $6 \pm 4 \text{ cm s}^{-1}$, and it is similar in other control runs (not shown). In Control Run 1, a substantial portion of the anticyclonic eddies propagate onshore just east of the trough (blue tracks in Fig. 7d). These anticyclonic eddies have CDW cores (see section 4b). Both DSW and CDW eddies propagate in the same direction that a coastal-trapped wave propagates in the southern hemisphere – along-isobaths with shallow water to the left. The motion of individual cyclonic DSW eddies collectively forms a DSW offshore current along the western slope of the trough. The average speed of the DSW eddy propagation offshore in the

313 FIG. 7. Tracks of (a, c, e) cyclonic and (b, d, f) anticyclonic eddies for (a-b) an initially unstratified simulation
 314 with no trough, (c-d) an initially unstratified Control Run 1 with a trough, and (e-f) a simulation with a trough
 315 and an initial stratification of 0.2 psu km^{-1} . The color of the tracks shows the cross-shelf eddy translation speed,
 316 with red meaning the eddy moves offshore (northward).

332 trough is comparable to the speed of a dense water gravity current on a sloping bottom, as shown
 333 by a scaling analysis described below.

334 To obtain a scaling for the mean velocity of the DSW flowing offshore along the trough, we
 335 consider the flow of the time-averaged eddy field, rather than the propagation of individual eddies.
 336 Zhang and Cenedese (2014), using a similar approach, found the speed of a gravity current along a
 337 sloping bottom in an unstratified ambient fluid to be dictated by a balance between the down-slope
 338 baroclinic pressure gradient force and the up-slope Coriolis force, consistent with the momentum
 339 balance of an isolated dense water eddy on a sloping bottom (Nof 1983). Equation 8 of Zhang and

340 Cenedese (2014) gives the speed of the gravity current,

$$V = c \frac{g' \alpha}{|f|}, \quad (4)$$

341 where the reduced gravity of the dense water relative to the ambient water is written as

$$g' \approx \frac{C_c^{\frac{4}{3}} b^{\frac{2}{3}} Q^{\frac{2}{3}}}{2^{\frac{1}{3}} H_c}. \quad (5)$$

342 Here, c is a constant given by the ratio of the gravity current thickness to the water depth, α is the
 343 bottom slope, and C_c depends on the forcing region geometry. In this study, the bottom slope in
 344 the trough in the cross-isobath (along-shelf) direction is $\alpha = 2h_t/w_t$. Equations 4 and 5 can thus
 345 be combined to give

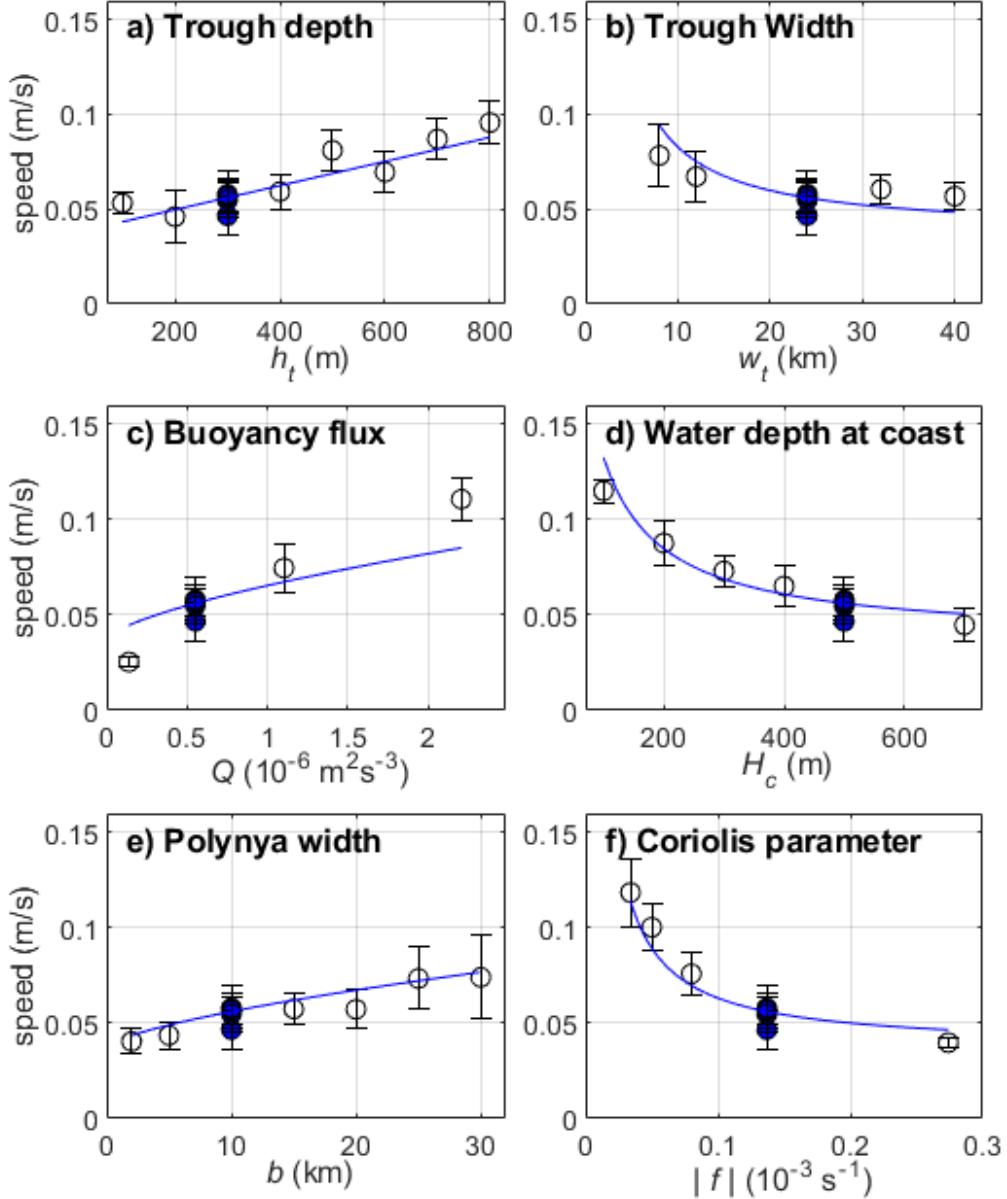
$$V = C b^{\frac{2}{3}} \frac{Q^{\frac{2}{3}} h_t}{H_c w_t |f|}, \quad (6)$$

346 where

$$C \equiv 2^{\frac{2}{3}} c C_c^{\frac{4}{3}}. \quad (7)$$

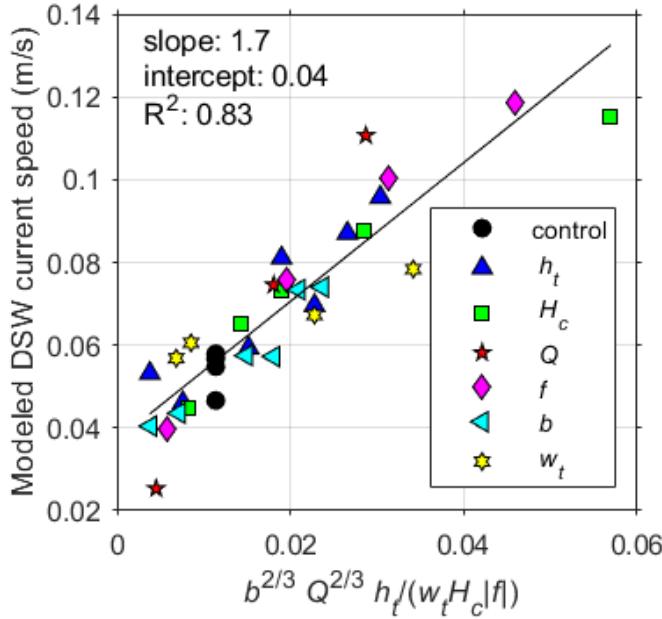
347 Equation 6 indicates that the along-isobath gravity current speed increases with h_t , Q , and b , and
 348 decreases with w_t , H_c , and $|f|$.

349 This analytical result is compared to the modeled offshore flow speed, V , in the trough for
 350 different sensitivity parameters (i.e., h_t , w_t , Q , H_c , b , and f , see Fig 8). The modeled V is defined
 351 as the mean offshore speed of the nose of the DSW flow in the trough, which is obtained from the
 352 slope of a linear regression of the offshore position of the nose versus time. The nose is defined
 353 as the offshore-most point in an along-trough transect at which the DSW concentration is greater
 354 than 0.1%. Averaged over the control runs, the speed of the nose of the DSW gravity current
 355 flowing down the trough is $5.5 \pm 0.7 \text{ cm s}^{-1}$. In general, the sensitivity simulations give the same
 356 trends of dependence of V on the parameters as described by Equation 6. In particular, modeled
 357 V increases with increasing trough depth and decreasing trough width, which is consistent with V
 358 increasing with trough slope, α . Modeled V also increases with buoyancy flux, Q , and polynya
 359 width, b , representing the positive relation of V with the reduced gravity, g' . When Q or b increase,
 360 more salt is added to the water column, which increases g' . Conversely, modeled V decreases with


361 increasing coastal water depth, H_c , as the dense water is diluted more as it sinks further. Finally,
362 modeled V decreases with increasing magnitude of the Coriolis parameter, $|f|$.

368 A scatter plot of all modeled vs. scaled V shows a collapse of the comparison around a straight
369 line (Fig. 9). A least-squares fit of the scatter comparison gives a value of the coefficient
370 $C \approx 1.7$. Applying this value to Equation 6 provides the scaled dependencies of V on the sensitivity
371 parameters (lines in Fig. 8). These scalings are consistent with those modeled by the sensitivity
372 simulations. The only parameter with a clear discrepancy in the comparison is the buoyancy flux,
373 Q (Fig. 8c). The simulations have a stronger dependence of V on Q than predicted by the scaling.
374 This discrepancy was also seen in Zhang and Cenedese (2014) and may result from parameterized
375 vertical mixing of dense water in the numerical model being inconsistent with the instant mixing
376 over the entire water column assumed in the scaling analysis (Chapman and Gawarkiewicz 1997).

380 The close agreement of simulated flow speeds to the analytical scaling shows that, to first order,
381 the dynamics of the modeled DSW gravity current in the trough are consistent with that of a gravity
382 current over a uniformly sloping bottom as described in the scaling analysis. That is, despite the
383 geometric constraint of the trough, the northward DSW outflow in the trough is mostly in a balance
384 between the downslope (cross-trough, eastward) gravity force and the upslope (westward) Coriolis
385 force. Note that the deformation radius of the DSW gravity current here is on the order of 2 km,
386 which is smaller than the trough width (8 to 40 km). It is likely that this dynamical balance will
387 change when the trough width becomes smaller than the deformation radius.

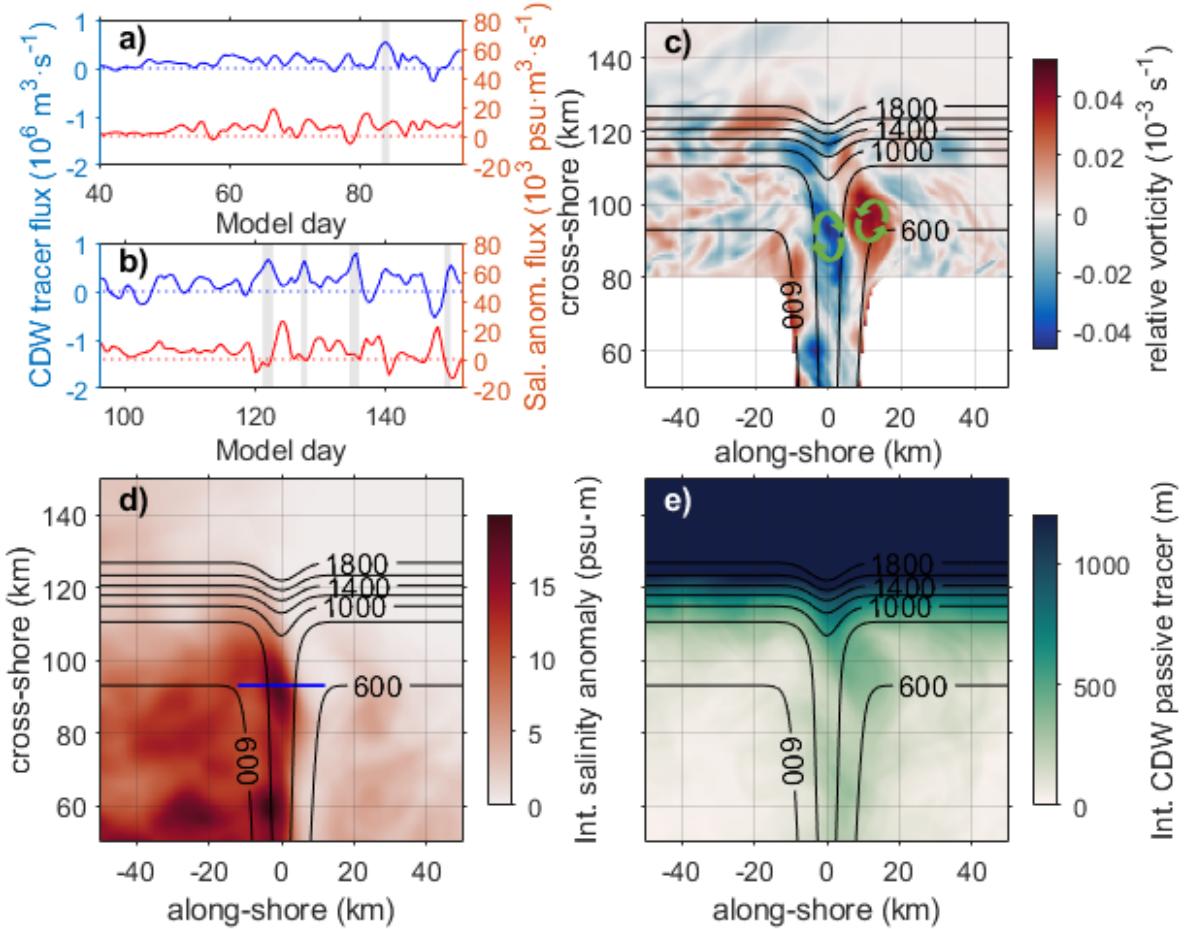

388 *b. Eddy-induced CDW intrusion*

389 The simulations show that CDW intrusion into the trough can be induced by successive cyclonic
390 DSW eddies moving offshore along and then exiting the trough. As mentioned in section 3b, soon
391 after the first cyclonic DSW eddy, C1, reaches the shelf break (Fig. 5), a CDW filament begins
392 to intrude on the eastern side of the trough (Fig. 6). The close timing of these events is not a
393 coincidence; DSW eddies actively pull CDW shoreward. The diameter of the DSW eddies is of
394 similar magnitude to the trough width, and these eddies are centered on the western slope of the
395 trough. As a result, the eastern portion of the cyclonic DSW eddies, which has a shoreward flow,
396 is located on the eastern slope of the trough. Note that the offshore migration speed of the DSW
397 eddies is $6 \pm 4 \text{ cm s}^{-1}$ in Control Run 2. This is weaker than the azimuthal speed of the eddies,

363 FIG. 8. Modeled DSW current speed versus (a) trough depth h_t , (b) trough width w_t , (c) surface buoyancy flux
364 Q , (d) water depth at the coast H_c , (e) cross-shelf width of the buoyancy forcing region b , and (f) absolute value
365 of Coriolis parameter $|f|$. The filled circles represent control simulations. The error bars show the standard
366 deviations of the modeled speeds. The blue lines are the scaled speed from Equation 6 with the coefficient
367 $C = 1.7$ as determined from the least-squared fit in Fig. 9.

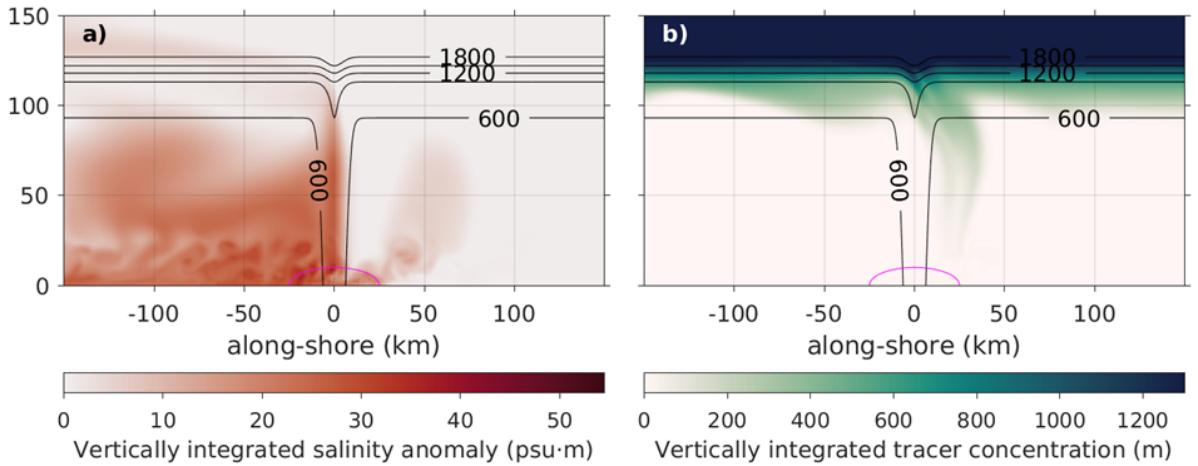
398 which Fig. 6 shows to have a range of roughly $10\text{-}15 \text{ cm s}^{-1}$. Therefore, the Eulerian velocity of
399 the water on the eastern side of the eddy is shoreward even though the eddies migrate offshore

377 FIG. 9. Speeds of modeled DSW currents in the trough versus scaled gravity current speeds from Equation 6.
 378 The symbols show the corresponding parameters that have been varied in each simulation. The least squares fit
 379 is shown as a solid line, along with the slope, y-intercept, and R^2 value.


400 in the trough, allowing eddy C1 to entrain CDW shoreward when it reaches the shelf break. The
 401 entrained CDW forms a filament that snakes shoreward over the eastern slope of the trough (Fig.
 402 6). This process is similar to mesoscale Gulf Stream warm core rings pulling shelf water offshore
 403 into submesoscale shelf water filaments along the outskirt of the rings (Garfield III and Evans
 404 1987; Cherian and Brink 2016; Zhang et al. 2023). On Day 47.5, the DSW filament formed by
 405 eddy C1 in Control Run 1 extends over 50 km shoreward in the trough (Fig. 6b). Through the same
 406 mechanism, subsequent eddies C2 and C3 pull the CDW filament further shoreward in the trough
 407 (Fig. 6b-d). In this way, a chain of eddies moves CDW towards the coast in a pattern similar to a
 408 bucket brigade, which is a line of people passing buckets of water towards a fire.

409 For DSW eddies to create a significant CDW intrusion onto the shelf, multiple slow-moving DSW
 410 eddies must be present along a cross-shelf pathway, which requires a topographic guide such as a
 411 trough. A single eddy can only pull CDW onshore a maximum distance equal to the eddy diameter
 412 – a few tens of kilometers. Without a subsequent eddy streaming the CDW further shoreward,

413 the intruding CDW would remain in the outer-shelf region instead of reaching the coast about 100
414 km further onshore. The simulation without a trough confirms this. In this simulation, cyclonic
415 DSW eddies have inconsistent paths and rarely reach the shelf break (Fig. 7a). Correspondingly,
416 the volume of CDW that intrudes to within 25 km of the coast by Day 150 is only 5.8×10^{10}
417 m³. In the control runs with troughs, however, the corresponding volume of CDW increases to
418 $38.3 \times 10^{10} \pm 1.8 \times 10^{10}$ m³. Adding a trough increases the onshore CDW flux. Thus, the trough
419 provides a topographic guide along which DSW eddies propagate in a chain, successively streaming
420 CDW onshore to the coastal region.


421 The preceding analysis focuses on the initial development of the CDW onshore intrusion into the
422 trough. Examining the simulation at later stages, when the flow field is more complex, suggests that
423 offshore moving DSW eddies continue to drive CDW intrusions. This can be seen in composite plots
424 of relative vorticity at 580 m depth and vertically-integrated salinity anomaly made by averaging
425 over times of anomalously large onshore CDW fluxes across the shelf break (Fig. 10). On average,
426 large onshore CDW flux occurs when a cyclonic DSW eddy, as indicated by a patch of negative
427 relative vorticity (cyclone) and a local maximum in salinity anomaly, reaches the trough mouth
428 region about 90-95 km offshore. Meanwhile, a patch of positive relative vorticity (anticyclone;
429 Fig. 10c) with enhanced CDW tracer concentration (Fig. 10e) forms to the east of the DSW eddy
430 (Fig. 10c). This is consistent with conservation of potential vorticity as CDW is brought from
431 offshore waters into the shallower trough, compressing the water column. Presumably through
432 the same mechanism, the onshore propagation of the anticyclones along the eastern slope of the
433 trough (Fig. 6d) up the trough into shallower water maintains their positive relative vorticity. Note
434 that cross-correlation of the time series of onshore CDW flux and offshore salinity anomaly flux
435 indicates that peak CDW onshore fluxes usually lead peak offshore salinity anomaly flux by 1-2
436 days. This offset occurs because a DSW cyclone can start inducing onshore CDW flux when its
437 northern edge first reaches the trough mouth (blue line in Fig. 10d), while its main body remains
438 onshore of the trough mouth. This is consistent with the DSW cyclone being slightly onshore of
439 the CDW anticyclone at the trough mouth region during the times of peak onshore CDW flux (Fig.
440 441 10c).

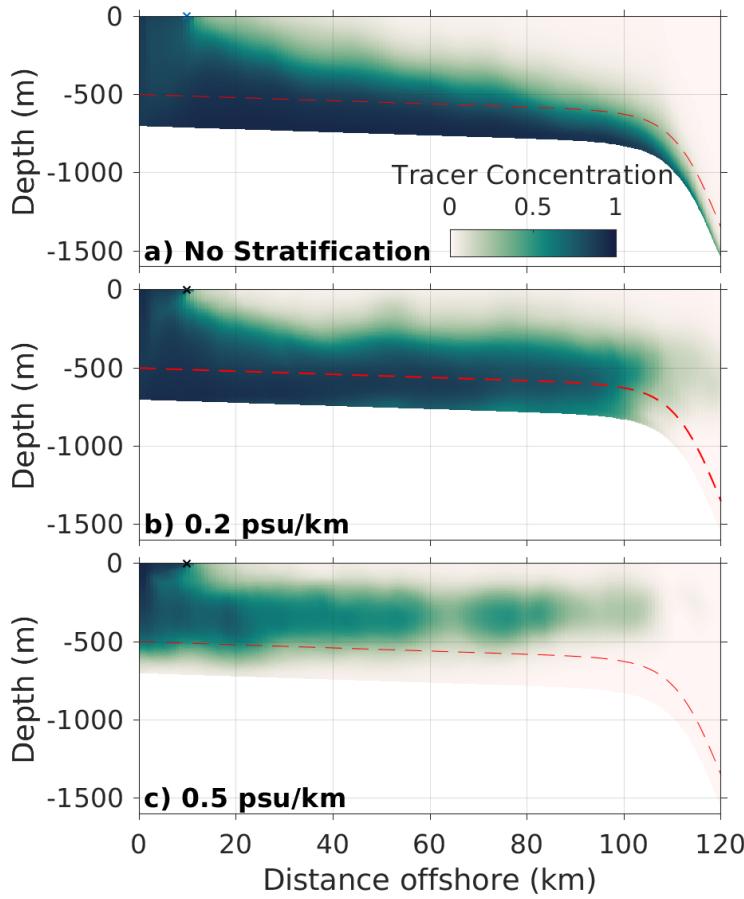
442 To further confirm the role of eddies in driving the water mass exchange, we compare volume
443 transport and eddy kinetic energy (EKE) in simulations with no trough or with enhanced horizontal

421 FIG. 10. (a-b) Time series of onshore flux of the CDW tracer (blue) and offshore flux of salinity anomaly (red)
422 across the trough mouth (blue line in (d)), from Control Run 1. Time-averaged (c) relative vorticity at 580 m,
423 (d) vertically-integrated salinity anomaly, and (e) vertically-integrated CDW tracer over periods of strong CDW
424 onshore intrusion, as shaded gray in Panels (a) and (b). Green arrows in (c) indicate the mean flow pattern in the
425 trough mouth region during the CDW intrusion periods.

451 viscosity to that of the control runs. In the no-trough simulation without resultant topographic
452 steering, $4.4 \times 10^{11} \text{ m}^3$ of DSW tracer reaches the deep sea offshore of the shelf break at Day 150,
453 and $5.8 \times 10^{10} \text{ m}^3$ of CDW tracer moves into the coastal region (within 25 km of the coast). These
454 volumes are much smaller than the corresponding $22.1 \times 10^{11} \pm 1.9 \times 10^{11} \text{ m}^3$ of DSW tracer and
455 $38.3 \times 10^{10} \pm 1.8 \times 10^{10} \text{ m}^3$ of CDW tracer in the control runs. In the simulation with enhanced
456 horizontal viscosity, DSW eddies are formed near the coast in the same way as in the control

446 FIG. 11. Vertically integrated (a) salinity anomaly and (b) CDW tracer for a simulation with increased horizontal
 447 viscosity beyond 25 km offshore, at model Day 150. Black contours denote isobath contours. Magenta half-ellipse
 448 shows the region of surface buoyancy forcing.

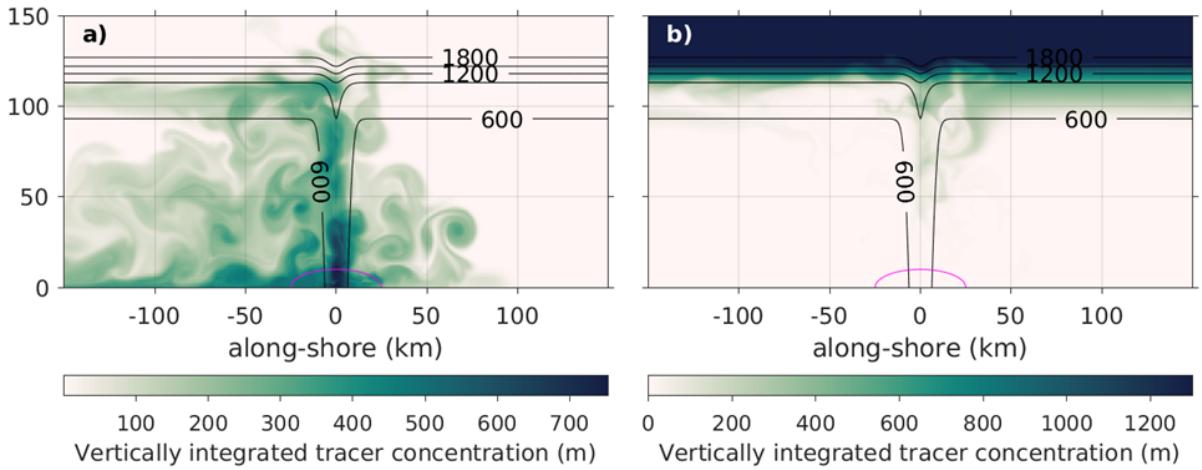
457 runs, but they are suppressed by the large horizontal viscosity once they leave the coastal region.
 458 Consequently, the dense water outflow in the trough becomes nearly laminar (Fig. 11a). At Day
 459 150, a small amount of CDW intrudes over the eastern continental shelf but not in the trough, and
 460 almost no CDW has reached the coastal region (Fig. 11b). This differs from the eddy-filled dense
 461 water outflow and coast-reaching CDW intrusion in the trough in the control runs (Fig. 2). With
 462 increased horizontal viscosity, EKE in the trough region averaged over days 80-150 decreases from
 463 $3.6 \times 10^{-3} \pm 0.4 \times 10^{-3} \text{ m}^2 \text{s}^{-2}$ in the control runs to $1.1 \times 10^{-3} \text{ m}^2 \text{s}^{-2}$; the volume of DSW reaching the
 464 deep sea at Day 150 reduces to $6.6 \times 10^{11} \text{ m}^3$, and the volume of CDW reaching 25 km of the coast
 465 at Day 150 declines to $1.2 \times 10^{10} \text{ m}^3$. Decreasing EKE clearly diminishes cross-shelf transport,
 466 due to both increased model spin up time and decreased equilibrium cross-shelf fluxes. These
 467 simulations confirm that both dense water eddies and topographic steering of these eddies by the
 468 trough enhance DSW eddy-driven CDW intrusions.


469 This eddy-driven, episodic onshore flow into the trough can be viewed, when averaged in time, as
 470 a geostrophic onshore current over the eastern half of the trough. The episodic sea level depression
 471 and elevation associated with the respective individual cyclonic and anticyclonic eddies in the
 472 trough (Fig. 7c-d, Fig. 10c), when averaged over time, form a positive along-shelf (cross-trough)
 473 sea level gradient over the eastern half of the trough (Fig. 4a). Associated with this temporal mean

474 sea level gradient is a mean geostrophic onshore barotropic flow resulting from the time average
475 of the individual submesoscale intrusion filaments (Fig. 4b). The averaged onshore flow appears
476 similar to the intrusion process in Morrison et al. (2020). Thus, the intruding CDW filaments
477 driven by mesoscale DSW eddies are a submesoscale process that, when averaged over time,
478 manifests as the form stress mechanism described in Morrison et al. (2020). Note that the eddy-
479 induced intrusion process described here not only provides a new submesoscale understanding of
480 the intrusion dynamics of CDW at the trough mouth but also explains the continuous intrusion of
481 CDW across the entire shelf toward the coast.

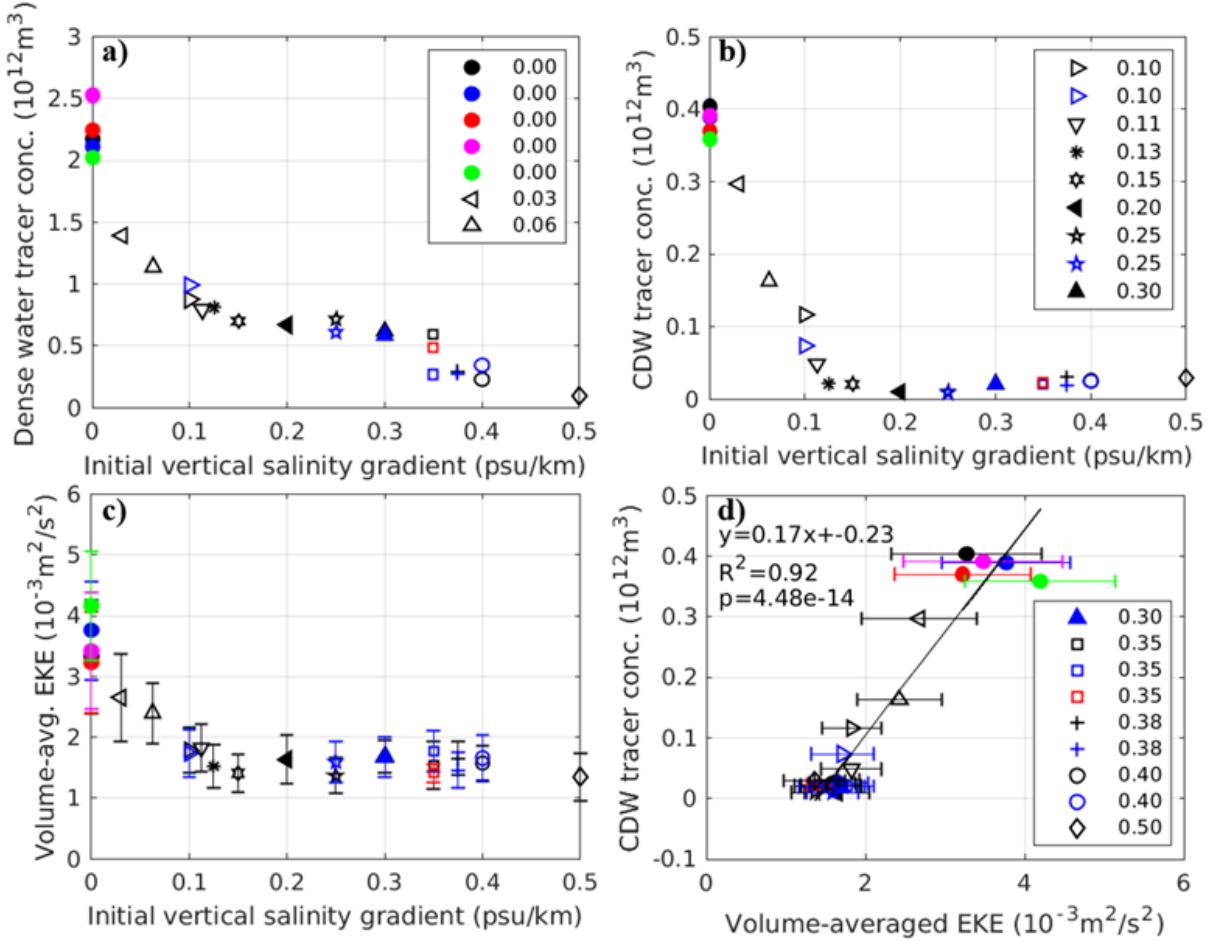
482 *c. Impact of stratification*

483 The control and sensitivity simulations discussed in the preceding sections have an unstratified
484 ambient water column as an initial condition. However, at the onset of the austral winter, when sea
485 ice and dense water start to form, the continental shelves surrounding Antarctica are often stratified
486 (i.e. Gordon et al. 2000). To investigate the influence of water column stratification on the cross-
487 shelf water exchange, we run simulations with varying initial stratification. In these simulations,
488 the initial salinity increases linearly with depth at rates ranging from 0.03-0.5 psu km^{-1} . These
489 salinity gradients are consistent with observations taken in the Antarctic coastal regions during
490 the austral fall (Gordon et al. 2000; Williams et al. 2011; Ackley et al. 2020). Overall, the model
491 results suggest that water column stratification suppresses cross-shelf water exchange at the trough
492 mouth.


499 In unstratified simulations, DSW eddies fill the western half of the trough and flow offshore
500 along the bottom (Fig. 12a). Adding stratification changes the dense water outflow to an intrusion
501 at the level of neutral density. At an initial stratification of 0.2 psu km^{-1} , the core of the offshore
502 spreading polynya-sourced water is raised to the depth of the trough rim (Fig 12b). The descending
503 dense water spreads offshore along the trough rim at a speed of $1.9 \pm 0.7 \text{ cm s}^{-1}$, much slower than
504 the speed of $5.5 \pm 1.0 \text{ cm s}^{-1}$ in the control runs. When the initial stratification increases to 0.5
505 psu km^{-1} , the dense water formed at the polynya intrudes at mid-depth, above the trough rim (Fig.
506 12c), and its offshore velocity is an even slower $1.2 \pm 0.7 \text{ cm s}^{-1}$. The neutral depth at which the
507 dense water spreads offshore is determined by the initial stratification and factors that influence the
508 density anomaly of the polynya-sourced water – i.e., surface buoyancy flux, Q , width of buoyancy

493 FIG. 12. Polynya-sourced passive tracer concentration along a transect taken 4 km west of the trough center
 494 (dashed line in Fig. 2b), averaged from days 100 to 150, for simulations with (a) no initial stratification (black
 495 solid circle in Fig. 14), (b) an initial stratification of 0.2 psu km^{-1} (black solid upper triangle in Fig. 14), and (c)
 496 an initial stratification of 0.5 psu km^{-1} (open diamond in Figure 14). The red dashed line indicates the depth of
 497 the trough rim. The black cross on the top of each panel denotes the furthermost offshore extent of the surface
 498 buoyancy forcing.

509 forcing region, b , and water column mixing. The effect of these factors on the dense water outflow
 510 in an unstratified water column are discussed in section 4a.


514 As the neutral depth of the polynya-sourced outflow rises in the water column, the influence of
 515 the topographic guide provided by the trough on the outflow diminishes. As the polynya-sourced
 516 water is at a neutral depth above the trough in the middle of the water column, there is no gravity
 517 force pulling it down the trough wall. No longer balanced between a down-slope pressure gradient

511 FIG. 13. Vertically integrated (a) dense water and (b) CDW tracer concentrations for a simulation with an initial
 512 stratification of 0.2 psu km^{-1} , at model day 150. Black contours denote isobath contours. Magenta half-ellipse
 513 shows the region of surface buoyancy forcing.

518 and up-slope Coriolis force, the water stops flowing offshore along the isobaths in the trough.
 519 Instead, eddy instabilities develop on the edge of the polynya-sourced water and gradually advect
 520 offshore at a much slower rate. Correspondingly, the simulation with the initial stratification of
 521 0.2 psu km^{-1} has fewer eddies, and the eddies are more scattered over the continental shelf with no
 522 clear propagation pattern (Fig. 7e, f). Compared to Control Run 1 (Fig. 2e-f), dense water in the
 523 simulation with an initial stratification of 0.2 psu km^{-1} does not flow far offshore of the shelf break
 524 (Fig. 13a), and little CDW enters the continental shelf (Fig. 13b). This result is also consistent
 525 with simulations of different initial stratification showing that both integrated EKE in the trough
 526 and the amount of polynya-sourced passive tracer reaching offshore of the shelf break on Day 150
 527 decrease with intensifying stratification (Fig. 14a, c).

535 Simulations with different initial stratification also show that increased stratification reduces the
 536 amount of CDW brought within 25 km of the coast (Fig. 14b). When the initial vertical salinity
 537 gradient is less than 0.1 psu km^{-1} , offshore transport of dense water and onshore transport of CDW
 538 are positively correlated, and the amount of CDW that intrudes close to the coast also correlates
 539 linearly with EKE inside the trough (Fig. 14d). This is a confirmation of the essential role of the
 540 offshore-moving dense water eddies in driving the CDW onshore intrusion. The dependence of

528 FIG. 14. Water mass transport in simulations with varying initial stratification. The top two panels show the
 529 total volume-integrated concentrations of (a) polynya-sourced dense water offshore of shelf break and b) CDW
 530 within 25km of the shore at Day 150 versus initial stratification. Panel (c) shows the volume-averaged EKE in
 531 the trough, averaged over days 80-150, versus initial stratification. Panel (d) shows the same CDW as in (b),
 532 now versus the volume- and time-averaged EKE at the trough. The legend, split between Panels (a), (b), and (d),
 533 labels simulations by initial vertical salinity gradient (psu km^{-1}). The error bars in (c-d) indicate one standard
 534 deviation in the volume-averaged EKE.

541 the CDW volume brought onto the entire continental shelf (inshore of the 600-m isobath) on initial
 542 stratification (not shown) is qualitatively similar to the pattern in Fig. 14b. This is consistent with
 543 the diminished topographic guide by the trough and less efficient onshore transport of CDW by
 544 disorganized eddies in simulations with strong initial stratification.

545 There are two possible mechanisms whereby increasing stratification diminishes onshore CDW
546 intrusions. First, increasing salinity at depth reduces the density difference between the polynya-
547 sourced dense water and the subsurface ambient waters on the shelf, limiting dense water formation
548 and thereby reducing the potential energy available to be converted into EKE. Less EKE in the
549 system means weaker dense water eddies and, thus, less entrainment of CDW onshore toward the
550 coast. This mechanism is consistent with the conditions on warm Antarctic continental shelves,
551 such as the Amundsen or Bellingshausen seas, which have strong stratification caused by CDW
552 intrusions and surface meltwater influx. In the Amundsen Sea, observations show an absence of
553 DSW (Narayanan et al. 2019), despite polynyas in the Amundsen Sea having high rates of sea ice
554 production (Nihashi et al. 2017). Second, increasing initial stratification raises the neutral depth
555 of the polynya-sourced dense water in the water column and makes the trough less effective at
556 channeling dense water eddies. As the eddies start to become more disorganized and behave closer
557 to those in the simulation without a trough (Fig. 7e-f), they stop working in unison to pull CDW
558 shoreward along the trough. Instead, the eddies advect and disperse CDW over the continental
559 shelf. The time-averaged onshore barotropic flow on the eastern slope of the trough ceases to exist,
560 and CDW loses an efficient intrusion pathway. Essentially, adding stratification reduces CDW
561 intrusions by reducing both EKE and the effectiveness of topographic steering.

562 5. Discussion

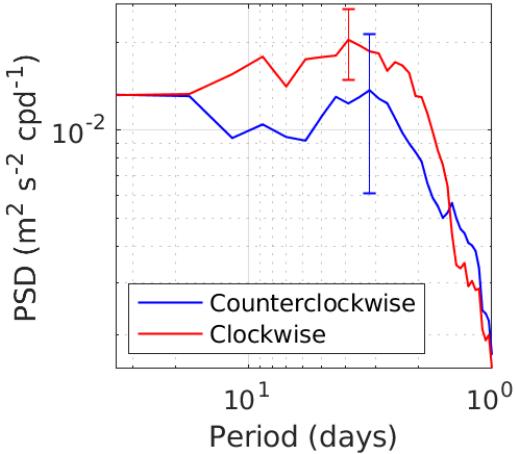
563 Our numerical simulations show that a trough aids buoyancy-driven cross-shelf exchange by
564 lining up offshore-moving dense water eddies that entrain CDW onshore in a bucket brigade
565 pattern. The limitations, applications, and implications of this mechanism are discussed below.

566 a. *Limitations and future directions*

567 Many significant processes known to drive circulation on the Antarctic continental shelf are
568 neglected here, and their influence on the exchange process identified here is untested. For
569 instance, CDW intrusions can be driven by surface wind stress (Thoma et al. 2008), sea ice stress
570 (Kim et al. 2017), ice shelf melt (St-Laurent et al. 2013), tidal rectification (Wang et al. 2013), and
571 shelf break currents (St-Laurent et al. 2013). Such processes may obscure the signal of cross-shelf
572 exchange caused by dense water eddies in the ocean. For instance, lateral export of dense water

573 from the polynya driven by surface winds (Xu et al. in revision) or a coastal current (Chapman
574 2000) decreases the residence time of dense water in the polynya, exposing the water parcel to less
575 brine rejection and thereby reducing the buoyancy anomaly of the polynya-sourced dense water
576 relative to ambient waters. This reduced buoyancy anomaly likely weakens the dense water eddies
577 in the trough and thus reduces buoyancy driven cross-shelf exchange. Similarly, tidal mixing of
578 dense and ambient waters can suppress exchange (Bowen et al. 2021), as could mixing induced by
579 other processes, such as shelf-break mixing. Additionally, the model does not include an Antarctic
580 Slope Front, which acts to limit cross-slope transport (Goddard et al. 2017), although instabilities in
581 the Antarctic Slope Current (ASC) and interactions with the ASC and a trough can enhance CDW
582 intrusions (Zhang et al. 2011; St-Laurent et al. 2013). Meanwhile, stratification limits polynya
583 dense water formation (Snow et al. 2016; Aoki et al. 2022) and reduces the buoyancy-driven cross-
584 shelf exchange in an idealized case (section 4c). A more realistic pycnocline structure could modify
585 how much topographic steering a trough exerts on DSW eddies. Furthermore, in the unstratified
586 control runs, the inflow of CDW is barotropic, so surface waters also intrude shoreward; the vertical
587 structure of shoreward intrusions with realistic stratification profiles warrants further study.

588 The surface buoyancy forcing, Q , and vertical mixing scheme used in this study affects the
589 magnitude and density of DSW formed, with implications for the DSW current speed (due to the
590 reduced gravity term in Equation 4) and strength of CDW intrusions. However, the underlying dy-
591 namical mechanism linking dense water formation to eddy-driven CDW intrusions is not expected
592 to depend on Q nor the vertical mixing scheme. Indeed, while a sensitivity simulation with reduced
593 Q results in less DSW offshore flux, less EKE, and less CDW intrusions than in the control runs,
594 eddies still exist in the trough and pull CDW onshore (not shown).


595 This study uses an idealized trough geometry, while troughs on the Antarctic shelf are much more
596 complex with varying orientations, lengths, widths, slopes (retrograde or prograde), alongshore
597 location relative to polynyas, and along-trough bathymetric heterogeneity such as sills. We expect
598 that both a trough located further from a polynya and a longer trough would result in a more diluted
599 DSW current. A narrower trough with steeper side walls makes DSW flow faster (Equation 6), but
600 at some critical width smaller than the baroclinic deformation radius a trough will be too narrow
601 to fit DSW eddies. Conversely, wide troughs could channel more DSW offshore, but could also
602 have less confined eddy pathways. Finally, along-trough bathymetric heterogeneity could increase

603 mixing of DSW with ambient waters, thereby weakening the DSW outflow and CDW inflow.
604 More research is needed to determine how DSW and CDW transport depends on differing trough
605 geometries.

606 The cross-shelf exchange process identified in this study requires dense water to form near
607 the head of a prograde trough with a width of a similar scale as the eddy diameter, i.e., a few
608 times larger than the deformation radius. A few troughs around Antarctica satisfy this criterion,
609 including two prograde troughs off Enderby Land (Fig. 1d) within 225 km of an observed DSW
610 cascade (Amblas and Dowdeswell 2018) and a prograde trough offshore of Oates Land (157°E,
611 68.85°S) adjacent to an inferred DSW cascade (Amblas and Dowdeswell 2018). Due to a lack
612 of observations, it is unknown if CDW intrusions occur in these troughs. Observing flows in this
613 type of prograde troughs is thus a logical future direction for a complete understanding of cross-
614 shelf exchange processes at the Antarctic shelf edge. However, as retrograde troughs are more
615 common around Antarctica, another future direction should be to examine submesoscale processes
616 of cross-shelf-edge exchange and onshore intrusion of CDW in retrograde troughs all the way from
617 the shelf break to the polynya region, particularly in known regions of CDW intrusions such as
618 the Drygalski Trough, Adélie Depression, and Filchner Trough (Castagno et al. 2017; Martin et al.
619 2017; Ryan et al. 2020). Note that the eddy process identified here might not be applicable in
620 retrograde troughs as the rising seafloor of retrograde troughs toward the shelf edge presumably
621 suppresses vortex vertical stretching, hinders DSW eddy formation, and thus reduces eddy impact
622 on CDW intrusions.

623 *b. Application in the ocean*

627 Despite these idealized simplifications, the model simulations produce cyclonic dense water
628 eddies that match observations from Antarctic troughs. A rotary current spectra of velocity at the
629 trough mouth over days 80 to 150 is computed using Slepian tapers with a time-bandwidth product
630 of 4 (Fig. 15). The modelled cyclonic eddies drive variability in near-bottom velocities in the
631 trough at a dominant period of 3 to 4 days. This timescale is consistent with observed variability
632 along the continental slope of the Weddell Sea (Daae et al. 2019; Jensen et al. 2013), which Daae
633 et al. (2019) posit to be caused by westward-propagating topographic vorticity waves or dense
634 water eddies that form due to vortex stretching (Daae et al. 2019; Lane-Serff and Baines 2000).

624 FIG. 15. Rotary spectra of current velocity at a virtual mooring located in the trough mouth at the shelf break
 625 (red diamond in Fig. 2b) at 10 m above the bottom, averaged between the five control runs. Error bars show the
 626 standard deviation at peak frequencies.

635 This agreement in modelled and observed peaks in variability, while not conclusive, suggests that
 636 the modelled cyclonic eddies occur in Antarctic troughs. Furthermore, observations in a trough
 637 show that peaks in offshore flow at one location correlate with onshore flow at another location to
 638 its east (Darelius et al. 2023), suggesting that dense water cyclonic eddies correlate in time with
 639 episodic large onshore CDW volume fluxes. Furthermore, the modeled main pathway of onshore
 640 intrusions is on the eastern side of the trough, which largely agrees with observations showing
 641 warm water intrusions in the eastern flanks of Antarctic troughs in areas of DSW formation (Kohut
 642 et al. 2013; Castagno et al. 2017; Martin et al. 2017; Ryan et al. 2020; Ribeiro et al. 2021).

643 The modelled volume flux of CDW onto the continental shelf is comparable to previous estimates.
 644 Using a realistic pan-Antarctic ocean model with a 2.6 to 5.5 km horizontal resolution, Morrison
 645 et al. (2020) estimated that 0.5 to 1 Sv per 100 km of CDW is carried onto the continental shelf
 646 by the mean onshore flow in each of the troughs in the Ross Sea. Interestingly, in the control
 647 simulations of this study, which has a higher resolution and a narrower trough, the eddy-driven,
 648 episodic onshore flow in the trough carries about 0.3 Sv of CDW passive tracer onto the shelf
 649 onshore of the 600 m isobath over the first 150 days. This transport occurs across roughly a 150
 650 km long section of the shelf break (Fig. 2f). That is, our model simulations provide an estimate
 651 of the cross-shelf CDW volume fluxes of a similar order of magnitude as Morrison et al. (2020),

despite the difference in transport mechanisms. Thus, the dense shelf water outflow simulated in this study has the potential to drive a significant portion of the onshore transport of CDW.

c. Implications

Eddy-driven CDW intrusions could impact the regional climate. Firstly, as a mechanism for bringing warm CDW across the shelf towards the coast, this process can contribute to the melting of sea ice and ice shelves. However, stronger water-column stratification suppresses this type of CDW intrusion by weakening DSW formation and EKE on the shelf (section 4c). Thus, as the ocean warms and dense water formation slows (Lago and England 2019), this CDW intrusion mechanism may occur less frequently. As a result, a negative feedback loop is possible wherein increased surface meltwater increases stratification and decreases CDW onshore intrusions, resulting in less heat available to melt ice. Meanwhile, this negative feedback loop acts opposite to and potentially balances a positive feedback loop. In the positive loop, stratification inhibits winter convection (Silvano et al. 2017) and allows CDW to reside at depth on the shelf for longer instead of being mixed up to the surface layer and losing its heat to the atmosphere (Narayanan et al. 2019). This positive feedback means more heat from offshore could reach and melt ice shelves (Dutrieux et al. 2014). The relationship between these two opposing feedbacks should be examined further.

Numerical models must resolve or parameterize these eddy-driven CDW intrusions to simulate their potential impacts on the climate system. Eddies greatly enhance the cross-shelf exchange of DSW and CDW, as demonstrated by comparing a simulation with enhanced horizontal viscosity (Fig. 11) to a control simulation (Fig. 2). As discussed in section 4c, this enhanced horizontal viscosity lowers the average EKE in the trough, decreases the offshore flux of DSW, and decreases the onshore flux of CDW. Reducing the model grid resolution is expected to have a similar impact as enhancing horizontal viscosity in this study and, thus, reduce cross-shelf exchange. Current climate models have resolutions on the order of a degree, which is roughly ten times larger than the first baroclinic Rossby radius of deformation along the Antarctic slope. As such, these models cannot resolve mesoscale DSW eddies and likely underestimate the strength of CDW intrusions in regions of the Antarctic continental shelf where this eddy-driven exchange is active.

679 **6. Summary**

680 This study investigates the flow of dense water, formed in an Antarctic coastal polynya, down a
681 trough and identifies a new process for onshore CDW intrusions. Numerical simulations show that
682 the dense water flows along the bottom of the trough as an eddy-dominated bottom gravity current.
683 Comparison with an analytical scaling finds that this current is driven by a cross-trough baroclinic
684 pressure gradient balanced by the Coriolis force, has an along-trough velocity proportional to the
685 reduced gravity of the dense water and the slope of the trough side wall, and inversely proportional
686 to the Coriolis parameter. The trough is shown to topographically guide cyclonic dense-water
687 eddies into a consistent pathway from the coast to the shelf break, forming an eddy chain residing
688 in the trough at any given time. This consistent chain of offshore-moving eddies then works together
689 to entrain CDW from offshore, first across the shelf edge into the trough and, then, along the trough
690 towards the coast, in a pattern similar to a fire bucket brigade passing water buckets toward a fire.
691 This eddy mechanism transports relatively warm CDW to the Antarctic coastal region, where the
692 imported heat could melt sea ice and ice shelves.

693 The process of onshore CDW intrusion identified in this study requires dense shelf water for-
694 mation near the head of a cross-shelf oriented, prograde trough – a condition that is met in a few
695 regions of the Antarctic coast. It implies that substantial water exchange between the Antarctic
696 continental shelf and the deep ocean could occur in shelf edge regions with irregular topography.
697 This is consistent with results of observational and numerical studies around Antarctica. The
698 CDW onshore flux estimated in our idealized models is of the same order of magnitude as those
699 estimated in a previous realistic simulation. As the idealized configuration employed here neglects
700 the influence of multiple factors that could substantially impact the circulation on the Antarctic
701 shelf, the exact contribution of the eddy-driven transport mechanism identified here on the overall
702 water exchange between the Antarctic shelf and the deep water remains to be explored in future
703 observational or modeling studies.

704 *Acknowledgments.* Thanks Phadtaya Poemnamthip and Yilang Xu for assistance setting up the
705 numerical models. This study was supported by National Science Foundation through grants
706 OCE-2147884 and OPP-1643901. The authors declare that they have no conflicting interests.

707 *Data availability statement.* The ROMS configuration files and Matlab scripts used to generate
708 input files for the numerical simulations are available at: <https://doi.org/10.5281/zenodo.7964037>

709 References

710 Ackley, S. F., and Coauthors, 2020: Sea-ice production and air/ice/ocean/biogeochemistry inter-
711 actions in the Ross Sea during the PIPERS 2017 autumn field campaign. *Annals of Glaciology*,
712 **61** (82), 181–195, <https://doi.org/10.1017/aog.2020.31>.

713 Amblas, D., and J. A. Dowdeswell, 2018: Physiographic influences on dense shelf-water cascading
714 down the Antarctic continental slope. *Earth-Science Reviews*, **185**, 887–900, <https://doi.org/10.1016/j.earscirev.2018.07.014>.

715

716 Aoki, S., T. Takahashi, K. Yamazaki, D. Hirano, K. Ono, K. Kusahara, T. Tamura, and
717 G. D. Williams, 2022: Warm surface waters increase Antarctic ice shelf melt and delay
718 dense water formation. *Communications Earth & Environment*, **3** (1), 1–8, <https://doi.org/10.1038/s43247-022-00456-z>.

719

720 Bowen, M. M., D. Fernandez, A. Forcen-Vazquez, A. L. Gordon, B. Huber, P. Castagno, and
721 P. Falco, 2021: The role of tides in bottom water export from the western Ross Sea. *Scientific
722 Reports*, **11** (1), 2246, <https://doi.org/10.1038/s41598-021-81793-5>.

723

724 Castagno, P., P. Falco, M. S. Dinniman, G. Spezie, and G. Budillon, 2017: Temporal variability
725 of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf. *Journal of Marine
Systems*, **166**, 37–49, <https://doi.org/10.1016/j.jmarsys.2016.05.006>.

726

727 Cenedese, C., J. A. Whitehead, T. A. Ascarelli, and M. Ohiwa, 2004: A Dense Current Flowing
728 down a Sloping Bottom in a Rotating Fluid. *Journal of Physical Oceanography*, **34** (1), 188–203,
[https://doi.org/10.1175/1520-0485\(2004\)034<0188:ADCFDA>2.0.CO;2](https://doi.org/10.1175/1520-0485(2004)034<0188:ADCFDA>2.0.CO;2).

729 Chapman, D. C., 1985: Numerical Treatment of Cross-Shelf Open Boundaries in a Barotropic
730 Coastal Ocean Model. *Journal of Physical Oceanography*, **15** (8), 1060–1075, [https://doi.org/10.1175/1520-0485\(1985\)015<1060:NTOCSO>2.0.CO;2](https://doi.org/10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2).

731

732 Chapman, D. C., 1999: Dense Water Formation beneath a Time-Dependent Coastal Polynya.
733 *Journal of Physical Oceanography*, **29** (4), 807–820, [https://doi.org/10.1175/1520-0485\(1999\)029<0807:DWFBAT>2.0.CO;2](https://doi.org/10.1175/1520-0485(1999)029<0807:DWFBAT>2.0.CO;2).

734

735 Chapman, D. C., 2000: The influence of an alongshelf current on the formation and offshore
736 transport of dense water from a coastal polynya. *Journal of Geophysical Research: Oceans*,
737 **105** (C10), 24 007–24 019, <https://doi.org/10.1029/2000JC000296>.

738

739 Chapman, D. C., and G. Gawarkiewicz, 1995: Offshore transport of dense shelf water in the
740 presence of a submarine canyon. *Journal of Geophysical Research: Oceans*, **100** (C7), 13 373–
741 13 387, <https://doi.org/10.1029/95JC00890>.

742

743 Chapman, D. C., and G. Gawarkiewicz, 1997: Shallow Convection and Buoyancy Equilibra-
744 tion in an Idealized Coastal Polynya. *Journal of Physical Oceanography*, **27** (4), 555–566,
745 [https://doi.org/10.1175/1520-0485\(1997\)027<0555:SCABEI>2.0.CO;2](https://doi.org/10.1175/1520-0485(1997)027<0555:SCABEI>2.0.CO;2).

746

747 Cherian, D. A., and K. H. Brink, 2016: Offshore Transport of Shelf Water by Deep-
748 Ocean Eddies. *Journal of Physical Oceanography*, **46** (12), 3599–3621, <https://doi.org/10.1175/JPO-D-16-0085.1>.

749

750 Daae, K., I. Fer, and E. Darelius, 2019: Variability and Mixing of the Filchner Overflow Plume
751 on the Continental Slope, Weddell Sea. *Journal of Physical Oceanography*, **49** (1), 3–20,
752 <https://doi.org/10.1175/JPO-D-18-0093.1>.

753

754 Darelius, E., and Coauthors, 2023: Observational evidence for on-shelf heat transport driven by
755 dense water export in the Weddell Sea. *Nature Communications*, **14** (1), 1022, <https://doi.org/10.1038/s41467-023-36580-3>.

756

757 Dinniman, M. S., J. M. Klinck, and W. O. Smith, 2003: Cross-shelf exchange in a model of
758 the Ross Sea circulation and biogeochemistry. *Deep Sea Research Part II: Topical Studies in*
759 *Oceanography*, **50** (22), 3103–3120, <https://doi.org/10.1016/j.dsr2.2003.07.011>.

760

756 Dutrieux, P., and Coauthors, 2014: Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic
757 Variability. *Science*, **343** (6167), 174–178, <https://doi.org/10.1126/science.1244341>.

758 Faghmous, J. H., I. Frenger, Y. Yao, R. Warmka, A. Lindell, and V. Kumar, 2015: A daily
759 global mesoscale ocean eddy dataset from satellite altimetry. *Scientific Data*, **2** (1), 150028,
760 <https://doi.org/10.1038/sdata.2015.28>.

761 Garfield III, N., and D. L. Evans, 1987: Shelf water entrainment by Gulf Stream warm-core
762 rings. *Journal of Geophysical Research: Oceans*, **92** (C12), 13 003–13 012, <https://doi.org/10.1029/JC092iC12p13003>.

763

764 Gawarkiewicz, G., 2000: Effects of ambient stratification and shelfbreak topography on offshore
765 transport of dense water on continental shelves. *Journal of Geophysical Research: Oceans*,
766 **105** (C2), 3307–3324, <https://doi.org/10.1029/1999JC900298>.

767

768 Gawarkiewicz, G., and D. C. Chapman, 1995: A numerical study of dense water formation and
769 transport on a shallow, sloping continental shelf. *Journal of Geophysical Research: Oceans*,
770 **100** (C3), 4489–4507, <https://doi.org/10.1029/94JC01742>.

771

772 Goddard, P. B., C. O. Dufour, J. Yin, S. M. Griffies, and M. Winton, 2017: CO₂-Induced Ocean
773 Warming of the Antarctic Continental Shelf in an Eddying Global Climate Model. *Journal of
774 Geophysical Research: Oceans*, **122** (10), 8079–8101, <https://doi.org/10.1002/2017JC012849>.

775

776 Gordon, A. L., A. H. Orsi, R. Muench, B. A. Huber, E. Zambianchi, and M. Visbeck, 2009:
777 Western Ross Sea continental slope gravity currents. *Deep Sea Research Part II: Topical Studies
778 in Oceanography*, **56** (13), 796–817, <https://doi.org/10.1016/j.dsr2.2008.10.037>.

779

780 Gordon, L. I., L. A. Codispoti, J. C. Jennings, F. J. Millero, J. M. Morrison, and C. Sweeney, 2000:
781 Seasonal evolution of hydrographic properties in the Ross Sea, Antarctica, 1996–1997. *Deep
782 Sea Research Part II: Topical Studies in Oceanography*, **47** (15), 3095–3117, [https://doi.org/10.1016/S0967-0645\(00\)00060-6](https://doi.org/10.1016/S0967-0645(00)00060-6).

783

784 Guo, G., J. Shi, L. Gao, T. Tamura, and G. D. Williams, 2019: Reduced Sea Ice Production Due
785 to Upwelled Oceanic Heat Flux in Prydz Bay, East Antarctica. *Geophysical Research Letters*,
786 **46** (9), 4782–4789, <https://doi.org/10.1029/2018GL081463>.

787

783 Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in terrain-following coordinates: Formu-
784 lation and skill assessment of the Regional Ocean Modeling System. *Journal of Computational*
785 *Physics*, **227** (7), 3595–3624, <https://doi.org/10.1016/j.jcp.2007.06.016>.

786 Jacobs, S. S., H. H. Hellmer, and A. Jenkins, 1996: Antarctic Ice Sheet melting in the southeast
787 Pacific. *Geophysical Research Letters*, **23** (9), 957–960, <https://doi.org/10.1029/96GL00723>.

788 Jensen, M. F., I. Fer, and E. Darelius, 2013: Low frequency variability on the continental slope
789 of the southern Weddell Sea. *Journal of Geophysical Research: Oceans*, **118** (9), 4256–4272,
790 <https://doi.org/10.1002/jgrc.20309>.

791 Johnson, G. C., 2008: Quantifying Antarctic Bottom Water and North Atlantic Deep Wa-
792 ter volumes. *Journal of Geophysical Research: Oceans*, **113** (C5), <https://doi.org/10.1029/2007JC004477>.

794 Kämpf, J., 2005: Cascading-driven upwelling in submarine canyons at high latitudes. *Journal of*
795 *Geophysical Research: Oceans*, **110** (C2), <https://doi.org/10.1029/2004JC002554>.

796 Kim, T. W., H. K. Ha, A. K. Wåhlin, S. H. Lee, C. S. Kim, J. H. Lee, and Y. K. Cho, 2017: Is Ekman
797 pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen
798 Sea? *Continental Shelf Research*, **132**, 38–48, <https://doi.org/10.1016/j.csr.2016.09.005>.

799 Klinck, J. M., and M. S. Dinniman, 2010: Exchange across the shelf break at high southern
800 latitudes. *Ocean Science*, **6** (2), 513–524, <https://doi.org/10.5194/os-6-513-2010>.

801 Klinck, J. M., E. E. Hofmann, R. C. Beardsley, B. Salihoglu, and S. Howard, 2004: Water-mass
802 properties and circulation on the west Antarctic Peninsula Continental Shelf in Austral Fall and
803 Winter 2001. *Deep Sea Research Part II: Topical Studies in Oceanography*, **51** (17), 1925–1946,
804 <https://doi.org/10.1016/j.dsr2.2004.08.001>.

805 Kohut, J., E. Hunter, and B. Huber, 2013: Small-scale variability of the cross-shelf flow over the
806 outer shelf of the Ross Sea. *Journal of Geophysical Research: Oceans*, **118** (4), 1863–1876,
807 <https://doi.org/10.1002/jgrc.20090>.

808 Lago, V., and M. H. England, 2019: Projected Slowdown of Antarctic Bottom Water Formation
809 in Response to Amplified Meltwater Contributions. *Journal of Climate*, **32** (19), 6319–6335,
810 <https://doi.org/10.1175/JCLI-D-18-0622.1>.

811 Lane-Serff, G. F., and P. G. Baines, 2000: Eddy Formation by Overflows in Stratified Water.
812 *Journal of Physical Oceanography*, **30** (2), 327–337, [https://doi.org/10.1175/1520-0485\(2000\)030<0327:EFBOIS>2.0.CO;2](https://doi.org/10.1175/1520-0485(2000)030<0327:EFBOIS>2.0.CO;2).

814 Liu, C., Z. Wang, X. Liang, X. Li, X. Li, C. Cheng, and D. Qi, 2022: Topography-Mediated
815 Transport of Warm Deep Water across the Continental Shelf Slope, East Antarctica. *Journal of*
816 *Physical Oceanography*, **52** (6), 1295–1314, <https://doi.org/10.1175/JPO-D-22-0023.1>.

817 Livingstone, S. J., C. Ó Cofaigh, C. R. Stokes, C.-D. Hillenbrand, A. Vieli, and S. S. R. Jamieson,
818 2012: Antarctic palaeo-ice streams. *Earth-Science Reviews*, **111** (1), 90–128, <https://doi.org/10.1016/j.earscirev.2011.10.003>.

820 Martin, A., M.-N. Houssais, H. Le Goff, C. Marec, and D. Dausse, 2017: Circulation and water
821 mass transports on the East Antarctic shelf in the Mertz Glacier region. *Deep Sea Research Part*
822 *I: Oceanographic Research Papers*, **126**, 1–20, <https://doi.org/10.1016/j.dsr.2017.05.007>.

823 Morrison, A. K., A. McC. Hogg, M. H. England, and P. Spence, 2020: Warm Circumpolar
824 Deep Water transport toward Antarctica driven by local dense water export in canyons. *Science*
825 *Advances*, **6** (18), eaav2516, <https://doi.org/10.1126/sciadv.aav2516>.

826 Narayanan, A., S. T. Gille, M. R. Mazloff, and K. Murali, 2019: Water Mass Characteristics of
827 the Antarctic Margins and the Production and Seasonality of Dense Shelf Water. *Journal of*
828 *Geophysical Research: Oceans*, **124** (12), 9277–9294, <https://doi.org/10.1029/2018JC014907>.

829 Nihashi, S., K. I. Ohshima, and T. Tamura, 2017: Sea-Ice Production in Antarctic Coastal Polynyas
830 Estimated From AMSR2 Data and Its Validation Using AMSR-E and SSM/I-SSMIS Data. *IEEE*
831 *Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, **10** (9), 3912–
832 3922, <https://doi.org/10.1109/JSTARS.2017.2731995>.

833 Nof, D., 1983: The translation of isolated cold eddies on a sloping bottom. *Deep Sea Research Part*
834 *A. Oceanographic Research Papers*, **30** (2), 171–182, [https://doi.org/10.1016/0198-0149\(83\)90067-5](https://doi.org/10.1016/0198-0149(83)90067-5).

836 Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. *Journal of*
837 *Computational Physics*, **21** (3), 251–269, [https://doi.org/10.1016/0021-9991\(76\)90023-1](https://doi.org/10.1016/0021-9991(76)90023-1).

838 Ribeiro, N., L. Herraiz-Borreguero, S. R. Rintoul, C. R. McMahon, M. Hindell, R. Harcourt, and
839 G. Williams, 2021: Warm Modified Circumpolar Deep Water Intrusions Drive Ice Shelf Melt and
840 Inhibit Dense Shelf Water Formation in Vincennes Bay, East Antarctica. *Journal of Geophysical*
841 *Research: Oceans*, **126** (8), e2020JC016998, <https://doi.org/10.1029/2020JC016998>.

842 Ryan, S., H. H. Hellmer, M. Janout, E. Darelius, L. Vignes, and M. Schröder, 2020: Ex-
843 ceptionally Warm and Prolonged Flow of Warm Deep Water Toward the Filchner-Ronne
844 Ice Shelf in 2017. *Geophysical Research Letters*, **47** (13), e2020GL088119, <https://doi.org/10.1029/2020GL088119>.

845

846 Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A
847 split-explicit, free-surface, topography-following-coordinate oceanic model. *Ocean Modelling*,
848 **9** (4), 347–404, <https://doi.org/10.1016/j.ocemod.2004.08.002>.

849

850 Silvano, A., S. R. Rintoul, B. Peña-Molino, and G. D. Williams, 2017: Distribution of water
851 masses and meltwater on the continental shelf near the Totten and Moscow University ice
852 shelves. *Journal of Geophysical Research: Oceans*, **122** (3), 2050–2068, <https://doi.org/10.1002/2016JC012115>.

853

854 Snow, K., A. M. Hogg, B. M. Sloyan, and S. M. Downes, 2016: Sensitivity of Antarctic Bot-
855 tom Water to Changes in Surface Buoyancy Fluxes. *Journal of Climate*, **29** (1), 313–330,
<https://doi.org/10.1175/JCLI-D-15-0467.1>.

856

857 St-Laurent, P., J. M. Klinck, and M. S. Dinniman, 2013: On the Role of Coastal Troughs in
858 the Circulation of Warm Circumpolar Deep Water on Antarctic Shelves. *Journal of Physical*
Oceanography, **43** (1), 51–64, <https://doi.org/10.1175/JPO-D-11-0237.1>.

859

860 Stewart, A. L., A. Klocker, and D. Menemenlis, 2018: Circum-Antarctic Shoreward Heat Transport
861 Derived From an Eddy- and Tide-Resolving Simulation. *Geophysical Research Letters*, **45** (2),
834–845, <https://doi.org/10.1002/2017GL075677>.

862

863 Swaters, G. E., 1998: Numerical simulations of the baroclinic dynamics of density-driven coupled
864 fronts and eddies on a sloping bottom. *Journal of Geophysical Research: Oceans*, **103** (C2),
2945–2961, <https://doi.org/10.1029/97JC02441>.

865 Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling Circumpolar Deep Water
866 intrusions on the Amundsen Sea continental shelf, Antarctica. *Geophysical Research Letters*,
867 **35** (18), <https://doi.org/10.1029/2008GL034939>.

868 Wåhlin, A. K., 2004: Downward channeling of dense water in topographic corrugations. *Deep Sea*
869 *Research Part I: Oceanographic Research Papers*, **51** (4), 577–590, <https://doi.org/10.1016/j.dsr.2003.11.002>.

871 Walker, D. P., M. A. Brandon, A. Jenkins, J. T. Allen, J. A. Dowdeswell, and J. Evans, 2007:
872 Oceanic heat transport onto the Amundsen Sea shelf through a submarine glacial trough. *Geo-*
873 *physical Research Letters*, **34** (2), <https://doi.org/10.1029/2006GL028154>.

874 Wang, Q., S. Danilov, H. Hellmer, D. Sidorenko, J. Schröter, and T. Jung, 2013: Enhanced
875 cross-shelf exchange by tides in the western Ross Sea. *Geophysical Research Letters*, **40** (21),
876 5735–5739, <https://doi.org/10.1002/2013GL058207>.

877 Williams, G. D., M. Hindell, M.-N. Houssais, T. Tamura, and I. C. Field, 2011: Upper ocean
878 stratification and sea ice growth rates during the summer-fall transition, as revealed by Ele-
879 phant seal foraging in the Adélie Depression, East Antarctica. *Ocean Science*, **7** (2), 185–202,
880 <https://doi.org/10.5194/os-7-185-2011>.

881 Xu, Y., W. G. Zhang, T. Maksym, R. Ji, and Y. Li, in revision: Stratification breakdown in Antarctic
882 coastal polynyas, Part I: Influence of physical factors on the destratification timescale. *Journal*
883 *of Physical Oceanography*.

884 Zhang, W. G., and C. Cenedese, 2014: The Dispersal of Dense Water Formed in an Idealized
885 Coastal Polynya on a Shallow Sloping Shelf. *Journal of Physical Oceanography*, **44** (6), 1563–
886 1581, <https://doi.org/10.1175/JPO-D-13-0188.1>.

887 Zhang, W. G., and S. J. Lentz, 2017: Wind-Driven Circulation in a Shelf Valley. Part I: Mechanism
888 of the Asymmetrical Response to Along-Shelf Winds in Opposite Directions. *Journal of Physical*
889 *Oceanography*, **47** (12), 2927–2947, <https://doi.org/10.1175/JPO-D-17-0083.1>.

890 Zhang, W. G., and Coauthors, 2023: Cross-shelf exchange associated with a shelf-water streamer
891 at the Mid-Atlantic Bight shelf edge. *Progress in Oceanography*, **210**, 102 931, <https://doi.org/10.1016/j.pocean.2022.102931>.

893 Zhang, Y., J. Pedlosky, and G. R. Flierl, 2011: Shelf Circulation and Cross-Shelf Transport
894 out of a Bay Driven by Eddies from an Open-Ocean Current. Part I: Interaction between a
895 Barotropic Vortex and a Steplike Topography. *Journal of Physical Oceanography*, **41** (5), 889–
896 910, <https://doi.org/10.1175/2010JPO4496.1>.