Conditional Encryption with Applications to Secure Personalized
Password Typo Correction

Mohammad Hassan Ameri Jeremiah Blocki

Purdue University
West Lafayette, IN USA

Abstract

We introduce the notion of a conditional encryption scheme as an extension of public key encryption.
In addition to the standard public key algorithms (KeyGen, Enc, Dec) for key generation, encryption and
decryption, a conditional encryption scheme for a binary predicate P adds a new conditional encryption
algorithm CEnc. The conditional encryption algorithm ¢ = CEncpi(c1,m2, m3) takes as input the public
encryption key pk, a ciphertext ¢1 = Encpr(m1) for an unknown message m1, a control message ms and
a payload message ms and outputs a conditional ciphertext c. Intuitively, if P(mi,m2) = 1 then the
conditional ciphertext ¢ should decrypt to the payload message ms. On the other hand if P(m1,m2) =0
then the ciphertext should not leak any information about the control message ms or the payload mes-
sage mg even if the attacker already has the secret decryption key sk. We formalize the notion of
conditional encryption secrecy and provide concretely efficient constructions for a set of predicates rele-
vant to password typo correction. Qur practical constructions utilize the Paillier partially homomorphic
encryption scheme as well as Shamir Secret Sharing. We prove that our constructions are secure and
demonstrate how to use conditional encryption to improve the security of personalized password typo
correction systems such as TypTop. We implement a C++ library for our practically efficient conditional
encryption schemes and evaluate the performance empirically. We also update the implementation of
TypTop to utilize conditional encryption for enhanced security guarantees and evaluate the performance
of the updated implementation.

Full Version: This document provides the full version of the article published at CCS 2024 under the
same title — see https://doi.org/10.1145/3658644.3690374.

1 Introduction

Traditionally, public key encryption allows any party who has the public key pk to encrypt a message m
and obtain a ciphertext ¢ which can only be decrypted by a party who possesses the corresponding secret
key sk. The implicit assumption is that anyone who posses the secret key sk is a trusted party. However,
there are some applications where the party encrypting a message may only want to conditionally reveal
that message to the party who possesses the secret key if certain conditions hold. For example, consider
the problem of having an authentication server maintain an (encrypted) cache of incorrect login attempts
for each user. Such a cache might be used to design a (personalized) typo tolerant password authentication
scheme [CAAT16, CWP™17] and/or to help identify malicious login attempts. In the TypTop [CWPT17]
system the sever generates a public/private key pair (sk,,pk,) for each user account u and encrypts the
secret key sk, with a symmetric encryption key K, = PKDF(s,,pwd,) derived from the user’s password
pwd, and a random salt value s,. The server then stores the resulting ciphertext ¢, = Encg, (sk,) and
public key pk, along with the salt value s,. Whenever the user logs in with an incorrect password pwd’ the
authentication server uses the public key pk,, to generate and store the ciphertext ¢’ = Enc,, (pwd’). Later
if the user logs in with a correct password pwd we can re-derive the symmetric key K, = PKDF(s,,,pwd), use
the symmetric key to recover the secret key sk, = Deck, (¢,,) and then use the secret key sk, to decrypt each

https://doi.org/10.1145/3658644.3690374

password pwd’ = Decgy, (¢/) in our encrypted cache. The TypTop system can then examine each particular
password pwd’ in the cache to determine whether or not this password is an “acceptable typo” that should
be accepted during future login attempts. An online password cracker will not be able to peek inside the
encrypted vault unless he has already guessed the correct password and derived K,. However, the above
approach still has a security drawback in that an offline attacker who manages to crack the user’s password
pwd,, will be able to access any password stored in the encrypted vault.

While the TypTop [CWP™17] system maintains a cache of allincorrect login attempts, only the passwords
that are “sufficiently close” to the original password are considered as candidates to be added to a list of
“acceptable typos” for future login attempts. Thus, in the password typo tolerant application, one only
needs to store incorrect login attempts that are plausibly typos of the user’s original password e.g., the
Hamming Distance between the two passwords is at most 2 or the password was incorrectly capitalized
because the CAPSLOCK key was not turned off. If the user mistakenly logs into his social media account
(12345_SOCIAL) with his bank password (STRAGNG_BANK_ #;aym7*5) and the social media site was
running TypTop then it would add the bank password (STRAG@NG_BANK_#; aym7*5) to its encrypted
cache even though this password is not close to the social media password and would never be added to
the list of “acceptable typos”. The potential presence of additional user passwords in the encrypted cache
could increase the incentive for an offline adversary to crack the social media password (12345_SOCIAL)
in order to decrypt the cache which might contain the user’s passwords for other accounts e.g., the banking
password STRAQNG_BANK_ #;aym7*5. Ideally, when the authentication server sees an incorrect login
attempt it would add the password to the encrypted cache if and only if that login attempt is a plausible
typo. However, the authentication server should not store the password pwd, in plaintext form so it is
difficult to know whether or not the login attempt is a plausible typo a priori. To this end it would be useful
to generate a “conditional” ciphertext ¢’ such that (1) if pwd, and pwd’ are sufficiently close then ¢’ decrypts
to pwd’; (2) otherwise ¢’ leaks no information about the password pwd’.

1.1 Owur Contributions

We introduce the notion of a conditional encryption scheme and demonstrate a concrete application to
improve the security of personalized typo tolerant systems such as TypTop [CWPT17]. We conjecture that
Conditional Encryption may find many other MPC applications e.g., securing Triger-Action Platforms (“If-
this-than-that” operations) for IoT services [CCWT21] or designing Fuzzy Password Authenticated Key
Exchange Protocols [DHP'18, CHK ™05, RX23, BFH"23]. Intuitively, a conditional encryption scheme
(KeyGen, Enc, Dec, CEnc) for a binary predicate P(-,-) is a public key encryption scheme with the addition of
a new “conditional encryption” algorithm. The conditional encryption CEnc,(c, ma, ms3) algorithm accepts
four inputs: a public encryption key pk, a (regular) public key ciphertext ¢ = Encpr(m1) for an unknown
message m1, a control message mo and a payload message ms and the output is a ciphertext ¢’. Intuitively,
if P(my,mg) = 1, then control message ms is related to the unknown and encrypted message m; (e.g., the
Hamming Distance between ms and my is sufficiently small) and the output ciphertext ¢ should encrypt
the payload message mg i.e., Decsi(¢’) = msz. On the other hand, if P(my,ms) = 0 then the messages my
and my are unrelated and the ciphertext ¢’ should not reveal any information about the control message mo
or the payload message mz — even if the attacker knows the secret decryption key sk.

1.1.1 Conditional Encryption Security

We provide formal security definitions for a conditional encryption scheme in the semi-honest settings. If the
attacker does not know the secret decryption key sk, then we require that the encryption scheme satisfies the
traditional notion of real-or-random security for a public key encryption scheme. When the attacker does
have the secret key sk and the predicate does not hold (i.e., P(mi,m2) = 0) we still want to ensure that
the ciphertext ¢ = CEnc, (¢, m2, m3) does not leak any information about ms, my or ms. We formalize this
“conditional encryption secrecy” property using a simulator Sim(pk) who is only given access to the public
key and must generate a ciphertext which is indistinguishable from ¢’ even if the distinguisher D is given
access to the secret key sk as well as the original ciphertext ¢ and the original messages m1, me and ms. We

elect to follow a concrete security definition instead of asymptotic definitions to provide concrete guidance
on selecting the concrete security parameters in practice.

1.1.2 Efficient Constructions

We next provide efficient constructions of conditional encryption for the equality predicate and for predicates
based on hamming distance!, edit distance and CAPSLOCK. Our constructions use the Pallier partially ho-
momorphic encryption scheme, secret sharing and authenticated encryption as the constructive building
blocks. We also provide a generic composition theorem for OR predicates in the semi-honest setting. In par-
ticular, if we have separate constructions of conditional encryption schemes for predicates Py (-, "), ..., Px(-,-)
then we can obtain a conditional encryption scheme for the predicate Por(m1, ma) = \/f=1 P;(m1,mz) sim-
ply by concatenating the conditional ciphertexts generated by the conditional encryption algorithm CEnc;
for predicate P;. As an application we consider the “typo predicate” which is the OR of several predicates:
Hamming Distance at most two, Edit-Distance at most one and a CAPSLOCK predicate. This is the same
predicate used by Chaterjee et al. in the TypTop personalized typo tolerant password authentication system.
In the appendix, we also provide a general construction of conditional encryption for arbitrary predicates
circuit private fully homomorphic encryption (FHE). However, the practicality of this construction is unclear
as circuit private FHE is substantially more expensive than Pallier.

1.1.3 Application to TypTop

We show how to (slightly) modify the TypTop system to improve security using conditional encryption. In
the appendix we formally define the notion of “typo privacy” (see Definition 12) which ensures that the
authentication server never collects ciphertexts of passwords which are not plausible typos of the original
password. While the original TypTop scheme does not satisfy typo privacy, we prove that our modified
TypTop construction does satisfy typo privacy and is still efficient. See Section 3 and Section 4 for more
details.

1.1.4 Implementation and Empirical Evaluation

We provide a C++ implementation for each of our practical conditional encryption schemes (excluding our
general construction from circuit private FHE). Our implementations include conditional encryption scheme
for the following predicates: CAPSLOCK, Edit Distance One, Hamming distance at most ¢, as well as OR
composition of these predicates (CAPSLOCK or Edit Distance One or Hamming Distance Two). We also
modify the C+4 implementation of the TypTop system for personalized password typo correction to use
conditional encryption for enhanced security (Typo Privacy). We further modified the TypTop system to
utilize memory hard functions [AS15, AB17, ABP18, BDK16] for key-derivation — an update recommended
by the TypTop authors. Our code is available on Github [AB24a] and Zenodo [AB24b].

We evaluate the performance of our conditional encryption schemes for each predicate. As an example,
when we consider the OR predicate for messages of length n < 32 characters (e.g., almost all passwords?) and
instantiate the Pallier Cryptosystem with a 1024-bit modulus N we observe average running times 158.15
(ms), 645.945 (ms) and 261.44 (ms) for the regular encryption Enc,k(-), conditional encryption CEnc,(-)
and decryption of a conditional ciphertext CDecgy(+), respectively. The size of a regular (resp. conditional)
ciphertext was 16 KB (resp. 24 KB). The results are summarized in Table 1. We find that modifying the
TypTop system does not increase authentication delays although it does increase the storage requirements

1For the Hamming Distance predicate (e.g., P(m1,m2) = 1 if and only if m1[i] # ma[i] for at most d locations i < n)
decrypting a conditional ciphertext predicate requires time proportional to (") where n is the length of the messages m; and
mgo and d is the Hamming Distance that we tolerate. This can be slow when both d and n are large. However, in our target
password applications the desired distance parameter d for our Hamming Distance predicate (resp. edit-distance predicate) is
relatively small (e.g., d = 2) as is the parameter n (e.g., n < 32). Finding efficient constructions for the Hamming Distance (or
Edit-Distance) predicate when n and d are both large is left as an open challenge for future research.

20ver 99.9% of leaked RockYou passwords were less than 30 characters.

for the authentication server by a factor of ~ 246. Fortunately, per user storage will not be a limiting factor
in most settings. See Section 4 and Table 2 for more details.

1.1.5 Related work

At a high level the notion of conditional encryption might seem similar to other advanced public
key primitives such as identity based encryption [BF01, SWO05, Gen06, BGK08, BRS13], predicate en-
cryption [KSWO08, GVW15b, SSW09, BCFG17, AYY22], attribute based encryption [BSWO07, AYY22,
Cha07, GPSWO06, CC09, LW11, GVW15a, ADMS18, WP(C23], functional encryption [NAP*14, GGHZ16a,
GGHZ16b, SS10, AGVW13, EM23] and fully homomorphic encryption[Gen09b, BGV14, vGHV10, VJH21].
However, we stress that the security requirements for conditional encryption are quite distinctive in that we
require that secrecy guarantees hold *even if* the attacker has the secret decryption key. By contrast, the
security definitions for other public key primitives (identity based encryption, predicate encryption, attribute
based encryption, functional encryption and fully homomorphic encryption) all assume that the attacker does
not have the secret decryption key. While we do use the Paillier partially homomorphic encryption scheme
to construct conditional encryption schemes for particular predicates, these constructions do not use Pallier
as a blackbox. We are also able to construct conditional encryption for general predicates using circuit
private FHE, but the circuit privacy requirement seems to be inherent i.e., there exists regular (non circuit
private) FHE schemes for which our conditional encryption construction is explicitly broken. See discussion
in Appendix D.

1.2 Preliminaries

In this section, we review the notations and cryptographic primitive which will be used in the rest of the paper.

Given a randomized algorithm A (e.g., key-generation) we use y = A(x;r) to denote the deterministic
output of A when run on input = with fixed random r € {0,1}* and we use the random variable y < A(z)
to denote the output of A(x;r) when r is selected randomly.

Let ¥ denote an alphabet (e.g., ASCII or unicode). Given a string w € ¥* we use ||w| to denote the
length of w and for i < |lw|| we use w[i] to denote the ith character of w. We let M,, = X=" denote the
set of all strings w with length ||w| < n. It will be convenient to assume that all passwords have the same
length. Of course most user passwords do not have the same length but if the maximum length of a user
password is n — 1 then we can easily define a 1 to 1 function Pad : ¥<"~! — ¥" and consider PWD = X"
to be the set of all possible user passwords after padding. In practice, we could select n = 30 as essentially
all user passwords are shorter than this (e.g., over 99.9% of leaked RockYou passwords were less than 30
characters.). The symbol “||” will be used for concatenation. Thus, y = x1]||z2 is concatenation of x; and
Za.

Let L = (l1,...,ljz|) be list of |L| elements. We also define the operation L' = Append(L,!) which adds
I to the list and we have L' = (ly,...,lj1),1). We note that [; can be an element in Zy=, %", M,, or PWD, etc.

For the message m € X =" we use the notation m_; € ¥="~! to denote the string m when the i-th char
is deleted and if ¢ > |m| then m_; = m.

1.2.1 Partially homomorphic Encryption

The Paillier cryptosystem is a partially homomorphic cryptographic scheme which supports ciphertext
addition, plaintext to ciphertext multiplication and subtraction. Specifically, the public key pk = (N, g)
(resp. secret key sk = (B,u)) consists of N = pg where p,¢q are prime numbers and the number
g=N+1€Z}, (resp. B=lem(p—1,¢—1) and p = p(N)~' mod N). We note that for all i € Zy we
have ¢* = E;:O (;) NJ =14 Ni mod N? so that g has multiplicative order N modulo N2. The secret key
sk = (B, u) consists of two parameters 8 = lcm(p — 1,¢ — 1) and p = o(N)~! mod N is defined to be the

multiplicative inverse of p(N) = (p — 1)(¢ — 1) modulo N.

The algorithm Enc,y(m;r) takes as input a message m € Zy and a nonce r € Z% and outputs g™r"
mod NZ2. The function Encyy, acts as a bijective map from Zy x Z% — Zy». In particular, for every c € Z3,»
there is a message m € Zy and a nonce r € Z% such that ¢ = ¢g™r™ mod N? [Pai99].

The encryption scheme has several homomorphic properties in particular if ¢; = g™ mod N? and
Cy = gm%‘év mod N? encrypt message mi,ms € Zy respectively then cicy = g™ ™2 (rlrg)N mod N2
encrypts the message m; + mo mod N. Similarly, if ¢ = ¢™rY mod N? encrypts the message m then
& = gm*(rF)N mod N? encrypts the message mk mod N. See Appendix A for a full description of the

Paillier encryption scheme.

When we apply the Paillier Cryptosystem, our desired message space M is typically not the set of
integers Zy. Thus, we assume that there is an injective map Tolnt : M — N and Tolnt™* : N — M. We
will also assume that |[M| < N and that Vm € M that 0 < Tolnt(m) < M| < N. Given x € Zy we define
Tolnt™!(x) = L if 2 has no preimage i.e., ¥m € M we have Tolnt(m) # .

1.2.2 Secret Sharing (SS)

Several of our constructions rely on a primitive called secret sharing. A (t,n)-secret sharing scheme
consists of two polynomial time algorithms ShareGen and SecretRecover. Intuitively, ([s];,...,[s],) <
ShareGen(n,t,s) takes as input a secret s € TF along with parameters n,¢t and outputs n shares
([sly,---.[s],) € F. Given any subset S = {iy,...,9:} C [n] of |S| = t shares we can recover the secret s
using

SecretRecover ((i1, [s];,), - -, (i, [s];,)) = s

However, given any smaller subset S = {i1,...,4:—1} C [n] of size |S| < ¢ — 1 shares an attacker cannot infer
anything about s from the shares [s]; ,...,[s]; |- In particular, we require that for all secrets s € F, all
subsets S = {i1,...,49—1} C [n] of size t — 1 the shares [s]; ,...,[s];, , can be viewed as uniformly random

independent elements in F unrelated to the secret s. The Shamir Secret sharing scheme [Sha79] satisfies this
requirement. See appendix Appendix B for more detail about (Shamir) Secret Sharing.

1.2.3 String Distance and Close Passwords

Given a string w € X" and ¢ < n we use w[i] € ¥ to denote the ith character of ¥ and given two
strings wq,ws € X" we use Ham(wi,wz) = |{ilw[i] # w[j]}| to denote the hamming distance between
them. Similarly, given two strings wi,ws € X* we use ED(wi,wz) to denote the edit-distance between
them i.e., the minimum number of insertions/deletions to transform w; into wy (or vice versa). Note that
if w; = wsy then Ham(wy,w2) = 0 and ED(wj,w2) = 0. We will often use Hamming/Edit Distance to
determine if two passwords pwd,,pwd, are close e.g., we could define a predicate P(pwd;,pwd,) = 1 if Ham
(pwd,,pwd,) < 2 or ED(pwd,, pwd,) < 1; otherwise P(pwd,, pwd,) = 0. We could also combine Hamming/Edit
distance with other common password typos such as CAPSLOCK/SHIFT errors e.g., P(pwd,,pwd,) = 1 if
InvertCase(pwd,) = pwd, or Ham(pwd,, pwd,) < 2 or ED(pwd,, pwd,) < 1; otherwise, P(pwd,, pwd,) = 0.

2 Conditional Encryption

In this section, we will introduce the notion of a conditional encryption scheme. A conditional encryption
scheme is similar to a regular public key encryption scheme with the addition of a special algorithm CEncpy.
This algorithm takes three inputs: a ciphertext ¢ = Encyi(m1;7) € Cenc (Where Cgnc is the ciphertext space
of traditional encryption scheme) encrypting some unknown message m; € M in our message space using
random coin r €x {0,1}*, a control message my and a payload message m3. A conditional encryption
scheme is defined with respect to a binary predicate P : M x M — {0, 1}. Intuitively, if P(m,ms) =1

then CEncyi(c, ma, ms) € Ccenc” should produce valid encryption of our payload message ms; otherwise, if
P(my,ms2) = 0 the output should reveal no information about any of the messages my, ma or ms — even
to an adversary that knows sk.

We now formally define conditional encryption along with its associated security/correctness require-
ments.

Definition 1. A conditional encryption scheme II for a binary predicate P : M x M — {0,1} consists of
four main algorithms (KeyGen, Enc, CEnc, Dec) which are described as follows:

o (sk,pk) < KeyGen(1*;7): takes as input the security parameter X and random coins r <—g {0,1}P*N)
and generates a secret key sk € SK and the corresponding public key pk € PK for our conditional
encryption scheme.

o (b=0,c) = Encyp(mq;7): takes as input a plaintext message my € M the public key pk random nonce
r g {0,1}*N) and outputs a ciphertext (b,c) € {0} x C encrypting my. The flag b =0 indicates that
c is output of the reqular encryption scheme Encpy.

o (b=1,¢) = CEncyy, ((0, ¢,) ,ma, ma;r): This conditional encryption algorithm takes as input a public
key pk, a ciphertext (0, cp,) with ¢m, € C corresponding to an unknown message my € M, a control
message ma, a payload message ms € M, and random nonce r < g {0, 1}”()‘) and outputs a ciphertext
(b,¢) € {1} xC. The flag b =1 indicates that this ciphertext is the output of the conditional encryption
CEnc algorithm. Note: When the control message and the payload message are the same mo = mg
we will sometimes write CEncy(cm,, mo; 1) instead of CEncyi(cm,, ma, ma;r). If the input ciphertext
takes the form (b =1,¢,,) then CEncp, (1, ¢m,),me, ma;r) = L d.e., (b=0,¢p,) must be the output
of the regular encryption scheme.

o {m, L} = Decsi(c): takes as input a ciphertext ¢ € {0,1} x C and the secret key sk and outputs a
message m € M or L (indicating failure).

We require that for any valid pair (sk, pk) produced that
Pr [Decgi, (Encpr (m)) =m] =1

i.e., perfect correctness for ciphertexts output by the regular encryption algorithm. For correctness of the
conditional encryption algorithm we want to ensure that Decgy, (CEnc,y (¢/, m2,m3)) = ms whenever 3r’, my
s.t. ¢ = Encpp(ma;r’) and P(mq, me) = 1. Intuitively, we can extract our intended payload ms if and only
if P(m1,m2) = 1. For conditional encryption we relax our requirement of perfect correctness and instead
require that

Pr [Decs (CEncyy, (¢/,ma,m3)) =ms] > 1—€(N)

for a negligible function €(-) whenever
Ir',my s.b. ¢ = Encpr(ma;r’)

and P(mi,m2) = 1. We stress that the correctness condition only holds when when ¢’ < Encpi(m1) was
the output of the regular encryption algorithm. If ¢/ = (1,¢) was generated by the conditional encryption
algorithm then we provide no guarantees that the ciphertext ¢/ = CEnc,i(¢/,m2, m3) can be decrypted
correctly or is even well formed i.e., in all of our constructions CEncy(¢’, ma, m3) will simply output L when
¢ = (1,¢) is a conditional ciphertext.

Definition 2 (Correctness). We say that II is 1 — €(-)-correct if the following conditions hold:

+ Regular encryption correctness. Vri,ro € {0,1}*N m € M we have Decgy (Encpr (m;12)) = m
whenever {sk,pk} < KeyGen(1*;7}).

3Similarly, we define Ccgnc as the ciphertext space for a conditional encryption scheme.

« (Conditional encryption correctness.) Vri,ry €r {0,1}*™) m; € M,mo,ms € M such that
P(my,mz2) = 1 we have

Pr [Decsi, (CEncy (Encpr (ma;72) , ma, ms;rs)) = mz] > 1 — €(A)
where the randomness is taken over the random coins r3 of CEnc and we fiz {sk, pk} < KeyGen(1*;71).
If e(A) = 0 we simply say that 11 is correct.

Definition 3 (Efficiency). We say that the conditional encrypt scheme II = (KeyGen, Enc, CEnc, Dec) is
efficient if all four algorithms run in probabilistic polynomial time in the security parameter \.

We can optionally require that our conditional encryption II is error detecting i.e., whenever P(my, ma) =
0, the ciphertext ¢ = CEncy(c1, ma, m3) will decrypt to a special symbol Decg(c) = L (whp). If IT is error
detecting this allows us to detect which outputs of the CEnc algorithm are (in)valid.

Definition 4 (Error Detecting). We say that 11 is 1 — €(-)-error detecting if Vri,72 €g {0,1}P*) m; €
M,ma,m3 € M such that P(mq,mg) = 0 we have

Pr [Decsy, (CEncyi (Encpy(ma;re), me,ms;rs)) = L] > 1 —€(N)

where the randomness is taken over the selection of the random coins r3 of CEnc and we fix {sk,pk} «
KeyGen(1*;71).

We now formally define the security of a conditional encryption scheme. Intuitively, in the security game
we ask a distinguisher to distinguish between a simulated ciphertext Sim(pk) and a conditionally encrypted
ciphertext CEnc,(c1, ma, mg) — assume that ¢; = Encyi(mq,71) with P(mq,ma) = 0. Clearly, the simulated
ciphertext Sim(pk) cannot leak any information to the adversary as it is generated without knowledge of the
control message ms, the payload message mgs or the ciphertext c;.

Definition 5 (Conditional Encryption Secrecy). We say that conditional encryption scheme II =
(KeyGen, Enc, CEnc, Dec) provides (t(+) ,tsin (+) , € (+))-conditional encryption secrecy if there exists a simula-
tor Sim running in time at most tgin(A\) such that for all messages my, ma, ms € M such that P(my,ms) =0,
all N €N, r,7y € {0,1}* and all distinguishers D running in time at most t()\)

Pr [D (Sk,pk, mi,ms,ms,Ci, Sim (pk)) = 1]

— Pr[D (sk,pk, m1,ma, mg, c1, CEncpy (c1, ma, mg)) = 1]
<e(t(A),A) (1)

where the randomness is taken over the random coins of the distinguisher and the conditional encryption
algorithm CEnc. Here, (sk,pk) = KeyGen(1*;7) and ¢; = Encyi(mi;71) denote the public/secret key and the
ciphertext computed under the a priori fized random strings v and r1. If €(-) = 0 and t(-) = oo then we say
that I has perfect conditional encryption secrecy.

The definition of conditional encryption secrecy holds in a semi-honest setting where we assume that
the public key (sk,pk) = KeyGen(1*) and the ciphertext ¢; = Encpy(m1,71) were both generated honestly.
We remark that this assumption is reasonable in our password typo vault application because the keys
and ciphertexts are generated by the authentication server (a trusted party). However, one can imagine
applications where we do not want to assume that c¢; and sk were generated honestly. We leave it as an
open question to define/construct maliciously secure conditional encryption schemes.

Real-Or-Random Security: We also require that a conditional encryption scheme satisfies the traditional
notion of real-or-random (RoR) security i.e., an attacker who does not have the secret key cannot distinguish
between real and random ciphertexts. In Appendix C we extend the traditional definition of real-or-random
(RoR) security to conditional encryption schemes. All of our conditional encryption schemes constructions
will satisfy RoR security under the plausible assumption that Pallier encryption itself satisfies RoR security.
Because our focus is on conditional encryption secrecy we will defer all RoR security proofs to Appendix C.

3 Concrete Constructions of Conditional Encryption

In this section we present concrete constructions of conditional encryption for several different binary pred-
icates. As a warm-up we first consider the equality predicate P—(my,mo) = 1 if and only if m; = mo. As
an application we can use this construction to obtain conditional encryption for the CAPSLOCK predicate
since PcapsLock(m1,ma) = P—(mq, InvertCase(msz)). We then provide constructions for predicates based on
the Hamming Distance (resp. Edit Distance) between m; and ms. Finally, given conditional encryption
schemes for predicates P, ..., P, we show how to compose these results to obtain conditional encryption
schemes for the OR predicate Pog(my,mg) = \/f:1 P;(my,ms2).

3.1 Conditional Encryption for the Equality Test Predicate P_(z)

In this part, we will start off by providing a concrete construction of conditional encryption when the predicate
is equality test P—. That means that given a ciphertext of an unknown message my, and the input messages
mg and payload mg, we compute the encryption of mg if and only if m; = ms, i.e., P—(my,ms) = 1.

Our construction utilizes the Paillier public key encryption scheme (see Appendix A for more details about
Pallier) which contains three main algorithms IIp = (P.KeyGen,P.Enc,P.Dec). It will also be convenient to
let Tolnt denote an injective mapping from our message space =" to Zysn+1 and use Tolnt™! to denote the
inverse mapping — we define Tolnt™*(y) = L if there is no preimage m € £=" such that y = Tolnt(m).

Our conditional encryption construction II sets II.KeyGen = P.KeyGen and we set II.LEnc,i(mq) =
(0,P.Encpr(my)) i.e., to encrypt m; € £=" we simply compute ¢ = P.Enc, (Tolnt (m1)) and output the
ciphertext ¢, = (b =0,c¢). Given a ciphertext ¢ = (0,¢;) with flag b = 0 we define II.Decg,(c = (0,¢1)) =
Tolnt™" (P.Decyx(c1)). The conditional encryption algorithm IT.CEncyy (¢m, = (0, ¢), ma, m3) works as fol-
lows: First we extract N from the public key pk and compute mia = Tolnt(ms) and niz = Tolnt(mgs) to map
them to Paillier’s plaintext space. Next we pick random numbers R €r Zyx and r €g Z}; and compute
& = B (N +1)" "1™ N 16d N2, Finally, we output I1.CEncpi (cmy = (0,¢),ma,mg; R,r) = (1,¢7).
Given a conditional ciphertext (1,¢~) the decryption algorithm will simply output II.Decgy(1l,¢=) =
Tolnt ™! (P.Decyy(c=)). See Construction 18 in Appendix I for a more formal description of our construction.

Intuitively, we have ¢ = (N + 1) 7Y mod N? for some message m; = Tolnt™!(772;) and random value
r1 € Z% . In this case, the final ciphertext ¢~ can be written as ¢~ = (N + 1)R(m1—m2)+m3 (rr®)N mod N2,
If iy — 7he = 0 then R(y — rg) = 0 cancels and we are left with a valid encryption of ms. Otherwise, the
value R(mq — 7hg) + 3 mod N can be viewed as a fresh Paillier ciphertext encrypting a uniformly random
integer in Zy. More specifically, let y = Tolnt(mz)—Tolnt(m1). Aslong as gcd(N,y) = 1 (due to the selection
of p, ¢ s.t., min(p, ¢) > |E") the value R’ = R(rhy —1h2)+13 mod N will also be distributed uniformly in
Zy i.e., forall x € Zy we have PrlyR = mod N| = Pr[R =y ! mod N| = 1/N when R € Zy is random
and y~! is the multiplicative inverse of y mod N. When we pick our Paillier public key ,we can ensure we
always have ged(N,y) = 1 by selecting primes p and ¢ such that p, ¢ > max,,, ex» Tolnt(m) < |X"*] and
setting N = pq.

Theorem 1. Construction 18 is a perfectly correct and 1 — e(\)-error detecting conditional encryption
n+1

D
N 7 max{p,q}

scheme with e(\) =

The proof of Theorem 1 can be found in Appendix E.

Theorem 2. The conditional encryption scheme described in Construction 18 provides (0o, tsin, 0) condi-
tional encryption secrecy in which tgin = tp.enc 1S time of doing one Paillier Encryption.

Intuitively, the simulator Sim(pk) simply picks random values ' € Z} and R’ € Zy and outputs (N +
1)R,7’/N mod N? i.e., the Paillier encryption of a uniformly random message. Intuitively, if 1, # g
and ged(my — 1he, N) = 1 then the value R(m; # mg) + g is uniformly random in Zy i.e., statically
indistinguishable from R’. Similarly, if we fix any 2z € Z% (we will use 2 = 7f* mod N) and pick r € Z%,
randomly then the value rz mod N is also uniformly random in Z% i.e., statically indistinguishable from 7.

The formal proof of Theorem 2 is available in Appendix E. We also prove that Construction 18 satisfies
the traditional notion of Real-or-Random security — see Theorem 9 in Appendix C.

3.2 CAPSLOCK Predicate

We can immediately use our conditional encryption scheme for equality test to obtain a construction for
the the CAPSLOCK predicate Pcapsiock which is defined as Peapsiock(mi,mz2) = 1 if and only if m; =
InvertCase(ms); otherwise Pcapsiock (m1,ma) = 0. Observe that we can equivalently define

Peapsiock (m1,ma) = P—(my, InvertCase(ms)).

Thus, our conditional encryption construction Ilcapsiock for Pcapsiock is exactly as our construction
II- for P— with the following modification to the conditional encryption algorithm Ilcapsiock.CEncyy
(Cmy,ma, m3) = I=.CEncpy (¢, , InvertCase(msz), m3) Conditional encryption secrecy and correctness of the
construction g psrok follows immediately from Theorem 2 and Theorem 1 respectively. RoR security also
follows directly from RoR security of Construction 18 — see Theorem 9 in Appendix C for RoR security.

3.3 Hamming Distance Predicate

We now describe our conditional encryption construction for the Hamming Distance predicate P yan
(m1,m2) = 1 if and only if Ham(mj, my) < £. For ease of exposition, we will describe our construction
under the assumption that all messages mq, mo € ™ have the exact same length. In several of our appli-
cations (e.g., password typos) it may not necessarily be the case that all messages have the same length.
However, we can easily deal with this issue by defining an injective padding function Pad : <™ — '™ where
¥ = ¥ U {y} extends the alphabet ¥ by adding a new symbol y. In particular, given m € £<" we define
Pad(m) = m||y" '™l to be the length n string from our larger alphabet X' obtained by padding m with
y’s. Clearly, the function Pad is injective so we can define an inverse Pad~! such that Pad~! (Pad (m)) = m
for any m € L=, Given two messages m,m’ € =" and an integer £ > 0, we define the binary pred-
icate Ppyanpaa(m,m’) = 1 if and only if Ham (Pad (m),Pad(m’)) < £. Clearly, if we have a conditional
encryption scheme for the Hamming Distance predicate Ppgan(m1, ma) with message space mq,mg € '
then we can immediately apply padding to obtain a conditional encryption scheme for the related predicate
Py yam paa (M1, ms) with message space my, mg € PIRSLY

Attempt 1: As an initial attempt at constructing conditional encryption for our predicate Py pan we
can use our equality predicate construction as a blackbox along with the Shamir secret sharing scheme
SS = (ShareGen, SecretRecover) and a symmetric key authenticated encryption scheme. The basic idea is
to split messages into individual characters my = (mq [1],...,m [n]) and encrypt character by character
to obtain ¢ = (c1[1],...,¢1[n]) = Encpr(ma). The conditional encryption algorithm CEncyy(c1,me, ms)
would similarly split the control message mo up into n individual characters and generate n secret shares
[s]ys-- -, [s],, of a fresh symmetric key K. We would then use the original conditional encryption scheme
for P_ to compute cp[i] = II_.CEncyi(c;, ma[i], [s],) for each i < n using mo[i] as the control message and
[s]; as the payload message. The final conditional ciphertext would include cy[1],...,c2[n] as well as an
encryption of mg using the symmetric key K. The decryption algorithm would decrypt each cy[é] to obtain
the share [s],. As long as the Hamming Distance predicate holds the decryption algorithm would obtain
enough shares to recover K and decrypt ms.

The problem with this construction is that if the predicate does not hold then an attacker who knows
the secret key can still (whp) identify which shares are valid. In particular, it would be trivial for a party
who knows the secret key sk to distinguish between the encryption of a valid share [s];, < 2* (recovered
when m; [i] = me[i]) and the encryption of a random element in Zy (as is the case when ma[i] # mq[i]) since
2* < N. This would allow the attacker to learn the set S = {i : m; [i] = ma [i]} of indices i < n where my
matches my even if Py gan(m1, ma) = 0 — a clear violation of conditional encryption secrecy!

The Fix: To address the above issue we use a randomized encoding to ensure that, when the predicate
does not hold, it is impossible to identify which shares are (in)valid. In particular, instead of computing

coi] = H=.CEncyi(ci, mali], [s];) we instead compute ca[i] = II=.CEncpy(c;, ma[i], x;) where z; = REnc([s],)
is a random encoding of the share [s], as an integer in larger Pallier plaintext space Zy. In more detail
REnc(z) = a;2*+x where the value a; < | ¥51=%] is chosen uniformly at random. Intuitively, z; = REnc([s],)
encodes the share [s], as a random element in Zy: subject to the constraint that [s], = REnc([s],) mod 2*.
Since the value of the share [s], itself is random this ensures that the attacker cannot distinguish x; from
a random element in Zy — unless the predicate Py pan holds and we can recover enough correct shares to
recover the secret decyrption key. Decrypting a conditional ciphertext will require more work since we do
not know a priori which recovered shares are valid and we have to consider all possible subsets. Fortunately,
when / is constant the number of subsets remains polynomial in n.
In a bit more detail the conditional encryption scheme II works as follows:

(1) The regular encryption algorithm II.Enc,;(m) takes as input a message m = (m|1],...,m[n]) € "
and encrypts m character by character to obtain a vector of Paillier ciphertexts ¢ = (c[1],...,c[n])
where ¢; = P.Encyy (Tolnt(m[i]); ;) The regular encryption algorithm outputs (b=0,c[1],...,c[n])

where the flag b = 0 indicates that this ciphertext was produced by the regular encryption algorithm.

(2) The conditional encryption algorithm II.CEnc(cy,mso, m3) takes as input a ciphertext ¢; =
(b=0,c1[1],...,c1[n]) corresponding to some unknown message m; = (my[1],...,my[n]), a con-
trol message mo = (m2[1],...m2[n]) € ¥™ and a payload message ms3. We first generate a random
symmetric key K € {0,1}* for our authenticated encryption scheme and encrypt the payload message
m3 using K to obtain cagp = AuthEncg(ms). Second we use the Shamir secret sharing scheme to
generate n shares ([s],,...,[s],) < ShareGen(n,n — ¢, K) for our secret key K. We configure our
secret sharing scheme such that n — ¢ shares are sufficient to recover K, but any subset of n — ¢ — 1
shares information theoretically leaks nothing about K. We now follow our equality test construction
and compute c[i] = ¢;[i] (N + 1)~ fimzlil+2i:N where x; = REnc([s];) is the random encoding of the
share [s],, R; is a uniformly random integer in Zy and r; is uniformly random in Z%};. Our final output

is (b=1,¢,cag) in which ¢ = (c[1],...,c[n]).

(3) Given a ciphertext (b =0,c[1],...,c[n]) with b = 0 the decryption algorithm will simply decrypt char-
acter by character to recover m = (m/[1],...,m[n]) where m[i] = Tolnt(x;) and x; = P.Decg (c[i]).
Given a conditionally encrypted ciphertext (b= 1,c[1],...,c[n],car) we will first extract shares

[s'], = RDec(z;) with x; = P.Decy (c[i]). We will then look through all (,",) subsets S C [n] of
n — £ indexes and their corresponding shares to recover a string

Kg = SecretRecover ((S [i], [[3/]]5[1']) VO<i<n-— E)

which may or may not be valid. If Auth.Deck,(cag) = L then we conclude that Kg is invalid and
move on to the next subset; otherwise if Auth.Decg(cag) = m, we return m. If Auth.Deck (cag) = L
for all subsets S C [n] and their n — ¢ corresponding shares, then we output L.

See Construction 19 in Appendix I for a formal description of the construction and see Theorem 15
in Appendix E for a proof that Construction 19 is 1 — e(\)-correct and a 1 — e(A)-error detecting for a
negligible function e(\).

3.3.1 Correctness of the Construction 19

We now prove that Construction 19, satisfies the security definition Definition 5, i.e., conditional encryption
secrecy. We first make a basic statistical observation.

Theorem 3. Let b = ak + r where 0 < r < a 1is the reminder (i.e., r = b mod a). Consider the uniform
distributions U, which outputs a random value in Zy and the distribution Dy which outputs random values

between 0, -- - ,ak. Then the statistical distance between these two distributions is SD(Dak,Uy) = 7 < %-5-1

10

Intuitively, Theorem 3 implies that we cannot distinguish between REnc(z) and a uniformly random
y € Zn whenever 0 < z < 2 is picked randomly. The proof of Theorem 3 can be found in Appendix E.

Theorem 4. [Conditional Encryption Secrecy of Construction 19] Assume that our Authenticated en-
cryption scheme Il ap = (AuthEnc, AuthDec) is (tag, €ar (tap, \))-secure for any security parameter A and
any running time parameter tag. Then for any t and any security parameter A Construction 19 provides
(t,tsim, € (t,\)) conditional encryption secrecy with €(t,\) < eap(t,\) + 27 and tgin = n - tpEnc + poly(N).

Theorem 4 follows by applying Theorem 3 with b = N, a = [N/2*] and k = 2*. We defer the formal
proof of Theorem 4 and Theorem 3 to Appendix E where we also prove that Construction 19 provides
Real-or-Random security (see Theorem 10).

3.3.2 Efficiency

The running time of the key generation algorithm KeyGen is essentially equivalent to Pallier — with high
probability we will have min{p, ¢} > max {27122)‘, |E|} The running encryption algorithm Enc is essentially
n X t, where t, denotes the running time for regular Pallier Encryption and the resulting ciphertext has size
1 +n - [logy N?] (bits). The running time for the conditional encryption algorithm is essentially n x ¢, +
tag + tss where t, (resp. tag, tss) denotes the time for one Pallier Encryption (resp. one authenticated
encryption/one execution of ShareGen over a field of size 2*). The size of a conditionaly encrypted ciphertext
is 1+nflogy N 2] +sap where s g denotes the length of the authenticated encryption ciphertext. The running
time of Decg on a conditionally encypted ciphertext is roughly (2) (tssrec + tag) where tggrec (resp. tag)
denotes the running time for SecretRecover over a field of size 2* (resp. Auth.Dec). If we incorporate a second
secret sharing scheme over a smaller finite field then it is possible to slightly optimize the performance to
achieve running time (7)t%g,ce + O(tssrec +tap) Where tisgp,. denotes the execution time for secret share
recovery over the smaller finite field — see details in Section 5.1.2.

3.4 Edit Distance One

Given two messages m,m’ € =" and an integer ¢ > 0, we define the binary predicate Py gp(m,m’) = 1 if and

only if ED(m, m’) < £; otherwise, Py gp(m, m’') = 0. In this section, we will construct a conditional encryption

scheme for P, gp i.e., edit-distance 1. It would be possible to implement the same general construction for

¢ > 1. However, the ciphertext sizes would grow proportional to O (ne). Thus, we focus on the £ = 1 case

since it is the most useful case for password typo correction (and yields the most efficient construction). We

will let II1 gp = (KeyGen, Enc, CEnc, Dec) denote our conditional encryption for P; gy described below.
Given m = (m[1],...,m[k]) € X* we define

m_;=m[l],...,m[i—1],m[i+1],...,m[k]) € !

to be the string obtained by deleting the ith character from m e.g., if m =“bead” then m_s="“bad”. If j =0
or j > k = |m| then we just define m_; = m. Observe that P; gp(m, m’) = 1 if and only if there exists j
such that m_; = m' or such that m =m’ ;.

With this observation our construction for P;gp will use our construction for P- as a black box.
KeyGen(1*) works in the exact same way as the conditional encryption scheme for the equality predi-
cate and will generate a key (sk,pk = (N,g = N + 1)) with N = pg and min{p,q} > |X|"*!. Our regu-
lar encryption algorithm Enc,i(m) takes as input m € $=" and outputs a vector (0, ¢, 1, .. .,C,) where
¢ = P.Encyy (Tolnt (m_;))is the Pallier encryption of m_; encoded as an integer using the injective map-
ping Tolnt : ¥ — Zygpn+r — Tolnt™! is the inverse mapping. The conditional encryption algorithm
CEncpi(c1,m',m") works by running II_.CEnc,y, the conditional encryption algorithm for the equality pred-
icate, on 2n + 1 different inputs to generate Co, €1, ..., Can — if for some j we have ¢; = L then we simply
output L. First, we parse ¢c; = (0,¢1 [0],...,¢1 [n]) and set & = II=.CEncyy (c1 [i] ,m/, m"”) for each 0 < i < n.
Intuitively, if m’ = m_; then ¢; is a Pallier encryption of our payload m”; otherwise, & = g¥i7¥ mod N? will

be the random Pallier encryption of a uniformly random y; € Zy under a uniformly random nonce r; € Zj,.

11

Similarly, we can set é,4; = II=.CEncyi(c1[0], m’ ;,m”) for each 1 < i < n. Intuitively, if m’ , = m_og=m
then &, ; is a Pallier encryption of our payload m'; otherwise, & = g¥7¥ mod N? will be the random Pal-
lier encryption of a uniformly random y; € Zy under a uniformly random nonce r; € Z3;. The decryption
algorithm Decgy, is defined in the natural way. In particular, Decg (0,¢[0],c[1],...,c[n]) simply decrypts
c[0] as zo = P.Dec,y, (¢[0]) using regular Pallier decryption P.Dec and then outputs m = Tolnt ™! ().

Similarly, Decgk (1, Co, ..., €2,) will run our conditional decryption algorithm P— on each individual ci-
phertext ¢; to recover xg, 1, ..., 2o, with z; = P.Decy(&;). If min {zg,...,22,} > |Z[**! then we output
L; otherwise we can simply return Tolnt™! (min{zo, ..., 22, })

Theorem 5. IIi gy is a 1 — €(\) correct conditional encryption scheme for the predicate Pigp and Iy gp s

1 — e(N\)-error detecting with e(\) = (Q”HJ)JE‘RH < mi’:{;lq}.

Theorem 6. II; gy provides (0o, tsin, 0) conditional encryption secrecy for the predicate Py gp. Here, tgin =
(2n + 1)tp.gnc is time of doing (2n + 1) Paillier Encryptions.

Proof of Theorem 6: (Sketch) Assume that Pj gp(m, m’) = 0 it follows from Theorem 2 that for any
j < n that CEnc,(Encyr(m_j), m/,m”) outputs g"%r¥ mod N? for a uniformly random R; € Zy and
7; € Zn. Similarly, for any j < n it follows that CEnc™ (Encyy (m), m”;, m”)) outputs gRJ'r;V mod N? for a
uniformly random R; € Zy and r; € Zy. Thus, CEncy, (Encg, (m—;, m’,m”)) outputs (1, ¢, . .., é2,) where
for each j < 2n the Pallier Ciphertext ¢; is uniformly random in Z7}..

We define the simulator Sim(pk) as follows. The simulator Sim(pk) takes as input the Paillier public key
pk. For each 0 < i < 2n 4 1 the simulator then selects R; €r Zy and r; €g Z} uniformly at random and
then encrypts R as Csinli] = P.Encpi(Risrs) = g®irN mod N? ie., Cgipli] is uniformly random in Ly -
Finally, the simulator outputs Csin = (1, Csin,0, - - - , Csim,2n)- O

3.5 OR Composition

Suppose we have conditional encryption schemes 11y, ..., I} for k different predicates Pi,..., P, and that
each scheme has the same message space. Let P,.(m1, ma) = \/f:1 P;(my,m2) the predicate which is 0 (false)
if and only if all of the predicates are false i.e., P;(my,mg) = 0 for all ¢ < k. We will define a conditional
encryption scheme II,,. = (KeyGen, Enc, CEnc, Dec) for the predicate P,,.

Intuitively, our key generation algorithm KeyGen(1*) runs (sk;,pk;) < KeyGen,(1*) for each i and
outputs (sk,pk) where sk = (ski,...,sky) and pk = (pki,...,pky)?. The algorithm Encpy(m) sim-
ply generates ¢; = II;.Encyi(m) for each ¢ < k and outputs (0,c1,...,cx). Similarly, the algorithm
CEncyi (¢ = (0,¢1,...,¢x),m',m”) simply generates ¢; = II;.CEncyi(c;,m’,m”) for each ¢ < k and out-
puts (0,¢1,...,6;) — if & = L for any ¢ < k then we instead output II,,.CEncy,(c,m’,m”) = L. Finally,
the Decgy(c) will run m; = II;.Decgi(c) to obtain m; € MU{L}. If m; = L for all i < k then the algorithm
outputs L; otherwise we output m; where j is largest integer such that m; # L.

Theorem 7. Suppose that we are given k separate conditional encryption schemes Iy, ... Iy corresponding
predicates Py, . . ., P, and that each I1; provides (¢(X), tsin,i(A), €(t(N), X)) -conditional encryption secrecy. The
construction I, provides (t'(A),t5in(N), € (' (X), A))-conditional encryption secrecy with t'(\) = O (t(N)),
toin(A) ~ i tssm, (V) and € (' (1), A) = X7 e (' (V) A).

The formal proof is available in Appendix E. Intuitively, the simulator Simpr(pk) for Ilpr will run the
simulator Sim;(pk;) for each conditional encryption scheme and concatenate all of the ciphertexts.

Theorem 8. Suppose that we are given k separate conditional encryption schemes Iy, ... Il corresponding

to predicates Py,...,Py and that each 1I; is 1 — €;(N\)-correct and 1 — €,(X)-error detecting. Then the

construction Il,,. is 1 — e(\)-correct (resp.1 — €'(N\)-error detecting) with e(\) = Zf el(\) + Zf €i(A\) (resp.
A

€N =2im ().

4As an optimization if Hi.KeyGeni(l’\) generates a Pallier key for each i then we can generate one Pallier key (sko, pko) and
set (ski,pk;) = (sko,pko) for all 1 < < k.

12

The formal proof is available in Appendix E. We also prove that the suggested construction provides
Real-or-Random security as well — see Theorem 11 and its corresponding proof in Appendix C.

4 The Typo Predicate: Personalized Typo Correction

Motivated by the application of password typo correction we now introduce the predicate Piypo(mi,ms) =
Peapsiock (m1,m2) V Pr—2 yan paa V Pr=1 gp. Chaterjee et al. [CWPT17] conducted an empirical study of pass-
word typos finding that nearly 78% of legitimate typos fit one of the above three categories i.e., CAPSLOCK
error, Hamming Distance < 2 or a single character insertion/deletion. As application of Theorem 7 we ob-
tain a conditional encryption scheme II;,,, for the predicate Pyyp, with (¢ (), teim, € (£ (), A))-security for
e(t(N\),AN) =2+ eap (t(N\),\). Correctness and error detection of Il;,, follow directly from Theorem 8.

4.0.1 Application to Personalized Password Typo Correction

We can use our conditional encryption scheme to fix a drawback in the personalized typo correction scheme
of Chaterjee et al. [CWPT17].

4.0.2 The Security Issue.

Chaterjee et al. [CWPT17] proposed to derive a public/secret key pair (pk., sk,) for every user u. The
public key pk, is stored on the authentication server. Any incorrect login attempt pw’ # pwd, for this
account is encrypted Cp,, = Encyi(pw) and stored in a typo vault. The secret key sk, is not directly stored
on the server, but can be recovered whenever the user logs in with the correct password pw,. In particular,
we store cg, = Auth.Encg, (sk,) where the symmetric key K, = KDF(s,,pwd,,) is derived from the users
password pwd,, and a random salt value s, that is stored on the server in plaintext form. Thus, once the
correct password pw,, it is possible to recover K,, then sk,, decrypt all of the password in the vault and
identify common typos. The drawback of this approach is that every incorrect login attempt will appear
in the encrypted typo vault. It is not unlikely that the typo vault might include unrelated passwords from
the user’s other accounts. This could significantly increase the incentives for a rational offline brute-force
attacker to crack the user’s password [BHZ18|, and simultanously increasing the potential harm to users.

4.0.3 The Fix

Our fix is straightforward: replace the regular encryption scheme with our conditional encryption scheme
for the predicate Pyp,! In addition to pk, the authentication server will also store ¢, = Encyy, (pwd,) the
encryption of the user’s password under pk,. Now whenever their is an incorrect login attempt pw’ # pwd,, we
can set Cpy = Hiypo.CENCpy,, (cy, pw’, pw’). If Ppypo(pwd,, pw’) = 1 then we have Iy p,.Decgr, (cpuw) = pu’
so that we can recover pw’ later when the user logs into the server with the correct password. However,
if Pyypo(pwd,,pw’) = 0 then the ciphertext ¢, will be entirely useless to an offline attacker even if the
attacker can recover pwd, and sk,!

4.0.4 Security Proof

In Appendix G we formalize the notion of typo privacy (see Definition 12) for an authentication server
that maintains a password typo vault, and we prove that the construction above provides typo privacy (see
Appendix H for the details and security proofs.) We also showed that the TypTop system does not provide
“typo privacy”(see Section G.0.1). Intuitively, in the typo privacy game, the attacker gets to specify an initial
password pw,, for the user. The goal of the attacker is to predict a random bit b selected by the challenger.
The adversary may repeatedly either (1) submit a login query pw’ to the authentication server, or (2) submit
a pair (pwy, pw]) of guesses with Py, (pwdy,, pwi) = 0 = Piypo(pwd,, pw)) to the challenger who will then
forward the guess pwj to the authentication server. The adversary is allowed to observed the state o; of
the authentication server immediately before (o;_1) and immediately after (o;) each query i. Intuitively, if

13

the conditional encryption scheme is secure then the attacker should not be able to predict the secret bit b
since the only update after a type (2) query is to store the new ciphertext ¢;, = CEncpy,, (cu, pwy, pwy). Since
Pyypo(pwdy,, pwi) = 0 = Piypo(pwd,,, pw}) both ¢ = CEncyy, (cu, pwy, pwi) and ¢ = CEncpy, (¢, pwi, pwi)
are indistinguishable from a random ciphertext Sim(pk) generated without knowledge of pwd,,, pw} or pwy.

5 Implementation and Empirical analysis

In this section, we discuss our implementations of Conditional Encryption for the predicates
P_, PcapsLock, Peanpaa and Pyp—1pp as well as Pyypo = Peapstock V Pr=2 Hampad V Pr=1. We also im-
plement a modified version TypTop Personalized Typo Correction service to instantiate the Typo Vault
using our conditional encryption scheme for the predicate P,p,,. We empirically evaluate the performance
of each implementation e.g., running time, ciphertext size etc.

5.1 Conditional Encryption
5.1.1 Implementation

We implemented our conditional encryption schemes in C++. The implementation is available on Github
[AB24a] and Zenodo [AB24b]. Our implementation includes conditional encryption schemes for the following
predicates: CAPSLOCK, Edit Distance One, Hamming Distance at most one, Hamming Distance at most
two, as well as the OR of these predicates. We also implemented conditional encryption for a general
Hamming Distance predicate for arbitrary distance thresholds t = {1,2,3,4}. We defined our message space
to be =" where ¥ denotes the set of all ASCII characters and n € {8,16,32,64,128} — all x € ©=" are
first padded to Pad(z) € (X U {y})" for a special new symbol y.

We used the Pallier Library [Crul6] as our implementation of the Pallier cryptosystem and we used the
GMP library [pro91] for computation with big integers. We instantiated Pallier with a 1024-bit modulus
(80-bit security), 2048-bit modulus (112-bit security) and 3072-bit modulus (128-bit security) [PDB*15].
We remark that for our applications to password typo vaults 80-bit security should be sufficient as it would
almost certainly be easier for an offline attacker to brute-force the user’s password and then extract the Pallier
secret key directly than to factor a 1024-bit modulus N e.g., see [Bon12, BL.23, MUS'16]. Construction 18
and II; gy (our edit-distance construction) requires that |2|"*! < min{p, q}. Thus, when our message length
is n = 64 characters (resp. n = 128 characters) we must use a 2048-bit (resp. 3072-bit) modulus N to ensure
that HO, 1}8’n = 280+ < min{p, ¢} since min{p, ¢} < v/N.

Like TypTop [CWP*17], our implementations of conditional encryption use CryptoPP [Dail6] for Au-
thenticated Encryption and Shamir Secret Sharing. For authenticated encryption, we use AES-GCM with
128-bit keys and we use Shamir Secret Sharing over a field of size 2'?® to generate shares of the secret
symmetric key. Our code is available on Zenodo [AB24b]°.

5.1.2 Optimized Implementation of the Hamming Distance Predicate

We implemented several versions of our conditional encryption scheme for the Hamming Distance Predicate
Py yan paa to optimize performance. The (unoptimized) implementation follows Construction 19 without
any optimizations. As noted previously the worst-case running time to decrypt a conditionally encrypted
ciphertext is roughly (2) (tssrec +tag) where tggre. (resp. tag) denotes the running time for SecretRecover
over a field of size 2* (resp. Auth.Dec).

We can make a simple optimization to speed up the running time of Dec. In particular, we modify CEnc
to generate n shares [z],, ..., [z], < ShareGen(n,n — £,0) of 0 over a smaller field of size 23?2 < 2* in
addition to the n shares [s],,...,[s],, of our secret key K. For each character i where m1[i] = mali] the
ciphertext ¢ will allow us to extract both shares [s], and [z],. Thus, for each subset S C [n] of size |S|

we can first compute x5 = SecretRecover ({(4, [2],)}ics) by running SecretRecover over our smaller field.

Shttps://zenodo.org/uploads/13744111

14

https://zenodo.org/uploads/13744111

Only if g = 0 do we then proceed to compute Kg = SecretRecover ({(3, [s],) }ics) by running SecretRecover
over our larger field and then attempt to decrypt our authenticated encryption ciphertext using Kg. We
will still have to run SecretRecover over our smaller field (nri [) times. However, in expectation we will only

need to run SecretRecover over the large field (resp. Auth.Dec) at most 1+ (,,",)27? times. Our empirical
analysis indicates that this optimization significantly speeds up the worst-case running time of our decryption
algorithm — see Figure la. For example, when n = 32 and ¢ = 4 the optimized version of Dec is more than
six times faster than the unoptimized version of Dec.

Our second optimization exploits the simple observation that most user passwords are somewhat short.
The goal of finding the subset S C [n] of |S| = n — £ correct shares is equivalent to finding the set C' = {i €
[n] : Pad(mq)[i] # Pad(ms)[i]} C [n] of corrupted shares. Suppose that we know mq,ms € X=F are both
shorter passwords of length at most & < n and that Ham(Pad(m;),Pad(ms)) < £. In this case there would
only be (’;) < (7[}) possible choices of C to check. In the breached RockYou password dataset 99% (resp. 99.9
%) of passwords were shorter than 15 (resp. 30) characters. Thus, if we expect that most of the inputs are
short we can optimize the decryption algorithm by iterating from k = ¢ to n, iterating over all (I;:i) subsets
C' C [k—1] of size £ —1, setting C = C'Uk, S = [n]\ C and then running SecretRecover with the shares in S.
In our password typo application we will consider the Hamming Distance predicate with distance parameter
¢ = 2. Examining the password typo dataset collected by Chatterjee et al. [CAAT16] we observed that in
over 80% of the instances where the predicate Py—2 gan holds that the Hamming Distance was actually just
1. If there is only one invalid share then we are guaranteed to find the correct secret after just n/2 attempts
by first running SecretRecover with the shares S = [n] \ C for each C € {{2i —1,2i} : 1 <i < n/2}.

This optimization significantly improved the conditional decryption algorithm when the padding size is
larger like n € {32,64,128}. As an example, if we consider Hamming distance with £ = 4 and n = 32, we
observe that the decryption algorithm takes 14.664 seconds for our unoptimized implementation, while the
average running time (using random RockYou passwords) is reduced to just 205.69 milliseconds when both
optimizations are applied.

5.1.3 Evaluation

We evaluated the performance of our implementation of conditional encryption on a Lenovo ThinkStation
S30 with a 2.9 GHz 8-core Intel® Xeon® E5-26900x 16 CPU processor and 28 GB DDR4 RAM memory.
Figure 1 and Table 1 shows the running time for C.KeyGen, Enc ,CEnc, CDec (we slightly abuse notation
and use CDec to refer to the decryption algorithm Dec when the input is a conditional ciphertext) as well as
the ciphertext size for the aforementioned predicates. The primary difference between Table 1 and Figure 1
are as follows (1) Figure 1 plots the worst-case running time for CDec (when the relevant predicates do not
hold) while the performance analysis in Table 1 is based on empirical user typos i.e., we evaluate the running
time CDec by selecting random password/typo pairs from the password typo dataset of Chatterjee et al.
[CAAT16] subject to the constraint that the relevant predicate holds. (2) Table 1 focuses exclusively on
conditional encryption schemes for messages of length at most n = 32 i.e., the parameter that we use for
TypTop.

For the Hamming distance, we consider four different thresholds at most one, at most two, at most
three and at most four. In Figure la and Figure 1b we focus on the worst case running time for CDec
when the predicate does not hold and we have to iterate over all (?) possible subsets for secret recovery.
Figure la plots the running time of CDec as the input length n varies for different Hamming Distance
thresholds ¢ € {1,2,3,4}. Figure 1b plots how the running time of CDec is impacted by the Hamming
Distance threshold ¢. The figure includes separate plots for messages of length n € {8,16,32,64,128}. In
figures Figure la and Figure 1b the blue (resp. red) curves highlight the running time of our optimized
(resp. non-optimized) implementation. Figure lc plots the running time of the encryption and conditional
encryption algorithms Enc and CEnc and Figure 1h plots the size of a regular and conditional ciphertext for
the Hamming Distance predicate as the message length varies. As expected we note that the ciphertext size
is independent of the threshold ¢ and that the size of a conditional ciphertext is approximately equal to the
size of a regular ciphertext.

We did similar for the CAPSLOCK predicate and considered the evaluation time over different message

15

Table 1: Conditional Encryption: Computation Time and Ciphertext Size (n = 32, 80-bit security)

Enc CEnc CDec
Predicate: Time (ms) | || Time (ms) | [Time (ms)
EdDist One 108.68 8.27 406.842 16.29 104.31
HamDist (¢ = 1,n = 32) 85.582 8.01 412.424 8.04 85.644
HamDist (¢ = 1,n = 32) OPT 92.384 8.01 445.714 8.04 263.626
HamDist (¢ = 2,n = 32) 93.88 8.01 445.8 8.04 347.953
HamDist (¢ = 2,n = 32) OPT 98.0633 8.01 475.58 8.04 264.273
HamDist (¢ = 3,n = 32) 90.1867 8.01 433.63 8.04 2268.54
HamDist (¢ = 3,n = 32) OPT 105.98 8.01 498.75 8.04 254.61
HamDist (¢ = 4,n = 32) 97.52 8.01 461.79 8.04 14664.8
HamDist (¢ = 4,n = 32) OPT 98.77 8.01 466.457 8.04 205.69
CAPSLOCK on 3.0025 0.27 13.26 0.29 1.01
OR* 201.15 16.54 | 900.945 24.64 360

|c] = Ciphertext size (KB)

* OR = EditDistOne or HamDistTwo or CAPSLOCKon

** P, is the predicate and we define our CondCrypto over this predicate

for i = {1,2,3,4}, which implies 4 different predicates.

***% For hamming distance (HamDist), ¢ represents the threshold value and n = 32 is the
padding size. Also, OPT means using optimized decryption algorithm.

lengths n = {8, 16, 32,64, 128} and the average time of each algorithm is presented in Figure le. The running
time for each algorithm Enc, CEnc and Dec is independent of the message length until we have to increase
the size of our Pallier Public key to satisfy the requirement that |%|"*! < min{p, ¢}. This explains the jumps
at input length 64 and 128.

Figure 1d plots the running time of Enc, CEnc and CDec for our edit distance one predicate under
different padding lengths n = {8,16,32,64,128}. Similarly, Figure 1f plots the running time of of Enc,
CEnc and CDec for the OR predicate P,yp,. For CDec we report the worst-case running time to decrypt a
conditionally encrypted ciphertext i.e., when the predicate does not hold. When eveluating decryption time
for the OR predicate Pi,,, we use our optimized implementation of conditional decryption for the hamming
distance predicate.

Figure 1i plots the size of a regular and conditional ciphertexts as the message length increases for each
predicate: CAPSLOCK (CAPS), Edit Distance One (ED), Hamming Distance Two (HD) and the OR of
the above. Some plots are difficult to see because they are identical to other lines. For example, we first
note that the size of a regular ciphertext for the OR predicate is identical to the size of a ED ciphertext.
Similarly, the size of a conditional ciphertext is approximately equal for the Hamming Distance (HD) and
Edit Distance (ED) predicates. The plots at the bottom of Figure 1i are for CAPS as a regular/conditional
encryption for this predicate consists of a single Pallier ciphertext.

5.1.4 Discussion

Our empirical analysis demonstrates the practicality of our constructions especially for password typos. For
example, when n = 32 the worst-case time to decrypt a conditional ciphertext for the password typo predicate
Piypo (OR) is less than 250 (ms). While the overhead is higher than traditional encryption schemes, it is
important to note that, for our TypTop application, the algorithms CEnc and Dec can be evaluated offline
and will not delay user authentication.

5.2 TypTop with Typo Privacy

We also implemented a modified version of TypTop system for personalized typo correction [CWPT17]
as outlined in Section 4. We consider two primary modifications to the regular TypTop system. First,
we replace the Key Derivation Function (KDF) with Argon2id [BDK16] a Memory-Hard Key Derivation
Function. This modification was already suggested by the designers of TypTop. Second, we replace the

16

1010
10
10 104
. n
107 n =128 =, n =128 =
— - orig, optimized —
<107 B) g
g g Z 10°
g = .\ Q (¢ =1: Enc -, CEnc ~
A =10 = ¢ =2: Enc -, CEnc ~|
4 =)
& 10 &= 102 ¢ =3: Enc -, CEnc ~
(¢ =4: Enc -, CEnc ~
10! 10!
1
32 64 96 128 1 2 . : 4 N 10 16 32 48 64 80 96 112 128
Input Length (n) Max Haming Distance Tuput Length (n)
w CDec Time for HamDist @ CDec Time for HamDist «© CEnc and Enc for HamDist
10°
104 102
= o
% 2
Z8 =
() o
E g 10!
= =
102 ~Ene
N ~Fnc . CEnc
. CEnc - CDec
100 L . CDec {
10! 10!
0 16 32 48 64 80 96 112 128 0 16 32 48 64 80 96 112 128 16 32 48 64 80 96 112 128
Input Length (n) Input Length (n) Input Length (n)
wEnc ED One @ CEnc CAPSLCK ON B 9 CEnc OR predicate
109 105 10
3
1 b
¢ =1: CEnc =, Enc ~ 3

¢=2: CEnc -, Enc ~
0.8 ¢ =3: CEnc =, Enc ~
¢ =4: CEnc =, Enc ~

OR: CEnc ~, Enc ~
HD: CEnc -, Enc =
ED: CEnc , Enc

— s —
=3 £, 2
a [} a
3) L - .

£ S o6 = 21 |CAPS: CEnc -, Enc ~ ,
5] 0 =
< < 2
g g o z
= = a1
(@} O 0.2 (@}

(11 16 32 18 64 30 06 112 128 O 16 32 48 64 80 96 112 128 9 16 32 48 64 80 96 112 128

Input Length (n) Input Length (n) Input Length (n)
& CEnc OR predicate, CTX size »CEnc HamDist, CTX size +CEnc EDOne and CPSLCK, CTX size

Figure 1: Performance Evaluation for our proposed Conditional Encryption schemes under different, predi-
cates, lengths and distances

17

Table 2: TypTop: Computation and Storage Overhead with/without Conditional Encryption. Here we
considered 80-bit level of security when n = 32.

Correct login Incorrect login
Tnit Auth Delay | Total Auth Delay Total Storage
Running Running (KB)
Time Time
Typtop [CWPT17] 171.95 26.41 (ms) 53.384 156.556 (ms) | 158.71 1
ms) (ms ms
CondTyptop 6.771 (s) 25.7 (ms) %1).203 160.3 (ms) 0.617 (s) 246
s
CondTyptop (Opti- | 7.13 (s) 24.12 (ms) 8.690 (s) 160.33 (ms) 0.629 (s) | 246
mized)
Typtop (mhf) | 5.738 (s) | 0.943 (s) 0.784 (s) | 5.644 (s) 5.856(s) 1
[CWPT17]
CondTyptop(mhf) 19.672 0.933 (s) 16.558 5.446 (s) 6.162 (s) | 246
S s
CondTyptop(mhf/opt) 14.456 0.729 (s) 10.995 4.376(s) 5.87 (s) 246
* CondTyptop is the modified typtop scheme when conditional encryption is used.

public key encryption scheme with a conditional encryption scheme for the OR predicate. For the purpose
of empirical evaluation we implement TypTop with our optimized implementation of conditional encryption
and with our unoptimized implementation refering to these as modifications (2A) and (2B) respectively.

Our code is available at [AB24a]. In our analysis we analyze six versions of the TypoTop system: the
original system (no modifications), modification (1) only, modification (2A) only, modification (2B) only,
modifications (1)4(2A) and finally modifications (1)+(2B). The recommended version is TypTop with mod-
ifications (1)4(2A) i.e., using the Memory-Hard Key Derivation Function and the optimized implementation
of our conditional encryption scheme for the OR predicate.

In our modified implementation of TypoTop, we assume that the length of each user passwords is at most
32 characters. This is a valid assumption as 99.9 % of the passwords has length of lower than 32 characters.
To support this assumption, as an evidence we extracted this stats from the leaked passwords of LinkedIn
and RockYou. More specifically, 99% of passwords from LinkedIn Frequency Corpus® as well as passwords
from RockYou” have length at most 15. If desired one could easily adjust the TypTop system to support
longer passwords. However, the scheme would either become less efficient or we would need to leak a single
bit of information about the user password i.e., indicating whether or not the length of the password is more
than 32 characters.

In our empirical analysis we register a user password of length < 32 and then generate a sequence
of 1000 correct and 1000 incorrect login requests. Incorrect login requests are randomly selected as (1)
CAPSLOCK error, (2) Hamming Distance < 2, (3) Edit Distance < 1 or (4) completely different. We
analyze the running time for Initialization, Correct Login attempt and for Incorrect login attempts — see
Table 2. In our analysis we distinguish between authentication delay and total running time. For example,
if authentication fails with an incorrect password pw!, then we will want to run our conditional encryption
algorithm CEncyg, (cy, pwl,, pw,,) so that, if pw,, is close enough to the real password, we can recover it at a
later point in time. However, we can immediately inform the user of the outcome of authentication before
performing this somewhat expensive computation. Similarly, if a user logs in with the correct password pw,,
then we can recover the symmetric key K, and decrypt sk,. At this point we will want to decrypt all of the
conditional ciphertexts in our vault, but again we can immediately inform the user that the authentication
attempt was successful before decrypting these conditional ciphertexts.

5.2.1 Discussion

We can use conditional encryption to strengthen the security guarantees of TypTop without increasing
authentication delay for users. The usage of conditional encryption does increase offline computation and

6Link to the data set: https://figshare.com/articles/dataset/linkedin_files_zip/7350287
"Link to the RockYou with count dataset: https://github.com/danielmiessler/SecLists/tree/master/Passwords/
Leaked-Databases

18

https://figshare.com/articles/dataset/linkedin_files_zip/7350287
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Leaked-Databases
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Leaked-Databases

storage requirements, but the overhead is still manageable. The reason why the offline computation is
higher after a correct login attempt is because this allows us to recover the secret decryption key and then
decrypt all of the conditional ciphertexts in our waitlist so that we can consider adding them to our cache of
acceptable typos. It is worth noting that the TypTop system maintains the invariant that there are always
10 (conditional) ciphertexts in the waitlist. The invariant, which is maintained by seeding the waitlist with
dummy ciphertexts, ensures that an attacker cannot infer the number of incorrect login attempts. If we don’t
maintain this invariant then an attacker who breaches the authentication server would learn the total number
of incorrect login attempts that were submitted since the last correct login. Our modified implementation of
TypTop maintains the same invariant. However, such leakage should arguably not be viewed as problematic
since it does not reveal anything about incorrect login attempts or the user’s password. In this case we could
reduce offline computation (and storage) of TypTop by only placing conditional ciphertexts in the waitlist
when there is an incorrect login attempt i.e., if there were no incorrect login attempts since the last correct
login attempt then there would be no offline work to decrypt the conditional ciphertexts in the waitlist
because the waitlist would be empty!

Acknowledgements

This work was supported in part by the National Science Foundation under CAREER, Award CNS 2047272.
Any views expressed in this paper are those of the authors and do not necessarily represent the position
of the National Science foundation. The authors wish to thank anonymous CCS reviewers for constructive
feedback and for the suggestion to consider circuit private FHE.

References

[AB17] Joél Alwen and Jeremiah Blocki. Towards practical attacks on argon2i and balloon hashing. In
2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages 142-157. IEEE,
2017.

[AB24a] Mohammad Hassan Ameri and Jeremiah Blocki. Implementation of conditional encryption and

typotop, 2024. April, 26.

[AB24b] Mohammad Hassan Ameri and Jeremiah Blocki. Implementation of conditional encryption and
typotop, September 2024.

[ABP18] Joél Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology — EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 99-130, Tel Aviv, Israel,
April 29 — May 3, 2018. Springer, Heidelberg, Germany.

[ADMS18] Mohammad Hassan Ameri, Mahshid Delavar, Javad Mohajeri, and Mahmoud Salmasizadeh. A
key-policy attribute-based temporary keyword search scheme for secure cloud storage. IEEE
Transactions on Cloud Computing, 8(3):660-671, 2018.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology — CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 500-518, Santa Barbara, CA, USA, August 18-22, 2013. Springer, Heidelberg,
Germany.

[AS15] Joél Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on
Theory of Computing, pages 595-603, Portland, OR, USA, June 14-17, 2015. ACM Press.

19

[AYY22]

[BCFG17]

[BDK16]

[BFO1]

[BFH*23]

[BGKOS]

[BGV14]

[BHZ18

[BL23]

[Bon12]

[BRS13]

[BSW07]

Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based encryption
and predicate encryption. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology — CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer Science,
pages 590-621, Santa Barbara, CA, USA, August 15-18, 2022. Springer, Heidelberg, Germany.

Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical
functional encryption for quadratic functions with applications to predicate encryption. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology — CRYPTO 2017, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 67-98, Santa Barbara, CA, USA,
August 20-24, 2017. Springer, Heidelberg, Germany.

Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: new generation of memory-
hard functions for password hashing and other applications. In 2016 IEEE European Symposium
on Security and Privacy (EuroSE&P), pages 292-302. IEEE, 2016.

Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213-229, Santa Barbara, CA, USA, August 19-23, 2001. Springer,
Heidelberg, Germany.

Jonathan Bootle, Sebastian H. Faller, Julia Hesse, Kristina Hostdkova, and Johannes Ottenhues.
Generalized fuzzy password-authenticated key exchange from error correcting codes. In Jian
Guo and Ron Steinfeld, editors, Advances in Cryptology — ASIACRYPT 2023, Part VIII, volume
14445 of Lecture Notes in Computer Science, pages 110-142, Guangzhou, China, December 4-8,
2023. Springer, Heidelberg, Germany.

Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with effi-
cient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008:
15th Conference on Computer and Communications Security, pages 417-426, Alexandria, Vir-
ginia, USA, October 27-31, 2008. ACM Press.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1-
36, 2014.

Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the economics of offline password
cracking. In 2018 IEEE Symposium on Security and Privacy, pages 853-871, San Francisco,
CA, USA, May 21-23, 2018. IEEE Computer Society Press.

Jeremiah Blocki and Peiyuan Liu. Towards a rigorous statistical analysis of empirical password
datasets. In 2023 IEEE Symposium on Security and Privacy (SP), pages 606-625. IEEE, IEEE,
2023.

Joseph Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In 2012 IEEE Symposium on Security and Privacy, pages 538-552, San Francisco,
CA, USA, May 21-23, 2012. IEEE Computer Society Press.

Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based encryption:
Hiding the function in functional encryption. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology — CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 461-478, Santa Barbara, CA, USA, August 18-22, 2013. Springer, Heidelberg,
Germany.

John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In 2007 IEEE Symposium on Security and Privacy, pages 321-334, Oakland, CA, USA,
May 20-23, 2007. IEEE Computer Society Press.

20

[CAAT16)

[CCO09]

[CCWT21]

[Cha07]

[CHK*05]

[Crul6]
[CWP*17]

[Dail6)
[DHP+18]

[EM23]

[Gen06]

[Gen09a]

[Gen09b)

Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas Ristenpart. pASS-
WORD tYPOS and how to correct them securely. In 2016 IEEE Symposium on Security and
Privacy, pages 799-818, San Jose, CA, USA, May 22-26, 2016. IEEE Computer Society Press.

Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors,
ACM CCS 2009: 16th Conference on Computer and Communications Security, pages 121-130,
Chicago, Illinois, USA, November 9-13, 2009. ACM Press.

Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul Chatterjee,
and Earlence Fernandes. Data privacy in trigger-action systems. In 2021 IEEE Symposium
on Security and Privacy, pages 501-518, San Francisco, CA, USA, May 24-27, 2021. IEEE
Computer Society Press.

Melissa Chase. Multi-authority attribute based encryption. In Salil P. Vadhan, editor,
TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture Notes in Com-
puter Science, pages 515-534, Amsterdam, The Netherlands, February 21-24, 2007. Springer,
Heidelberg, Germany.

Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology
— FUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 404-421,
Aarhus, Denmark, May 22-26, 2005. Springer, Heidelberg, Germany.

Mateus S. H. Cruz. Paillier cpp library, 2016. December, 31.

Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and Thomas Ristenpart.
The TypTop system: Personalized typo-tolerant password checking. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 329-346, Dallas, TX, USA, October 31 —
November 2, 2017. ACM Press.

Wei Dai. Cryptopp cpp library, 2016. Version 5.6.5, release date: 2016-10-11.

Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov.
Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, Advances in Cryptology — EUROCRYPT 2018, Part 111, volume 10822 of Lecture Notes in
Computer Science, pages 393-424, Tel Aviv, Israel, April 29 — May 3, 2018. Springer, Heidelberg,
Germany.

Johannes Ernst and Aikaterini Mitrokotsa. A framework for UC secure privacy preserving
biometric authentication using efficient functional encryption. In Mehdi Tibouchi and Xiaofeng
Wang, editors, ACNS 23: 21st International Conference on Applied Cryptography and Network
Security, Part II, volume 13906 of Lecture Notes in Computer Science, pages 167-196, Kyoto,
Japan, June 19-22, 2023. Springer, Heidelberg, Germany.

Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay,
editor, Advances in Cryptology — EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 445-464, St. Petersburg, Russia, May 28 — June 1, 2006. Springer, Heidelberg,
Germany.

Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169-178, Bethesda, MD,
USA, May 31 — June 2, 2009. ACM Press.

21

crypto.stanford.edu/craig

[GGHZ164]

[GGHZ16b)]

[GPSWO06]

[GVW15a]

[GVW15b]

[KSWOS]

[LW11]

[MUS*16]

INAP+14]

[OPP14]

[Pai99]

Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptog-
raphy Conference, Part II, volume 9563 of Lecture Notes in Computer Science, pages 480-511,
Tel Aviv, Israel, January 10-13, 2016. Springer, Heidelberg, Germany.

Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In Theory of Cryptography: 13th International Conference, TCC 2016-A, Tel Aviv,
Israel, January 10-18, 2016, Proceedings, Part II 13, pages 480-511. Springer, 2016.

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer and Commu-
nications Security, pages 89-98, Alexandria, Virginia, USA, October 30 — November 3, 2006.
ACM Press. Available as Cryptology ePrint Archive Report 2006/309.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. Journal of the ACM (JACM), 62(6):1-33, 2015.

Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology
— CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science, pages 503-523,
Santa Barbara, CA, USA, August 16-20, 2015. Springer, Heidelberg, Germany.

Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Nigel P. Smart, editor, Advances in Cryptology
- FEUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146-162,
Istanbul, Turkey, April 13-17, 2008. Springer, Heidelberg, Germany.

Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In Annual inter-
national conference on the theory and applications of cryptographic techniques, pages 568—588.
Springer, 2011.

William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. Fast, lean, and accurate: Modeling password guessability using neural
networks. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 175-191, Austin, TX, USA, August 10-12, 2016. USENIX Associa-
tion.

Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang, Erman Ayday,
Jean-Pierre Hubaux, and Carl A. Gunter. Controlled functional encryption. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on Computer and
Communications Security, pages 1280-1291, Scottsdale, AZ, USA, November 3-7, 2014. ACM
Press.

Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously circuit-
private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology —
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 536-553,
Santa Barbara, CA, USA, August 17-21, 2014. Springer, Heidelberg, Germany.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology — EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, pages 223-238, Prague, Czech Republic, May 2-6, 1999. Springer,
Heidelberg, Germany.

22

[PDB*15] W Timothy Polk, Donna F Dodson, William E Burr, Hildegard Ferraiolo, and David Cooper.
Cryptographic algorithms and key sizes for personal identity verification. NIST Special Publi-
cation, 800:78-4, 2015.

[pro91] GNU project. Gmp cpp library, 1991. Last update: 2023-07-30.

[RX23] Lawrence Roy and Jiayu Xu. A universally composable PAKE with zero communication cost
- (and why it shouldn’t be considered UC-secure). In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023: 26th International Conference on Theory and Practice of Public
Key Cryptography, Part I, volume 13940 of Lecture Notes in Computer Science, pages 714-743,
Atlanta, GA, USA, May 7-10, 2023. Springer, Heidelberg, Germany.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, nov 1979.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010:
17th Conference on Computer and Communications Security, pages 463-472, Chicago, Illinois,
USA, October 4-8, 2010. ACM Press.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer
Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 457-473. Springer, Heidelberg, Germany, March 15-17, 2009.

[SWO5] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
Advances in Cryptology — FEUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 457-473, Aarhus, Denmark, May 22-26, 2005. Springer, Heidelberg, Germany.

[vGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-
phic encryption over the integers. In Henri Gilbert, editor, Advances in Cryptology — EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24-43, French Riviera,
May 30 — June 3, 2010. Springer, Heidelberg, Germany.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully homomorphic encryption
compilers. In 2021 IEEE Symposium on Security and Privacy, pages 1092-1108, San Francisco,
CA, USA, May 24-27, 2021. IEEE Computer Society Press.

[WPC23] Yuyu Wang, Jiaxin Pan, and Yu Chen. Fine-grained secure attribute-based encryption. Journal
of Cryptology, 36(4):33, October 2023.

A Details on Paillier Cryptosystem

In this part we will provided a formal definition of Paillier cryptosystem with more details. We should high-
light that the Paillier cryptosystem [Pai99] consists of three main algorithms IIp = (P.KeyGen, P.Enc, P.Dec),
and two main operations P.Add, P.P1lainToCtxMul which are described as follows.

o (pk,sk) + P.KeyGen (1*; (p, q)): This algorithm takes as input the security parameter A\ and two
uniformly at random sampled large poly(\)® bit prime numbers p, ¢ < 2Poly(N) "and generates the secret-
public key pair (pk, sk) as follows. Then the algorithm sets N = pg and computes 8 = lem(p—1,¢—1).
Let we define the function L(u) = %21 in which u € [N?] is a variable. So using the defined function to
compute = (L(g® mod N?))~! mod N in which g € Z%, is sampled uniformly at random. Finally,
the public key and its corresponding secret key is set as follows: pk = (N,g) and sk = (8, p). In this
paper we considered g = N + 1. In this case, 3 =lcm(p —1,¢— 1) and g = ¢(N)~! mod N.

8We should highlight that based on the security parameter we desire, there exists a polynomial function like poly which
determined the bit length of the prime numbers.

23

B

o ¢ < P.Encyi(m;r): The encryption algorithm takes as input the message 0 < m < N and random coin

r €g Z%, and computes the ciphertext as follows: ¢ := (1 + N)™rY mod (N?).

m := P.Decyy(c): The decryption algorithm takes as input the ciphertext ¢ € Z}. and decrypts it as
follows: m := L(c” mod N?).;, mod N.

¢ = P.Add(cq,c2): Given ¢ = P.Encyi(my) and c; = P.Encyi(msg) for two messages mq,ms, this
algorithm computes a ciphertext of m; +my mod N under the same public keys as follows. ¢ = ¢;.co
mod N2. Intuitively we have:
c=(¢™rN).(¢™r)) mod N?
= 7’17"2)N mod N2

g
g™ mod N? (2)

mi +m2(

in which m = my + mo and the resulting randomness is r = r17s.

For sake of simplicity, we use symbol 8 for this algorithm and we have ¢; BHce = P.Add (¢, ¢2). Similarly,
for the subtraction, we can define B and we have ¢; Hey = P.Add(c, cl_l). We can also define & which
add k ciphertexts cq,...,c; and we have &szlci =cH... Heg.

¢ = P.PlainToCtxMul(mq,ce): This algorithm takes as input the plaintext message m; and co =
P.Enc,i(m2), and computes ciphertext of my.mo as follows:

c=(cz)™ mod N? = (gm2ry)™ = gmmz(p")N mod N2
=g™rY mod N? (3)

in which m = mymg and the resulting randomness is r = r5"* mod N2,

For sake of simplicity, we use symbol X for this algorithm and we have m; X ¢ =
P.PlainToCtxMul(my, ca).

Details on Secret Sharing (SS)

Let F be a field of size [F| > n. We define interpolation algorithm InterPol over ¢-degree polynomial f :
F — T which takes as input ¢ tuples (x;,y; = f(i)) for 1 < i < ¢, and outputs f(0). So we have f(0) =
InterPol((x1, f(x1)),- .., (xt, f(z1))). The (n,t)- secret sharing scheme for the secret message s € F is defined
based on two algorithms ShareGen, SecretRecover which are described in what follows.

o ([s]y,---,[s],) < ShareGen(n,t,s). This algorithm takes as input the secret s € IF, the threshold value

t and the number of shares n. Then, it randomly samples the t-degree polynomial ¢ : F — F such that
s = ¢(0) and sets the shares as [s], = ¢(i), for all 1 <i < n.

o s < SecretRecover(shares = ([s],,...,[s],)). This algorithm takes the set of share shares of size ¢’ as

input, and recover the message s if there exists set of valid shares ValidShare C shares s.t. |ValidShare| >
t. To recover s the algorithm runs the interpolation algorithm § = InterPol((1, [s]}), ..., (¢, [s]};)) such
that [s];, € ValidShare,V1 < i < t. Finally the algorithm outputs s = Tolnt ™1 (3).

Definition 6 (Correctness). Given the (t,n)-secret sharing scheme II = (ShareGen, SecretRecover), Vn € N,
Vs € M™ and VS = {i1,...,i:} C{1,...,n} of size t, the correctness of I enforces that

[SecretRecover([s]; ,-..,[s];,) =s] =1 (4)

([s]y5---,[s],,)«ShareGen(1* ,n,t,s) g

24

Definition 7 (SS Perfect Secrecy). The (t,n)-secret sharing scheme I1 = (ShareGen, SecretRecover) is per-
fectly secrecy, if ¥n € N, Vs, € M™, VS C{1,...,n} s.t. |S| <t, and for all adversaries A,

A(lsl,li € §) = 1]

[A([s'];li € §) =1] (5)

r
([s]y5---,[s],,)«ShareGen(1* ,n,t,s)
= Pr

A([s']y,---,[s'],,)«ShareGen(1* ,n,t,s")

We will use the Shamir Secret sharing scheme [Sha79]. Given any field F of size |F| > n the construction
starts with n + 1 distinct field elements zg,x1,...,z, € F. Given a secret s € F we generate shares
[sl, = (@1,91),-.., [s];_1 = (x¢—1,y¢—1) where y1,...,y,—1 € F are random field elements. We then use
polynomial interpolation to find a degree t — 1 polynomial p(x) such that p(xg) = s and p(z;) = y; for
i <t — 1. Finally, for share i >t — 1 we define [s];, = (z;,p (x;)).

One crucial property of Shamir Secret sharing that we rely on is that any subset of ¢ — 1 shares is
uniformly random over F*~!1. In particular, for all secrets s € F, all subsets S = {i1,...,9;—1} C [n] of size
t — 1 the shares [s]; ,...,[s]; , can be viewed as uniformly random independent elements in F unrelated

to the secret s i.e., for all y € F*~! we have

Pr [([[8}]“7 PN [[Sﬂit_l) = y} — |F‘7t+1

where the randomness is taken over ([s],,...,[s],,) < ShareGen(n,t,s).

C Real or Random Security

Similar to the traditional public key encryption schemes, we require that the encryption scheme is secure
against any computationally bounded adversary who does not have the secret key sk. In this section, we
formally define Real-or-Random security based on the a security exeperiment/game called CEROR(lA).

C.1 RoR Experiment for Conditional Encryption

In the security game we pick a random (sk,pk) = KeyGen(1*;7) and the attacker tries to distinguish the
encryption oracles Encyy(-) and CEnc,k(-,-) from random encryption oracles. More precisely, we consider
the following experiment CEEC®(1*): (1) The challenger C picks a random bit b € {0,1} and generates a
random public/secret key pair (sk, pk) < KeyGen(1*); (2) The challenger sends pk to the attacker A(1%); (3)
Whenever the attacker submits a message m to the encryption oracle the challenger sets my = m and picks
a random message m; and sends back Enc,i(my). (4) Whenever the attacker A submits a pair (¢, m,m’) to
the conditional encryption oracle the challenger sets ¢g = CEncpi(c, m, m') and sets ¢; = CEncp(c, r,7’) for
a random messages 7,7’ and sends back ¢,. (5) The game ends when A outputs a bit & and the output of
the experiment is CEROR(lA) = 1if and only if b =¥'.

Definition 8. (Real or Random Security) We say that a conditional encryption scheme II =
(KeyGen, Enc, CEnc, Dec) is (t(-),q(-),€e(:))-secure if for all attackers A running in time t(\) and mak-

1
ing at most q(\) oracle queries in total we have Pr [CEROF (1}) = 1] < 3 +e(t(N),g(N),N).

Theorem 9. Assume that Pallier encryption is (t(\), q(A), €(t(N), q(A),N))-real or random secure. Then
Construction 18 is (t'(N\),q' (M), € (t'(N), q'(N), X))-real or random security with t'(X) = t(A\) —q'(\) poly(X),
¢'(A) = qA) and € (t'(A),q' (), A) < 3e(t(A),q(A),A).

Proof of Theorem 9: (Sketch) Note that we can assume WLOG that the query to the CEnc oracle
is of the form ((0,c1),ma, m3) where ¢; € Z},.. Otherwise, if gcd(c, N) # 1 or if the query has the form
((1,¢1),ma,ms3)) then the response will simply be L regardless of the secret bit b. Let ¢; € Zy2 be given
(We do not assume that ¢; € Z},,) and consider the query ((0,¢;), mz,m3) to CEnc.

25

We note that if b = 0 the query returns (1, c¢) = CEncpi(c1,ma, mg) a random Pallier ciphertext of the
message R(m1 —mg) + ms mod N if b = 1 the query returns (1,c¢) = CEncpy(c1,72,73) a random Pallier
ciphtext for the the different message R(my — r2) +r3 mod N. We define four hybrids: HO.A, H0.B, H1.A
and H1.B. In Hybrid HO.A (resp. H1.A) we play the ROR security game with bit b = 0 (resp. b =1). In
Hybrid HO.B (resp. H1.B) we continue to use the bit b = 0 (resp. b = 1) for the encryption oracle Enc,
but we replace the conditional encryption oracle CEnc oracle with an oracle that simply returns a random
pallier ciphertext i.e., on input (¢, mg, m3) the oracle simply outputs (1, (1 + N)™ 7y mod N?) for r; € Zy
and rp € Z},. Intuitively, by ROR security for Pallier the attacker cannot distinguish between Hybrid HO.B
and H1.B except with advantage €(t, g, \) i.e., is not the regular ROR security game b = 0 or b = 1 adding
a useless extra oracle which returns random Paillier ciphertexts — this oracle could easily be simulated.
By similar reasoning the attacker cannot distinguish between hybrid HO.A and H0.B (or HO.A and H0.B)
except with advantage €(¢, ¢, A). Intuitively, if the attacker A distinguishes hybrids HO.A and H0.B we can
construct an attacker B for the Paillier ROR security game i.e., B simply runs A and anytime A submits a
query (¢1,mg, m3) we submit the query mg to the Paillier Encryption oracle to obtain ¢z and then return
c = c3clt(1+ N)™™2E mod N2. If ¢3 was a random Paillier encryption of m3 then c is distributed exactly
like CEnc(cq,m2,mg) in HO.A (resp. H1.A). On the other hand if ¢3 is a random Paillier ciphertext of a
random message then ¢ is uniformly random ciphertext as in HO.B (resp. H1.B). The running time for the
attacker B is at most ¢(\) = t/(\) + ¢(A) poly (A) where the term ¢(\) poly(\). Thus, attacker B distinguishes
the hybrids HO.B (resp. H1.B) with probability at most e(t(\), ¢(A),). Thus, any attacker running in time
t'(\) distinguishes HO.A (b = 0) from the final hybrid H1.A (b = 1) with advantage at most 3e(t(X), g(A\), A).

O

Theorem 10. Assume that Pallier encryption is (t(X),q(\),e(t(N), q(N),N))-real or random secure and
that Map is (tap(N),qae(N), €ap(tag(N),qae(N),N)) real or random secure. Then Construction 19 is
" (N).g\N) € ([(N),qg(\),\))-real or random secure with '(\) = min{t (\),tap (\)} — o(n), ¢'(\) =

min {g (A) /(4n), 252 L and € (' (X),¢'(\), A) = e(t(N), a(\), A) + ear(tap(N),aan (A, \)

Proof of Theorem 10: (Sketch) Let ¢; € Zy2 (we do not assume ¢; € Z};,) and consider the query
(c1,m2, m3) to the encryption oracle. If b = 1 then we have (1,¢é1, ..., ¢, car) = CEncpr(c1, ma, ms) where

each & = cfti (g’mZ[i]ré\fi)Ri gl ré\,’i mod N? for uniformly random R; € Zy and r24,73,: € Zy. By ROR

security for Pallier we can apply a Hybrid argument can swap g~ ré\g with g“”"ré\fi with r1; € Zy (resp.
g””iré\g) with 71; € Zn (resp. ra; € Zy) uniformly random. After 2n hybrids we have replaced each ¢;

. . R) . . .
with a ciphertext of the form ¢ (7175’ z)l g"ird. mod N2. In particular, all information about the secret

symmetric key K is removed so we can invoke ROR security for Authenticated encryption to replace cap
with a random ciphertext. We can then reverse the hybrids to move to transition from CEncpi(c1,ma, ms)
(when b = 0) all the way to the b = 1 case CEncyy(c1, mb, mj) for random messages mf and mj4. Thus, we
adjust ¢'(A) = q(N\)/(4n) since we invoke ROR security for Pallier during 4n x ¢'(n) hybrids. Similarly, we
invoke ROR security for authnticated encryption in 2 x ¢(\)" hybrids. O

Theorem 11. Suppose that we are given k separate conditional encryption schemes Ili,... Iy corre-
sponding to predicates P, ..., P, and that each II; provides (t;(A), q;(N), €;(t:(N), qi(N), X)) real or random
security. Then the construction Il,,. provides (t(\), g(A), e(t(N\), ¢(N),) real or random security with e(\) =

Z;C:l Ez(tz(/\)a ql()\)’ A))) q()‘) = mHl{ qlz(]j\)a) qkT(k)\)} and t(>‘) = min {tl()\)7 e >tk(A)} - O(k : max(tCEncla

te vtCEnck))~
Proof of Theorem 11: (Sketch) Intuitively, for each conditional encryption query
(1 = (cimy, s Cry1,) M2, mg), we need to query ¢ = II,.CEnc(ci,m,, me,m3) if b = 1. So we have k

hybrids and in each hybrid we use the real or random security of one predicate. So the adversary’s ad-
vantage is bounded by Zle € (t; (A),qi (A),A). For each query, the simulator need to compute ¢ which
takes tcgne,. So considering all k hybrids, the loss in time is bounded by O(k - max{tcgnc,, - - ,tCEnc, }) after

26

these k hybrids. We note that the number of queries for the resulting adversary is bounded by min{g; ()
-+ ,qr(A)}. We can then reverse the hybrids to move to transition from II,,..CEnc (c1, ma, m3) (when b =1
all the way to b = 0 case II,,.CEnc(cy, mb, m%) for random messages mf and mj.

~—

O

D General construction of Conditional Encryption from Circuit-
Private FHE

In this section we show how one can construct conditional encryption for an arbitrary binary predicate
P using Circuit-Private FHE assuming that the predicate P can be implemented as a polynomial sized
circuit. The basic idea is to define a circuit Cp gy, m, (M) which outputs mg if P(mq,ms) = 1 and out-
puts 0 if P(mi,m2) = 0. Now the the conditional encryption algorithm CEncy(c, ma, mg) simply runs
FHE.Eval,; (Cpmy,ms- €)- If the input ciphertext ¢ corresponds to a message m such that P(m,mg) = 1 then
FHE.Eval,i (Cpmy,ms- ¢) Will output a ciphertext ¢’ which decrypt to Cp(m, ma, ms) = mg. Otherwise, if
P(m,mg) = 0 we get a ciphertext ¢ which decrypts to 0. This construction is formalized in Construc-
tion 12.

We show that Construction 12 provides conditional encryption secrecy as long as the FHE construction
satisfies the notion of circuit privacy [OPP14] — see Appendix D.2 for the formal definition. Before defining
circuit privacy for FHE we first show that circuit privacy is necessary to prove security of our construction.
In particular, if FHE exists then there exists a (non-circuit private) FHE scheme for which Construction 12
is not secure — see Appendix D.1. After defining circuit privacy in Appendix D.2 we use circuit privacy to
prove that Construction 12 satisfies conditional encryption secrecy Theorem 13 in Appendix D.3.

More precisely, let FHE = (Setup, Enc, Eval, Dec) be an FHE scheme, then we obtain a conditional en-
cryption scheme Ilcg,c as described in Construction 12 and Figure 2.

D.1 Circuit Privacy is Necessary

We demonstrate that Construction 12 can be insecure if the underlying FHE scheme does not satisfy circuit
privacy. In particular, there exists secure FHE schemes for which the proposed construction is blatantly
insecure as a conditional encryption scheme. Security definitions for FHE assume that the attacker does not
have the secret decryption key, and there is no requirement that the output ¢t = Eval(C,c; ..., c,) hides
information about the underlying message bits mi,...,m, when the secret key is known. Given a FHE
scheme ITpne = (KeyGen, Enc, Eval, Dec) we can define a new FHE scheme IIf,, = (KeyGen, Enc, Eval’, Dec')
where Eval' (C,c1,...,¢,) = (Eval(C,c1,...,c,),c1) i.e., Eval’ simply appends the first input ciphertext c;
to the final output. Correctness still holds as the decryption algorithm Dec’ can simply ignore ¢; and then
run the original decryption algorithm Dec. Note that as long as the attacker does not have the secret key
that the output of Eval’ does not leak any information about the encrypted message m; corresponding to
¢1. Thus, the updated FHE scheme IIf, ¢ still satisfies the traditional notion of semantic security. How-
ever, the message m; can be directly extracted from the evaluation ciphertext ct’ = Eval’(C, ¢y, ..., c,) by
any party who has the secret decryption key. Instantiated with Eval’ the proposed conditional encryption
scheme would output CEncpi(c1,me, m3) = FHE.EvaI;k(Cp,m%mycl) = (FHE.Evalyr(Cpam,,mss€1),€1) =.
Supposing that P(mj,ms) = 0 conditional encryption secrecy requires that the conditional ciphertext
ct’ = CEncpi(c1,me, m3) leaks no information about any of the messages my,mge and ms except that
P(mi,ms) = 0. Yet, the ciphertext ct’ still contains an encryption of the secret message m;. In our
setting the attacker is given the decryption key allowing the attacker to directly extract the secret message
my from ct’. Thus, Construction 12 blatantly violates conditional encryption secrecy when instantiated
with IIL,e. If we want to show that Construction 12 is secure we will need to rely on additional security
properties for FHE (circuit privacy) which rules out FHE constructions like ITfe.

27

Construction 12.

Key Generation Algorithm:

o (pk,sk) < Ilcgnc.KeyGen(1?) = FHE.Setup(1*)

Regular Encryption:

¢ (0,¢) + Icgnc-Encpr(my) = FHE.Encyp (m1)

Conditional Encryption algorithm:

. (1, C/) < HCEnC.CEnCPk(C, mg,m3):

(1) Define the circuit Cpny ms(m1) which outputs ms if P(mq,me) = 1 and outputs Z if
P(my,ms) = 0. (Note: Z is an arbitrary fixed constant which is publicly known. If we
want the construction to be error detecting then Z needs be outside of the message space for
our conditional encryption scheme, but inside the FHE message space.

(2) Run ¢ < FHE.Evaly,(Cp iy ms, €)
(3) Return (1,¢)

Decryption algorithm:

e M = HCEnc-DeCsk(ba C)

(1) Compute m = FHE.Decy(c)

(2) If m is outside the message space return L; otherwise return m

Figure 2: Proposed generic construction of our generic construction of Conditional Encryption from FHE

28

D.2 Circuit Privacy Definition

To prove security of Construction 12 we rely on the notion of circuit privacy. Gentry proposed a formal
definition of (statistical) circuit private FHE in his thesis [Gen09a] and suggested how to achieve circuit
privacy. Ostrovsky et al. [OPP14] introduced the notion maliciously circuit private FHE which requires that
privacy holds even when the public key and/or input ciphertexts are generated maliciously. We base our
definition of circuit privacy on Gentry’s definition of circuit privacy as malicious security is not necessary to
show conditional encryption secrecy.

Intuitively, a FHE scheme is circuit private if the ciphertexts ¢ = FHE.Eval,,(C, c1, ..., ¢,) reveals nothing
about the circuit C or the encrypted messages my, ..., m, corresponding to the input ciphertexts cy,...,c,
other than the output C'(my,...,m,) of the circuit even if the adversary has the secret key or is computa-
tionally unbounded (statistical security). This intuition is formalized by the notion of a simulator who takes
as input the public key pk and the circuit output C(myq,...,m,) and generates a ciphertext that is statisti-
cally indistinguishable from FHE.Eval,,(C, c1, ..., ¢,) — in [Gen09a, Def 2.1.6] the simulator is defined to be
Sim(pk, C(ma,...,my)) = FHE.Enc,,(m4,...,m,). We slightly rephrase the definition [Gen09a] to obtain
a concrete security definition instead of an asymptotic definition.

Definition 9. Let IIgye = (KeyGen, Enc, Eval, Dec) denote a homomorphic encryption scheme for a class of
circuits C. We say Ugpg is e(X)-circuit private if there is a (possibly unbounded) simulator Sim such that
for all key-pairs (sk,pk) in the support of KeyGen(1%), any circuit C € C, any plaintexts my,...,m, and
any fized ciphertexts ci,...,c, such that ¢; in the image of Encyi(m;) for each i < n (i.e., each ciphertext
¢i s a walid encryption of the plaintext m;) and any (unbounded) distinguisher D has advantage at most
|pD,sim - pD,Eval| < G(A) where PD,sim = Pr[D(Skapka Cly ooy Cny MMy, .oy M, Sim(pkv C(mla s 7mn)) =]-]
and pp gear = Pr[D(sk,pk,ci,...,cn,ma, ..., my, Evaly,(C,c1, ..., ¢,)) = 1] where the randomness is taken
over the random coins of D,Sim and Eval.

Since our distinguisher D is unbounded the requirement that the distinguishing advantage is up-

per bounded by €()) is equivalent to requiring that the statistical distance between Evaly,(C,c1,...,cy)
and Sim(pk,C(my,...,my,) is bounded by €(\). Giving the distinguisher additional information like
sk,pk,c1,...,c, and mq,..., m, does not change the definition.

D.3 Proving Conditional Encryption Secrecy

Theorem 13 proves that Construction 12 achieves conditional encryption secrecy as long as the underlying
FHE scheme satisfies circuit privacy. Intuitively, the conditional encryption simulator will just use the circuit
private FHE simulator. See details in the proof of Theorem 13.

Theorem 13. Assume that Ilgye = (KeyGen, Enc, Eval, Dec) is an e(\)-circuit-private FHE, then Tcgnc
provides (00, tsin, €(N))-conditional encryption secrecy where tsin denotes the running time of the simulator
for our circuit private FHE scheme.

Proof. (Sketch) Supposing that P(mq,m2) = 0 we have Cpy m,(m1) = Z where Z is a fixed constant
(publicly known). Thus, our conditional encryption secrecy simulator Simcg(pk) will simply run the FHE
circuit privacy simulator Sime,rrr(pk, Z). Formally, we define Simog(pk) = (1,S8imrur(pk, Z)). Since
CPpmyms (M1) = Z, by circuit privacy of the underlying FHE scheme, the output of Sime,rmg(pk, Z) will
be statistically indistinguishable from the output of CEncyy(c1,ma, m3) = (1, FHE.Eval,,(Cpimy,ms,c1)). In
particular, for any distinguisher D we have

Pr[D (sk, pk, c1,m1, ma, m3, Simcpr e (Pk, Crmy,ms (M1) = Z)) = 1]

— Pr[D (sk, pk, c1,m1, ma, ms3, Evalpi (Cpmy.ms, €1)) = 1] | < €(N) (6)

29

By definition the distribution of Simcg(pk) its output is identical to Sim.prpr(pk, Z). Looking at Con-
struction 12, we observe that CEncpy(c1, me, m3) = FHE.Eval,,(Cp sy ms,c1). Thus we can rewrite Equa-
tion (6) as follows:

Pr [D (sk, pk,c1, m1,ma, m3, (1,Simcg (pk))) = 1]
— Pr[D (sk,pk, c1,m1, ma, m3, CEncpy (c1,ma, m3)) = 1] | < €(A)

So we have shown the there exists simulator Simg g running in time tg;,(A\) = tSingppn = (A) such that any
unbounded adversary can distinguish between CEnc,(c1,m2, ms) and Simg g (pk) with advantage of at most
€(A) and Construction 12 provides (00, tsin(A), €(A)) conditional encryption secrecy.

O

D.4 Correctness and Error Detection

Theorem 14. Assuming that the underlying fully homomorphic scheme FHE satisfies perfect correctness
Construction 12 satisfies perfect correctness and perfect error detection i.e., the construction is 1 — e(X)-
error detecting and 1 — e(X)-correct with e(A) = 0.

Proof of Theorem 14:

Correctness of Construction 12 follows immediately from the correctness of the underlying FHE scheme.
Observe that for any message m in the message space and any secret key pair (sk, pk) < Ippe.KeyGen(1?)
we have

Icenc-Decyy, (Icenc-Encpr(m)) = Ilcenc-Decyy, (0, rne.Encyr(m))

IIrne.Decyy (HFHE~EnCpk (m))

= m .

The first equality holds by the definition of Ilcgnc.Enc. The second equality follows by correctness of the
underlying FHE scheme and by the definition of Ilcgnc.Decyy since we assumed the message m is in message
space for our conditional encryption scheme. The final equality follows by the correctness of the underlying
fully homomorphic encryption scheme.

Similarly, consider any messages mq,ms, ms for which P(mi,ms2) = 1 and mg is an arbitrary message
in our message space. Let (0,¢1) < Icenc-Encyr(ma) = (0, pne.Encyi (m1)) be any encryption of m;. By
construction we have

HCEnC.CEncpk ((O, Cl), ma, mg) = (1, HFHE.Evalpk (Cp7m27m3, 61)) ,
and by correctness of IIgyg we have
Hepe.Decor (Irne-Evalpr (Cpmy,mss 1)) = CPiamg,ms(M1) = ma

where the first equality follows by FHE correctness — note that ¢; = IIpne.Encpr(mi). The second equality
follows by definition of Cp n, m, since, by assumption, we have P(mq,mg) = 1. Since we assume that ms is
in our message space by definition of Ilcg,c.Dec it follows that

Icgne-Decsi (cgne.CEncyi ((0,¢1) ,ma, m3)) = ms .

Our argument that Construction 12 satisfies perfect error detection also follows from the correctness of
the underlying FHE scheme. Let m; and mo be any messages in the message space for which the predicate
does not hold i.e., P(mi,m2) = 0. Let (0,c¢1) < Heenc.Encpr(ma) = (0, Irne.Encpr(my)) be any encryption
of my. By construction we have

cene.CEncyr ((0, ¢1), m2, m3) = Irpe.Evalpe (Crimg,ms, €1)

30

and by correctness of IIgyg we have
Hepe.Decsr (Irne-Evalpr (CPimy,mss 1)) = Crang,ms(m1) = Z,

where Z is a message explicitly chosen to be outside the message space of our conditional encryption scheme.
The first equality above follows by FHE correctness since ¢; = ITgppe.Encyr(my) and the second equality
follows by definition of Cp , m, since, by assumption, we have P(mq,m2) = 0. Thus, by definition of
Ilcgne.Dec it follows that

HCEnc~DeCsk (HCE”C.CEnCpk ((0, 01)7 ma, mg)) =1.

E Missing Proofs

Reminder of Theorem 1. Construction 18 is a perfectly correct and 1—e(\)-error detecting conditional
n+1

|2| < ! .
N 7 max{p,q}

encryption scheme with e(\) =

Proof of Theorem 1: Since Encyy(m) simply runs regular Pallier encryption perfect correctness of Pallier
immediately implies that Decgy, (Encyx(m)) = Decyy, (P.Encyr(Tolnt(m)) = Tolnt™" (Tolnt(m)) = m with
probability 1 for all messages m € <" and all public/private key pairs in the support of KeyGen. Similarly,
if ¢; = Encyr(m) and P—(my,mg2) = 1 then CEncyy(c1, ma,m3) will output (1,¢’) where ¢/ = gront(ms)yn
mod N? for some r € Z%. Thus, ¢ is a valid pallier ciphertext for Tolnt(ms) and, by correctness of Pallier,
Decgi (1, ¢) will return ms.

On the other hand if P—(mj, mg) = 0 then by Theorem 2 the ciphertext ¢’ is a valid Pallier Ciphertext
for some uniformly random integer y € Zy and we will have Decyy(1,¢') = L as long as y > |X|"T!. Thus,

n+1
the construction is 1 — e(\)-error detecting conditional encryption scheme with ¢(\) = |Z‘N < max%p T

Reminder of Theorem 2. The conditional encryption scheme described in Construction 18 provides
(00, tsin, 0) conditional encryption secrecy in which tgiy, = tp gnc s time of doing one Paillier Encryption.

Proof of Theorem 2: We define the simulator Sim(pk) as follows. The simulator Sim(pk) takes as input
the Paillier public key pk and then selects Ry €r Zy and rs; €r Z3 uniformly at random and then encrypts
R, as Cgin = P.Encpi(Rs;7s) = g®rY mod N? and outputs it. We now argue that for any my,my € X"
with P_(mq,ms) = 0 any payload message mg and any Pallier key (pk = (N = pq, g) , sk) which satisfies our
condition that |X|"*! < min{p,q} and any encryption ¢; = ¢"™1rY¥ mod N? of m; under pk that the dis-
tributions (pk, sk, m1, ma, ms,c1,Cmy = CEncyy (e, , ma, m3)) and (pk, sk, m1, ma, ms, ¢1, Csin = Sim(pk))
are identical. In particular, it suffices to argue that Csip = Sim(pk) and CEnc,k (¢, , me, m3) are distributed
identically.

To see this consider the generation of CEncyi (¢, , ma2, ms3). First, we pick a random R € Zy and generate
an encryption of (=R -mgs mod N) as ca = g~ ™)y mod N? where 7y € Z% is picked randomly. We
then compute cf* = g™ BN Finally, we output

cf‘cQ -g™ mod N% = gm3+R(m1*m2)T{%N7’é\’
— gm3+R(m1—m2) mod N (TFTQ mod N)N mod N2)
where the values R € Zy, 72 € Z} are fresh random values. In the last step we implicitly used the fact that

if 7ry = aN + b where b = [r{{rg mod N] then

N
(aN +b)N = Z <N> (aN) DN~ =Y mod N? .

. (3
=0

31

Let us first focus on the term mg3 + R(m; — m2) in the exponent of g. We observe that [m; — mq
mod N] € Z4 since 1 < |m; —ma| < |E]" < min{p,q}. It follows that for any ms that R(m; — msa) + mg
is distributed uniformly at random in Zy when R € Zy is picked randomly. We next consider the term
(r{%rg mod N) and argue for any fixed ry € Z} and R € Zy that (r{%rg mod N) is distributed uniformly
at random in Z}; when ry € Z} is picked randomly. It follows that for any r1 € Z%};, m1, mo, mg such that
1 < |my1 — ma| < min{p,q} that the simulated ciphertext (Csiy = Sim(pk) = g'r¥ mod N? for random
rs € Z and R, € Zy) is identically distributed to CEncyi (¢, , ma2, ms). O

Reminder of Theorem 3. Let b = ak +r where 0 < r < a is the reminder (i.e., r = b mod a).
Consider the uniform distributions Uy which outputs a random value in Zy and the distribution D, which

outputs random values between 0,--- ,ak. Then the statistical distance between these two distributions is
SD(Dat Uy) = £ < £l

Proof of Theorem 3: Based on the definition of statistical distance we have

b—1
1

SD(Dur, Us) = ~ Pr [y—=i— Pr [y=

(F b) 2l:o|y€R£ak ! ZL/GRI%/{IJ ZH
1 1 1 1 1
—§(ak)(|g—a'E|+(b—ka)(\g—0|)

1 b—ak 1 1 r 1
2R o 3G =5 = i ™)

Theorem 15. Construction 19 is a 1 — e(\)-correct and a 1 — e(X)-error detecting conditional encryption
scheme with e(X) = (})eap(X) +27*. Here,

A) = P Auth.D Auth.E L
cap()=max - Pr o [AuthDecy, (Auth Ency, (m)) # L]

denotes the negligible probability that the ciphertext ¢ = Encg,(m) is still valid under an unrelated key K.

Proof of Theorem 15: We first note Authenticated Encryption security implies that the term e4g(\)
is negligible. Otherwise, an AE attacker could simply pick a random key K’ and use ¢ = Enck/(m) as an
attempted forgery for the unknown secret key K!

There are two conditions in the Definition 2 which need to be proved. The first condition is regular
encryption correctness and the other one is the conditional encryption correctness.

The observation that Decgy, (Encyi(m;r)) = m for all messages m € £, random coins r and all (sk, pk) in
the support of the key generation algorithm follows immediately from the correctness of Pallier encryption.

It remains to to show that for all messages mi, mo € X" such that Py pan(m1, m2), all payload messages
mg, all {sk,pk} in the support of our Key Generation algorithm and all random strings 71,72 €g (Z%)™ we
have

(sk,pk) + KeyGen(1?)
Pr|Decg, (CEncpi(c1, mo, m3;m2)) = m3| ¢ = Encpp(ma;r) |[>1—e€. (8)
Pt,Ham(mlum2) =1

Let K denote the authenticated encryption key and let [s];,...,[s], denote the shares of K that
were generated by the conditional encryption algorithm. Let é = (b,é1,...,é,,Cag) denote the output
of CEncy(c1,m2, m3;72)), and let [s'], = RDec (P.Dec,(¢;)) denote the shares that are recovered. Finally,
let S* = {i € [n] : ma[i] = my[i]} denote indices of the characters where mgy and m; match. By correctness
of Pallier we have [s'], = [s], for alli € S*. For i ¢ S* the distribution over [s'], is as follows: sample a
uniformly random item y; from Z% and output y; mod 2*.

32

If Pramm.e(mi,ma) = 1 we have |S*| > n — ¢ and there is some subset S C S* of size |S| = n — £ such
that
K = Kg = SecretRecover ({(i,[s'],),cq}) -

From the correctness of the authenticated encryption scheme it follows that Auth.Deck,(cag) = ms.

Thus, the only possible to output an incorrect message m’ is if for some S C n of size n — £ we have
K # Kg = SecretRecover ({(i,[s'];),c5}) and Auth.Deck,. (car) # L. However, if Kg # K then S ¢ S*
and we can find some ¢ € S\ S*. For now assume that for all i ¢ S* the value of [s']; is uniformly random we
can view Kg as a uniformly random key. If we view each Kg as random then we have Pr[Auth.Decg (car) #
1] < eap and Pr[3S C [n] .Auth.Decg (cap) € {ms3, L}] < (})ear.

In the previous paragraph we assumed that the value [s'], is uniformly random for each i ¢ S* the value.
This is close, but it is not quite true. In reality the distribution of [s'], is described by sampling a uniformly
random y; € Z% and then outputting y; mod 2*.However, by Theorem 3 the statistical distance between
original/modified distribution of our recovered shares [s'],,...,[s'],, is upper bounded by 27*. This follows
since we are guaranteed that N > n2%* by definition of the key generation algorithm. Thus, we have

(sk, pk) < KeyGen(1*) .
c1 = Encpi(ma;r)]S <€)€AE L9,

Py gan(my,mao) =1

Pr Decsk(CEncpk(Cl,mz,ms;Tz)) # m3

Similarly, if Py, gamm (M1, me) = 0 then for all S C [n] of size |S| = n — ¢ we can (essentially) view Kg as
random since there is some i € S\ S*. It follows that

(sk, pk) + KeyGen(1*)
n -
c1 = Encpi(ma;r) 1§ (€>€AE+2 .

P, yan(ma,m2) =0

Pr|Decyi(CEncpi(c1,mo, ms;r2)) # L

d

Reminder of Theorem 4. [Conditional Encryption Secrecy of Construction 19] Assume that our
Authenticated encryption scheme a4 = (AuthEnc, AuthDec) is (tag,car (tag, \))-secure for any security
parameter X\ and any running time parameter tagy. Then for any t and any security parameter A Con-
struction 19 provides (t,tsin, € (t,\)) conditional encryption secrecy with e(t,\) < eap(t,\) + 27> and
tsin = N - tp.Enc + POly(A).

Proof of Theorem 4: To prove this theorem we use a hybrid argument. In the first hybrid (Hybrid
0, real world) the distinguisher is given the actual ciphertext output conditional encryption and in the last
hybrid contains the adversary is given a ciphertext output by our simulator — described in Figure 3. As
the hybrids are indistinguishable, we can conclude that the first and last hybrid are indistinguishable as well
which implies that the our suggested construction is secure and provides conditional encryption secrecy in
the semi-honest model. Then we concretely compute the distinguishing advantage of the defined hybrids. In
what follows, we describe the hybrids with more details.

o Hybrid 0: In this hybrid the distinguisher D is given (sk, pk, mq,,ma, ms,cm,, (1,¢)) in which ¢ =
(51, - ,En,CAE) < CEncpk(cl, mg,mg).

o Hybrid 1: Let T = {i : ma[i] # my[i]} be the set of the indexes that m; and ms have different
characters. We define Hybrid 1 similar to Hybird 0, except for all j € T" we replace

¢; = P.Encyy (Ri(m2 7] —malj]) + REnC([[S]]i))
with P.Enc(R;) where R;- €r Zy are fresh and uniform random values chosen from Zy .

e Hybrid 2: This hybrid is exactly the same as the previous hybrid except we replace all the remaining
ciphertexts j € [1 : n|/T with ¢; = P.Encpy, (Rj (malj] — mi[j]) + REnc([[sT]]j)) where [s,]; €r {0, 1A

are fresh uniformly random elements (chosen independently from the secret K') chosen from the field
]FQA .

33

e Hybrid 3: This hybrid is exactly the same as the previous hybrid except we replace all the ciphertexts
j € [1:n]/T with é&; = P.Ency (Rj(mg[j] —malj]) + }A%j)) where R; €r Zy are chosen from Zy

uniformly at random.

o Hybrid 4: This hybrid is exactly the same as the previous hybrid except we replace ciphertexts ¢; for
all j € [1:n]/T, with P.Ency,(R}) in which R} €r Zy are chosen from Zy uniformly at random.

o Hybrid 5: This hybrid is exactly the same as the previous hybrid unless we replace cag with ¢4 €r
{0, 1}*™) a A\-bit string chosen uniformly at random. We note that () is a polynomila over the security
parameter A\ which represents the ciphertext size of authenticated encryption.

e Hybrid 6: We replace the ciphertext of the conditional encryption with the output of the simulator
Sim described in Figure 3.

Now we are proving that the defined hybrids are equivalent.

E.0.1 Hybrid 0 = Hybrid 1

These hybrids are equivalent i.e., we have
Pr[DHo = 1] = Pr[D™ = 1] . (9)

Where DHi =1 denotes the event that the distinguisher outputs 1 in hybrid i. The argument is essentially
the same as what we had for the security of Equality test predicate — see the proof of Theorem 2. In
particular, for each j € T we have mq[j] # maz[j] and |m [j] — m2[j]| < min{p, ¢} which implies that
(ma [j] —ma [j]) € Z}. It follows that R; x (my [j] — ma [j]) is uniformly random in Zy.

E.0.2 Hybrid 1 = Hybrid 2

We have information theoretically eliminated all information about shares shares with j € T. Since
Py gan(m1,m2) = 0 we have |T| > £ and |T| < n—¥¢. Let T = {i1,...,49:} with ¢ < n — £. Shamir Se-
cret Sharing guarantees that (s;,, Si,, ..., S;,) is uniformly random in IF;A. Thus, we can simply replace the
shares with uniformly random values. We have

Pr[D1] = Pr[D2] . (10)

E.0.3 Statistically indistinguishability of Hybrid 2 = Hybrid 3

We apply Theorem 3 with a = 2*, k = L%j and b = N. We first observe that when i € T the value of
$; € Fyx is uniformly random so that REnc(s;) is equivalent to D,i. It follows that the statistical distance
between REnc(s;) and the uniform ditribution Zy is at most + = [2 |~!. Since we are replacing the random
value in |T'| ciphertexts the overall statistical distance is upper bounded by % < % we have:

2*n _
| Pr[DH2] — Pr[D3]| < N <2 A (11)

The last inequality follows since we pick N > 2n22* so that NQigA <27,

E.0.4 Hybrid 3 = Hybrid 4

These hybrids are statistically indistinguishable as R;(ma[j] — m1[j]) + Rj is already uniformly random in
Zy. We have

Pr[D:] = Pr[D4] (12)

34

Design of simulator Sim(pk)

1. Sample, r{,....r €er Z},RY,...,R!! €gr ZN" uniformly at random
2. For all 1 <¢ < n compute & = P.Enc,,(R/;7))

19"

3. Pick Rk €g {0, I}Z(A) uniformly at random and set ¢y = Rk. //I()\) represents the ciphertext
size of our authenticated encryption.

4. Output ¢ = (1,¢,---,¢,,c4p)-

Figure 3: Steps of designing the simulator Sim for the conditional encryption secrecy when the predicate is
PZ,Ham

E.0.5 Indistinguishability of Hybrid 4 and Hybrid 5

By Hybrid 4 we have information theoretically elimated any information about the secret key K for our
authentication encryption scheme from (éy,...,é,). Thus, by AE security any adversary running in time at
most tap = tap(A) can distinguish between c4g and ¢, ; with the advantage of at most €ag(tag, A). So we
have

| Pr[Df4] — Pr[DHr = 1]| < eap(tap, \) (13)

E.0.6 Hybrid 5 = Hybrid 6

Looking at the definition of our our simulator in Figure 3, we can see that the conditionally encrypted
ciphertext in Hybrids 5 and 6 are generated in exactly the same way. It follows that the hybrids are
information-theoretically equivalent and we have

Pr[D3) = Pr[Ds] (14)
Putting everything together we have
| Pr[D (sk, pk, ma, maz, ma. CEncyp (Ency, (1) m2)) = 1]
— Pr[D (sk, pk,m1, ma, ms, Sim (pk)) = 1] ‘
= [Pr [D™] — Pr [D]|
<3 [pr (D] - pr [De]
i=0

A

m S €AE(t/,)\) + 2_)\ .

< EAE(t/,/\) +

d

Reminder of Theorem 5. II;gp is a 1 — e(X\) correct conditional encryption scheme for the predicate
_ ittt o ongd
- N — max{p,q}"

Py gp and 11y gp is 1 — €(N)-error detecting with €(\)

Proof of Theorem 5: Note that Enc,y(m) includes ¢[0] = P.Enc,,(Tolnt(m)) and that therefore by
correctness of Pallier we have Decgy, (Encyi(1m)) = Decgy, (P.Encpr(Tolnt(m))) = Tolnt™" (Tolnt(m)) = m
with probability 1 for all messages m € =" and all public/private key pairs in the support of KeyGen.

35

Recall that if ¢ = (0,¢[0],...,¢[n]) = Encyr(m) then CEncyi(c,m’,m’) will output a ciphertext of the
form (1,¢,...,C,). If Prgp(m,m’') = 0 then we have m_; # m’ and m # m’_; for all 0 < j < n. Thus, by
Theorem 2 each ¢; = g% r7 mod N? for random values r; € Zy and y; € Zy. Thus, we have

(2n + 1)|5|*t

Pr[Decsk(1, G, ...,) # L] < Pr[3jy; < 8" < ~

This implies that the construction is 1 — e(\)-error detecting conditional encryption scheme with e(\) =
D] 1
N — max{p,q}"
Finally, if P gp(m, m’) = 0 then by perfect correctness of our conditional encryption scheme for equality
predicate there exists some j such that é; = g% rjv mod N? is a valid Pallier encryption of y; = Tolnt(m”).
i n+1
Furthermore, we have already shown that Pr[3j.y; < |X|"™! Ay; # Tolnt(m”)] < % It follows

% that we will have Decgy (1, o, . . . , G2,) = Tolnt™ " (Tolnt(m")).

that, except with probability
O

Reminder of Theorem 7. Suppose that we are given k separate conditional encryption schemes Iy, ... 1l
corresponding predicates Py, . .., P, and that each II; provides (t(\), tsini(A), €:(t(A), N))-conditional encryp-
tion secrecy. The construction I, provides (t'(N),t5i,(A), € (t'(N), N))-conditional encryption secrecy with
() =0 (W), taaw(N) & Xl tswn (V) and ¢ (' (1),) = Zf & (¢ (1), 1).
Proof of Theorem 7: The simulator Simpgr(pk) for Ilpr will run the simulator Sim;(pk;) for each
conditional encryption scheme ? and concatenate all of the ciphertexts. Clearly, the running time of the
simulator is tg;, (A) = Zle tsimi(A). We can now define a sequence of k + 1 hybrids Hybrid 0 to Hybrid k.
Intuitively, in hybrid ¢ we set ¢; = Sim;(pk) for j < ¢ and ¢; = II,.CEnc(c,m’, m") for j > i. Note that in
Hybrid 0 we have ¢; = II;.CEnc(c, m’,m”) for all j and thus the final output is CEnc(c, m’,m”). By contrast,
in Hybrid k we have ¢; = Sim;(pk;) for all j < k and thus the final output is Simog(pk).

By assumption any attacker running in time t'(A) = t(A) — o(¢(\)) can distinguish hybrids ¢ — 1 and 4
with probability at most €;(t(\), A). It follows that any attacker running in time #'(\) = t(\) — o(¢t()\)) can

distinguish hybrid 0 from hybrid k with probability at most €’(A, (X)) = Zle € (t(A), N). O
Reminder of Theorem 8. Suppose that we are given k separate conditional encryption schemes Iy, ... 1
corresponding to predicates Py, ..., Py and that each II; is 1 — €;(\)-correct and 1 — €}(X\)-error detecting.

Then the construction I, is 1 —e(\)-correct (resp.1— €' (\)-error detecting) with e(\) = Ef ei(N)+ Zf €i(N)
(resp. €(N) =30, €(N).

Proof of Theorem 8: Let T = {j : Pj(m1,mz) =1} and T = {j : Pj(m1,ma) =0} = [k] \ T. We first
suppose that Pog(my, mo) = 0 which implies that P;(my,ms) =0 for all i < k i.e., T = [K].

Now let (pk,sk) be any honestly generated public/secret key and let ¢ = (0,¢1,...,cx) = CEncpr(m1)
with ¢; = II;.Encpr(my). The probability that II;.Decgy, (II;.CEncyr (¢i, ma, m3)) # L is at most €;(\). Union
bounding over all ¢ < k the probability that there exists ¢ such that II;.Decg (II;.CEnc,i(c;)) # L is at most
Y) =€)

On the other hand suppose that Por(m1,m2) = 1 which means that P;(mi,ms) = 1 for some j < k.
Clearly, if |T'| > 1 and II;.Decgy, (II;.CEncyi (c;)) = mg for all 4 € T and II;.Decyy, (I1;.CEnc,i(c;)) = L for all
i & T then Dec,y will output the correct message ms. As before the probability that there exists i € T such
that II;.Decgy (IT;.CEncpr (¢;)) # L is at most Zle €;(A) = €/(A). Similarly, the probability that there exists
j € T such that II;.Decgy (II;.CEncyi(c;)) # mg is at most Z?Zl € ().

Thus, we have Pr[Decgy, (CEncpy (Encpr(my), ma, m3)) # ms] < Zle (ei(N) + e (V) = e(N).

O

9In the malicious security setting the simulator Simo g (b, pk) is also given a bit b = 1 if and only if CEncpi(c,m/,m") = L
i.e., if and only if II;.CEncp(c, m’,m’") = L for some ¢ < k. If b = 1 then Simpr(b, pk) outputs L. Otherwise we simply run
Sim; (0, pk;) for each ¢ < k.

36

F System Model of Personalized Typo Tolerance

In this section, we will concentrate on the application of the conditional encryption scheme in designing a
secure mechanism to supporting password typos in a secure way. We first start with describing the syntax
and API of a typical password-based authentication server, and then we use our introduced conditional
encryption schemes for handling the typos when the user logs in with a wrong password close the original
one. Indeed we expect the if the miss-typed password distance from the original one is small, then this typo
can be used by the user for future logins.

A password-based authentication scheme II is a stateful mechanism that includes three main algorithms:
Initialization, RegisterNewUser and Login which are described as follows.

e (00) <« Initialization(1*): The initialization algorithm (potentially randomized) Initialization takes as
input the security parameter A\ and setups the system and outputs the initial state .

o (0/,d € {acpt,rjct}) < RegisterNewUser(o, Id,pwd): This is potentially a randomized algorithm
which takes as input the current state of the system o, the user identity Id and its corresponding
password pwd, and updates the state of the system to o’ and output acpt (for the successful registration
when the user id Id is new and previously is not registered) or rjct (for unsuccessful registration).

o (0/,d € {acpt,rjct}) + Login(o’,Id,pwd): Let o be the current state. This is also potentially is a
randomized algorithm which takes as input the state o, the identity Id and password pwd, and outputs
the updated state ¢’ and the login result d. It either outputs d = acpt (for successful login) or d = rjct
(unsuccessful login attempt e.g., using wrong password).

In what follows, we will formally define the required properties of II. Before that, we will start by
introducing some predicates which will be used in our definitions.

e {0,1} := isRegistered(Id,o): This predicate takes as input the identity-password pair (Id,pwd), the
current state of the system and outputs 1 if the user was previously registered with the corresponding
identity Id; otherwise, it outputs 0.

o {pwd, L} + PullPwd(Id,s): This algorithm takes as input the user identity Id and current state o,
and outputs pwd the associated password to Id if isRegistered(Id,o) = 1; otherwise, it outputs L.

Definition 10 (Correctness). Let IT = (RegisterNewUser, Login) be a password-based authentication mech-
anism, P a binary predicate 1°, and EventType = {Register, Login} be the set of registration/login actions.
Then, for all sequence of registration/login events Uy, ..., U; € ITD x PWD x EventType resulting the state
0i, the correctness of Il enforces two following conditions:

e Login Correctness: For all events
U1 = (14, pwd, Login) € ZD x PWD x EventType
we have (0;41,acpt) < Login(o;, Id,pwd) if
i = isRegistered(Id,pwd, o;)

Intuitively, this basically means that the user with identity Id has already successfully registered with
the corresponding password pwd and for all future login events using the the id-password pair (I1d, pwd)
the login algorithm Login always outputs acpt.

10The predicate determines if two passwords’ distance satisfies the target distance metric or not. For example, if the distance
metric is Hamming 2, for two password pwd,, pwd,, we have P(pwd,,pwd,) = 1 if Ham(pwd,, pwd,) < 2

37

o (P,0)-Typo Resilience: Let P be binary predicate, 0 < 6 < 1 be an arbitrary real number,
Uiy1 = (Idiq1,pwd;, , Login) € ZD x PWD x EventType be a login event s.t. 1 := isRegistered
(Idi+1,pwd;, 00) A P(pwd, ,,pwd;) for some 1 < j <, and (0i41,rjct) < Login(Idit1,pwd;, 1, 0:).
We say 11 is (P,0)-Typo resistant if after login event Uy = (Id;41,pwd;, Login) for some k > i+ 1,
for all K > k we have (o4 41,acpt) < Login(Id;;1,pwd; |, 0k) with probability at least 0. Intuitively,
this implies that after an unsuccessful login with a password which has small distance to the original
password, if we have a login with the original password, then, we have the chance of successful login
(at least with probability) with the miss-typed password and the that typo will be added to the cache
of password which will grant successful login.

G Typo Vault: Security Definitions

In this section, we formally describe the security definitions based on a game between an adversary A and
a challenger C. In the game we use a predicate which checks if the received login query is valid or not.

Definition 11 (Valid Login Query). Let pwd,,pwd,,pwd € PWD be three passwords from password space
PWD. We say that the login query (pud,, pwd,,pwd) is a valid query under predicate P if we either have

(1) pwd, = pwd, if 1 = P(pwd,,pwd) or 1 = P(pwd,, pwd).
(2) Or P(pwd,,pwd) =0 A P(pwd,,pwd) = 0.

We denote ValidLginQuery(pwd,, pwd,,pwd) = 1 when the query is valid with regard to the mentioned
two conditions, otherwise we have ValidLginQuery(pwd,, pwd,, pwd) = 0.

Definition 12 (Typo Privacy). We say that a password-based authentication scheme II s
(t(N),q(N),e(t,q,\)-typo private under the predicate P if for all adversaries A running in time t and
making at most q queries to Login /Register we have

Pr [Experirnen1:rLT),pc)_Privacy (AN, q) = 1] <e(t,q,N) (15)

In Experiment 16 we defined two main oracles that the adversary can make at most ¢ queries to them
which are RegisterQuery and LoginQuery. RegisterQuery receives an ID and password, and assuming that it
knows the current state of the system, first checks if the ID is registered previously or not. If not, it registers
the user by running RegisterNewUser as described in Experiment 16 and updates the state. LoginQuery
receives the and ID and a pair of two PWDs pwd, and pwd; as a request for login attempt. Similarly,
assuming that oracle knows the current state of the system, the oracle uses pwd, to run the login algorithm
Login as described in Experiment 16. We also defined the time variable ¢ to track the number of queries and
the state updates when the adversary access to the oracles.

We remark that there are other security definitions like offline distinguishing, offline guessing and
Random-or-Real which are defined for a typo tolerable password-based authentication scheme and intro-
duced and discussed in [CWPT17]. However, due to the page limitation we ignore to formally review and
prove them. However, we should highlight that our construction also provide these security properties. Basi-
cally, the source of difference between our proposal and the TypTop mechanism is the underlying the public
key encryption scheme. Moreover, it is worth mentioning that their Cheetarjee et al’s construction dose not
support the security definition we just introduced, i.e., Definition 12.

G.0.1 No Typo Privacy for Original TypTop

In what fallows we will show that TypTop [CWP*17] does not satisfy Typo Privacy we described in Exper-
iment 16. Before that, we just briefly review TypTop mechanism and then we will show why their proposal
does not support our suggested security property.

38

Experiment 16.

Experimentp 1,0 privacy [4: A G RegisterQuery(Id, pwd):
o TInit (1) If t > q return L.
1) ¢ runs o0 —
Initialization(1%). (2) set o =01
(2) C randomly selects b €p (3) (ot+1,dt+1) < RegisterNewUser(o, Id, pwd)
{o,1}.
4 tt=t41.
(3) Csetst =0 as the starting (4) se +
time. LoginQuery(Id, pwd,, pwd;):
¢ Query phase: A makes (1) If t > g return L

at most q queries to
RegisterQuery/LoginQuery ora-
cles: (2) set o =0y

o RegisterQuery(Id;, pwd,) (3) if 1 = isRegistered(Id,o)

o
LoginQuery(Td;, pud, o, pud |) e pwd;y = PullPwd(Id,o)

o if 1 =

e Guess: Let view = ValidLginQuery(pwd, pwd,, pwdry)

(A 00,01,d1,...,0q,dg). < (0vs1, dit1) -

o b = A(view). Login(Id,pwd,, o).
- sett=t+1.

¢ Experiment Output: . else

Experimentn 10 privacy [A, @] = - set di41 = rjct, 041 =0, t =

1 < b ==0 t+1

(4) else

o set ot41 = 0,di+1 = rjct

o sett=t+1

7

Figure 4: Formal description “Experimentp 1., prvacy. Which the experiment defining the typo privacy.
The experiment is defined based on the interaction between unlimited adversary A and the challenger C.

39

Let pwd be the user’s password. In TypTop, the server uses a password-based key derivation function to
extract the secret key k = PKDF(pwd) and also uses public key cryptography and assigns a pairs of secret-
public key (pk, sk) to each user in time of registration. The user assigned public key will be stored in the sever
along with his/her other credentials. Moreover, let AE = (AE.Enc, AE.Dec) be an authenticated encryption
scheme. Then, the server encrypts sk using k to store the ciphertext Csx = AE.Encg(sk) in the server side.
After an unsuccessful login attempt using a miss typed password pwd’, the server will encrypt the typo pwd’
using pk, and adds it to the waiting list. In the future login using the original password pwd, the server
extracts k = PKDF(pwd), and decrypts Csi to extract the secret key sk. Then the server uses the secret key
sk to decrypt all the ciphertexts appeared in the waiting list. Finally, those that have small edit distance
to the original password pwd have the chance to be added to the cache of valid passwords/typos which will
grant successful login for the future attempts.

Looking at the adversary’s ability /view, we can see that the designed TypTop dose not satisfy Typo-
privacy. Based on the experiment description, we can see that the adversary knows the passwords and
therefore she can decrypt the challenge ciphertext to determine which password is chosen by the challenger.
This was a high level intuition of the security issue and in what follows you may find more formal technical
details of the mentioned issue. For simplicity we assume that number of queries is at most ¢ = 2 the first one
is the registration query of a user with identity Id and password pwd. And the second query is t a login query
with password pairs pwd,, pwd, of the adversary choice and we have P(pwd,,pwd) # 1 (so pwd, and pwd, are
not necessarily equal while based on the condition of the experiment if P(pwd, pwd,) = 1, then they have to be
equal i.e., pwd, = pwd,, i.e., ValidLginQuery(pwd,, pwd,,pwd) = 1). Regarding the description of TypTop,
the challenger will add the ciphertext Cpua, = Hpubkey-Enc(pk, pwd,) to the updated state as the encryption
of a potential typo. Based on the description of the game, the adversary chooses the registration password
pwd and knows. So simply can extract the authenticated decryption key k& = PKDF(pwd) and computes the
secret key sk = Ilpypkey-Dec(k, Csx). Finally, the adversary computes pwd, = Ilpubkey-Dec(sk, Cpua,) and
simply outputs b (A knows both pwd,, pwd,).

The above attack represents the simplified version of the actual Typo privacy and actually is a weaker
definition. However, as the TypTop scheme does not provide this weaker requirement, it the does not satisfy
Typo privacy as well.

H Personalized Typo Tolerance Mechanism from Conditional En-
cryption

In this part we will describe our generic construction of a password typo vaults which safely caching incorrect
login attempts with conditional encryption. In the rest of the paper we call it “ CondTypTop” to imply
construction of TypTop which is designed using conditional encryption. The main building blocks of our
proposed construction are conditional encryption Ilcg = (KeyGen, Enc, CEnc, Dec), authenticated encryption
Iz = (Enc,Dec) and password-based key derivation function PKDF'!. Let the underlying conditional en-
cryption be over the binary predicate P. Considering the mentioned building blocks, our construction of
IIp = (Initialization, RegisterNewUser,Login) is described in Figure 6.

Intuitively, we should highlight that construction is similar to TypTop, however the main and basic
idea and difference is replacing the traditional public key encryption part with our proposed conditional
encryption scheme. So after an incorrect attempt using the typo included password pwd’ we encrypt it using
conditional encryption using the encryption of original password ciphertext. In fact, in this case pwd’ will
be considered as the payload of Ilgg.CEnc. For this aim, we have to encrypt the original password pwd using
Cpwa = Ilcg.Encpy(pwd;) and store it in the server along with user’s public key pk. Then, in future login
with the miss typed password pwd’, we add the ciphertext Cpyar = Icg.CEncyr(Cpua, pwd’, pwd’; 7”") to our
waiting list. So, in the future login with the original password pwd we extract Apwa = PKDF(pwd) and decrypt
sk = Ig.Dec(kpua, Csi). Finally, if P(pwd,pwd’) = 1, the conditional decryption returns the underlying

1lwhich takes as input the password and deterministically extracts a key for symmetric key encryption scheme and we have
kpwa = PKDF (pwd)

40

payload (here is the password with small typo pwd’) pwd’ = Ilcg.Decsi(Cpuar); otherwise, the decryption
algorithm returns uniformly random element chosen from the password space PWD.

In what follows, we will provide the detailed description of algorithms Initialization, RegisterNewUser and
Login.

e 0y + Initialization(1*): This algorithm takes as input the security parameter A, and sets the initial
state op = (A, Sw, ST, W, T) in which W is allocated waiting list, T the cache of valid typos granting
successful login. Sy and St are respectively the size of waiting list and cache size allocated for each
user. Initially, as we don’t have any registered user, W and T are empty.

o (0',d = {acpt,rjct}) + RegisterNewUser(o, Id,pwd): Let o be the current state of the system, and
(Id,pwd) be the pair of password and user identity. If 1 = isRegistered(o,pwd), the algorithm
outputs (o,d = rjct); otherwise, the algorithm computes symmetric key kpuq = PKDF(pwd||saltiq) in
which saltrs €r {0,1}* is the assigned user’s slat, and (pkrq, sk1q) < KeyGen(1*). Then, algorithm
computes Crapwa = Ilcg.Encpp,, (pwd;) under random coin r €r {0, 1}*. Then the algorithm will
assign a waiting list Wi, of size Sy = o[1] and will fill Wi4 with conditional encryption of garbage
messages, i.e., Wiq = Ieg.CEnCpry, (Crapua, 7', 7'577) s.b. ' € PWD2 and r” € {0,1}*. Finally, the
array T1q of size ST = o[2] as a cache of passwords which granting successful logins will be assigned to
the user with identity Id such that Tt4[0] = Ilpg.Enc(kpua, sk1a) . To track the number of logins, the
algorithm sets crq as the counter which will be increased by one after each attempt for login. We set
014 = (Id, saltld,pkld, W:[d, T1d7 CId,pwdv CId) The updated state will be o/ = (O'7 UId) and the algorithm
outputs (¢/,d = acpt).

e (0/,d = {acpt,rjct}) + Login(c,Id,pwd): The algorithm first checks if the user is registered and
output (0/ = 0,d = rjct) if 0 = isRegistered(o, Id); otherwise, it extracts the state 014 € o which
was previously assigned to the user Id. Then it obtains the salt saltiy = o14[1] and computes kpyq =
PKDF(pwd||saltrq). Then considering the cache T1q4 = o14[4], the algorithm search for the ciphertext
Tigli] for all 1 <4 < Sp such that (1, skra) = Ise.Dec(kpua, T1ali]), this is a successful login and the
algorithm sets d = acpt; otherwise, d = rjct. Now the counter is updated i.e., o14[6] = 014[6] + 1, we
have two cases:

(1) Successful login (d = acpt): Now the algorithm will process waiting list using the extracted
secret key skiq. For this aim, the algorithm will decrypt all the ciphertexts in Wiq = 014[3] as
m; = Heg.Decgpy, (Wra[j]) for all 1 < j < Syy. For those m; that have P(pwd, m;) = 1 we add them
to the cache T14 if we have empty space for new typos in T13. We can assign a weight to m; based
on its appearance in the sequence my, ..., mg, and randomly selects them based on their weight
until the cache become full. For the selected my, the algorithm will use kpyg m, = PKDF(mg||salt)
to compute

ski1q) -

Now, a random shuffling will be applied on the elements of cache with the constrain that the first
element is always associated to the original password. After processing waiting list, similar to the
RegisterNewUser, the algorithm fill the waiting list with garbage ciphertexts and updates Wiq.
In this, we should highlight that the updated ¢’ is the same as o and the only different is the
updated cache/waiting list T1q/W14 and. This is the successful login and the algorithm outputs
and the output is 0/ = o

prd,'mk - HAE-Eanwdymk(

(2) Unsuccessful login (d = rjct): In this case we need to conditionally encrypt pwd and add it
to the waiting list. So, first we extract Crqpuar = 014[0] and compute

CPWd7PWd' < HCEkad .CEnckad (CId,pwd’ s de, de, 7")

in which r €5 {0,1}* (remind that A = ¢[0]). Assuming the updated value of counter crq = o14[6],
the algorithm computes ¢ = c;¢ mod Sy and replace the i-th element of the waiting list. Then it

12We remind you that PWD is the space of all possible passwords.

41

will randomly shuffle the waiting list and update the state as o’. We highlight that, ¢’ is different
with o related to the counter and the changes applied to the waiting list.

Now the login attempt is done and the algorithm outputs (¢’, d).

H.1 Security proof of CondTypTop

In this part we will prove the security of the CondTypTop. We should highlight that we just concentrate
on the typo-privacy that we defined in this paper. The other security properties defined for TypTop are
still preserving as our construction is similar to the original TypTop. So, due to page limitation, we leave
discussing them here and with similar reasoning all the remaining security properties can be proved in the
same way.

To prove that CondTypTop provides Typo-privacy, we use hybrid argument and will define three hy-
brids. Then, using the security of conditional encryption, we show that all these hybrids are computational
indistinguishable. Finally, by indistinguishablity of the first and the last hybrid, we conclude that the our
CondTypTop has typo privacy. Intuitively, the first hybrid is the original typo privacy game. In the second
hybrid, we take the current state of the system and replace all the ciphertexts that are the output of the
CEnc algorithm with the output of Sim(pk) of conditional encryption. As we assumed that the underlying
conditional encryption is secure, inherently such simulator exists. Based on the construction of CondTyp-
Top, the ciphertexts we replacing are the conditional encryption of pwd, , for all 7 such that the i-th query
is LoginQuery query. Finally, in the last hybrid, we just replace Sim(pk) with conditional encryption of
pwd; ;. In what follows we formally prove the typo privacy of CondTypTop.

Theorem 17. Given the (t,q,€)-secure conditional encryption Ilgg = (KeyGen, Enc, CEnc, Dec), then Cond-
TyoTop 11 descried in Construction 20 is (t',q', €')-typo private.

Proof of Theorem 17: To prove the security of our CondTyoTop, we should highlight that for the
ciphertextsof conditional encryption which presented in the final state, two main cased can be considered.
Without loss of generality, let the i-th query be a LoginQuery query. Then state of the system contains
the conditional encryption Cj, = CEncpy, (OpwdmvPWdi,b) in which Cpya,, = Encyr(pwdyy) for some previously
registered user with identity Id. So the two cases are as follows:

+ pwd; , = pwd, ;. In this case, both ciphertexts are statistically indistinguishable and their input plain-
texts are exactly the same. So no adversary can distinguish between their ciphertexts.

e P(pwd, 5, pwdyy) = 0 A P(pwd, o, pwdyy) = 0. For this case we need to prove adversary’s advantage to
win in the experiment is polynomially close to the advantage of adversary who breaks the security of
conditional encryption. We will show it by defining three following hybrids Hybrid 0, Hybrid 1 and
Hybrid 2.

As we mentioned before, to prove the security of Construction 20, we defined three hybrids and then prove
all these hybrids are indistinguishable. Indistinguishability of these hybrids implies that the advantage of
the adversary to win in Experimenty; . privacy 1S DRegligible.

Hybrid 0: This is the original experiment Experimentyy 0, privacy-

Hybrid 1: Let o be the final state of the typo privacy experiment defined in Hybrid 0. Suppose Q = {C;; € 0}
be set of all conditional encryption of pwd, , for all the login queries 1 < < q'. Due to the security of
conditional encryption, we know that there exists simulator Sim(pk) who simulates the ciphertext of
conditional encryption scheme. In this hybrid, we replace all C;, € Q with C}, < Sim(pk).

Hybrid 2: In this hybrid we simply replace all C; , with

Cii—p = CEncpk(OPWdid,dez’,l—b)

42

H.1.1 Indistinguishability of the hybrids

. Due to the security of conditional encryption, the advantage of adversary A to distinguish between Hybrid
0 and Hybrid 1 is e. More formally, we should highlight that as P(pwd, ,,pwd;4) = 0, the simulator can
simply select a random number and encrypt it using the public key pk. As the security of conditional
encryption guarantees that if P(mq,ms) = 1, then the resulting ciphertext will be the encryption of a
message chosen uniformly at random. And this is basically what our simulator Sim(pk) does. With similar
argument, the adversary advantage in distinguishing between the hybrids Hybrid 1 and Hybrid 2 is also
€. As a result, the advantage of adversary A spending time ¢’ = ¢ to distinguish between Hybrid 0 and
Hybrid 1is € = .

O

I Constructions

43

Construction 18.

(pk, sk) = KeyGen(1?):

(1) Pick random r € {0,1}*
(2) Compute (sk = (8,1) ,pk = (N, g)) < P.KeyGen(1*;7)*
(3) If |X|" " > min(p, q) or gcd(N, (p — 1)(g — 1)) # 1, repeat step (1); else, output (sk, pk)

Cm,y < Encpi(ma):

(1) Pick random r € {0, 1}*
(2) Compute my = Tolnt(m).
(3) Return (0, ¢, := P.Enc (mq;7))

c= CEnCpk(le , M2, m3):

1) Parse (b, c) < ¢, and (N, g) < pk.

2) If b=1 or gcd(c, N) # 1 return L.

4) = = g™ - [(RX c) BP.Ency (—R) - ma;)]

(1P
(2)
(3) Compute mz = Tolnt(ms), Mo = Tolnt(mz) and select R €r Zn, 12 €ER Ly
(4)
(5) Return ¢ = (1,¢7)
m := Decg(¢):
1) Parse (b,c) < ¢
2) Compute x < P.Decgy(c).

) compute m + Tolnt™!(z)
4) If b=1and m > |S["*! return L

(
(
(3
(
(

5) Otherwise return m

“We use the simple variant of Pallier key generation which picks primes p and g of equivalent length and sets N = pq,
g=N+1,8=lcm(p—1,g—1) and g = o(N)~! mod N where p(N) = (p — 1)(g — 1). See details in Appendix A.

44

Construction 19.

(sk,pk) + KeyGen(1*;7):

1. run (P.sk,P.pk = (N = pq,g = N 4+ 1)) < P.KeyGen(1*;r).
- if min{p, ¢} < |X| or gcd(N, (p — 1)(¢ — 1)) # 1 repeat step 1.
2. set SS = (ShareGen, SecretRecover) over field Fyx
3. set sk = P.sk and pk = (P.pk,2")
¢ + Encpp(m;r):
1. parse m = (m[l],...,m[n]),r = (r1,...,ma) € (Z})".
2. V1 < i < n, compute 7[i] = Tolnt(m[d]), c; = P.Encyy (1 [i] 5 7;)
3. output ¢ = (b=0,c1,...,¢n).

’ "N,
¢ + CEncpy(cm,m’,m";r):

1. parsem/ = (m'[1],...,m/ [n]) €™, r = (r1,...,mn) € (Z4)", ecm = (bc1, - , cn)
2. compute 712/[i] = Tolnt (m’ [i]) to map each letter to integer.

3. if b=1, output L.

4. V1 <i < n, compute & = P.Enc,y, (i [i] ;) Hes.

5. Pick K €r {0,1}*, compute ¢4z = Auth.Encg (m”).

6. ((i1,[s]1),---, (in, [s],)) < SS.ShareGen(n,n — I, K).

7. V1 <i<n:sample a; €p [1, m;l 71H, 7 € T3

8. V1 <i<n:compute y; = [s]; +a;2*,& = P.Ency(y;;7;) B (R; K &)
9. output ¢=(b=1,¢1, - ,én,CcAE)

{m, L} = CDecgy, ((b,¢)):

2.1 ifb=1
o parse ¢ = (¢1, - ,én,CAE), AND set m = L
o for 1 <i<mn:g; =P.Decs(é), [s'], = RDec(9;) = §; mod 2*.
o Forall (") possible S C [n] with |S| =n—¢,
- compute Kg = SecretRecover ({(z, [s'];) }i65>
- (v/,m) = Auth.Decg ¢ (cag), if v/ = 1,return m = 7/’ ®
22 ifb=0

- parse ¢ = (¢1, - ,én), AND set m = L
- for 1 <i < n, compute 1m; = P.Decg(&;)

- return m = Tolnt =1 (vh1)]| ... || Tolnt =1 (viry,)

“Here m = L as for all possible Kg the AuthDeck g algorithm failed.

Figure 5: Concrete construction of conditional encryption over binary predicate Ppyan using secret sharing.

45

Construction 20.

oo + Initialization(1*):
Given the security parameter A as input, this algorithm acts as follows.

1. For all 1 < i < L sample w; €r PWD uniformly at random, and Set W =
[Meona-Enc(wy), . . ., Heona-Enc(wy,)].

2. Set T =[] as the list for collecting legitimate typos
3. Set [(VV7 T)

(04,d = {acpt,rjct}) < RegisterNewUser(c;_1, Id, pwd):

1. Forall 1 <4 < L sample w; € Cry,,,,* , and Set W = [wy,...,wr], and set Wiq = W.
2. Set Ttq =[] //As the list for collecting legitimate typos
3. Compute b = IsRegistered(o;_1, Id).

If b =0, set d = acpt and go to step 4;
If b =1, set d = rjct, break and return (o;,d)

4. Run (pkrg, skia) < Igena.KeyGen(17).
5. Set kiqpwa = PKDF(pwd), compute Crgpua = AE.Ency,, . (sk), and cpua = Icona-Encpr,, (pwd)
6. Set T1q[0] = Cra,pwa, and Wiq = W.
7. Update o; = Append(c;—_1, (Cpua, Pk1a, Wia, T1a))-
8. return (0y,d)

(04,d = {acpt,rjct}) « Login(o;_1, Id, pwd’):

1. Compute srq = Extract(Id,o;_1).

If sz = L, return (0;41 = 0y,d = rjct) and break;
Else, parse s1a = Cpua, Pk1a, W1a, T1a

2. Compute k = PKDF(pwd)
3. Ifvo € TIda 1= AEDeCk((E)

2.1 Set d = rjct, compute cpuar = Ilcona.CENC(cpua, pwd’), update Wiq = Append(Wia, Cpua’)-
//Adding typo’s ciphertext to waiting list Wiq.
2.2 Set s1q = (Cpua, Pk1a, W1a, T1a), compute o; = Replace(Id, $14,0;-1), return (o3, d), and break.

3. Find z € Tiq s.t. L # skig = AFE.Decy(x), and Vi € [|[W14|] compute pw; = Ilgong.Decsk,, (Wrqli]),

o if 1 = P(pw;,pwd): compute kigpw, = PKDF(pw;), Crapw, = AE.Ency, ,, (sk1a), and
update T1q = Append(Ti4, Cra,pw)-

4. For all 1 <i < L sample w; €g Cr1,,, and set W = [wy,...,wg], and set Wiq = W.
5. Set s1q = (Cpua, Pk1a, W14, T1a), and compute o; = Replace(Id, 0y, s14)-

6. Return (0;,d = acpt)

“We note that w;s are random element sampled from the ciphertext space CHC°n 4 associated to Ilcona.

Figure 6: Proposed generic construction of our password typo vaults for secure caching incorrect login
attempts with conditional encryption 46

	Introduction
	Our Contributions
	Conditional Encryption Security
	Efficient Constructions
	Application to TypTop
	Implementation and Empirical Evaluation
	Related work

	Preliminaries
	Partially homomorphic Encryption
	Secret Sharing (SS)
	String Distance and Close Passwords

	Conditional Encryption
	Concrete Constructions of Conditional Encryption
	Conditional Encryption for the Equality Test Predicate P= (x)
	CAPSLOCK Predicate
	Hamming Distance Predicate
	Correctness of the [const:const:ArbHamm]Construction 19
	Efficiency

	Edit Distance One
	OR Composition

	The Typo Predicate: Personalized Typo Correction
	Application to Personalized Password Typo Correction
	The Security Issue.
	The Fix
	Security Proof

	Implementation and Empirical analysis
	Conditional Encryption
	Implementation
	Optimized Implementation of the Hamming Distance Predicate
	Evaluation
	Discussion

	TypTop with Typo Privacy
	Discussion

	Details on Paillier Cryptosystem
	Details on Secret Sharing (SS)
	Real or Random Security
	RoR Experiment for Conditional Encryption

	General construction of Conditional Encryption from Circuit-Private FHE
	Circuit Privacy is Necessary
	Circuit Privacy Definition
	Proving Conditional Encryption Secrecy
	Correctness and Error Detection

	Missing Proofs
	Hybrid 0 Hybrid 1
	Hybrid 1 Hybrid 2
	Statistically indistinguishability of Hybrid 2 Hybrid 3
	Hybrid 3 Hybrid 4
	Indistinguishability of Hybrid 4 and Hybrid 5
	Hybrid 5 Hybrid 6

	System Model of Personalized Typo Tolerance
	Typo Vault: Security Definitions
	No Typo Privacy for Original TypTop

	Personalized Typo Tolerance Mechanism from Conditional Encryption
	Security proof of CondTypTop
	Indistinguishability of the hybrids

	Constructions

