
Conditional Encryption with Applications to Secure Personalized
Password Typo Correction

Mohammad Hassan Ameri Jeremiah Blocki

Purdue University
West Lafayette, IN USA

Abstract

We introduce the notion of a conditional encryption scheme as an extension of public key encryption.
In addition to the standard public key algorithms (KeyGen, Enc, Dec) for key generation, encryption and
decryption, a conditional encryption scheme for a binary predicate P adds a new conditional encryption
algorithm CEnc. The conditional encryption algorithm c = CEncpk(c1,m2,m3) takes as input the public
encryption key pk, a ciphertext c1 = Encpk(m1) for an unknown message m1, a control message m2 and
a payload message m3 and outputs a conditional ciphertext c. Intuitively, if P (m1,m2) = 1 then the
conditional ciphertext c should decrypt to the payload message m3. On the other hand if P (m1,m2) = 0
then the ciphertext should not leak any information about the control message m2 or the payload mes-
sage m3 even if the attacker already has the secret decryption key sk. We formalize the notion of
conditional encryption secrecy and provide concretely efficient constructions for a set of predicates rele-
vant to password typo correction. Our practical constructions utilize the Paillier partially homomorphic
encryption scheme as well as Shamir Secret Sharing. We prove that our constructions are secure and
demonstrate how to use conditional encryption to improve the security of personalized password typo
correction systems such as TypTop. We implement a C++ library for our practically efficient conditional
encryption schemes and evaluate the performance empirically. We also update the implementation of
TypTop to utilize conditional encryption for enhanced security guarantees and evaluate the performance
of the updated implementation.

Full Version: This document provides the full version of the article published at CCS 2024 under the
same title – see https://doi.org/10.1145/3658644.3690374.

1 Introduction
Traditionally, public key encryption allows any party who has the public key pk to encrypt a message m
and obtain a ciphertext c which can only be decrypted by a party who possesses the corresponding secret
key sk. The implicit assumption is that anyone who posses the secret key sk is a trusted party. However,
there are some applications where the party encrypting a message may only want to conditionally reveal
that message to the party who possesses the secret key if certain conditions hold. For example, consider
the problem of having an authentication server maintain an (encrypted) cache of incorrect login attempts
for each user. Such a cache might be used to design a (personalized) typo tolerant password authentication
scheme [CAA+16, CWP+17] and/or to help identify malicious login attempts. In the TypTop [CWP+17]
system the sever generates a public/private key pair (sku, pku) for each user account u and encrypts the
secret key sku with a symmetric encryption key Ku = PKDF(su, pwdu) derived from the user’s password
pwdu and a random salt value su. The server then stores the resulting ciphertext cu = EncKu

(sku) and
public key pku along with the salt value su. Whenever the user logs in with an incorrect password pwd′ the
authentication server uses the public key pku to generate and store the ciphertext c′ = Encpku(pwd

′). Later
if the user logs in with a correct password pwd we can re-derive the symmetric key Ku = PKDF(su, pwd), use
the symmetric key to recover the secret key sku = DecKu

(cu) and then use the secret key sku to decrypt each

1

https://doi.org/10.1145/3658644.3690374

password pwd′ = Decsku(c
′) in our encrypted cache. The TypTop system can then examine each particular

password pwd′ in the cache to determine whether or not this password is an “acceptable typo” that should
be accepted during future login attempts. An online password cracker will not be able to peek inside the
encrypted vault unless he has already guessed the correct password and derived Ku. However, the above
approach still has a security drawback in that an offline attacker who manages to crack the user’s password
pwdu will be able to access any password stored in the encrypted vault.

While the TypTop [CWP+17] system maintains a cache of all incorrect login attempts, only the passwords
that are “sufficiently close” to the original password are considered as candidates to be added to a list of
“acceptable typos” for future login attempts. Thus, in the password typo tolerant application, one only
needs to store incorrect login attempts that are plausibly typos of the user’s original password e.g., the
Hamming Distance between the two passwords is at most 2 or the password was incorrectly capitalized
because the CAPSLOCK key was not turned off. If the user mistakenly logs into his social media account
(12345_SOCIAL) with his bank password (STR@NG_BANK_#;aym7*5) and the social media site was
running TypTop then it would add the bank password (STR@NG_BANK_#; aym7*5) to its encrypted
cache even though this password is not close to the social media password and would never be added to
the list of “acceptable typos”. The potential presence of additional user passwords in the encrypted cache
could increase the incentive for an offline adversary to crack the social media password (12345_SOCIAL)
in order to decrypt the cache which might contain the user’s passwords for other accounts e.g., the banking
password STR@NG_BANK_#;aym7*5. Ideally, when the authentication server sees an incorrect login
attempt it would add the password to the encrypted cache if and only if that login attempt is a plausible
typo. However, the authentication server should not store the password pwdu in plaintext form so it is
difficult to know whether or not the login attempt is a plausible typo a priori. To this end it would be useful
to generate a “conditional” ciphertext c′ such that (1) if pwdu and pwd′ are sufficiently close then c′ decrypts
to pwd′; (2) otherwise c′ leaks no information about the password pwd′.

1.1 Our Contributions
We introduce the notion of a conditional encryption scheme and demonstrate a concrete application to
improve the security of personalized typo tolerant systems such as TypTop [CWP+17]. We conjecture that
Conditional Encryption may find many other MPC applications e.g., securing Triger-Action Platforms (“If-
this-than-that” operations) for IoT services [CCW+21] or designing Fuzzy Password Authenticated Key
Exchange Protocols [DHP+18, CHK+05, RX23, BFH+23]. Intuitively, a conditional encryption scheme
(KeyGen,Enc,Dec,CEnc) for a binary predicate P (·, ·) is a public key encryption scheme with the addition of
a new “conditional encryption” algorithm. The conditional encryption CEncpk(c,m2,m3) algorithm accepts
four inputs: a public encryption key pk, a (regular) public key ciphertext c = Encpk(m1) for an unknown
message m1, a control message m2 and a payload message m3 and the output is a ciphertext c′. Intuitively,
if P (m1,m2) = 1, then control message m2 is related to the unknown and encrypted message m1 (e.g., the
Hamming Distance between m2 and m1 is sufficiently small) and the output ciphertext c′ should encrypt
the payload message m3 i.e., Decsk(c′) = m3. On the other hand, if P (m1,m2) = 0 then the messages m1

and m2 are unrelated and the ciphertext c′ should not reveal any information about the control message m2

or the payload message m3 — even if the attacker knows the secret decryption key sk.

1.1.1 Conditional Encryption Security

We provide formal security definitions for a conditional encryption scheme in the semi-honest settings. If the
attacker does not know the secret decryption key sk, then we require that the encryption scheme satisfies the
traditional notion of real-or-random security for a public key encryption scheme. When the attacker does
have the secret key sk and the predicate does not hold (i.e., P (m1,m2) = 0) we still want to ensure that
the ciphertext c′ = CEncpk(c,m2,m3) does not leak any information about m2, m1 or m3. We formalize this
“conditional encryption secrecy” property using a simulator Sim(pk) who is only given access to the public
key and must generate a ciphertext which is indistinguishable from c′ even if the distinguisher D is given
access to the secret key sk as well as the original ciphertext c and the original messages m1, m2 and m3. We

2

elect to follow a concrete security definition instead of asymptotic definitions to provide concrete guidance
on selecting the concrete security parameters in practice.

1.1.2 Efficient Constructions

We next provide efficient constructions of conditional encryption for the equality predicate and for predicates
based on hamming distance1, edit distance and CAPSLOCK. Our constructions use the Pallier partially ho-
momorphic encryption scheme, secret sharing and authenticated encryption as the constructive building
blocks. We also provide a generic composition theorem for OR predicates in the semi-honest setting. In par-
ticular, if we have separate constructions of conditional encryption schemes for predicates P1(·, ·), . . . , Pk(·, ·)
then we can obtain a conditional encryption scheme for the predicate POR(m1,m2)

.
=

∨k
i=1 Pi(m1,m2) sim-

ply by concatenating the conditional ciphertexts generated by the conditional encryption algorithm CEnci
for predicate Pi. As an application we consider the “typo predicate” which is the OR of several predicates:
Hamming Distance at most two, Edit-Distance at most one and a CAPSLOCK predicate. This is the same
predicate used by Chaterjee et al. in the TypTop personalized typo tolerant password authentication system.
In the appendix, we also provide a general construction of conditional encryption for arbitrary predicates
circuit private fully homomorphic encryption (FHE). However, the practicality of this construction is unclear
as circuit private FHE is substantially more expensive than Pallier.

1.1.3 Application to TypTop

We show how to (slightly) modify the TypTop system to improve security using conditional encryption. In
the appendix we formally define the notion of “typo privacy” (see Definition 12) which ensures that the
authentication server never collects ciphertexts of passwords which are not plausible typos of the original
password. While the original TypTop scheme does not satisfy typo privacy, we prove that our modified
TypTop construction does satisfy typo privacy and is still efficient. See Section 3 and Section 4 for more
details.

1.1.4 Implementation and Empirical Evaluation

We provide a C++ implementation for each of our practical conditional encryption schemes (excluding our
general construction from circuit private FHE). Our implementations include conditional encryption scheme
for the following predicates: CAPSLOCK, Edit Distance One, Hamming distance at most t, as well as OR
composition of these predicates (CAPSLOCK or Edit Distance One or Hamming Distance Two). We also
modify the C++ implementation of the TypTop system for personalized password typo correction to use
conditional encryption for enhanced security (Typo Privacy). We further modified the TypTop system to
utilize memory hard functions [AS15, AB17, ABP18, BDK16] for key-derivation — an update recommended
by the TypTop authors. Our code is available on Github [AB24a] and Zenodo [AB24b].

We evaluate the performance of our conditional encryption schemes for each predicate. As an example,
when we consider the OR predicate for messages of length n ≤ 32 characters (e.g., almost all passwords2) and
instantiate the Pallier Cryptosystem with a 1024-bit modulus N we observe average running times 158.15
(ms), 645.945 (ms) and 261.44 (ms) for the regular encryption Encpk(·), conditional encryption CEncpk(·)
and decryption of a conditional ciphertext CDecsk(·), respectively. The size of a regular (resp. conditional)
ciphertext was 16 KB (resp. 24 KB). The results are summarized in Table 1. We find that modifying the
TypTop system does not increase authentication delays although it does increase the storage requirements

1For the Hamming Distance predicate (e.g., P (m1,m2) = 1 if and only if m1[i] ̸= m2[i] for at most d locations i ≤ n)
decrypting a conditional ciphertext predicate requires time proportional to

(n
d

)
where n is the length of the messages m1 and

m2 and d is the Hamming Distance that we tolerate. This can be slow when both d and n are large. However, in our target
password applications the desired distance parameter d for our Hamming Distance predicate (resp. edit-distance predicate) is
relatively small (e.g., d = 2) as is the parameter n (e.g., n ≤ 32). Finding efficient constructions for the Hamming Distance (or
Edit-Distance) predicate when n and d are both large is left as an open challenge for future research.

2Over 99.9% of leaked RockYou passwords were less than 30 characters.

3

for the authentication server by a factor of ≈ 246. Fortunately, per user storage will not be a limiting factor
in most settings. See Section 4 and Table 2 for more details.

1.1.5 Related work

At a high level the notion of conditional encryption might seem similar to other advanced public
key primitives such as identity based encryption [BF01, SW05, Gen06, BGK08, BRS13], predicate en-
cryption [KSW08, GVW15b, SSW09, BCFG17, AYY22], attribute based encryption [BSW07, AYY22,
Cha07, GPSW06, CC09, LW11, GVW15a, ADMS18, WPC23], functional encryption [NAP+14, GGHZ16a,
GGHZ16b, SS10, AGVW13, EM23] and fully homomorphic encryption[Gen09b, BGV14, vGHV10, VJH21].
However, we stress that the security requirements for conditional encryption are quite distinctive in that we
require that secrecy guarantees hold *even if* the attacker has the secret decryption key. By contrast, the
security definitions for other public key primitives (identity based encryption, predicate encryption, attribute
based encryption, functional encryption and fully homomorphic encryption) all assume that the attacker does
not have the secret decryption key. While we do use the Paillier partially homomorphic encryption scheme
to construct conditional encryption schemes for particular predicates, these constructions do not use Pallier
as a blackbox. We are also able to construct conditional encryption for general predicates using circuit
private FHE, but the circuit privacy requirement seems to be inherent i.e., there exists regular (non circuit
private) FHE schemes for which our conditional encryption construction is explicitly broken. See discussion
in Appendix D.

1.2 Preliminaries
In this section, we review the notations and cryptographic primitive which will be used in the rest of the paper.

Given a randomized algorithm A (e.g., key-generation) we use y = A(x; r) to denote the deterministic
output of A when run on input x with fixed random r ∈ {0, 1}∗ and we use the random variable y ← A(x)
to denote the output of A(x; r) when r is selected randomly.

Let Σ denote an alphabet (e.g., ASCII or unicode). Given a string w ∈ Σ∗ we use ∥w∥ to denote the
length of w and for i ≤ ∥w∥ we use w[i] to denote the ith character of w. We let Mn = Σ≤n denote the
set of all strings w with length ∥w∥ ≤ n. It will be convenient to assume that all passwords have the same
length. Of course most user passwords do not have the same length but if the maximum length of a user
password is n − 1 then we can easily define a 1 to 1 function Pad : Σ≤n−1 → Σn and consider PWD = Σn

to be the set of all possible user passwords after padding. In practice, we could select n = 30 as essentially
all user passwords are shorter than this (e.g., over 99.9% of leaked RockYou passwords were less than 30
characters.). The symbol “∥” will be used for concatenation. Thus, y = x1∥x2 is concatenation of x1 and
x2.

Let L = ⟨l1, . . . , l|L|⟩ be list of |L| elements. We also define the operation L′ = Append(L, l) which adds
l to the list and we have L′ = ⟨l1, . . . , l|L|, l⟩. We note that li can be an element in ZN2 ,Σn,Mn or PWD, etc.

For the message m ∈ Σ≤n we use the notation m−i ∈ Σ≤n−1 to denote the string m when the i-th char
is deleted and if i > |m| then m−i = m.

1.2.1 Partially homomorphic Encryption

The Paillier cryptosystem is a partially homomorphic cryptographic scheme which supports ciphertext
addition, plaintext to ciphertext multiplication and subtraction. Specifically, the public key pk = (N, g)
(resp. secret key sk = (β, µ)) consists of N = pq where p, q are prime numbers and the number
g = N + 1 ∈ Z∗N2 (resp. β = lcm(p − 1, q − 1) and µ = φ(N)−1 mod N). We note that for all i ∈ ZN we
have gi =

∑i
j=0

(
i
j

)
N j = 1 +Ni mod N2 so that g has multiplicative order N modulo N2. The secret key

sk = (β, µ) consists of two parameters β = lcm(p − 1, q − 1) and µ = φ(N)−1 mod N is defined to be the

4

multiplicative inverse of φ(N) = (p− 1)(q − 1) modulo N .

The algorithm Encpk(m; r) takes as input a message m ∈ ZN and a nonce r ∈ Z∗N and outputs gmrN

mod N2. The function Encpk acts as a bijective map from ZN ×Z∗N → Z∗N2 . In particular, for every c ∈ Z∗N2

there is a message m ∈ ZN and a nonce r ∈ Z∗N such that c = gmrN mod N2 [Pai99].

The encryption scheme has several homomorphic properties in particular if c1 = gm1rN1 mod N2 and
c2 = gm2rN2 mod N2 encrypt message m1,m2 ∈ ZN respectively then c1c2 = gm1+m2(r1r2)

N mod N2

encrypts the message m1 + m2 mod N . Similarly, if c = gmrN mod N2 encrypts the message m then
ck = gmk(rk)N mod N2 encrypts the message mk mod N . See Appendix A for a full description of the
Paillier encryption scheme.

When we apply the Paillier Cryptosystem, our desired message space M is typically not the set of
integers ZN . Thus, we assume that there is an injective map ToInt :M → N and ToInt−1 : N → M. We
will also assume that |M| ≤ N and that ∀m ∈ M that 0 ≤ ToInt(m) < |M| ≤ N . Given x ∈ ZN we define
ToInt−1(x) = ⊥ if x has no preimage i.e., ∀m ∈M we have ToInt(m) ̸= x.

1.2.2 Secret Sharing (SS)

Several of our constructions rely on a primitive called secret sharing. A (t, n)-secret sharing scheme
consists of two polynomial time algorithms ShareGen and SecretRecover. Intuitively, ([[s]]1, . . . , [[s]]n) ←
ShareGen(n, t, s) takes as input a secret s ∈ F along with parameters n, t and outputs n shares
([[s]]1, . . . , [[s]]n) ∈ F. Given any subset S = {i1, . . . , it} ⊆ [n] of |S| = t shares we can recover the secret s
using

SecretRecover
((
i1, [[s]]i1), . . . , (it, [[s]]it

))
= s

However, given any smaller subset S = {i1, . . . , it−1} ⊆ [n] of size |S| ≤ t− 1 shares an attacker cannot infer
anything about s from the shares [[s]]i1 , . . . , [[s]]it−1

. In particular, we require that for all secrets s ∈ F, all
subsets S = {i1, . . . , it−1} ⊆ [n] of size t− 1 the shares [[s]]i1 , . . . , [[s]]it−1

can be viewed as uniformly random
independent elements in F unrelated to the secret s. The Shamir Secret sharing scheme [Sha79] satisfies this
requirement. See appendix Appendix B for more detail about (Shamir) Secret Sharing.

1.2.3 String Distance and Close Passwords

Given a string w ∈ Σn and i ≤ n we use w[i] ∈ Σ to denote the ith character of Σ and given two
strings w1, w2 ∈ Σn we use Ham(w1, w2) = |{i|w[i] ̸= w[j]}| to denote the hamming distance between
them. Similarly, given two strings w1, w2 ∈ Σ∗ we use ED(w1, w2) to denote the edit-distance between
them i.e., the minimum number of insertions/deletions to transform w1 into w2 (or vice versa). Note that
if w1 = w2 then Ham(w1, w2) = 0 and ED(w1, w2) = 0. We will often use Hamming/Edit Distance to
determine if two passwords pwd1, pwd2 are close e.g., we could define a predicate P (pwd1, pwd2) = 1 if Ham
(pwd1, pwd2) ≤ 2 or ED(pwd1, pwd2) ≤ 1; otherwise P (pwd1, pwd2) = 0. We could also combine Hamming/Edit
distance with other common password typos such as CAPSLOCK/SHIFT errors e.g., P (pwd1, pwd2) = 1 if
InvertCase(pwd1) = pwd2 or Ham(pwd1, pwd2) ≤ 2 or ED(pwd1, pwd2) ≤ 1; otherwise, P (pwd1, pwd2) = 0.

2 Conditional Encryption
In this section, we will introduce the notion of a conditional encryption scheme. A conditional encryption
scheme is similar to a regular public key encryption scheme with the addition of a special algorithm CEncpk.
This algorithm takes three inputs: a ciphertext c = Encpk(m1; r) ∈ CEnc (Where CEnc is the ciphertext space
of traditional encryption scheme) encrypting some unknown message m1 ∈ M in our message space using
random coin r ∈R {0, 1}λ, a control message m2 and a payload message m3. A conditional encryption
scheme is defined with respect to a binary predicate P : M×M → {0, 1}. Intuitively, if P (m1,m2) = 1

5

then CEncpk(c,m2,m3) ∈ CCEnc3 should produce valid encryption of our payload message m3; otherwise, if
P (m1,m2) = 0 the output should reveal no information about any of the messages m1,m2 or m3 — even
to an adversary that knows sk.

We now formally define conditional encryption along with its associated security/correctness require-
ments.

Definition 1. A conditional encryption scheme Π for a binary predicate P :M×M → {0, 1} consists of
four main algorithms (KeyGen,Enc,CEnc,Dec) which are described as follows:

• (sk, pk) ← KeyGen(1λ; r): takes as input the security parameter λ and random coins r ←R {0, 1}p(λ)
and generates a secret key sk ∈ SK and the corresponding public key pk ∈ PK for our conditional
encryption scheme.

• (b = 0, c) = Encpk(m1; r): takes as input a plaintext message m1 ∈M the public key pk random nonce
r ←R {0, 1}p(λ) and outputs a ciphertext (b, c) ∈ {0} × C encrypting m1. The flag b = 0 indicates that
c is output of the regular encryption scheme Encpk.

• (b = 1, c̃) = CEncpk ((0, cm1) ,m2,m3; r): This conditional encryption algorithm takes as input a public
key pk, a ciphertext (0, cm1) with cm1 ∈ C corresponding to an unknown message m1 ∈ M, a control
message m2, a payload message m3 ∈M, and random nonce r ←R {0, 1}p(λ) and outputs a ciphertext
(b, c̃) ∈ {1}×C. The flag b = 1 indicates that this ciphertext is the output of the conditional encryption
CEnc algorithm. Note: When the control message and the payload message are the same m2 = m3

we will sometimes write CEncpk(cm1
,m2; r) instead of CEncpk(cm1

,m2,m2; r). If the input ciphertext
takes the form (b = 1, cm) then CEncpk ((1, cm1) ,m2,m3; r) = ⊥ i.e., (b = 0, cm1) must be the output
of the regular encryption scheme.

• {m,⊥} = Decsk(c): takes as input a ciphertext c ∈ {0, 1} × C and the secret key sk and outputs a
message m ∈M or ⊥ (indicating failure).

We require that for any valid pair (sk, pk) produced that

Pr [Decsk (Encpk (m)) = m] = 1

i.e., perfect correctness for ciphertexts output by the regular encryption algorithm. For correctness of the
conditional encryption algorithm we want to ensure that Decsk (CEncpk (c′,m2,m3)) = m3 whenever ∃r′,m1

s.t. c′ = Encpk(m1; r
′) and P (m1,m2) = 1. Intuitively, we can extract our intended payload m3 if and only

if P (m1,m2) = 1. For conditional encryption we relax our requirement of perfect correctness and instead
require that

Pr [Decsk (CEncpk (c
′,m2,m3)) = m3] ≥ 1− ϵ (λ)

for a negligible function ϵ(·) whenever

∃r′,m1 s.t. c′ = Encpk(m1; r
′)

and P (m1,m2) = 1. We stress that the correctness condition only holds when when c′ ← Encpk(m1) was
the output of the regular encryption algorithm. If c′ = (1, c̃) was generated by the conditional encryption
algorithm then we provide no guarantees that the ciphertext c′′ = CEncpk(c

′,m2,m3) can be decrypted
correctly or is even well formed i.e., in all of our constructions CEncpk(c′,m2,m3) will simply output ⊥ when
c′ = (1, c̃) is a conditional ciphertext.

Definition 2 (Correctness). We say that Π is 1− ϵ(·)-correct if the following conditions hold:

• Regular encryption correctness. ∀r1, r2 ∈ {0, 1}p(λ),m ∈ M we have Decsk (Encpk (m; r2)) = m
whenever {sk, pk} ← KeyGen(1λ; r1).

3Similarly, we define CCEnc as the ciphertext space for a conditional encryption scheme.

6

• (Conditional encryption correctness.) ∀r1, r2 ∈R {0, 1}p(λ), m1 ∈ M,m2,m3 ∈ M such that
P (m1,m2) = 1 we have

Pr [Decsk (CEncpk (Encpk (m1; r2) ,m2,m3; r3)) = m3] ≥ 1− ϵ(λ)

where the randomness is taken over the random coins r3 of CEnc and we fix {sk, pk} ← KeyGen(1λ; r1).
If ϵ(λ) = 0 we simply say that Π is correct.
Definition 3 (Efficiency). We say that the conditional encrypt scheme Π = (KeyGen,Enc,CEnc,Dec) is
efficient if all four algorithms run in probabilistic polynomial time in the security parameter λ.

We can optionally require that our conditional encryption Π is error detecting i.e., whenever P (m1,m2) =
0, the ciphertext c = CEncpk(c1,m2,m3) will decrypt to a special symbol Decsk(c) = ⊥ (whp). If Π is error
detecting this allows us to detect which outputs of the CEnc algorithm are (in)valid.
Definition 4 (Error Detecting). We say that Π is 1 − ϵ(·)-error detecting if ∀r1, r2 ∈R {0, 1}p(λ),m1 ∈
M,m2,m3 ∈M such that P (m1,m2) = 0 we have

Pr [Decsk (CEncpk (Encpk(m1; r2),m2,m3; r3)) = ⊥] ≥ 1− ϵ(λ)

where the randomness is taken over the selection of the random coins r3 of CEnc and we fix {sk, pk} ←
KeyGen(1λ; r1).

We now formally define the security of a conditional encryption scheme. Intuitively, in the security game
we ask a distinguisher to distinguish between a simulated ciphertext Sim(pk) and a conditionally encrypted
ciphertext CEncpk(c1,m2,m3) — assume that c1 = Encpk(m1, r1) with P (m1,m2) = 0. Clearly, the simulated
ciphertext Sim(pk) cannot leak any information to the adversary as it is generated without knowledge of the
control message m2, the payload message m3 or the ciphertext c1.
Definition 5 (Conditional Encryption Secrecy). We say that conditional encryption scheme Π =
(KeyGen,Enc, CEnc,Dec) provides (t (·) , tSim (·) , ϵ (·))-conditional encryption secrecy if there exists a simula-
tor Sim running in time at most tSim(λ) such that for all messages m1,m2,m3 ∈M such that P (m1,m2) = 0,
all λ ∈ N, r, r1 ∈ {0, 1}λ and all distinguishers D running in time at most t(λ)

∣∣∣Pr [D (sk, pk,m1,m2,m3, c1, Sim (pk)) = 1]

− Pr [D (sk, pk,m1,m2,m3, c1,CEncpk (c1,m2,m3)) = 1]
∣∣∣

≤ ϵ (t (λ) , λ) (1)

where the randomness is taken over the random coins of the distinguisher and the conditional encryption
algorithm CEnc. Here, (sk, pk) = KeyGen(1λ; r) and c1 = Encpk(m1; r1) denote the public/secret key and the
ciphertext computed under the a priori fixed random strings r and r1. If ϵ(·) = 0 and t(·) =∞ then we say
that Π has perfect conditional encryption secrecy.

The definition of conditional encryption secrecy holds in a semi-honest setting where we assume that
the public key (sk, pk) = KeyGen(1λ) and the ciphertext c1 = Encpk(m1, r1) were both generated honestly.
We remark that this assumption is reasonable in our password typo vault application because the keys
and ciphertexts are generated by the authentication server (a trusted party). However, one can imagine
applications where we do not want to assume that c1 and sk were generated honestly. We leave it as an
open question to define/construct maliciously secure conditional encryption schemes.
Real-Or-Random Security: We also require that a conditional encryption scheme satisfies the traditional
notion of real-or-random (RoR) security i.e., an attacker who does not have the secret key cannot distinguish
between real and random ciphertexts. In Appendix C we extend the traditional definition of real-or-random
(RoR) security to conditional encryption schemes. All of our conditional encryption schemes constructions
will satisfy RoR security under the plausible assumption that Pallier encryption itself satisfies RoR security.
Because our focus is on conditional encryption secrecy we will defer all RoR security proofs to Appendix C.

7

3 Concrete Constructions of Conditional Encryption
In this section we present concrete constructions of conditional encryption for several different binary pred-
icates. As a warm-up we first consider the equality predicate P=(m1,m2) = 1 if and only if m1 = m2. As
an application we can use this construction to obtain conditional encryption for the CAPSLOCK predicate
since PCAPSLOCK(m1,m2) = P=(m1, InvertCase(m2)). We then provide constructions for predicates based on
the Hamming Distance (resp. Edit Distance) between m1 and m2. Finally, given conditional encryption
schemes for predicates P1, . . . , Pk we show how to compose these results to obtain conditional encryption
schemes for the OR predicate POR(m1,m2)

.
=

∨k
i=1 Pi(m1,m2).

3.1 Conditional Encryption for the Equality Test Predicate P=(x)

In this part, we will start off by providing a concrete construction of conditional encryption when the predicate
is equality test P=. That means that given a ciphertext of an unknown message m1, and the input messages
m2 and payload m3, we compute the encryption of m3 if and only if m1 = m2, i.e., P=(m1,m2) = 1.

Our construction utilizes the Paillier public key encryption scheme (see Appendix A for more details about
Pallier) which contains three main algorithms ΠP = (P.KeyGen, P.Enc, P.Dec). It will also be convenient to
let ToInt denote an injective mapping from our message space Σ≤n to Z|Σ|n+1 and use ToInt−1 to denote the
inverse mapping — we define ToInt−1(y) = ⊥ if there is no preimage m ∈ Σ≤n such that y = ToInt(m).

Our conditional encryption construction Π sets Π.KeyGen
.
= P.KeyGen and we set Π.Encpk(m1)

.
=

(0, P.Encpk(m1)) i.e., to encrypt m1 ∈ Σ≤n we simply compute c = P.Encpk (ToInt (m1)) and output the
ciphertext cm1 = (b = 0, c). Given a ciphertext c = (0, c1) with flag b = 0 we define Π.Decsk(c = (0, c1))

.
=

ToInt−1 (P.Decsk(c1)). The conditional encryption algorithm Π.CEncpk (cm1
= (0, c),m2,m3) works as fol-

lows: First we extract N from the public key pk and compute m̂2 = ToInt(m2) and m̂3 = ToInt(m3) to map
them to Paillier’s plaintext space. Next we pick random numbers R ∈R ZN and r ∈R Z∗N and compute
c= = cR (N + 1)

−Rm̂2+m̂3 rN mod N2. Finally, we output Π.CEncpk (cm1 = (0, c),m2,m3;R, r) = (1, c=).
Given a conditional ciphertext (1, c=) the decryption algorithm will simply output Π.Decsk(1, c

=)
.
=

ToInt−1(P.Decsk(c
=)). See Construction 18 in Appendix I for a more formal description of our construction.

Intuitively, we have c = (N + 1)m̂1rN1 mod N2 for some message m1 = ToInt−1(m̂1) and random value
r1 ∈ Z∗N . In this case, the final ciphertext c= can be written as c= = (N + 1)

R(m̂1−m̂2)+m̂3 (rrR1)
N mod N2.

If m̂1 − m̂2 = 0 then R(m̂1 − m̂2) = 0 cancels and we are left with a valid encryption of m3. Otherwise, the
value R(m̂1− m̂2)+ m̂3 mod N can be viewed as a fresh Paillier ciphertext encrypting a uniformly random
integer in ZN . More specifically, let y = ToInt(m2)−ToInt(m1). As long as gcd(N, y) = 1 (due to the selection
of p, q s.t., min(p, q) > |Σn+1|) the value R′ = R(m̂1−m̂2)+m̂3 mod N will also be distributed uniformly in
ZN i.e., for all x ∈ ZN we have Pr[yR = x mod N] = Pr[R = xy−1 mod N] = 1/N when R ∈ ZN is random
and y−1 is the multiplicative inverse of y mod N . When we pick our Paillier public key ,we can ensure we
always have gcd(N, y) = 1 by selecting primes p and q such that p, q ≥ maxm1∈Σn ToInt(m1) < |Σn+1| and
setting N = pq.

Theorem 1. Construction 18 is a perfectly correct and 1 − ϵ(λ)-error detecting conditional encryption

scheme with ϵ(λ) =
|Σ|n+1

N
≤ 1

max{p, q}
.

The proof of Theorem 1 can be found in Appendix E.

Theorem 2. The conditional encryption scheme described in Construction 18 provides (∞, tSim, 0) condi-
tional encryption secrecy in which tSim = tP.Enc is time of doing one Paillier Encryption.

Intuitively, the simulator Sim(pk) simply picks random values r′ ∈ Z∗N and R′ ∈ ZN and outputs (N +

1)R
′
r′N mod N2 i.e., the Paillier encryption of a uniformly random message. Intuitively, if m̂1 ̸= m̂2

and gcd(m̂1 − m̂2, N) = 1 then the value R(m̂1 ̸= m̂2) + m̂3 is uniformly random in ZN i.e., statically
indistinguishable from R′. Similarly, if we fix any z ∈ Z∗N (we will use z = rR1 mod N) and pick r ∈ Z∗N
randomly then the value rz mod N is also uniformly random in Z∗N i.e., statically indistinguishable from r′.

8

The formal proof of Theorem 2 is available in Appendix E. We also prove that Construction 18 satisfies
the traditional notion of Real-or-Random security — see Theorem 9 in Appendix C.

3.2 CAPSLOCK Predicate
We can immediately use our conditional encryption scheme for equality test to obtain a construction for
the the CAPSLOCK predicate PCAPSLOCK which is defined as PCAPSLOCK(m1,m2) = 1 if and only if m1 =
InvertCase(m2); otherwise PCAPSLOCK(m1,m2) = 0. Observe that we can equivalently define

PCAPSLOCK(m1,m2) = P=(m1, InvertCase(m2)).

Thus, our conditional encryption construction ΠCAPSLOCK for PCAPSLOCK is exactly as our construction
Π= for P= with the following modification to the conditional encryption algorithm ΠCAPSLOCK.CEncpk
(cm1

,m2,m3) = Π=.CEncpk(cm1
, InvertCase(m2),m3) Conditional encryption secrecy and correctness of the

construction ΠCPSLCK follows immediately from Theorem 2 and Theorem 1 respectively. RoR security also
follows directly from RoR security of Construction 18 — see Theorem 9 in Appendix C for RoR security.

3.3 Hamming Distance Predicate
We now describe our conditional encryption construction for the Hamming Distance predicate Pℓ,Ham

(m1,m2) = 1 if and only if Ham(m1,m2) ≤ ℓ. For ease of exposition, we will describe our construction
under the assumption that all messages m1,m2 ∈ Σn have the exact same length. In several of our appli-
cations (e.g., password typos) it may not necessarily be the case that all messages have the same length.
However, we can easily deal with this issue by defining an injective padding function Pad : Σ≤m → Σ′n where
Σ′ = Σ ∪ {y} extends the alphabet Σ by adding a new symbol y. In particular, given m ∈ Σ≤n we define
Pad(m) = m∥yn−|m| to be the length n string from our larger alphabet Σ′ obtained by padding m with
y’s. Clearly, the function Pad is injective so we can define an inverse Pad−1 such that Pad−1 (Pad (m)) = m
for any m ∈ Σ≤m. Given two messages m,m′ ∈ Σ≤n and an integer ℓ ≥ 0, we define the binary pred-
icate Pℓ,Ham,Pad(m,m′) = 1 if and only if Ham (Pad (m) , Pad (m′)) ≤ ℓ. Clearly, if we have a conditional
encryption scheme for the Hamming Distance predicate Pℓ,Ham(m1,m2) with message space m1,m2 ∈ Σ′n

then we can immediately apply padding to obtain a conditional encryption scheme for the related predicate
Pℓ,Ham,Pad(m1,m2) with message space m1,m2 ∈ Σ≤n.
Attempt 1: As an initial attempt at constructing conditional encryption for our predicate Pℓ,Ham we
can use our equality predicate construction as a blackbox along with the Shamir secret sharing scheme
SS = (ShareGen, SecretRecover) and a symmetric key authenticated encryption scheme. The basic idea is
to split messages into individual characters m1 = (m1 [1] , . . . ,m1 [n]) and encrypt character by character
to obtain c1 = (c1 [1] , . . . , c1 [n]) = Encpk(m1). The conditional encryption algorithm CEncpk(c1,m2,m3)
would similarly split the control message m2 up into n individual characters and generate n secret shares
[[s]]1, . . . , [[s]]n of a fresh symmetric key K. We would then use the original conditional encryption scheme
for P= to compute c2[i] = Π=.CEncpk(ci,m2[i], [[s]]i) for each i ≤ n using m2[i] as the control message and
[[s]]i as the payload message. The final conditional ciphertext would include c2[1], . . . , c2[n] as well as an
encryption of m3 using the symmetric key K. The decryption algorithm would decrypt each c2[i] to obtain
the share [[s]]i. As long as the Hamming Distance predicate holds the decryption algorithm would obtain
enough shares to recover K and decrypt m3.

The problem with this construction is that if the predicate does not hold then an attacker who knows
the secret key can still (whp) identify which shares are valid. In particular, it would be trivial for a party
who knows the secret key sk to distinguish between the encryption of a valid share [[s]]i < 2λ (recovered
when m1[i] = m2[i]) and the encryption of a random element in ZN (as is the case when m2[i] ̸= m1[i]) since
2λ ≪ N . This would allow the attacker to learn the set S = {i : m1 [i] = m2 [i]} of indices i ≤ n where m2

matches m1 even if Pℓ,Ham(m1,m2) = 0 — a clear violation of conditional encryption secrecy!
The Fix: To address the above issue we use a randomized encoding to ensure that, when the predicate

does not hold, it is impossible to identify which shares are (in)valid. In particular, instead of computing

9

c2[i] = Π=.CEncpk(ci,m2[i], [[s]]i) we instead compute c2[i] = Π=.CEncpk(ci,m2[i], xi) where xi = REnc([[s]]i)
is a random encoding of the share [[s]]i as an integer in larger Pallier plaintext space ZN . In more detail
REnc(x) = ai2

λ+x where the value ai ≤ ⌊N−1−x2λ
⌋ is chosen uniformly at random. Intuitively, xi = REnc([[s]]i)

encodes the share [[s]]i as a random element in ZN ′ subject to the constraint that [[s]]i = REnc([[s]]i) mod 2λ.
Since the value of the share [[s]]i itself is random this ensures that the attacker cannot distinguish xi from
a random element in ZN — unless the predicate Pℓ,Ham holds and we can recover enough correct shares to
recover the secret decyrption key. Decrypting a conditional ciphertext will require more work since we do
not know a priori which recovered shares are valid and we have to consider all possible subsets. Fortunately,
when ℓ is constant the number of subsets remains polynomial in n.

In a bit more detail the conditional encryption scheme Π works as follows:

(1) The regular encryption algorithm Π.Encpk(m) takes as input a message m = (m [1] , . . . ,m [n]) ∈ Σn

and encrypts m character by character to obtain a vector of Paillier ciphertexts c = (c [1] , . . . , c [n])
where ci = P.Encpk (ToInt(m[i]); ri) The regular encryption algorithm outputs (b = 0, c [1] , . . . , c [n])
where the flag b = 0 indicates that this ciphertext was produced by the regular encryption algorithm.

(2) The conditional encryption algorithm Π.CEnc(c1,m2,m3) takes as input a ciphertext c1 =
(b = 0, c1 [1] , . . . , c1 [n]) corresponding to some unknown message m1 = (m1 [1] , . . . ,m1 [n]), a con-
trol message m2 = (m2 [1] , . . .m2 [n]) ∈ Σn and a payload message m3. We first generate a random
symmetric key K ∈ {0, 1}λ for our authenticated encryption scheme and encrypt the payload message
m3 using K to obtain cAE = AuthEnck(m3). Second we use the Shamir secret sharing scheme to
generate n shares ([[s]]1, . . . , [[s]]n) ← ShareGen(n, n − ℓ,K) for our secret key K. We configure our
secret sharing scheme such that n − ℓ shares are sufficient to recover K, but any subset of n − ℓ − 1
shares information theoretically leaks nothing about K. We now follow our equality test construction
and compute c[i] = c1[i]

Ri(N + 1)−Rim2[i]+xirNi where xi = REnc([[s]]i) is the random encoding of the
share [[s]]i, Ri is a uniformly random integer in ZN and ri is uniformly random in Z∗N . Our final output
is (b = 1, c, cAE) in which c = (c[1], . . . , c[n]).

(3) Given a ciphertext (b = 0, c [1] , . . . , c [n]) with b = 0 the decryption algorithm will simply decrypt char-
acter by character to recover m = (m [1] , . . . ,m [n]) where m[i] = ToInt(xi) and xi = P.Decsk (c[i]).
Given a conditionally encrypted ciphertext (b = 1, c [1] , . . . , c [n] , cAE) we will first extract shares
[[s′]]i = RDec(xi) with xi = P.Decsk (c [i]). We will then look through all

(
n

n−ℓ
)

subsets S ⊆ [n] of
n− ℓ indexes and their corresponding shares to recover a string

KS = SecretRecover
((

S [i] , [[s′]]S[i]

)
∀0 ≤ i ≤ n− ℓ

)
which may or may not be valid. If Auth.DecKS

(cAE) = ⊥ then we conclude that KS is invalid and
move on to the next subset; otherwise if Auth.DecKS

(cAE) = m, we return m. If Auth.DecKS
(cAE) = ⊥

for all subsets S ⊆ [n] and their n− ℓ corresponding shares, then we output ⊥.

See Construction 19 in Appendix I for a formal description of the construction and see Theorem 15
in Appendix E for a proof that Construction 19 is 1 − ϵ(λ)-correct and a 1 − ϵ(λ)-error detecting for a
negligible function ϵ(λ).

3.3.1 Correctness of the Construction 19

We now prove that Construction 19, satisfies the security definition Definition 5, i.e., conditional encryption
secrecy. We first make a basic statistical observation.

Theorem 3. Let b = ak + r where 0 ≤ r < a is the reminder (i.e., r = b mod a). Consider the uniform
distributions Ub which outputs a random value in Zb and the distribution Dak which outputs random values
between 0, · · · , ak. Then the statistical distance between these two distributions is SD(Dak,Ub) = r

b ≤
1

k+1 .

10

Intuitively, Theorem 3 implies that we cannot distinguish between REnc(x) and a uniformly random
y ∈ ZN whenever 0 ≤ x < 2λ is picked randomly. The proof of Theorem 3 can be found in Appendix E.

Theorem 4. [Conditional Encryption Secrecy of Construction 19] Assume that our Authenticated en-
cryption scheme ΠAE = (AuthEnc,AuthDec) is (tAE , ϵAE (tAE , λ))-secure for any security parameter λ and
any running time parameter tAE. Then for any t and any security parameter λ Construction 19 provides
(t, tSim, ϵ (t, λ)) conditional encryption secrecy with ϵ(t, λ) ≤ ϵAE(t, λ) + 2−λ and tSim = n · tP.Enc + poly(λ).

Theorem 4 follows by applying Theorem 3 with b = N , a = ⌊N/2λ⌋ and k = 2λ. We defer the formal
proof of Theorem 4 and Theorem 3 to Appendix E where we also prove that Construction 19 provides
Real-or-Random security (see Theorem 10).

3.3.2 Efficiency

The running time of the key generation algorithm KeyGen is essentially equivalent to Pallier — with high
probability we will have min{p, q} > max

{
2n22λ, |Σ|

}
. The running encryption algorithm Enc is essentially

n× tp where tp denotes the running time for regular Pallier Encryption and the resulting ciphertext has size
1 + n · ⌈log2 N2⌉ (bits). The running time for the conditional encryption algorithm is essentially n × tp +
tAE + tSS where tp (resp. tAE , tSS) denotes the time for one Pallier Encryption (resp. one authenticated
encryption/one execution of ShareGen over a field of size 2λ). The size of a conditionaly encrypted ciphertext
is 1+n⌈log2 N2⌉+sAE where sAE denotes the length of the authenticated encryption ciphertext. The running
time of Decsk on a conditionally encypted ciphertext is roughly

(
n
ℓ

)
(tSSrec + tAE) where tSSrec (resp. tAE)

denotes the running time for SecretRecover over a field of size 2λ (resp. Auth.Dec). If we incorporate a second
secret sharing scheme over a smaller finite field then it is possible to slightly optimize the performance to
achieve running time

(
n
ℓ

)
t′SSrec + O(tSSrec + tAE) where t′SSRec denotes the execution time for secret share

recovery over the smaller finite field — see details in Section 5.1.2.

3.4 Edit Distance One
Given two messages m,m′ ∈ Σ≤n and an integer ℓ ≥ 0, we define the binary predicate Pℓ,ED(m,m′) = 1 if and
only if ED(m,m′) ≤ ℓ; otherwise, Pℓ,ED(m,m′) = 0. In this section, we will construct a conditional encryption
scheme for P1,ED i.e., edit-distance 1. It would be possible to implement the same general construction for
ℓ > 1. However, the ciphertext sizes would grow proportional to O

(
nℓ
)
. Thus, we focus on the ℓ = 1 case

since it is the most useful case for password typo correction (and yields the most efficient construction). We
will let Π1,ED = (KeyGen,Enc,CEnc,Dec) denote our conditional encryption for P1,ED described below.

Given m = (m [1] , . . . ,m [k]) ∈ Σk we define

m−i = (m [1] , . . . ,m [i− 1] ,m [i+ 1] , . . . ,m [k]) ∈ Σk−1

to be the string obtained by deleting the ith character from m e.g., if m =“bead” then m−2=“bad”. If j = 0
or j > k = |m| then we just define m−j = m. Observe that P1,ED(m,m′) = 1 if and only if there exists j
such that m−j = m′ or such that m = m′−j .

With this observation our construction for P1,ED will use our construction for P= as a black box.
KeyGen(1λ) works in the exact same way as the conditional encryption scheme for the equality predi-
cate and will generate a key (sk, pk = (N, g = N + 1)) with N = pq and min{p, q} ≥ |Σ|n+1. Our regu-
lar encryption algorithm Encpk(m) takes as input m ∈ Σ≤n and outputs a vector (0, c̃0, c̃1, . . . , c̃n) where
c̃i = P.Encpk (ToInt (m−i))is the Pallier encryption of m−i encoded as an integer using the injective map-
ping ToInt : Σ≤n → Z|Σ|n+1 — ToInt−1 is the inverse mapping. The conditional encryption algorithm
CEncpk(c1,m

′,m′′) works by running Π=.CEncpk, the conditional encryption algorithm for the equality pred-
icate, on 2n + 1 different inputs to generate c̃0, c̃1, . . . , c̃2n — if for some j we have c̃j = ⊥ then we simply
output ⊥. First, we parse c1 = (0, c1 [0] , . . . , c1 [n]) and set c̃i = Π=.CEncpk (c1 [i] ,m

′,m′′) for each 0 ≤ i ≤ n.
Intuitively, if m′ = m−i then c̃i is a Pallier encryption of our payload m′′; otherwise, c̃i = gyirNi mod N2 will
be the random Pallier encryption of a uniformly random yi ∈ ZN under a uniformly random nonce ri ∈ Z∗N .

11

Similarly, we can set c̃n+i = Π=.CEncpk(c1[0],m
′
−i,m

′′) for each 1 ≤ i ≤ n. Intuitively, if m′−i = m−0 = m
then c̃n+i is a Pallier encryption of our payload m′′; otherwise, c̃i = gyirNi mod N2 will be the random Pal-
lier encryption of a uniformly random yi ∈ ZN under a uniformly random nonce ri ∈ Z∗N . The decryption
algorithm Decsk is defined in the natural way. In particular, Decsk (0, c [0] , c [1] , . . . , c [n]) simply decrypts
c[0] as x0 = P.Decsk (c [0]) using regular Pallier decryption P.Dec and then outputs m = ToInt−1(x0).

Similarly, Decsk(1, c̃0, . . . , c̃2n) will run our conditional decryption algorithm P= on each individual ci-
phertext c̃i to recover x0, x1, . . . , x2n with xi = P.Decsk(c̃i). If min {x0, . . . , x2n} > |Σ|n+1 then we output
⊥; otherwise we can simply return ToInt−1 (min{x0, . . . , x2n})

Theorem 5. Π1,ED is a 1 − ϵ(λ) correct conditional encryption scheme for the predicate P1,ED and Π1,ED is
1− ϵ(λ)-error detecting with ϵ(λ) = (2n+1)|Σ|n+1

N ≤ 2n+1
max{p,q} .

Theorem 6. Π1,ED provides (∞, tSim, 0) conditional encryption secrecy for the predicate P1,ED. Here, tSim =
(2n+ 1)tP.Enc is time of doing (2n+ 1) Paillier Encryptions.

Proof of Theorem 6: (Sketch) Assume that P1,ED(m,m′) = 0 it follows from Theorem 2 that for any
j ≤ n that CEnc=pk(Encpk(m−j), m

′,m′′) outputs gRjrNj mod N2 for a uniformly random Rj ∈ ZN and
rj ∈ ZN . Similarly, for any j ≤ n it follows that CEnc=(Encpk (m),m′−j ,m

′′)) outputs gRjrNj mod N2 for a
uniformly random Rj ∈ ZN and rj ∈ ZN . Thus, CEncpk (Encsk (m−j ,m′,m′′)) outputs (1, c̃0, . . . , c̃2n) where
for each j ≤ 2n the Pallier Ciphertext c̃i is uniformly random in Z∗N2 .

We define the simulator Sim(pk) as follows. The simulator Sim(pk) takes as input the Paillier public key
pk. For each 0 ≤ i ≤ 2n + 1 the simulator then selects Ri ∈R ZN and ri ∈R Z∗N uniformly at random and
then encrypts Rs as CSim[i] = P.Encpk(Ri; ri) = gRirNi mod N2 i.e., CSim[i] is uniformly random in Z∗N2 .
Finally, the simulator outputs CSim = (1, CSim,0, . . . , CSim,2n). 2

3.5 OR Composition
Suppose we have conditional encryption schemes Π1, . . . ,Πk for k different predicates P1, . . . , Pk and that
each scheme has the same message space. Let Por(m1,m2) =

∨k
i=1 Pi(m1,m2) the predicate which is 0 (false)

if and only if all of the predicates are false i.e., Pi(m1,m2) = 0 for all i ≤ k. We will define a conditional
encryption scheme Πor = (KeyGen,Enc,CEnc,Dec) for the predicate Por.

Intuitively, our key generation algorithm KeyGen(1λ) runs (ski, pki) ← KeyGeni(1
λ) for each i and

outputs (sk, pk) where sk = (sk1, . . . , skk) and pk = (pk1, . . . , pkk)
4. The algorithm Encpk(m) sim-

ply generates ci = Πi.Encpk(m) for each i ≤ k and outputs (0, c1, . . . , ck). Similarly, the algorithm
CEncpk (c = (0, c1, . . . , ck) ,m

′,m′′) simply generates ci = Πi.CEncpk(ci,m
′,m′′) for each i ≤ k and out-

puts (0, c̃1, . . . , c̃k) — if c̃i = ⊥ for any i ≤ k then we instead output Πor.CEncpk(c,m
′,m′′) = ⊥. Finally,

the Decsk(c) will run mi = Πi.Decsk(c) to obtain mi ∈M∪{⊥}. If mi = ⊥ for all i ≤ k then the algorithm
outputs ⊥; otherwise we output mj where j is largest integer such that mj ̸= ⊥.

Theorem 7. Suppose that we are given k separate conditional encryption schemes Π1, . . . ,Πk corresponding
predicates P1, . . . , Pk and that each Πi provides (t(λ), tSim,i(λ), ϵi(t(λ), λ))-conditional encryption secrecy. The
construction Πor provides (t′(λ), t′Sim(λ), ϵ

′(t′(λ), λ))-conditional encryption secrecy with t′(λ) = O (t (λ)),
t′Sim(λ) ≈

∑k
i=1 tSimi(λ) and ϵ′ (t′ (λ) , λ) =

∑k
i ϵi (t

′ (λ) , λ).

The formal proof is available in Appendix E. Intuitively, the simulator SimOR(pk) for ΠOR will run the
simulator Simi(pki) for each conditional encryption scheme and concatenate all of the ciphertexts.

Theorem 8. Suppose that we are given k separate conditional encryption schemes Π1, . . . ,Πk corresponding
to predicates P1, . . . , Pk and that each Πi is 1 − ϵi(λ)-correct and 1 − ϵ′i(λ)-error detecting. Then the
construction Πor is 1 − ϵ(λ)-correct (resp.1 − ϵ′(λ)-error detecting) with ϵ(λ) =

∑k
i ϵ
′
i(λ) +

∑k
i ϵi(λ) (resp.

ϵ′(λ) =
∑λ

i=1 ϵ
′
i(λ)).

4As an optimization if Πi.KeyGeni(1
λ) generates a Pallier key for each i then we can generate one Pallier key (sk0, pk0) and

set (ski, pki) = (sk0, pk0) for all 1 ≤ i ≤ k.

12

The formal proof is available in Appendix E. We also prove that the suggested construction provides
Real-or-Random security as well — see Theorem 11 and its corresponding proof in Appendix C.

4 The Typo Predicate: Personalized Typo Correction
Motivated by the application of password typo correction we now introduce the predicate Ptypo(m1,m2) =
PCAPSLOCK(m1,m2)∨Pℓ=2,Ham,Pad∨Pℓ=1,ED. Chaterjee et al. [CWP+17] conducted an empirical study of pass-
word typos finding that nearly 78% of legitimate typos fit one of the above three categories i.e., CAPSLOCK
error, Hamming Distance ≤ 2 or a single character insertion/deletion. As application of Theorem 7 we ob-
tain a conditional encryption scheme Πtypo for the predicate Ptypo with (t (λ) , tsim, ϵ (t (λ) , λ))-security for
ϵ (t (λ) , λ) = 2−λ + ϵAE (t (λ) , λ). Correctness and error detection of Πtypo follow directly from Theorem 8.

4.0.1 Application to Personalized Password Typo Correction

We can use our conditional encryption scheme to fix a drawback in the personalized typo correction scheme
of Chaterjee et al. [CWP+17].

4.0.2 The Security Issue.

Chaterjee et al. [CWP+17] proposed to derive a public/secret key pair (pku, sku) for every user u. The
public key pku is stored on the authentication server. Any incorrect login attempt pw′ ̸= pwdu for this
account is encrypted Cpw = Encpk(pw) and stored in a typo vault. The secret key sku is not directly stored
on the server, but can be recovered whenever the user logs in with the correct password pwu. In particular,
we store csku = Auth.EncKu(sku) where the symmetric key Ku = KDF(su, pwdu) is derived from the users
password pwdu and a random salt value su that is stored on the server in plaintext form. Thus, once the
correct password pwu it is possible to recover Ku, then sku, decrypt all of the password in the vault and
identify common typos. The drawback of this approach is that every incorrect login attempt will appear
in the encrypted typo vault. It is not unlikely that the typo vault might include unrelated passwords from
the user’s other accounts. This could significantly increase the incentives for a rational offline brute-force
attacker to crack the user’s password [BHZ18], and simultanously increasing the potential harm to users.

4.0.3 The Fix

Our fix is straightforward: replace the regular encryption scheme with our conditional encryption scheme
for the predicate Ptypo! In addition to pku the authentication server will also store cu = Encpku

(pwdu) the
encryption of the user’s password under pku. Now whenever their is an incorrect login attempt pw′ ̸= pwdu we
can set cpw′ = Πtypo.CEncpku(cu, pw

′, pw′). If Ptypo(pwdu, pw
′) = 1 then we have Πtypo.Decsku(cpw′) = pw′

so that we can recover pw′ later when the user logs into the server with the correct password. However,
if Ptypo(pwdu, pw

′) = 0 then the ciphertext cpw′ will be entirely useless to an offline attacker even if the
attacker can recover pwdu and sku!

4.0.4 Security Proof

In Appendix G we formalize the notion of typo privacy (see Definition 12) for an authentication server
that maintains a password typo vault, and we prove that the construction above provides typo privacy (see
Appendix H for the details and security proofs.) We also showed that the TypTop system does not provide
“typo privacy”(see Section G.0.1). Intuitively, in the typo privacy game, the attacker gets to specify an initial
password pwu for the user. The goal of the attacker is to predict a random bit b selected by the challenger.
The adversary may repeatedly either (1) submit a login query pw′ to the authentication server, or (2) submit
a pair (pw′0, pw

′
1) of guesses with Ptypo(pwdu, pw

′
0) = 0 = Ptypo(pwdu, pw

′
1) to the challenger who will then

forward the guess pw′b to the authentication server. The adversary is allowed to observed the state σi of
the authentication server immediately before (σi−1) and immediately after (σi) each query i. Intuitively, if

13

the conditional encryption scheme is secure then the attacker should not be able to predict the secret bit b
since the only update after a type (2) query is to store the new ciphertext cb = CEncpku(cu, pw

′
b, pw

′
b). Since

Ptypo(pwdu, pw
′
0) = 0 = Ptypo(pwdu, pw

′
1) both c0 = CEncpku

(cu, pw
′
0, pw

′
0) and c1 = CEncpku

(cu, pw
′
1, pw

′
1)

are indistinguishable from a random ciphertext Sim(pk) generated without knowledge of pwdu, pw′1 or pw′0.

5 Implementation and Empirical analysis
In this section, we discuss our implementations of Conditional Encryption for the predicates
P=, PCAPSLOCK, Pℓ,Ham,Pad and Pℓ=1,ED as well as Ptypo = PCAPSLOCK ∨ Pℓ=2,Ham,Pad ∨ Pℓ=1,ED. We also im-
plement a modified version TypTop Personalized Typo Correction service to instantiate the Typo Vault
using our conditional encryption scheme for the predicate Ptypo. We empirically evaluate the performance
of each implementation e.g., running time, ciphertext size etc.

5.1 Conditional Encryption
5.1.1 Implementation

We implemented our conditional encryption schemes in C++. The implementation is available on Github
[AB24a] and Zenodo [AB24b]. Our implementation includes conditional encryption schemes for the following
predicates: CAPSLOCK, Edit Distance One, Hamming Distance at most one, Hamming Distance at most
two, as well as the OR of these predicates. We also implemented conditional encryption for a general
Hamming Distance predicate for arbitrary distance thresholds t = {1, 2, 3, 4}. We defined our message space
to be Σ≤n where Σ denotes the set of all ASCII characters and n ∈ {8, 16, 32, 64, 128} — all x ∈ Σ≤n are
first padded to Pad(x) ∈ (Σ ∪ {y})n for a special new symbol y.

We used the Pallier Library [Cru16] as our implementation of the Pallier cryptosystem and we used the
GMP library [pro91] for computation with big integers. We instantiated Pallier with a 1024-bit modulus
(80-bit security), 2048-bit modulus (112-bit security) and 3072-bit modulus (128-bit security) [PDB+15].
We remark that for our applications to password typo vaults 80-bit security should be sufficient as it would
almost certainly be easier for an offline attacker to brute-force the user’s password and then extract the Pallier
secret key directly than to factor a 1024-bit modulus N e.g., see [Bon12, BL23, MUS+16]. Construction 18
and Π1,ED (our edit-distance construction) requires that |Σ|n+1 ≤ min{p, q}. Thus, when our message length
is n = 64 characters (resp. n = 128 characters) we must use a 2048-bit (resp. 3072-bit) modulus N to ensure
that

∣∣{0, 1}8∣∣n = 28(n+1) < min{p, q} since min{p, q} <
√
N .

Like TypTop [CWP+17], our implementations of conditional encryption use CryptoPP [Dai16] for Au-
thenticated Encryption and Shamir Secret Sharing. For authenticated encryption, we use AES-GCM with
128-bit keys and we use Shamir Secret Sharing over a field of size 2128 to generate shares of the secret
symmetric key. Our code is available on Zenodo [AB24b]5.

5.1.2 Optimized Implementation of the Hamming Distance Predicate

We implemented several versions of our conditional encryption scheme for the Hamming Distance Predicate
Pℓ,Ham,Pad to optimize performance. The (unoptimized) implementation follows Construction 19 without
any optimizations. As noted previously the worst-case running time to decrypt a conditionally encrypted
ciphertext is roughly

(
n
ℓ

)
(tSSrec + tAE) where tSSrec (resp. tAE) denotes the running time for SecretRecover

over a field of size 2λ (resp. Auth.Dec).
We can make a simple optimization to speed up the running time of Dec. In particular, we modify CEnc

to generate n shares [[z]]1, . . . , [[z]]n ← ShareGen(n, n − ℓ, 0) of 0 over a smaller field of size 232 ≪ 2λ in
addition to the n shares [[s]]1, . . . , [[s]]n of our secret key K. For each character i where m1[i] = m2[i] the
ciphertext c̃i will allow us to extract both shares [[s]]i and [[z]]n. Thus, for each subset S ⊆ [n] of size |S|
we can first compute xS = SecretRecover ({(i, [[z]]i)}i∈S) by running SecretRecover over our smaller field.

5https://zenodo.org/uploads/13744111

14

https://zenodo.org/uploads/13744111

Only if xS = 0 do we then proceed to compute KS = SecretRecover ({(i, [[s]]i)}i∈S) by running SecretRecover
over our larger field and then attempt to decrypt our authenticated encryption ciphertext using KS . We
will still have to run SecretRecover over our smaller field

(
n

n−ℓ
)

times. However, in expectation we will only
need to run SecretRecover over the large field (resp. Auth.Dec) at most 1 +

(
n

n−ℓ
)
2−32 times. Our empirical

analysis indicates that this optimization significantly speeds up the worst-case running time of our decryption
algorithm — see Figure 1a. For example, when n = 32 and ℓ = 4 the optimized version of Dec is more than
six times faster than the unoptimized version of Dec.

Our second optimization exploits the simple observation that most user passwords are somewhat short.
The goal of finding the subset S ⊆ [n] of |S| = n− ℓ correct shares is equivalent to finding the set C = {i ∈
[n] : Pad(m1)[i] ̸= Pad(m2)[i]} ⊆ [n] of corrupted shares. Suppose that we know m1,m2 ∈ Σ≤k are both
shorter passwords of length at most k < n and that Ham(Pad(m1), Pad(m2)) ≤ ℓ. In this case there would
only be

(
k
ℓ

)
≪

(
n
ℓ

)
possible choices of C to check. In the breached RockYou password dataset 99% (resp. 99.9

%) of passwords were shorter than 15 (resp. 30) characters. Thus, if we expect that most of the inputs are
short we can optimize the decryption algorithm by iterating from k = ℓ to n, iterating over all

(
k−1
ℓ−1

)
subsets

C ′ ⊆ [k−1] of size ℓ−1, setting C = C ′∪k, S = [n]\C and then running SecretRecover with the shares in S.
In our password typo application we will consider the Hamming Distance predicate with distance parameter
ℓ = 2. Examining the password typo dataset collected by Chatterjee et al. [CAA+16] we observed that in
over 80% of the instances where the predicate Pℓ=2,Ham holds that the Hamming Distance was actually just
1. If there is only one invalid share then we are guaranteed to find the correct secret after just n/2 attempts
by first running SecretRecover with the shares S = [n] \ C for each C ∈ {{2i− 1, 2i} : 1 ≤ i ≤ n/2}.

This optimization significantly improved the conditional decryption algorithm when the padding size is
larger like n ∈ {32, 64, 128}. As an example, if we consider Hamming distance with ℓ = 4 and n = 32, we
observe that the decryption algorithm takes 14.664 seconds for our unoptimized implementation, while the
average running time (using random RockYou passwords) is reduced to just 205.69 milliseconds when both
optimizations are applied.

5.1.3 Evaluation

We evaluated the performance of our implementation of conditional encryption on a Lenovo ThinkStation
S30 with a 2.9 GHz 8-core Intel® Xeon® E5-26900x 16 CPU processor and 28 GB DDR4 RAM memory.
Figure 1 and Table 1 shows the running time for C.KeyGen, Enc ,CEnc, CDec (we slightly abuse notation
and use CDec to refer to the decryption algorithm Dec when the input is a conditional ciphertext) as well as
the ciphertext size for the aforementioned predicates. The primary difference between Table 1 and Figure 1
are as follows (1) Figure 1 plots the worst-case running time for CDec (when the relevant predicates do not
hold) while the performance analysis in Table 1 is based on empirical user typos i.e., we evaluate the running
time CDec by selecting random password/typo pairs from the password typo dataset of Chatterjee et al.
[CAA+16] subject to the constraint that the relevant predicate holds. (2) Table 1 focuses exclusively on
conditional encryption schemes for messages of length at most n = 32 i.e., the parameter that we use for
TypTop.

For the Hamming distance, we consider four different thresholds at most one, at most two, at most
three and at most four. In Figure 1a and Figure 1b we focus on the worst case running time for CDec
when the predicate does not hold and we have to iterate over all

(
n
ℓ

)
possible subsets for secret recovery.

Figure 1a plots the running time of CDec as the input length n varies for different Hamming Distance
thresholds ℓ ∈ {1, 2, 3, 4}. Figure 1b plots how the running time of CDec is impacted by the Hamming
Distance threshold ℓ. The figure includes separate plots for messages of length n ∈ {8, 16, 32, 64, 128}. In
figures Figure 1a and Figure 1b the blue (resp. red) curves highlight the running time of our optimized
(resp. non-optimized) implementation. Figure 1c plots the running time of the encryption and conditional
encryption algorithms Enc and CEnc and Figure 1h plots the size of a regular and conditional ciphertext for
the Hamming Distance predicate as the message length varies. As expected we note that the ciphertext size
is independent of the threshold ℓ and that the size of a conditional ciphertext is approximately equal to the
size of a regular ciphertext.

We did similar for the CAPSLOCK predicate and considered the evaluation time over different message

15

Table 1: Conditional Encryption: Computation Time and Ciphertext Size (n = 32, 80-bit security)

Enc CEnc CDec
Predicate: Time (ms) |c| Time (ms) |c| Time (ms)
EdDist One 108.68 8.27 406.842 16.29 104.31
HamDist (ℓ = 1, n = 32) 85.582 8.01 412.424 8.04 85.644
HamDist (ℓ = 1, n = 32) OPT 92.384 8.01 445.714 8.04 263.626
HamDist (ℓ = 2, n = 32) 93.88 8.01 445.8 8.04 347.953
HamDist (ℓ = 2, n = 32) OPT 98.0633 8.01 475.58 8.04 264.273
HamDist (ℓ = 3, n = 32) 90.1867 8.01 433.63 8.04 2268.54
HamDist (ℓ = 3, n = 32) OPT 105.98 8.01 498.75 8.04 254.61
HamDist (ℓ = 4, n = 32) 97.52 8.01 461.79 8.04 14664.8
HamDist (ℓ = 4, n = 32) OPT 98.77 8.01 466.457 8.04 205.69
CAPSLOCK on 3.0025 0.27 13.26 0.29 1.01
OR* 201.15 16.54 900.945 24.64 360
|c| = Ciphertext size (KB)
* OR = EditDistOne or HamDistTwo or CAPSLOCKon
** Pi is the predicate and we define our CondCrypto over this predicate
for i = {1, 2, 3, 4}, which implies 4 different predicates.
*** For hamming distance (HamDist), ℓ represents the threshold value and n = 32 is the
padding size. Also, OPT means using optimized decryption algorithm.

lengths n = {8, 16, 32, 64, 128} and the average time of each algorithm is presented in Figure 1e. The running
time for each algorithm Enc, CEnc and Dec is independent of the message length until we have to increase
the size of our Pallier Public key to satisfy the requirement that |Σ|n+1 ≤ min{p, q}. This explains the jumps
at input length 64 and 128.

Figure 1d plots the running time of Enc, CEnc and CDec for our edit distance one predicate under
different padding lengths n = {8, 16, 32, 64, 128}. Similarly, Figure 1f plots the running time of of Enc,
CEnc and CDec for the OR predicate Ptypo. For CDec we report the worst-case running time to decrypt a
conditionally encrypted ciphertext i.e., when the predicate does not hold. When eveluating decryption time
for the OR predicate Ptypo we use our optimized implementation of conditional decryption for the hamming
distance predicate.

Figure 1i plots the size of a regular and conditional ciphertexts as the message length increases for each
predicate: CAPSLOCK (CAPS), Edit Distance One (ED), Hamming Distance Two (HD) and the OR of
the above. Some plots are difficult to see because they are identical to other lines. For example, we first
note that the size of a regular ciphertext for the OR predicate is identical to the size of a ED ciphertext.
Similarly, the size of a conditional ciphertext is approximately equal for the Hamming Distance (HD) and
Edit Distance (ED) predicates. The plots at the bottom of Figure 1i are for CAPS as a regular/conditional
encryption for this predicate consists of a single Pallier ciphertext.

5.1.4 Discussion

Our empirical analysis demonstrates the practicality of our constructions especially for password typos. For
example, when n = 32 the worst-case time to decrypt a conditional ciphertext for the password typo predicate
Ptypo (OR) is less than 250 (ms). While the overhead is higher than traditional encryption schemes, it is
important to note that, for our TypTop application, the algorithms CEnc and Dec can be evaluated offline
and will not delay user authentication.

5.2 TypTop with Typo Privacy
We also implemented a modified version of TypTop system for personalized typo correction [CWP+17]
as outlined in Section 4. We consider two primary modifications to the regular TypTop system. First,
we replace the Key Derivation Function (KDF) with Argon2id [BDK16] a Memory-Hard Key Derivation
Function. This modification was already suggested by the designers of TypTop. Second, we replace the

16

0 32 64 96 128

101

104

107

1010

Input Length (n)

Ti
m

e
(m

se
c)

ℓ = 1 , ℓ = 1
ℓ = 2 , ℓ = 2
ℓ = 3 , ℓ = 3
ℓ = 4 , ℓ = 4
orig, optimized

(a) CDec Time for HamDist

0 1 2 3 4 5

101

104

107

1010

Max Haming Distance

Ti
m

e(
m

se
c)

n = 8 , n = 8
n = 16 , n = 16
n = 32 , n = 32
n = 64 , n = 64
n = 128 , n = 128
orig, optimized

(b) CDec Time for HamDist

0 16 32 48 64 80 96 112 128
101

102

103

104

Input Length (n)

Ti
m

e
(m

se
c)

ℓ = 1: Enc , CEnc
ℓ = 2: Enc , CEnc
ℓ = 3: Enc , CEnc
ℓ = 4: Enc , CEnc

(c) CEnc and Enc for HamDist

0 16 32 48 64 80 96 112 128
101

102

103

104

105

Input Length (n)

Ti
m

e
(m

se
c)

Enc
CEnc
CDec

(d) Enc ED One

0 16 32 48 64 80 96 112 128

100

101

102

Input Length (n)

Ti
m

e
(m

se
c)

Enc
CEnc
CDec

(e) CEnc CAPSLCK ON

0 16 32 48 64 80 96 112 128
101

102

103

104

Input Length (n)

Ti
m

e
(m

se
c)

Enc
CEnc
CDec

(f) CEnc OR predicate

0 16 32 48 64 80 96 112 1280

1

2

3

·105

Input Length (n)

Ci
ph

er
te

xt
Si

ze
(B

yt
es

)

Enc
CEnc

(g) CEnc OR predicate, CTX size

0 16 32 48 64 80 96 112 1280

0.2

0.4

0.6

0.8

1

·105

Input Length (n)

Ci
ph

er
te

xt
Si

ze
(B

yt
es

)

ℓ = 1: CEnc , Enc
ℓ = 2: CEnc , Enc
ℓ = 3: CEnc , Enc
ℓ = 4: CEnc , Enc

(h)CEnc HamDist, CTX size

0 16 32 48 64 80 96 112 1280

1

2

3

·105

Input Length (n)

Ci
ph

er
te

xt
Si

ze
(B

yt
es

)

OR: CEnc , Enc
HD: CEnc , Enc
ED: CEnc , Enc
CAPS: CEnc , Enc

(i)CEnc EDOne and CPSLCK, CTX size

Figure 1: Performance Evaluation for our proposed Conditional Encryption schemes under different, predi-
cates, lengths and distances

17

Table 2: TypTop: Computation and Storage Overhead with/without Conditional Encryption. Here we
considered 80-bit level of security when n = 32.

Correct login Incorrect login
Init Auth Delay Total

Running
Time

Auth Delay Total
Running
Time

Storage
(KB)

Typtop [CWP+17] 171.95
(ms)

26.41 (ms) 53.384
(ms)

156.556 (ms) 158.71
(ms)

1

CondTyptop 6.771 (s) 25.7 (ms) 11.203
(s)

160.3 (ms) 0.617 (s) 246

CondTyptop (Opti-
mized)

7.13 (s) 24.12 (ms) 8.690 (s) 160.33 (ms) 0.629 (s) 246

Typtop (mhf)
[CWP+17]

5.738 (s) 0.943 (s) 0.784 (s) 5.644 (s) 5.856(s) 1

CondTyptop(mhf) 19.672
(s)

0.933 (s) 16.558
(s)

5.446 (s) 6.162 (s) 246

CondTyptop(mhf/opt) 14.456 0.729 (s) 10.995 4.376(s) 5.87 (s) 246
* CondTyptop is the modified typtop scheme when conditional encryption is used.

public key encryption scheme with a conditional encryption scheme for the OR predicate. For the purpose
of empirical evaluation we implement TypTop with our optimized implementation of conditional encryption
and with our unoptimized implementation refering to these as modifications (2A) and (2B) respectively.

Our code is available at [AB24a]. In our analysis we analyze six versions of the TypoTop system: the
original system (no modifications), modification (1) only, modification (2A) only, modification (2B) only,
modifications (1)+(2A) and finally modifications (1)+(2B). The recommended version is TypTop with mod-
ifications (1)+(2A) i.e., using the Memory-Hard Key Derivation Function and the optimized implementation
of our conditional encryption scheme for the OR predicate.

In our modified implementation of TypoTop, we assume that the length of each user passwords is at most
32 characters. This is a valid assumption as 99.9 % of the passwords has length of lower than 32 characters.
To support this assumption, as an evidence we extracted this stats from the leaked passwords of LinkedIn
and RockYou. More specifically, 99% of passwords from LinkedIn Frequency Corpus6 as well as passwords
from RockYou7 have length at most 15. If desired one could easily adjust the TypTop system to support
longer passwords. However, the scheme would either become less efficient or we would need to leak a single
bit of information about the user password i.e., indicating whether or not the length of the password is more
than 32 characters.

In our empirical analysis we register a user password of length ≤ 32 and then generate a sequence
of 1000 correct and 1000 incorrect login requests. Incorrect login requests are randomly selected as (1)
CAPSLOCK error, (2) Hamming Distance ≤ 2, (3) Edit Distance ≤ 1 or (4) completely different. We
analyze the running time for Initialization, Correct Login attempt and for Incorrect login attempts — see
Table 2. In our analysis we distinguish between authentication delay and total running time. For example,
if authentication fails with an incorrect password pw′u then we will want to run our conditional encryption
algorithm CEncpku

(cu, pw
′
u, pw

′
u) so that, if pw′u is close enough to the real password, we can recover it at a

later point in time. However, we can immediately inform the user of the outcome of authentication before
performing this somewhat expensive computation. Similarly, if a user logs in with the correct password pwu

then we can recover the symmetric key Ku and decrypt sku. At this point we will want to decrypt all of the
conditional ciphertexts in our vault, but again we can immediately inform the user that the authentication
attempt was successful before decrypting these conditional ciphertexts.

5.2.1 Discussion

We can use conditional encryption to strengthen the security guarantees of TypTop without increasing
authentication delay for users. The usage of conditional encryption does increase offline computation and

6Link to the data set: https://figshare.com/articles/dataset/linkedin_files_zip/7350287
7Link to the RockYou with count dataset: https://github.com/danielmiessler/SecLists/tree/master/Passwords/

Leaked-Databases

18

https://figshare.com/articles/dataset/linkedin_files_zip/7350287
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Leaked-Databases
https://github.com/danielmiessler/SecLists/tree/master/Passwords/Leaked-Databases

storage requirements, but the overhead is still manageable. The reason why the offline computation is
higher after a correct login attempt is because this allows us to recover the secret decryption key and then
decrypt all of the conditional ciphertexts in our waitlist so that we can consider adding them to our cache of
acceptable typos. It is worth noting that the TypTop system maintains the invariant that there are always
10 (conditional) ciphertexts in the waitlist. The invariant, which is maintained by seeding the waitlist with
dummy ciphertexts, ensures that an attacker cannot infer the number of incorrect login attempts. If we don’t
maintain this invariant then an attacker who breaches the authentication server would learn the total number
of incorrect login attempts that were submitted since the last correct login. Our modified implementation of
TypTop maintains the same invariant. However, such leakage should arguably not be viewed as problematic
since it does not reveal anything about incorrect login attempts or the user’s password. In this case we could
reduce offline computation (and storage) of TypTop by only placing conditional ciphertexts in the waitlist
when there is an incorrect login attempt i.e., if there were no incorrect login attempts since the last correct
login attempt then there would be no offline work to decrypt the conditional ciphertexts in the waitlist
because the waitlist would be empty!

Acknowledgements
This work was supported in part by the National Science Foundation under CAREER Award CNS 2047272.
Any views expressed in this paper are those of the authors and do not necessarily represent the position
of the National Science foundation. The authors wish to thank anonymous CCS reviewers for constructive
feedback and for the suggestion to consider circuit private FHE.

References
[AB17] Joël Alwen and Jeremiah Blocki. Towards practical attacks on argon2i and balloon hashing. In

2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages 142–157. IEEE,
2017.

[AB24a] Mohammad Hassan Ameri and Jeremiah Blocki. Implementation of conditional encryption and
typotop, 2024. April, 26.

[AB24b] Mohammad Hassan Ameri and Jeremiah Blocki. Implementation of conditional encryption and
typotop, September 2024.

[ABP18] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Sustained space complexity. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part II, volume 10821 of Lecture Notes in Computer Science, pages 99–130, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[ADMS18] Mohammad Hassan Ameri, Mahshid Delavar, Javad Mohajeri, and Mahmoud Salmasizadeh. A
key-policy attribute-based temporary keyword search scheme for secure cloud storage. IEEE
Transactions on Cloud Computing, 8(3):660–671, 2018.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 500–518, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on
Theory of Computing, pages 595–603, Portland, OR, USA, June 14–17, 2015. ACM Press.

19

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based encryption
and predicate encryption. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in
Cryptology – CRYPTO 2022, Part I, volume 13507 of Lecture Notes in Computer Science,
pages 590–621, Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical
functional encryption for quadratic functions with applications to predicate encryption. In
Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part I,
volume 10401 of Lecture Notes in Computer Science, pages 67–98, Santa Barbara, CA, USA,
August 20–24, 2017. Springer, Heidelberg, Germany.

[BDK16] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2: new generation of memory-
hard functions for password hashing and other applications. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 292–302. IEEE, 2016.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In
Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213–229, Santa Barbara, CA, USA, August 19–23, 2001. Springer,
Heidelberg, Germany.

[BFH+23] Jonathan Bootle, Sebastian H. Faller, Julia Hesse, Kristina Hostáková, and Johannes Ottenhues.
Generalized fuzzy password-authenticated key exchange from error correcting codes. In Jian
Guo and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023, Part VIII, volume
14445 of Lecture Notes in Computer Science, pages 110–142, Guangzhou, China, December 4–8,
2023. Springer, Heidelberg, Germany.

[BGK08] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. Identity-based encryption with effi-
cient revocation. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008:
15th Conference on Computer and Communications Security, pages 417–426, Alexandria, Vir-
ginia, USA, October 27–31, 2008. ACM Press.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–
36, 2014.

[BHZ18] Jeremiah Blocki, Benjamin Harsha, and Samson Zhou. On the economics of offline password
cracking. In 2018 IEEE Symposium on Security and Privacy, pages 853–871, San Francisco,
CA, USA, May 21–23, 2018. IEEE Computer Society Press.

[BL23] Jeremiah Blocki and Peiyuan Liu. Towards a rigorous statistical analysis of empirical password
datasets. In 2023 IEEE Symposium on Security and Privacy (SP), pages 606–625. IEEE, IEEE,
2023.

[Bon12] Joseph Bonneau. The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In 2012 IEEE Symposium on Security and Privacy, pages 538–552, San Francisco,
CA, USA, May 21–23, 2012. IEEE Computer Society Press.

[BRS13] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based encryption:
Hiding the function in functional encryption. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 461–478, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In 2007 IEEE Symposium on Security and Privacy, pages 321–334, Oakland, CA, USA,
May 20–23, 2007. IEEE Computer Society Press.

20

[CAA+16] Rahul Chatterjee, Anish Athayle, Devdatta Akhawe, Ari Juels, and Thomas Ristenpart. pASS-
WORD tYPOS and how to correct them securely. In 2016 IEEE Symposium on Security and
Privacy, pages 799–818, San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors,
ACM CCS 2009: 16th Conference on Computer and Communications Security, pages 121–130,
Chicago, Illinois, USA, November 9–13, 2009. ACM Press.

[CCW+21] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul Chatterjee,
and Earlence Fernandes. Data privacy in trigger-action systems. In 2021 IEEE Symposium
on Security and Privacy, pages 501–518, San Francisco, CA, USA, May 24–27, 2021. IEEE
Computer Society Press.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In Salil P. Vadhan, editor,
TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture Notes in Com-
puter Science, pages 515–534, Amsterdam, The Netherlands, February 21–24, 2007. Springer,
Heidelberg, Germany.

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie. Universally
composable password-based key exchange. In Ronald Cramer, editor, Advances in Cryptology
– EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 404–421,
Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[Cru16] Mateus S. H. Cruz. Paillier cpp library, 2016. December, 31.

[CWP+17] Rahul Chatterjee, Joanne Woodage, Yuval Pnueli, Anusha Chowdhury, and Thomas Ristenpart.
The TypTop system: Personalized typo-tolerant password checking. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017: 24th Conference
on Computer and Communications Security, pages 329–346, Dallas, TX, USA, October 31 –
November 2, 2017. ACM Press.

[Dai16] Wei Dai. Cryptopp cpp library, 2016. Version 5.6.5, release date: 2016-10-11.

[DHP+18] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia Yakoubov.
Fuzzy password-authenticated key exchange. In Jesper Buus Nielsen and Vincent Rijmen, edi-
tors, Advances in Cryptology – EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in
Computer Science, pages 393–424, Tel Aviv, Israel, April 29 – May 3, 2018. Springer, Heidelberg,
Germany.

[EM23] Johannes Ernst and Aikaterini Mitrokotsa. A framework for UC secure privacy preserving
biometric authentication using efficient functional encryption. In Mehdi Tibouchi and Xiaofeng
Wang, editors, ACNS 23: 21st International Conference on Applied Cryptography and Network
Security, Part II, volume 13906 of Lecture Notes in Computer Science, pages 167–196, Kyoto,
Japan, June 19–22, 2023. Springer, Heidelberg, Germany.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In Serge Vaudenay,
editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 445–464, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg,
Germany.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178, Bethesda, MD,
USA, May 31 – June 2, 2009. ACM Press.

21

crypto.stanford.edu/craig

[GGHZ16a] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory of Cryptog-
raphy Conference, Part II, volume 9563 of Lecture Notes in Computer Science, pages 480–511,
Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany.

[GGHZ16b] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without
obfuscation. In Theory of Cryptography: 13th International Conference, TCC 2016-A, Tel Aviv,
Israel, January 10-13, 2016, Proceedings, Part II 13, pages 480–511. Springer, 2016.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on Computer and Commu-
nications Security, pages 89–98, Alexandria, Virginia, USA, October 30 – November 3, 2006.
ACM Press. Available as Cryptology ePrint Archive Report 2006/309.

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. Journal of the ACM (JACM), 62(6):1–33, 2015.

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryptology
– CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science, pages 503–523,
Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Nigel P. Smart, editor, Advances in Cryptology
– EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages 146–162,
Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Germany.

[LW11] Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. In Annual inter-
national conference on the theory and applications of cryptographic techniques, pages 568–588.
Springer, 2011.

[MUS+16] William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin,
and Lorrie Faith Cranor. Fast, lean, and accurate: Modeling password guessability using neural
networks. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016: 25th USENIX
Security Symposium, pages 175–191, Austin, TX, USA, August 10–12, 2016. USENIX Associa-
tion.

[NAP+14] Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang, Erman Ayday,
Jean-Pierre Hubaux, and Carl A. Gunter. Controlled functional encryption. In Gail-Joon
Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014: 21st Conference on Computer and
Communications Security, pages 1280–1291, Scottsdale, AZ, USA, November 3–7, 2014. ACM
Press.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously circuit-
private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –
CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages 536–553,
Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology – EUROCRYPT’99, volume 1592 of Lecture
Notes in Computer Science, pages 223–238, Prague, Czech Republic, May 2–6, 1999. Springer,
Heidelberg, Germany.

22

[PDB+15] W Timothy Polk, Donna F Dodson, William E Burr, Hildegard Ferraiolo, and David Cooper.
Cryptographic algorithms and key sizes for personal identity verification. NIST Special Publi-
cation, 800:78–4, 2015.

[pro91] GNU project. Gmp cpp library, 1991. Last update: 2023-07-30.

[RX23] Lawrence Roy and Jiayu Xu. A universally composable PAKE with zero communication cost
- (and why it shouldn’t be considered UC-secure). In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023: 26th International Conference on Theory and Practice of Public
Key Cryptography, Part I, volume 13940 of Lecture Notes in Computer Science, pages 714–743,
Atlanta, GA, USA, May 7–10, 2023. Springer, Heidelberg, Germany.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, nov 1979.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010:
17th Conference on Computer and Communications Security, pages 463–472, Chicago, Illinois,
USA, October 4–8, 2010. ACM Press.

[SSW09] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Omer
Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture
Notes in Computer Science, pages 457–473. Springer, Heidelberg, Germany, March 15–17, 2009.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 457–473, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[vGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-
phic encryption over the integers. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24–43, French Riviera,
May 30 – June 3, 2010. Springer, Heidelberg, Germany.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully homomorphic encryption
compilers. In 2021 IEEE Symposium on Security and Privacy, pages 1092–1108, San Francisco,
CA, USA, May 24–27, 2021. IEEE Computer Society Press.

[WPC23] Yuyu Wang, Jiaxin Pan, and Yu Chen. Fine-grained secure attribute-based encryption. Journal
of Cryptology, 36(4):33, October 2023.

A Details on Paillier Cryptosystem
In this part we will provided a formal definition of Paillier cryptosystem with more details. We should high-
light that the Paillier cryptosystem [Pai99] consists of three main algorithms ΠP = (P.KeyGen, P.Enc, P.Dec),
and two main operations P.Add, P.PlainToCtxMul which are described as follows.

• (pk, sk) ← P.KeyGen
(
1λ; (p, q)

)
: This algorithm takes as input the security parameter λ and two

uniformly at random sampled large poly(λ)8 bit prime numbers p, q ≤ 2poly(λ), and generates the secret-
public key pair (pk, sk) as follows. Then the algorithm sets N = pq and computes β = lcm(p−1, q−1).
Let we define the function L(u) = u−1

N in which u ∈ [N2] is a variable. So using the defined function to
compute µ = (L(gβ mod N2))−1 mod N in which g ∈ Z∗N2 is sampled uniformly at random. Finally,
the public key and its corresponding secret key is set as follows: pk = (N, g) and sk = (β, µ). In this
paper we considered g = N + 1. In this case, β = lcm(p− 1, q − 1) and µ = ϕ(N)−1 mod N .

8We should highlight that based on the security parameter we desire, there exists a polynomial function like poly which
determined the bit length of the prime numbers.

23

• c← P.Encpk(m; r): The encryption algorithm takes as input the message 0 ≤ m < N and random coin
r ∈R Z∗N , and computes the ciphertext as follows: c := (1 +N)mrN mod (N2).

• m := P.Decsk(c): The decryption algorithm takes as input the ciphertext c ∈ Z∗N2 and decrypts it as
follows: m := L(cβ mod N2).µ mod N .

• c = P.Add(c1, c2): Given c1 = P.Encpk(m1) and c2 = P.Encpk(m2) for two messages m1,m2, this
algorithm computes a ciphertext of m1 +m2 mod N under the same public keys as follows. c = c1.c2
mod N2. Intuitively we have:

c = (gm1rN1).(gm2rN2) mod N2

= gm1+m2(r1r2)
N mod N2

= gmrN mod N2 (2)

in which m = m1 +m2 and the resulting randomness is r = r1r2.
For sake of simplicity, we use symbol ⊞ for this algorithm and we have c1⊞c2 = P.Add(c1, c2). Similarly,
for the subtraction, we can define ⊟ and we have c1 ⊟ c2 = P.Add(c1, c

−1
1). We can also define ⊎ which

add k ciphertexts c1, . . . , ck and we have ⊎ki=1ci = c1 ⊞ . . .⊞ ck.

• c = P.PlainToCtxMul(m1, c2): This algorithm takes as input the plaintext message m1 and c2 =
P.Encpk(m2), and computes ciphertext of m1.m2 as follows:

c = (c2)
m1 mod N2 = (gm2rN2)m1 = gm1m2(rm1

2)N mod N2

= gmrN mod N2 (3)

in which m = m1m2 and the resulting randomness is r = rm1
2 mod N2.

For sake of simplicity, we use symbol ⊠ for this algorithm and we have m1 ⊠ c2 =
P.PlainToCtxMul(m1, c2).

B Details on Secret Sharing (SS)
Let F be a field of size |F| ≥ n. We define interpolation algorithm InterPol over t-degree polynomial f :
F → F which takes as input t tuples (xi, yi = f(i)) for 1 ≤ i ≤ t, and outputs f(0). So we have f(0) =
InterPol((x1, f(x1)), . . . , (xt, f(xt))). The (n, t)- secret sharing scheme for the secret message s ∈ F is defined
based on two algorithms ShareGen, SecretRecover which are described in what follows.

• ([[s]]1, . . . , [[s]]n)← ShareGen(n, t, s). This algorithm takes as input the secret s ∈ F, the threshold value
t and the number of shares n. Then, it randomly samples the t-degree polynomial ϕ : F→ F such that
s = ϕ(0) and sets the shares as [[s]]i = ϕ(i), for all 1 ≤ i ≤ n.

• s ← SecretRecover(shares = ([[s]]1, . . . , [[s]]t′)). This algorithm takes the set of share shares of size t′ as
input, and recover the message s if there exists set of valid shares ValidShare ⊂ shares s.t. |ValidShare| ≥
t. To recover s the algorithm runs the interpolation algorithm ŝ = InterPol((1, [[s]]′1), . . . , (t, [[s]]

′
t)) such

that [[s]]
′
i,∈ ValidShare, ∀1 ≤ i ≤ t. Finally the algorithm outputs s = ToInt−1(ŝ).

Definition 6 (Correctness). Given the (t, n)-secret sharing scheme Π = (ShareGen, SecretRecover), ∀n ∈ N,
∀s ∈Mn and ∀S = {i1, . . . , it} ⊆ {1, . . . , n} of size t, the correctness of Π enforces that

Pr
([[s]]1,...,[[s]]n)←ShareGen(1λ,n,t,s)

[SecretRecover([[s]]i1 , . . . , [[s]]it) = s] = 1 (4)

24

Definition 7 (SS Perfect Secrecy). The (t, n)-secret sharing scheme Π = (ShareGen, SecretRecover) is per-
fectly secrecy, if ∀n ∈ N, ∀s, s′ ∈Mn, ∀S ⊆ {1, . . . , n} s.t. |S| < t, and for all adversaries A,

Pr
([[s]]1,...,[[s]]n)←ShareGen(1λ,n,t,s)

[A([[s]]i|i ∈ S) = 1]

= Pr
A([[s′]]1,...,[[s

′]]n)←ShareGen(1λ,n,t,s′)
[A([[s′]]i|i ∈ S) = 1] (5)

We will use the Shamir Secret sharing scheme [Sha79]. Given any field F of size |F| ≥ n the construction
starts with n + 1 distinct field elements x0, x1, . . . , xn ∈ F. Given a secret s ∈ F we generate shares
[[s]]1 = (x1, y1), . . . , [[s]]t−1 = (xt−1, yt−1) where y1, . . . , yt−1 ∈ F are random field elements. We then use
polynomial interpolation to find a degree t − 1 polynomial p(x) such that p(x0) = s and p(xi) = yi for
i ≤ t− 1. Finally, for share i > t− 1 we define [[s]]i = (xi, p (xi)).

One crucial property of Shamir Secret sharing that we rely on is that any subset of t − 1 shares is
uniformly random over Ft−1. In particular, for all secrets s ∈ F, all subsets S = {i1, . . . , it−1} ⊆ [n] of size
t − 1 the shares [[s]]i1 , . . . , [[s]]it−1

can be viewed as uniformly random independent elements in F unrelated
to the secret s i.e., for all y ∈ Ft−1 we have

Pr
[(

[[s]]i1 , . . . , [[s]]it−1

)
= y

]
= |F|−t+1

where the randomness is taken over ([[s]]1, . . . , [[s]]n)← ShareGen(n, t, s).

C Real or Random Security
Similar to the traditional public key encryption schemes, we require that the encryption scheme is secure
against any computationally bounded adversary who does not have the secret key sk. In this section, we
formally define Real-or-Random security based on the a security exeperiment/game called CEROR

A (1λ).

C.1 RoR Experiment for Conditional Encryption
In the security game we pick a random (sk, pk) = KeyGen(1λ; r) and the attacker tries to distinguish the
encryption oracles Encpk(·) and CEncpk(·, ·) from random encryption oracles. More precisely, we consider
the following experiment CEROR

A (1λ): (1) The challenger C picks a random bit b ∈ {0, 1} and generates a
random public/secret key pair (sk, pk)← KeyGen(1λ); (2) The challenger sends pk to the attacker A(1λ); (3)
Whenever the attacker submits a message m to the encryption oracle the challenger sets m0 = m and picks
a random message m1 and sends back Encpk(mb). (4) Whenever the attacker A submits a pair (c,m,m′) to
the conditional encryption oracle the challenger sets c0 = CEncpk(c,m,m′) and sets c1 = CEncpk(c, r, r

′) for
a random messages r, r′ and sends back cb. (5) The game ends when A outputs a bit b′ and the output of
the experiment is CEROR

A (1λ) = 1 if and only if b = b′.

Definition 8. (Real or Random Security) We say that a conditional encryption scheme Π =
(KeyGen,Enc,CEnc,Dec) is (t (·) , q (·) , ϵ (·))-secure if for all attackers A running in time t(λ) and mak-
ing at most q(λ) oracle queries in total we have Pr

[
CEROR
A

(
1λ

)
= 1

]
≤ 1

2
+ ϵ (t (λ) , q (λ) , λ).

Theorem 9. Assume that Pallier encryption is (t(λ), q(λ), ϵ(t(λ), q(λ), λ))-real or random secure. Then
Construction 18 is (t′(λ), q′(λ), ϵ′(t′(λ), q′(λ), λ))-real or random security with t′(λ) = t(λ)−q′(λ) poly(λ),
q′(λ) = q(λ) and ϵ′ (t′ (λ) , q′ (λ) , λ) ≤ 3ϵ (t (λ) , q (λ) , λ).

Proof of Theorem 9: (Sketch) Note that we can assume WLOG that the query to the CEnc oracle
is of the form ((0, c1),m2,m3) where c1 ∈ Z∗N2 . Otherwise, if gcd(c1, N) ̸= 1 or if the query has the form
((1, c1),m2,m3)) then the response will simply be ⊥ regardless of the secret bit b. Let c1 ∈ ZN2 be given
(We do not assume that c1 ∈ Z∗N2) and consider the query ((0, c1),m2,m3) to CEnc.

25

We note that if b = 0 the query returns (1, c) = CEncpk(c1,m2,m3) a random Pallier ciphertext of the
message R(m1 −m2) + m3 mod N if b = 1 the query returns (1, c) = CEncpk(c1, r2, r3) a random Pallier
ciphtext for the the different message R(m1 − r2) + r3 mod N . We define four hybrids: H0.A, H0.B, H1.A
and H1.B. In Hybrid H0.A (resp. H1.A) we play the ROR security game with bit b = 0 (resp. b = 1). In
Hybrid H0.B (resp. H1.B) we continue to use the bit b = 0 (resp. b = 1) for the encryption oracle Enc,
but we replace the conditional encryption oracle CEnc oracle with an oracle that simply returns a random
pallier ciphertext i.e., on input (c,m2,m3) the oracle simply outputs (1, (1 +N)r1rN2 mod N2) for r1 ∈ ZN

and r2 ∈ Z∗N . Intuitively, by ROR security for Pallier the attacker cannot distinguish between Hybrid H0.B
and H1.B except with advantage ϵ(t, q, λ) i.e., is not the regular ROR security game b = 0 or b = 1 adding
a useless extra oracle which returns random Paillier ciphertexts — this oracle could easily be simulated.
By similar reasoning the attacker cannot distinguish between hybrid H0.A and H0.B (or H0.A and H0.B)
except with advantage ϵ(t, q, λ). Intuitively, if the attacker A distinguishes hybrids H0.A and H0.B we can
construct an attacker B for the Paillier ROR security game i.e., B simply runs A and anytime A submits a
query (c1,m2,m3) we submit the query m3 to the Paillier Encryption oracle to obtain c3 and then return
c = c3c

R
1 (1 +N)−m2R mod N2. If c3 was a random Paillier encryption of m3 then c is distributed exactly

like CEnc(c1,m2,m3) in H0.A (resp. H1.A). On the other hand if c3 is a random Paillier ciphertext of a
random message then c is uniformly random ciphertext as in H0.B (resp. H1.B). The running time for the
attacker B is at most t(λ) = t′(λ)+q(λ) poly(λ) where the term q(λ) poly(λ). Thus, attacker B distinguishes
the hybrids H0.B (resp. H1.B) with probability at most ϵ(t(λ), q(λ), λ). Thus, any attacker running in time
t′(λ) distinguishes H0.A (b = 0) from the final hybrid H1.A (b = 1) with advantage at most 3ϵ(t(λ), q(λ), λ).

2

Theorem 10. Assume that Pallier encryption is (t(λ), q(λ), ϵ(t(λ), q(λ), λ))-real or random secure and
that ΠAE is (tAE(λ), qAE(λ), ϵAE(tAE(λ), qAE(λ), λ)) real or random secure. Then Construction 19 is(
t′ (λ) , q (λ)

′
, ϵ′ (t′ (λ) , q (λ) , λ)

)
-real or random secure with t′(λ) = min {t (λ) , tAE (λ)} − o(n), q′(λ) =

min
{
q (λ) /(4n), qAE(λ)

2

}
and ϵ′(t′ (λ), q′(λ), λ) = ϵ(t(λ), q(λ), λ) + ϵAE(tAE(λ), qAE(λ)

′, λ)

Proof of Theorem 10: (Sketch) Let c1 ∈ ZN2 (we do not assume c1 ∈ Z∗N2) and consider the query
(c1,m2,m3) to the encryption oracle. If b = 1 then we have (1, c̃1, . . . , c̃n, cAE) = CEncpk(c1,m2,m3) where
each c̃i = cRi

(
g−m2[i]rN2,i

)Ri
gm3[i]rN3,i mod N2 for uniformly random Ri ∈ ZN and r2,i, r3,i ∈ Z∗N . By ROR

security for Pallier we can apply a Hybrid argument can swap g−m2[i]rN2,i with gr1,irN2,i with r1,i ∈ ZN (resp.
gr4,irN2,i) with r1,i ∈ ZN (resp. r4,i ∈ ZN) uniformly random. After 2n hybrids we have replaced each c̃i

with a ciphertext of the form cRi
(
gri,1rN2,i

)R
i
gr4,irN3,i mod N2. In particular, all information about the secret

symmetric key K is removed so we can invoke ROR security for Authenticated encryption to replace cAE

with a random ciphertext. We can then reverse the hybrids to move to transition from CEncpk(c1,m2,m3)
(when b = 0) all the way to the b = 1 case CEncpk(c1,m

′
2,m

′
3) for random messages m′2 and m′3. Thus, we

adjust q′(λ) = q(λ)/(4n) since we invoke ROR security for Pallier during 4n × q′(n) hybrids. Similarly, we
invoke ROR security for authnticated encryption in 2× q(λ)′ hybrids. 2

Theorem 11. Suppose that we are given k separate conditional encryption schemes Π1, . . . ,Πk corre-
sponding to predicates P1, . . . , Pk and that each Πi provides (ti(λ), qi(λ), ϵi(ti(λ), qi(λ), λ)) real or random
security. Then the construction Πor provides (t(λ), q(λ), ϵ(t(λ), q(λ), λ)) real or random security with ϵ(λ) =∑k

i=1 ϵi(ti(λ), qi(λ), λ)), q(λ) = min{ q1(λ)2k , · · · , qk(λ)
2k } and t(λ) = min {t1(λ), · · · , tk(λ)} −O(k ·max(tCEnc1 ,

· · · , tCEnck)).

Proof of Theorem 11: (Sketch) Intuitively, for each conditional encryption query
(c1 = (c1,Π1 , · · · , ck,Πk

) ,m2,m3), we need to query c̃i = Πi.CEnc(c1,Πi ,m2,m3) if b = 1. So we have k
hybrids and in each hybrid we use the real or random security of one predicate. So the adversary’s ad-
vantage is bounded by

∑k
i=1 ϵi (ti (λ) , qi (λ) , λ). For each query, the simulator need to compute c̃i which

takes tCEnci . So considering all k hybrids, the loss in time is bounded by O(k ·max{tCEnc1 , · · · , tCEnck}) after

26

these k hybrids. We note that the number of queries for the resulting adversary is bounded by min{q1(λ),
· · · , qk(λ)}. We can then reverse the hybrids to move to transition from Πor.CEnc (c1,m2,m3) (when b = 1)
all the way to b = 0 case Πor.CEnc(c1,m

′
2,m

′
3) for random messages m′2 and m′3. 2

D General construction of Conditional Encryption from Circuit-
Private FHE

In this section we show how one can construct conditional encryption for an arbitrary binary predicate
P using Circuit-Private FHE assuming that the predicate P can be implemented as a polynomial sized
circuit. The basic idea is to define a circuit CP,m2,m3

(m1) which outputs m3 if P (m1,m2) = 1 and out-
puts 0 if P (m1,m2) = 0. Now the the conditional encryption algorithm CEncpk(c,m2,m3) simply runs
FHE.Evalpk(CP,m2,m3

, c). If the input ciphertext c corresponds to a message m such that P (m,m2) = 1 then
FHE.Evalpk(CP,m2,m3 , c) will output a ciphertext c′ which decrypt to CP (m,m2,m3) = m3. Otherwise, if
P (m,m2) = 0 we get a ciphertext c′ which decrypts to 0. This construction is formalized in Construc-
tion 12.

We show that Construction 12 provides conditional encryption secrecy as long as the FHE construction
satisfies the notion of circuit privacy [OPP14] — see Appendix D.2 for the formal definition. Before defining
circuit privacy for FHE we first show that circuit privacy is necessary to prove security of our construction.
In particular, if FHE exists then there exists a (non-circuit private) FHE scheme for which Construction 12
is not secure — see Appendix D.1. After defining circuit privacy in Appendix D.2 we use circuit privacy to
prove that Construction 12 satisfies conditional encryption secrecy Theorem 13 in Appendix D.3.

More precisely, let FHE = (Setup,Enc,Eval,Dec) be an FHE scheme, then we obtain a conditional en-
cryption scheme ΠCEnc as described in Construction 12 and Figure 2.

D.1 Circuit Privacy is Necessary
We demonstrate that Construction 12 can be insecure if the underlying FHE scheme does not satisfy circuit
privacy. In particular, there exists secure FHE schemes for which the proposed construction is blatantly
insecure as a conditional encryption scheme. Security definitions for FHE assume that the attacker does not
have the secret decryption key, and there is no requirement that the output ct = Eval(C, c1 . . . , cn) hides
information about the underlying message bits m1, . . . ,mn when the secret key is known. Given a FHE
scheme ΠFHE = (KeyGen,Enc,Eval,Dec) we can define a new FHE scheme Π′FHE =

(
KeyGen,Enc,Eval′,Dec′

)
where Eval′(C, c1, . . . , cn) = (Eval(C, c1, . . . , cn), c1) i.e., Eval′ simply appends the first input ciphertext c1
to the final output. Correctness still holds as the decryption algorithm Dec′ can simply ignore c1 and then
run the original decryption algorithm Dec. Note that as long as the attacker does not have the secret key
that the output of Eval′ does not leak any information about the encrypted message m1 corresponding to
c1. Thus, the updated FHE scheme Π′FHE still satisfies the traditional notion of semantic security. How-
ever, the message m1 can be directly extracted from the evaluation ciphertext ct′ = Eval′(C, c1, . . . , cn) by
any party who has the secret decryption key. Instantiated with Eval′ the proposed conditional encryption
scheme would output CEncpk(c1,m2,m3) = FHE.Eval′pk(CP,m2,m3

, c1) = (FHE.Evalpk(CP,m2,m3
, c1), c1) =.

Supposing that P (m1,m2) = 0 conditional encryption secrecy requires that the conditional ciphertext
ct′ = CEncpk(c1,m2,m3) leaks no information about any of the messages m1,m2 and m3 except that
P (m1,m2) = 0. Yet, the ciphertext ct′ still contains an encryption of the secret message m1. In our
setting the attacker is given the decryption key allowing the attacker to directly extract the secret message
m1 from ct′. Thus, Construction 12 blatantly violates conditional encryption secrecy when instantiated
with Π′FHE. If we want to show that Construction 12 is secure we will need to rely on additional security
properties for FHE (circuit privacy) which rules out FHE constructions like Π′FHE.

27

Construction 12.

Key Generation Algorithm:

• (pk, sk)← ΠCEnc.KeyGen(1
λ) = FHE.Setup(1λ)

Regular Encryption:

• (0, c)← ΠCEnc.Encpk(m1) = FHE.Encpk(m1)

Conditional Encryption algorithm:

• (1, c′)← ΠCEnc.CEncpk(c,m2,m3):

(1) Define the circuit CP,m2,m3(m1) which outputs m3 if P (m1,m2) = 1 and outputs Z if
P (m1,m2) = 0. (Note: Z is an arbitrary fixed constant which is publicly known. If we
want the construction to be error detecting then Z needs be outside of the message space for
our conditional encryption scheme, but inside the FHE message space.

(2) Run c′ ← FHE.Evalpk(CP,m2,m3
, c)

(3) Return (1, c′)

Decryption algorithm:

• m := ΠCEnc.Decsk(b, c)

(1) Compute m = FHE.Decsk(c)

(2) If m is outside the message space return ⊥; otherwise return m

Figure 2: Proposed generic construction of our generic construction of Conditional Encryption from FHE

28

D.2 Circuit Privacy Definition
To prove security of Construction 12 we rely on the notion of circuit privacy. Gentry proposed a formal
definition of (statistical) circuit private FHE in his thesis [Gen09a] and suggested how to achieve circuit
privacy. Ostrovsky et al. [OPP14] introduced the notion maliciously circuit private FHE which requires that
privacy holds even when the public key and/or input ciphertexts are generated maliciously. We base our
definition of circuit privacy on Gentry’s definition of circuit privacy as malicious security is not necessary to
show conditional encryption secrecy.

Intuitively, a FHE scheme is circuit private if the ciphertexts c = FHE.Evalpk(C, c1, . . . , cn) reveals nothing
about the circuit C or the encrypted messages m1, . . . ,mn corresponding to the input ciphertexts c1, . . . , cn
other than the output C(m1, . . . ,mn) of the circuit even if the adversary has the secret key or is computa-
tionally unbounded (statistical security). This intuition is formalized by the notion of a simulator who takes
as input the public key pk and the circuit output C(m1, . . . ,mn) and generates a ciphertext that is statisti-
cally indistinguishable from FHE.Evalpk(C, c1, . . . , cn) — in [Gen09a, Def 2.1.6] the simulator is defined to be
Sim(pk, C(m1, . . . ,mn)) = FHE.Encpk(m1, . . . ,mn). We slightly rephrase the definition [Gen09a] to obtain
a concrete security definition instead of an asymptotic definition.

Definition 9. Let ΠFHE = (KeyGen,Enc,Eval,Dec) denote a homomorphic encryption scheme for a class of
circuits C. We say ΠFHE is ϵ(λ)-circuit private if there is a (possibly unbounded) simulator Sim such that
for all key-pairs (sk, pk) in the support of KeyGen(1λ), any circuit C ∈ C, any plaintexts m1, . . . ,mn and
any fixed ciphertexts c1, . . . , cn such that ci in the image of Encpk(mi) for each i ≤ n (i.e., each ciphertext
ci is a valid encryption of the plaintext mi) and any (unbounded) distinguisher D has advantage at most
|pD,sim − pD,Eval| ≤ ϵ(λ) where pD,sim = Pr[D(sk, pk, c1, . . . , cn,m1, . . . ,mn, Sim(pk, C(m1, . . . ,mn)) = 1]
and pD,Eval = Pr[D(sk, pk, c1, . . . , cn,m1, . . . ,mn, Evalpk(C, c1, . . . , cn)) = 1] where the randomness is taken
over the random coins of D, Sim and Eval.

Since our distinguisher D is unbounded the requirement that the distinguishing advantage is up-
per bounded by ϵ(λ) is equivalent to requiring that the statistical distance between Evalpk(C, c1, . . . , cn)
and Sim(pk, C(m1, . . . ,mn) is bounded by ϵ(λ). Giving the distinguisher additional information like
sk, pk,c1, . . . , cn and m1, . . . ,mn does not change the definition.

D.3 Proving Conditional Encryption Secrecy
Theorem 13 proves that Construction 12 achieves conditional encryption secrecy as long as the underlying
FHE scheme satisfies circuit privacy. Intuitively, the conditional encryption simulator will just use the circuit
private FHE simulator. See details in the proof of Theorem 13.

Theorem 13. Assume that ΠFHE = (KeyGen,Enc,Eval,Dec) is an ϵ(λ)-circuit-private FHE, then ΠCEnc

provides (∞, tSim, ϵ(λ))-conditional encryption secrecy where tSim denotes the running time of the simulator
for our circuit private FHE scheme.

Proof. (Sketch) Supposing that P (m1,m2) = 0 we have CP,m2,m3
(m1) = Z where Z is a fixed constant

(publicly known). Thus, our conditional encryption secrecy simulator SimCE(pk) will simply run the FHE
circuit privacy simulator SimcpFHE(pk, Z). Formally, we define SimCE(pk)

.
= (1, SimcpFHE(pk, Z)). Since

CP,m2,m3 (m1) = Z, by circuit privacy of the underlying FHE scheme, the output of SimcpFHE(pk, Z) will
be statistically indistinguishable from the output of CEncpk(c1,m2,m3) = (1,FHE.Evalpk(CP,m2,m3 , c1)). In
particular, for any distinguisher D we have∣∣∣∣Pr [D (sk, pk, c1,m1,m2,m3, SimcpFHE (pk, CP,m2,m3

(m1) = Z)) = 1]

− Pr [D (sk, pk, c1,m1,m2,m3,Evalpk(CP,m2,m3 , c1)) = 1]

∣∣∣∣ ≤ ϵ(λ) (6)

29

By definition the distribution of SimCE(pk) its output is identical to SimcpFHE(pk, Z). Looking at Con-
struction 12, we observe that CEncpk(c1,m2,m3) = FHE.Evalpk(CP,m2,m3 , c1). Thus we can rewrite Equa-
tion (6) as follows: ∣∣∣∣Pr [D (sk, pk, c1,m1,m2,m3, (1, SimCE (pk))) = 1]

− Pr [D (sk, pk, c1,m1,m2,m3,CEncpk (c1,m2,m3)) = 1]

∣∣∣∣ ≤ ϵ(λ)

So we have shown the there exists simulator SimCE running in time tSim(λ) = tSimcpFHE
(λ) such that any

unbounded adversary can distinguish between CEncpk(c1,m2,m3) and SimCE(pk) with advantage of at most
ϵ(λ) and Construction 12 provides (∞, tSim(λ), ϵ(λ)) conditional encryption secrecy.

D.4 Correctness and Error Detection
Theorem 14. Assuming that the underlying fully homomorphic scheme FHE satisfies perfect correctness
Construction 12 satisfies perfect correctness and perfect error detection i.e., the construction is 1 − ϵ(λ)-
error detecting and 1− ϵ(λ)-correct with ϵ(λ) = 0.

Proof of Theorem 14:
Correctness of Construction 12 follows immediately from the correctness of the underlying FHE scheme.

Observe that for any message m in the message space and any secret key pair (sk, pk)← ΠFHE.KeyGen(1
λ)

we have

ΠCEnc.Decsk (ΠCEnc.Encpk(m)) = ΠCEnc.Decsk (0,ΠFHE.Encpk(m))

= ΠFHE.Decsk (ΠFHE.Encpk(m))

= m .

The first equality holds by the definition of ΠCEnc.Enc. The second equality follows by correctness of the
underlying FHE scheme and by the definition of ΠCEnc.Decsk since we assumed the message m is in message
space for our conditional encryption scheme. The final equality follows by the correctness of the underlying
fully homomorphic encryption scheme.

Similarly, consider any messages m1,m2,m3 for which P (m1,m2) = 1 and m3 is an arbitrary message
in our message space. Let (0, c1) ← ΠCEnc.Encpk(m1) = (0,ΠFHE.Encpk (m1)) be any encryption of m1. By
construction we have

ΠCEnc.CEncpk ((0, c1),m2,m3) = (1,ΠFHE.Evalpk (CP,m2,m3 , c1)) ,

and by correctness of ΠFHE we have

ΠFHE.Decsk (ΠFHE.Evalpk (CP,m2,m3
, c1)) = CP,m2,m3

(m1) = m3 ,

where the first equality follows by FHE correctness — note that c1 = ΠFHE.Encpk(m1). The second equality
follows by definition of CP,m2,m3

since, by assumption, we have P (m1,m2) = 1. Since we assume that m3 is
in our message space by definition of ΠCEnc.Dec it follows that

ΠCEnc.Decsk (ΠCEnc.CEncpk ((0, c1) ,m2,m3)) = m3 .

Our argument that Construction 12 satisfies perfect error detection also follows from the correctness of
the underlying FHE scheme. Let m1 and m2 be any messages in the message space for which the predicate
does not hold i.e., P (m1,m2) = 0. Let (0, c1)← ΠCEnc.Encpk(m1) = (0,ΠFHE.Encpk(m1)) be any encryption
of m1. By construction we have

ΠCEnc.CEncpk ((0, c1),m2,m3) = ΠFHE.Evalpk(CP,m2,m3
, c1) ,

30

and by correctness of ΠFHE we have

ΠFHE.Decsk (ΠFHE.Evalpk (CP,m2,m3
, c1)) = CP,m2,m3

(m1) = Z ,

where Z is a message explicitly chosen to be outside the message space of our conditional encryption scheme.
The first equality above follows by FHE correctness since c1 = ΠFHE.Encpk(m1) and the second equality
follows by definition of CP,m2,m3 since, by assumption, we have P (m1,m2) = 0. Thus, by definition of
ΠCEnc.Dec it follows that

ΠCEnc.Decsk (ΠCEnc.CEncpk ((0, c1),m2,m3)) = ⊥ .

2

E Missing Proofs

Reminder of Theorem 1. Construction 18 is a perfectly correct and 1−ϵ(λ)-error detecting conditional

encryption scheme with ϵ(λ) =
|Σ|n+1

N
≤ 1

max{p, q}
.

Proof of Theorem 1: Since Encpk(m) simply runs regular Pallier encryption perfect correctness of Pallier
immediately implies that Decsk (Encpk(m)) = Decsk (P.Encpk(ToInt(m)) = ToInt−1 (ToInt(m)) = m with
probability 1 for all messages m ∈ Σ≤n and all public/private key pairs in the support of KeyGen. Similarly,
if c1 = Encpk(m) and P=(m1,m2) = 1 then CEncpk(c1,m2,m3) will output (1, c′) where c′ = gToInt(m3)rn

mod N2 for some r ∈ Z∗N . Thus, c′ is a valid pallier ciphertext for ToInt(m3) and, by correctness of Pallier,
Decsk(1, c

′) will return m3.
On the other hand if P=(m1,m2) = 0 then by Theorem 2 the ciphertext c′ is a valid Pallier Ciphertext

for some uniformly random integer y ∈ ZN and we will have Decsk(1, c
′) = ⊥ as long as y > |Σ|n+1. Thus,

the construction is 1− ϵ(λ)-error detecting conditional encryption scheme with ϵ(λ) = |Σ|n+1

N ≤ 1
max{p,q} . 2

Reminder of Theorem 2. The conditional encryption scheme described in Construction 18 provides
(∞, tSim, 0) conditional encryption secrecy in which tSim = tP.Enc is time of doing one Paillier Encryption.
Proof of Theorem 2: We define the simulator Sim(pk) as follows. The simulator Sim(pk) takes as input
the Paillier public key pk and then selects Rs ∈R ZN and rs ∈R Z∗N uniformly at random and then encrypts
Rs as CSim = P.Encpk(Rs; rs) = gRsrNs mod N2 and outputs it. We now argue that for any m1,m2 ∈ Σn

with P=(m1,m2) = 0 any payload message m3 and any Pallier key (pk = (N = pq, g) , sk) which satisfies our
condition that |Σ|n+1 ≤ min{p, q} and any encryption c1 = gm1rN1 mod N2 of m1 under pk that the dis-
tributions (pk, sk,m1,m2,m3, c1, Cm3

= CEncpk (cm1
,m2,m3)) and (pk, sk, m1,m2,m3, c1, CSim = Sim(pk))

are identical. In particular, it suffices to argue that CSim = Sim(pk) and CEncpk(cm1 ,m2,m3) are distributed
identically.

To see this consider the generation of CEncpk(cm1
,m2,m3). First, we pick a random R ∈ ZN and generate

an encryption of (−R · m2 mod N) as c2 = g−R·m2rN2 mod N2 where r2 ∈ Z∗N is picked randomly. We
then compute cR1 = gm1·RrRN

1 . Finally, we output

cR1 c2 · gm3 mod N2 = gm3+R(m1−m2)rRN
1 rN2

= gm3+R(m1−m2) mod N
(
rR1 r2 mod N

)N
mod N2 .

where the values R ∈ ZN , r2 ∈ Z∗N are fresh random values. In the last step we implicitly used the fact that
if rR1 r2 = aN + b where b =

[
rR1 r2 mod N

]
then

(aN + b)N =
N∑
i=0

(
N

i

)
(aN)ibN−i = bN mod N2 .

31

Let us first focus on the term m3 + R(m1 − m2) in the exponent of g. We observe that [m1 − m2

mod N] ∈ Z∗N since 1 ≤ |m1 −m2| ≤ |Σ|n ≤ min{p, q}. It follows that for any m3 that R(m1 −m2) +m3

is distributed uniformly at random in ZN when R ∈ ZN is picked randomly. We next consider the term(
rR1 r2 mod N

)
and argue for any fixed r1 ∈ Z∗N and R ∈ ZN that

(
rR1 r2 mod N

)
is distributed uniformly

at random in Z∗N when r2 ∈ Z∗N is picked randomly. It follows that for any r1 ∈ Z∗N ,m1,m2,m3 such that
1 ≤ |m1 −m2| ≤ min{p, q} that the simulated ciphertext (CSim = Sim(pk) = gRsrNs mod N2 for random
rs ∈ Z∗N and Rs ∈ ZN) is identically distributed to CEncpk(cm1 ,m2,m3). 2

Reminder of Theorem 3. Let b = ak + r where 0 ≤ r < a is the reminder (i.e., r = b mod a).
Consider the uniform distributions Ub which outputs a random value in Zb and the distribution Dak which
outputs random values between 0, · · · , ak. Then the statistical distance between these two distributions is
SD(Dak,Ub) = r

b ≤
1

k+1 .

Proof of Theorem 3: Based on the definition of statistical distance we have

SD(Dak,Ub) =
1

2

b−1∑
i=0

| Pr
y∈RDak

[y = i]− Pr
y∈RUb

[y = i]|

=
1

2
(ak)(|1

b
− 1

a
· 1
k
|+ (b− ka)(|1

b
− 0|)

=
1

2
(ak)(

b− ak

abk
) +

1

2
(r)(

1

b
) =

r

b
≤ 1

k + 1
(7)

2

Theorem 15. Construction 19 is a 1− ϵ(λ)-correct and a 1− ϵ(λ)-error detecting conditional encryption
scheme with ϵ(λ) =

(
n
ℓ

)
ϵAE(λ) + 2−λ. Here,

ϵAE (λ)
.
= max

m
Pr

K1,K2∈{0,1}λ
[Auth.DecK1

(Auth.EncK2
(m)) ̸= ⊥]

denotes the negligible probability that the ciphertext c = EncK2
(m) is still valid under an unrelated key K1.

Proof of Theorem 15: We first note Authenticated Encryption security implies that the term ϵAE(λ)
is negligible. Otherwise, an AE attacker could simply pick a random key K ′ and use c = EncK′(m) as an
attempted forgery for the unknown secret key K!

There are two conditions in the Definition 2 which need to be proved. The first condition is regular
encryption correctness and the other one is the conditional encryption correctness.

The observation that Decsk (Encpk(m; r)) = m for all messages m ∈ Σn, random coins r and all (sk, pk) in
the support of the key generation algorithm follows immediately from the correctness of Pallier encryption.

It remains to to show that for all messages m1,m2 ∈ Σn such that Pℓ,Ham(m1,m2), all payload messages
m3, all {sk, pk} in the support of our Key Generation algorithm and all random strings r1, r2 ∈R (Z∗N)n we
have

Pr

[
Decsk(CEncpk(c1,m2,m3; r2)) = m3

∣∣∣∣∣(sk, pk)← KeyGen(1λ)
c1 = Encpk(m1; r1)
Pt,Ham(m1,m2) = 1

]
≥ 1− ϵ . (8)

Let K denote the authenticated encryption key and let [[s]]1, . . . , [[s]]n denote the shares of K that
were generated by the conditional encryption algorithm. Let c̃ = (b, c̃1, . . . , c̃n, CAE) denote the output
of CEncpk(c1,m2,m3; r2)), and let [[s′]]i = RDec (P.Decsk(c̃i)) denote the shares that are recovered. Finally,
let S∗ = {i ∈ [n] : m2[i] = m1[i]} denote indices of the characters where m2 and m1 match. By correctness
of Pallier we have [[s′]]i = [[s]]i for all i ∈ S∗. For i ̸∈ S∗ the distribution over [[s′]]i is as follows: sample a
uniformly random item yi from Z∗N and output yi mod 2λ.

32

If PHamm,ℓ(m1,m2) = 1 we have |S∗| ≥ n − ℓ and there is some subset S ⊆ S∗ of size |S| = n − ℓ such
that

K = KS = SecretRecover
({

(i, [[s′]]i)i∈S
})

.

From the correctness of the authenticated encryption scheme it follows that Auth.DecKS
(cAE) = m3.

Thus, the only possible to output an incorrect message m′ is if for some S ⊆ n of size n − ℓ we have
K ̸= KS = SecretRecover

({
(i, [[s′]]i)i∈S

})
and Auth.DecKS∗ (cAE) ̸= ⊥. However, if KS ̸= K then S ̸⊆ S∗

and we can find some i ∈ S \S∗. For now assume that for all i ̸∈ S∗ the value of [[s′]]i is uniformly random we
can view KS as a uniformly random key. If we view each KS as random then we have Pr[Auth.DecKS

(cAE) ̸=
⊥] ≤ ϵAE and Pr[∃S ⊆ [n] .Auth.DecKS

(cAE) ̸∈ {m3,⊥}] ≤
(
n
ℓ

)
ϵAE .

In the previous paragraph we assumed that the value [[s′]]i is uniformly random for each i ̸∈ S∗ the value.
This is close, but it is not quite true. In reality the distribution of [[s′]]i is described by sampling a uniformly
random yi ∈ Z∗N and then outputting yi mod 2λ.However, by Theorem 3 the statistical distance between
original/modified distribution of our recovered shares [[s′]]1, . . . , [[s′]]n is upper bounded by 2−λ. This follows
since we are guaranteed that N > n22λ by definition of the key generation algorithm. Thus, we have

Pr

[
Decsk(CEncpk(c1,m2,m3; r2)) ̸= m3

∣∣∣∣∣(sk, pk)← KeyGen(1λ)
c1 = Encpk(m1; r1)
Pt,Ham(m1,m2) = 1

]
≤

(
n

ℓ

)
ϵAE + 2−λ .

Similarly, if Pℓ,Hamm(m1,m2) = 0 then for all S ⊆ [n] of size |S| = n− ℓ we can (essentially) view KS as
random since there is some i ∈ S \ S∗. It follows that

Pr

[
Decsk(CEncpk(c1,m2,m3; r2)) ̸= ⊥

∣∣∣∣∣(sk, pk)← KeyGen(1λ)
c1 = Encpk(m1; r1)
Pt,Ham(m1,m2) = 0

]
≤

(
n

ℓ

)
ϵAE + 2−λ .

2

Reminder of Theorem 4. [Conditional Encryption Secrecy of Construction 19] Assume that our
Authenticated encryption scheme ΠAE = (AuthEnc,AuthDec) is (tAE , ϵAE (tAE , λ))-secure for any security
parameter λ and any running time parameter tAE. Then for any t and any security parameter λ Con-
struction 19 provides (t, tSim, ϵ (t, λ)) conditional encryption secrecy with ϵ(t, λ) ≤ ϵAE(t, λ) + 2−λ and
tSim = n · tP.Enc + poly(λ).
Proof of Theorem 4: To prove this theorem we use a hybrid argument. In the first hybrid (Hybrid
0, real world) the distinguisher is given the actual ciphertext output conditional encryption and in the last
hybrid contains the adversary is given a ciphertext output by our simulator — described in Figure 3. As
the hybrids are indistinguishable, we can conclude that the first and last hybrid are indistinguishable as well
which implies that the our suggested construction is secure and provides conditional encryption secrecy in
the semi-honest model. Then we concretely compute the distinguishing advantage of the defined hybrids. In
what follows, we describe the hybrids with more details.

• Hybrid 0: In this hybrid the distinguisher D is given (sk, pk,m1, ,m2, m3, cm1
, (1, c̃)) in which c̃ =

(c̃1, . . . , c̃n, cAE)← CEncpk(c1,m2,m3).

• Hybrid 1: Let T = {i : m2[i] ̸= m1[i]} be the set of the indexes that m1 and m2 have different
characters. We define Hybrid 1 similar to Hybird 0, except for all j ∈ T we replace

c̃j = P.Encpk
(
Ri(m2[j]−m1[j]) + REnc([[s]]i)

)
with P.Enc(Rj) where R′j ∈R ZN are fresh and uniform random values chosen from ZN .

• Hybrid 2: This hybrid is exactly the same as the previous hybrid except we replace all the remaining
ciphertexts j ∈ [1 : n]/T with c̃j = P.Encpk

(
Rj(m2[j]−m1[j]) + REnc([[sr]]j)

)
where [[sr]]j ∈R {0, 1}λ

are fresh uniformly random elements (chosen independently from the secret K) chosen from the field
F2λ .

33

• Hybrid 3: This hybrid is exactly the same as the previous hybrid except we replace all the ciphertexts
j ∈ [1 : n]/T with c̃j = P.Encpk

(
Rj(m2[j] − m1[j]) + R̂j)

)
where R̂j ∈R ZN are chosen from ZN

uniformly at random.

• Hybrid 4: This hybrid is exactly the same as the previous hybrid except we replace ciphertexts c̃j for
all j ∈ [1 : n]/T , with P.Encpk(R

′
j) in which R′j ∈R ZN are chosen from ZN uniformly at random.

• Hybrid 5: This hybrid is exactly the same as the previous hybrid unless we replace cAE with c′AE ∈R
{0, 1}l(λ) a λ-bit string chosen uniformly at random. We note that l(λ) is a polynomila over the security
parameter λ which represents the ciphertext size of authenticated encryption.

• Hybrid 6: We replace the ciphertext of the conditional encryption with the output of the simulator
Sim described in Figure 3.

Now we are proving that the defined hybrids are equivalent.

E.0.1 Hybrid 0 ≡ Hybrid 1

These hybrids are equivalent i.e., we have

Pr[DH0 = 1] = Pr[DH1 = 1] . (9)

Where DHi = 1 denotes the event that the distinguisher outputs 1 in hybrid i. The argument is essentially
the same as what we had for the security of Equality test predicate — see the proof of Theorem 2. In
particular, for each j ∈ T we have m1[j] ̸= m2[j] and |m1 [j]−m2 [j]| ≤ min{p, q} which implies that
(m1 [j]−m2 [j]) ∈ Z∗N . It follows that Rj × (m1 [j]−m2 [j]) is uniformly random in ZN .

E.0.2 Hybrid 1 ≡ Hybrid 2

We have information theoretically eliminated all information about shares shares with j ∈ T . Since
Pℓ,Ham(m1,m2) = 0 we have |T | > ℓ and |T | < n − ℓ. Let T = {i1, . . . , it} with t < n − ℓ. Shamir Se-
cret Sharing guarantees that (si1 , si2 , . . . , sit) is uniformly random in Ft

2λ . Thus, we can simply replace the
shares with uniformly random values. We have

Pr[DH1] = Pr[DH2] . (10)

E.0.3 Statistically indistinguishability of Hybrid 2 ≡ Hybrid 3

We apply Theorem 3 with a = 2λ, k = ⌊ N
2λ
⌋ and b = N . We first observe that when i ∈ T the value of

si ∈ F2λ is uniformly random so that REnc(si) is equivalent to Dak. It follows that the statistical distance
between REnc(si) and the uniform ditribution ZN is at most 1

k = ⌊ N
2λ
⌋−1. Since we are replacing the random

value in |T | ciphertexts the overall statistical distance is upper bounded by |T |k ≤
n
k we have:

|Pr[DH2]− Pr[DH3]| ≤ 2λn

N − 2λ
≤ 2−λ . (11)

The last inequality follows since we pick N ≥ 2n22λ so that 2λn
N−2λ ≤ 2−λ.

E.0.4 Hybrid 3 ≡ Hybrid 4

These hybrids are statistically indistinguishable as Rj(m2[j] −m1[j]) + R̂j is already uniformly random in
ZN . We have

Pr[DH3] = Pr[DH4] (12)

34

Design of simulator Sim(pk)

1. Sample, r′′1 , . . . , r′′n ∈R Z∗N , R′′1 , . . . , R
′′
n ∈R ZN

n uniformly at random
2. For all 1 ≤ i ≤ n compute c̃′i = P.Encpk(R

′′
i ; r
′′
i)

3. Pick RK ∈R {0, 1}l(λ) uniformly at random and set c′AE = RK . //l(λ) represents the ciphertext
size of our authenticated encryption.

4. Output c̃′ = (1, c̃′1, · · · , c̃′n, c′AE).

Figure 3: Steps of designing the simulator Sim for the conditional encryption secrecy when the predicate is
Pℓ,Ham

E.0.5 Indistinguishability of Hybrid 4 and Hybrid 5

By Hybrid 4 we have information theoretically elimated any information about the secret key K for our
authentication encryption scheme from (c̃1, . . . , c̃n). Thus, by AE security any adversary running in time at
most tAE = tAE(λ) can distinguish between cAE and c′AE with the advantage of at most ϵAE(tAE , λ). So we
have

|Pr[DH4]− Pr[DH1 = 1]| ≤ ϵAE(tAE , λ) (13)

E.0.6 Hybrid 5 ≡ Hybrid 6

Looking at the definition of our our simulator in Figure 3, we can see that the conditionally encrypted
ciphertext in Hybrids 5 and 6 are generated in exactly the same way. It follows that the hybrids are
information-theoretically equivalent and we have

Pr[DH5] = Pr[DH6] (14)

Putting everything together we have∣∣∣Pr [D (sk, pk,m1,m2,m3.CEncpk (Encpk (m1) ,m2)) = 1]

− Pr [D (sk, pk,m1,m2,m
′
3, Sim (pk)) = 1]

∣∣∣
=

∣∣Pr [DH0
]
− Pr

[
DH6

]∣∣
≤

5∑
i=0

∣∣Pr [DHi
]
− Pr

[
DHi+1

]∣∣
< ϵAE(t

′, λ) +
n2λ

N − 2λ
≤ ϵAE(t

′, λ) + 2−λ .

2

Reminder of Theorem 5. Π1,ED is a 1 − ϵ(λ) correct conditional encryption scheme for the predicate
P1,ED and Π1,ED is 1− ϵ(λ)-error detecting with ϵ(λ) = (2n+1)|Σ|n+1

N ≤ 2n+1
max{p,q} .

Proof of Theorem 5: Note that Encpk(m) includes c[0] = P.Encpk(ToInt(m)) and that therefore by
correctness of Pallier we have Decsk (Encpk(m)) = Decsk (P.Encpk(ToInt(m))) = ToInt−1 (ToInt(m)) = m
with probability 1 for all messages m ∈ Σ≤n and all public/private key pairs in the support of KeyGen.

35

Recall that if c = (0, c[0], . . . , c[n]) = Encpk(m) then CEncpk(c,m
′,m′′) will output a ciphertext of the

form (1, c̃0, . . . , c̃2n). If P1,ED(m,m′) = 0 then we have m−j ̸= m′ and m ̸= m′−j for all 0 ≤ j ≤ n. Thus, by
Theorem 2 each c̃j = gyjrnj mod N2 for random values rj ∈ Z∗N and yj ∈ ZN . Thus, we have

Pr[Decsk(1, c̃0, . . . , c̃2n) ̸= ⊥] ≤ Pr[∃j.yj < |Σ|n+1] ≤ (2n+ 1)|Σ|n+1

N
.

This implies that the construction is 1 − ϵ(λ)-error detecting conditional encryption scheme with ϵ(λ) =
|Σ|n+1

N ≤ 1
max{p,q} .

Finally, if P1,ED(m,m′) = 0 then by perfect correctness of our conditional encryption scheme for equality
predicate there exists some j such that c̃j = gyjrNj mod N2 is a valid Pallier encryption of yj = ToInt(m′′).
Furthermore, we have already shown that Pr[∃j.yj < |Σ|n+1 ∧ yj ̸= ToInt(m′′)] ≤ (2n+1)|Σ|n+1

N . It follows
that, except with probability (2n+1)|Σ|n+1

N that we will have Decsk(1, c̃0, . . . , c̃2n) = ToInt−1(ToInt(m′′)).
2

Reminder of Theorem 7. Suppose that we are given k separate conditional encryption schemes Π1, . . . ,Πk

corresponding predicates P1, . . . , Pk and that each Πi provides (t(λ), tSim,i(λ), ϵi(t(λ), λ))-conditional encryp-
tion secrecy. The construction Πor provides (t′(λ), t′Sim(λ), ϵ

′(t′(λ), λ))-conditional encryption secrecy with
t′(λ) = O (t (λ)), t′Sim(λ) ≈

∑k
i=1 tSimi(λ) and ϵ′ (t′ (λ) , λ) =

∑k
i ϵi (t

′ (λ) , λ).

Proof of Theorem 7: The simulator SimOR(pk) for ΠOR will run the simulator Simi(pki) for each
conditional encryption scheme 9 and concatenate all of the ciphertexts. Clearly, the running time of the
simulator is t′Sim(λ) ≈

∑k
i=1 tSim,i(λ). We can now define a sequence of k + 1 hybrids Hybrid 0 to Hybrid k.

Intuitively, in hybrid i we set cj = Simi(pk) for j ≤ i and cj = Πj .CEnc(c,m
′,m′′) for j > i. Note that in

Hybrid 0 we have cj = Πj .CEnc(c,m
′,m′′) for all j and thus the final output is CEnc(c,m′,m′′). By contrast,

in Hybrid k we have cj = Simj(pkj) for all j ≤ k and thus the final output is SimOR(pk).
By assumption any attacker running in time t′(λ) = t(λ) − o(t(λ)) can distinguish hybrids i − 1 and i

with probability at most ϵi(t(λ), λ). It follows that any attacker running in time t′(λ) = t(λ) − o(t(λ)) can
distinguish hybrid 0 from hybrid k with probability at most ϵ′(λ, t′(λ)) =

∑k
i=1 ϵi(t(λ), λ). 2

Reminder of Theorem 8. Suppose that we are given k separate conditional encryption schemes Π1, . . . ,Πk

corresponding to predicates P1, . . . , Pk and that each Πi is 1 − ϵi(λ)-correct and 1 − ϵ′i(λ)-error detecting.
Then the construction Πor is 1− ϵ(λ)-correct (resp.1− ϵ′(λ)-error detecting) with ϵ(λ) =

∑k
i ϵ
′
i(λ)+

∑k
i ϵi(λ)

(resp. ϵ′(λ) =
∑λ

i=1 ϵ
′
i(λ)).

Proof of Theorem 8: Let T = {j : Pj(m1,m2) = 1} and T = {j : Pj(m1,m2) = 0} = [k] \ T . We first
suppose that POR(m1,m2) = 0 which implies that Pi(m1,m2) = 0 for all i ≤ k i.e., T = [k].

Now let (pk, sk) be any honestly generated public/secret key and let c = (0, c1, . . . , ck) = CEncpk(m1)
with ci

.
= Πi.Encpk(m1). The probability that Πi.Decsk (Πi.CEncpk(ci,m2,m3)) ̸= ⊥ is at most ϵ′i(λ). Union

bounding over all i ≤ k the probability that there exists i such that Πi.Decsk (Πi.CEncpk(ci)) ̸= ⊥ is at most∑k
i=1 ϵ

′
i(λ) = ϵ′(λ).

On the other hand suppose that POR(m1,m2) = 1 which means that Pj(m1,m2) = 1 for some j ≤ k.
Clearly, if |T | ≥ 1 and Πi.Decsk (Πi.CEncpk(ci)) = m3 for all i ∈ T and Πi.Decsk (Πi.CEncpk(ci)) = ⊥ for all
i ̸∈ T then Decsk will output the correct message m3. As before the probability that there exists i ∈ T such
that Πi.Decsk (Πi.CEncpk(ci)) ̸= ⊥ is at most

∑k
i=1 ϵ

′
i(λ) = ϵ′(λ). Similarly, the probability that there exists

j ∈ T such that Πi.Decsk (Πi.CEncpk(ci)) ̸= m3 is at most
∑k

j=1 ϵi(λ).
Thus, we have Pr [Decsk (CEncpk (Encpk(m1),m2,m3)) ̸= m3] ≤

∑k
i=1 (ϵ

′
i(λ) + ϵi(λ)) = ϵ(λ).

2

9In the malicious security setting the simulator SimOR(b, pk) is also given a bit b = 1 if and only if CEncpk(c,m
′,m′′) = ⊥

i.e., if and only if Πi.CEncpk(c,m
′,m′′) = ⊥ for some i ≤ k. If b = 1 then SimOR(b, pk) outputs ⊥. Otherwise we simply run

Simi(0, pki) for each i ≤ k.

36

F System Model of Personalized Typo Tolerance
In this section, we will concentrate on the application of the conditional encryption scheme in designing a
secure mechanism to supporting password typos in a secure way. We first start with describing the syntax
and API of a typical password-based authentication server, and then we use our introduced conditional
encryption schemes for handling the typos when the user logs in with a wrong password close the original
one. Indeed we expect the if the miss-typed password distance from the original one is small, then this typo
can be used by the user for future logins.

A password-based authentication scheme Π is a stateful mechanism that includes three main algorithms:
Initialization, RegisterNewUser and Login which are described as follows.

• (σ0) ← Initialization(1λ): The initialization algorithm (potentially randomized) Initialization takes as
input the security parameter λ and setups the system and outputs the initial state σ0.

• (σ′, d ∈ {acpt, rjct}) ← RegisterNewUser(σ, Id, pwd): This is potentially a randomized algorithm
which takes as input the current state of the system σ, the user identity Id and its corresponding
password pwd, and updates the state of the system to σ′ and output acpt (for the successful registration
when the user id Id is new and previously is not registered) or rjct (for unsuccessful registration).

• (σ′, d ∈ {acpt, rjct}) ← Login(σ′, Id, pwd): Let σ be the current state. This is also potentially is a
randomized algorithm which takes as input the state σ, the identity Id and password pwd, and outputs
the updated state σ′ and the login result d. It either outputs d = acpt (for successful login) or d = rjct

(unsuccessful login attempt e.g., using wrong password).

In what follows, we will formally define the required properties of Π. Before that, we will start by
introducing some predicates which will be used in our definitions.

• {0, 1} := isRegistered(Id, σ): This predicate takes as input the identity-password pair (Id, pwd), the
current state of the system and outputs 1 if the user was previously registered with the corresponding
identity Id; otherwise, it outputs 0.

• {pwd,⊥} ← PullPwd(Id, σ): This algorithm takes as input the user identity Id and current state σ,
and outputs pwd the associated password to Id if isRegistered(Id, σ) = 1; otherwise, it outputs ⊥.

Definition 10 (Correctness). Let Π = (RegisterNewUser, Login) be a password-based authentication mech-
anism, P a binary predicate 10, and EventType = {Register, Login} be the set of registration/login actions.
Then, for all sequence of registration/login events U1, . . . , Ui ∈ ID × PWD × EventType resulting the state
σi, the correctness of Π enforces two following conditions:

• Login Correctness: For all events

Ui+1 = (Id, pwd, Login) ∈ ID × PWD × EventType

we have (σi+1, acpt)← Login(σi, Id, pwd) if

i = isRegistered(Id, pwd, σi)

Intuitively, this basically means that the user with identity Id has already successfully registered with
the corresponding password pwd and for all future login events using the the id-password pair (Id, pwd)
the login algorithm Login always outputs acpt.

10The predicate determines if two passwords’ distance satisfies the target distance metric or not. For example, if the distance
metric is Hamming 2, for two password pwd1, pwd2, we have P (pwd1, pwd2) = 1 if Ham(pwd1, pwd2) ≤ 2

37

• (P, θ)-Typo Resilience: Let P be binary predicate, 0 ≤ θ ≤ 1 be an arbitrary real number,
Ui+1 = (Idi+1, pwdi+1, Login) ∈ ID × PWD × EventType be a login event s.t. 1 := isRegistered

(Idi+1, pwdj , σi) ∧ P (pwdi+1, pwdj) for some 1 ≤ j ≤ i, and (σi+1, rjct) ← Login(Idi+1, pwdi+1, σi).
We say Π is (P, θ)-Typo resistant if after login event Uk = (Idi+1, pwdj , Login) for some k > i + 1,
for all k′ > k we have (σk′+1, acpt)← Login(Idi+1, pwdi+1, σk′) with probability at least θ. Intuitively,
this implies that after an unsuccessful login with a password which has small distance to the original
password, if we have a login with the original password, then, we have the chance of successful login
(at least with probability θ) with the miss-typed password and the that typo will be added to the cache
of password which will grant successful login.

G Typo Vault: Security Definitions
In this section, we formally describe the security definitions based on a game between an adversary A and
a challenger C. In the game we use a predicate which checks if the received login query is valid or not.

Definition 11 (Valid Login Query). Let pwd0, pwd1, pwd ∈ PWD be three passwords from password space
PWD. We say that the login query (pwd0, pwd1, pwd) is a valid query under predicate P if we either have

(1) pwd0 = pwd1 if 1 = P (pwd0, pwd) or 1 = P (pwd1, pwd).

(2) Or P (pwd0, pwd) = 0 ∧ P (pwd1, pwd) = 0.

We denote ValidLginQuery(pwd0, pwd1, pwd) = 1 when the query is valid with regard to the mentioned
two conditions, otherwise we have ValidLginQuery(pwd0, pwd1, pwd) = 0.

Definition 12 (Typo Privacy). We say that a password-based authentication scheme Π is
(t (λ) , q (λ) , ϵ (t, q, λ))-typo private under the predicate P if for all adversaries A running in time t and
making at most q queries to Login/Register we have

Pr
[
ExperimentΠ,Typo−Privacy (A, λ, q) = 1

]
≤ ϵ(t, q, λ) (15)

In Experiment 16 we defined two main oracles that the adversary can make at most q queries to them
which are RegisterQuery and LoginQuery. RegisterQuery receives an ID and password, and assuming that it
knows the current state of the system, first checks if the ID is registered previously or not. If not, it registers
the user by running RegisterNewUser as described in Experiment 16 and updates the state. LoginQuery
receives the and ID and a pair of two PWDs pwd0 and pwd1 as a request for login attempt. Similarly,
assuming that oracle knows the current state of the system, the oracle uses pwdb to run the login algorithm
Login as described in Experiment 16. We also defined the time variable t to track the number of queries and
the state updates when the adversary access to the oracles.

We remark that there are other security definitions like offline distinguishing, offline guessing and
Random-or-Real which are defined for a typo tolerable password-based authentication scheme and intro-
duced and discussed in [CWP+17]. However, due to the page limitation we ignore to formally review and
prove them. However, we should highlight that our construction also provide these security properties. Basi-
cally, the source of difference between our proposal and the TypTop mechanism is the underlying the public
key encryption scheme. Moreover, it is worth mentioning that their Cheetarjee et al’s construction dose not
support the security definition we just introduced, i.e., Definition 12.

G.0.1 No Typo Privacy for Original TypTop

In what fallows we will show that TypTop [CWP+17] does not satisfy Typo Privacy we described in Exper-
iment 16. Before that, we just briefly review TypTop mechanism and then we will show why their proposal
does not support our suggested security property.

38

Experiment 16.

ExperimentΠ,Typo−Privacy[A, λ, q]:

• Init

(1) C runs σ0 ←
Initialization(1λ).

(2) C randomly selects b ∈R
{0, 1}.

(3) C sets t = 0 as the starting
time.

• Query phase: A makes
at most q queries to
RegisterQuery/LoginQuery ora-
cles:

◦ RegisterQuery(Idi, pwdi)

◦
LoginQuery(Idi, pwdi,0, pwdi,1)

• Guess: Let view =

(λ, σ0, σ1, d1, . . . , σq , dq).

◦ b′ = A(view).

• Experiment Output:

ExperimentΠ,Typo−Privacy[A, λ, q] =
1 ⇐⇒ b′ == b

RegisterQuery(Id, pwd):

(1) If t > q return ⊥. // at most q queries is
allowed.

(2) set σ = σt

(3) (σt+1, dt+1)← RegisterNewUser(σ, Id, pwd)

(4) set t = t+ 1.

LoginQuery(Id, pwd0, pwd1):

(1) If t > q return ⊥ // at most q queries are
allowed.

(2) set σ = σt

(3) if 1 = isRegistered(Id, σ)

• pwdId = PullPwd(Id, σ)

• if 1 =

ValidLginQuery(pwd0, pwd1, pwdId)

- (σt+1, dt+1) ←
Login(Id, pwdb, σ).

- set t = t+ 1.
• else

- set dt+1 = rjct, σt+1 = σ, t =
t+ 1

(4) else

• set σt+1 = σ, dt+1 = rjct

• set t = t+ 1

Figure 4: Formal description “ExperimentΠ,Typo−Privacy” which the experiment defining the typo privacy.
The experiment is defined based on the interaction between unlimited adversary A and the challenger C.

39

Let pwd be the user’s password. In TypTop, the server uses a password-based key derivation function to
extract the secret key k = PKDF(pwd) and also uses public key cryptography and assigns a pairs of secret-
public key (pk, sk) to each user in time of registration. The user assigned public key will be stored in the sever
along with his/her other credentials. Moreover, let AE = (AE.Enc, AE.Dec) be an authenticated encryption
scheme. Then, the server encrypts sk using k to store the ciphertext Csk = AE.Enck(sk) in the server side.
After an unsuccessful login attempt using a miss typed password pwd′, the server will encrypt the typo pwd′

using pk, and adds it to the waiting list. In the future login using the original password pwd, the server
extracts k = PKDF(pwd), and decrypts Csk to extract the secret key sk. Then the server uses the secret key
sk to decrypt all the ciphertexts appeared in the waiting list. Finally, those that have small edit distance
to the original password pwd have the chance to be added to the cache of valid passwords/typos which will
grant successful login for the future attempts.

Looking at the adversary’s ability/view, we can see that the designed TypTop dose not satisfy Typo-
privacy. Based on the experiment description, we can see that the adversary knows the passwords and
therefore she can decrypt the challenge ciphertext to determine which password is chosen by the challenger.
This was a high level intuition of the security issue and in what follows you may find more formal technical
details of the mentioned issue. For simplicity we assume that number of queries is at most q = 2 the first one
is the registration query of a user with identity Id and password pwd. And the second query is t a login query
with password pairs pwd0, pwd1 of the adversary choice and we have P (pwd0, pwd) ̸= 1 (so pwd0 and pwd1 are
not necessarily equal while based on the condition of the experiment if P (pwd, pwd0) = 1, then they have to be
equal i.e., pwd0 = pwd1, i.e., ValidLginQuery(pwd0, pwd1, pwd) = 1). Regarding the description of TypTop,
the challenger will add the ciphertext Cpwdb

= ΠPubKey.Enc(pk, pwdb) to the updated state as the encryption
of a potential typo. Based on the description of the game, the adversary chooses the registration password
pwd and knows. So simply can extract the authenticated decryption key k = PKDF(pwd) and computes the
secret key sk = ΠPubKey.Dec(k, Csk). Finally, the adversary computes pwdb = ΠPubKey.Dec(sk, Cpwdb

) and
simply outputs b (A knows both pwd0, pwd1).

The above attack represents the simplified version of the actual Typo privacy and actually is a weaker
definition. However, as the TypTop scheme does not provide this weaker requirement, it the does not satisfy
Typo privacy as well.

H Personalized Typo Tolerance Mechanism from Conditional En-
cryption

In this part we will describe our generic construction of a password typo vaults which safely caching incorrect
login attempts with conditional encryption. In the rest of the paper we call it “ CondTypTop” to imply
construction of TypTop which is designed using conditional encryption. The main building blocks of our
proposed construction are conditional encryption ΠCE = (KeyGen,Enc,CEnc,Dec), authenticated encryption
ΠAE = (Enc,Dec) and password-based key derivation function PKDF11. Let the underlying conditional en-
cryption be over the binary predicate P . Considering the mentioned building blocks, our construction of
ΠP = (Initialization,RegisterNewUser,Login) is described in Figure 6.

Intuitively, we should highlight that construction is similar to TypTop, however the main and basic
idea and difference is replacing the traditional public key encryption part with our proposed conditional
encryption scheme. So after an incorrect attempt using the typo included password pwd′ we encrypt it using
conditional encryption using the encryption of original password ciphertext. In fact, in this case pwd′ will
be considered as the payload of ΠCE.CEnc. For this aim, we have to encrypt the original password pwd using
Cpwd = ΠCE.Encpk(pwd; r) and store it in the server along with user’s public key pk. Then, in future login
with the miss typed password pwd′, we add the ciphertext Cpwd′ = ΠCE.CEncpk(Cpwd, pwd

′, pwd′; r′) to our
waiting list. So, in the future login with the original password pwd we extract kpwd = PKDF(pwd) and decrypt
sk = ΠAE.Dec(kpwd, Csk). Finally, if P (pwd, pwd′) = 1, the conditional decryption returns the underlying

11which takes as input the password and deterministically extracts a key for symmetric key encryption scheme and we have
kpwd = PKDF(pwd)

40

payload (here is the password with small typo pwd′) pwd′ = ΠCE.Decsk(Cpwd′); otherwise, the decryption
algorithm returns uniformly random element chosen from the password space PWD.

In what follows, we will provide the detailed description of algorithms Initialization, RegisterNewUser and
Login.

• σ0 ← Initialization(1λ): This algorithm takes as input the security parameter λ, and sets the initial
state σ0 = (λ, SW , ST ,W, T) in which W is allocated waiting list, T the cache of valid typos granting
successful login. SW and ST are respectively the size of waiting list and cache size allocated for each
user. Initially, as we don’t have any registered user, W and T are empty.

• (σ′, d = {acpt, rjct}) ← RegisterNewUser(σ, Id, pwd): Let σ be the current state of the system, and
(Id, pwd) be the pair of password and user identity. If 1 = isRegistered(σ, pwd), the algorithm
outputs (σ, d = rjct); otherwise, the algorithm computes symmetric key kpwd = PKDF(pwd||saltId) in
which saltId ∈R {0, 1}λ is the assigned user’s slat, and (pkId, skId) ← KeyGen(1λ). Then, algorithm
computes CId,pwd = ΠCE.EncpkId

(pwd; r) under random coin r ∈R {0, 1}λ. Then the algorithm will
assign a waiting list WId of size SW = σ[1] and will fill WId with conditional encryption of garbage
messages, i.e., WId = ΠCE.CEncpkId

(CId,pwd, r
′, r′; r”) s.t. r′ ∈R PWD12 and r′′ ∈R {0, 1}λ. Finally, the

array TId of size ST = σ[2] as a cache of passwords which granting successful logins will be assigned to
the user with identity Id such that TId[0] = ΠAE.Enc(kpwd, skId) . To track the number of logins, the
algorithm sets cId as the counter which will be increased by one after each attempt for login. We set
σId = (Id, saltId, pkId,WId, TId, CId,pwd, cId) The updated state will be σ′ = (σ, σId) and the algorithm
outputs (σ′, d = acpt).

• (σ′, d = {acpt, rjct}) ← Login(σ, Id, pwd): The algorithm first checks if the user is registered and
output (σ′ = σ, d = rjct) if 0 = isRegistered(σ, Id); otherwise, it extracts the state σId ∈ σ which
was previously assigned to the user Id. Then it obtains the salt saltId = σId[1] and computes kpwd =
PKDF(pwd||saltId). Then considering the cache TId = σId[4], the algorithm search for the ciphertext
TId[i] for all 1 ≤ i ≤ ST such that (1, skId) = ΠAE.Dec(kpwd, TId[i]), this is a successful login and the
algorithm sets d = acpt; otherwise, d = rjct. Now the counter is updated i.e., σId[6] = σId[6] + 1, we
have two cases:

(1) Successful login (d = acpt): Now the algorithm will process waiting list using the extracted
secret key skId. For this aim, the algorithm will decrypt all the ciphertexts in WId = σId[3] as
mj = ΠCE.DecskId

(WId[j]) for all 1 ≤ j ≤ SW . For those mj that have P (pwd,mi) = 1 we add them
to the cache TId if we have empty space for new typos in TId. We can assign a weight to mi based
on its appearance in the sequence m1, . . . ,mSW

and randomly selects them based on their weight
until the cache become full. For the selected mk the algorithm will use kpwd,mk

= PKDF(mk||salt)
to compute

Cpwd,mk
= ΠAE.Enckpwd,mk

(skId) .

Now, a random shuffling will be applied on the elements of cache with the constrain that the first
element is always associated to the original password. After processing waiting list, similar to the
RegisterNewUser, the algorithm fill the waiting list with garbage ciphertexts and updates WId.
In this, we should highlight that the updated σ′ is the same as σ and the only different is the
updated cache/waiting list TId/WId and. This is the successful login and the algorithm outputs
and the output is σ′ = σ

(2) Unsuccessful login (d = rjct): In this case we need to conditionally encrypt pwd and add it
to the waiting list. So, first we extract CId,pwd′ = σId[5] and compute

Cpwd,pwd′ ← ΠCEpkId
.CEncpkId

(CId,pwd′ , pwd, pwd; r)

in which r ∈R {0, 1}λ (remind that λ = σ[0]). Assuming the updated value of counter cId = σId[6],
the algorithm computes i = cId mod SW and replace the i-th element of the waiting list. Then it

12We remind you that PWD is the space of all possible passwords.

41

will randomly shuffle the waiting list and update the state as σ′. We highlight that, σ′ is different
with σ related to the counter and the changes applied to the waiting list.

Now the login attempt is done and the algorithm outputs (σ′, d).

H.1 Security proof of CondTypTop
In this part we will prove the security of the CondTypTop. We should highlight that we just concentrate
on the typo-privacy that we defined in this paper. The other security properties defined for TypTop are
still preserving as our construction is similar to the original TypTop. So, due to page limitation, we leave
discussing them here and with similar reasoning all the remaining security properties can be proved in the
same way.

To prove that CondTypTop provides Typo-privacy, we use hybrid argument and will define three hy-
brids. Then, using the security of conditional encryption, we show that all these hybrids are computational
indistinguishable. Finally, by indistinguishablity of the first and the last hybrid, we conclude that the our
CondTypTop has typo privacy. Intuitively, the first hybrid is the original typo privacy game. In the second
hybrid, we take the current state of the system and replace all the ciphertexts that are the output of the
CEnc algorithm with the output of Sim(pk) of conditional encryption. As we assumed that the underlying
conditional encryption is secure, inherently such simulator exists. Based on the construction of CondTyp-
Top, the ciphertexts we replacing are the conditional encryption of pwdi,b for all i such that the i-th query
is LoginQuery query. Finally, in the last hybrid, we just replace Sim(pk) with conditional encryption of
pwdi,1−b. In what follows we formally prove the typo privacy of CondTypTop.

Theorem 17. Given the (t, q, ϵ)-secure conditional encryption ΠCE = (KeyGen,Enc,CEnc,Dec), then Cond-
TyoTop Π descried in Construction 20 is (t′, q′, ϵ′)-typo private.

Proof of Theorem 17: To prove the security of our CondTyoTop, we should highlight that for the
ciphertextsof conditional encryption which presented in the final state, two main cased can be considered.
Without loss of generality, let the i-th query be a LoginQuery query. Then state of the system contains
the conditional encryption Cib = CEncpk(CpwdId

, pwdi,b) in which CpwdId
= Encpk(pwdId) for some previously

registered user with identity Id. So the two cases are as follows:

• pwdi,0 = pwdi,1. In this case, both ciphertexts are statistically indistinguishable and their input plain-
texts are exactly the same. So no adversary can distinguish between their ciphertexts.

• P (pwdi,0, pwdId) = 0 ∧ P (pwdi,0, pwdId) = 0. For this case we need to prove adversary’s advantage to
win in the experiment is polynomially close to the advantage of adversary who breaks the security of
conditional encryption. We will show it by defining three following hybrids Hybrid 0, Hybrid 1 and
Hybrid 2.

As we mentioned before, to prove the security of Construction 20, we defined three hybrids and then prove
all these hybrids are indistinguishable. Indistinguishability of these hybrids implies that the advantage of
the adversary to win in ExperimentΠ,Typo−Privacy is negligible.

Hybrid 0: This is the original experiment ExperimentΠ,Typo−Privacy.

Hybrid 1: Let σ be the final state of the typo privacy experiment defined in Hybrid 0. Suppose Q = {Ci,b ∈ σ}
be set of all conditional encryption of pwdi,b for all the login queries 1 ≤ i ≤ q′. Due to the security of
conditional encryption, we know that there exists simulator Sim(pk) who simulates the ciphertext of
conditional encryption scheme. In this hybrid, we replace all Ci,b ∈ Q with C ′i,b ← Sim(pk).

Hybrid 2: In this hybrid we simply replace all C ′i,b with

Ci,1−b = CEncpk(Cpwdid
, pwdi,1−b)

.

42

H.1.1 Indistinguishability of the hybrids

. Due to the security of conditional encryption, the advantage of adversary A to distinguish between Hybrid
0 and Hybrid 1 is ϵ. More formally, we should highlight that as P (pwdi,b, pwdId) = 0, the simulator can
simply select a random number and encrypt it using the public key pk. As the security of conditional
encryption guarantees that if P (m1,m2) = 1, then the resulting ciphertext will be the encryption of a
message chosen uniformly at random. And this is basically what our simulator Sim(pk) does. With similar
argument, the adversary advantage in distinguishing between the hybrids Hybrid 1 and Hybrid 2 is also
ϵ. As a result, the advantage of adversary A spending time t′ = t to distinguish between Hybrid 0 and
Hybrid 1 is ϵ′ = ϵ.

2

I Constructions

43

Construction 18.

(pk, sk) = KeyGen(1λ):

(1) Pick random r ∈R {0, 1}λ

(2) Compute (sk = (β, µ) , pk = (N, g))← P.KeyGen(1λ; r)a

(3) If |Σ|n+1 ≥ min(p, q) or gcd(N, (p− 1)(q − 1)) ̸= 1, repeat step (1); else, output (sk, pk)

cm1
← Encpk(m1):

(1) Pick random r ∈R {0, 1}λ

(2) Compute m̂1 = ToInt(m).

(3) Return (0, cm1
:= P.Enc (m̂1; r))

c̃ = CEncpk(cm1
,m2,m3):

(1) Parse (b, c)← cm1 and (N, g)← pk.

(2) If b = 1 or gcd(c,N) ̸= 1 return ⊥.

(3) Compute m̂3 = ToInt(m3), m̂2 = ToInt(m2) and select R ∈R ZN , r2 ∈R Z∗N

(4) c= = gm̂3 · [(R⊠ c)⊞ P.Encpk ((−R) ·m2; r2)]

(5) Return c̃ = (1, c=)

m := Decsk(c̃):

(1) Parse (b, c)← c̃

(2) Compute x← P.Decsk(c).

(3) compute m← ToInt−1(x)

(4) If b = 1 and m > |Σ|n+1 return ⊥

(5) Otherwise return m

aWe use the simple variant of Pallier key generation which picks primes p and q of equivalent length and sets N = pq,
g = N + 1, β = lcm(p− 1, q − 1) and µ = φ(N)−1 mod N where φ(N) = (p− 1)(q − 1). See details in Appendix A.

44

Construction 19.

(sk, pk)← KeyGen(1λ; r):

1. run (P.sk, P.pk = (N = pq, g = N + 1))← P.KeyGen(1λ; r).

- if min{p, q} < |Σ| or gcd(N, (p− 1)(q − 1)) ̸= 1 repeat step 1. //run P.KeyGen again.

2. set SS = (ShareGen, SecretRecover) over field F2λ

3. set sk = P.sk and pk = (P.pk, 2λ)

c← Encpk(m; r):

1. parse m = (m [1] , . . . ,m [n]) , r = (r1, . . . , rn) ∈
(
Z∗
N

)n.

2. ∀1 ≤ i ≤ n, compute m̂[i] = ToInt(m[i]), ci = P.Encpk (m̂ [i] ; ri)

3. output c = (b = 0, c1, . . . , cn).

c← CEncpk(cm,m′,m′′; r):

1. parse m′ = (m′ [1] , . . . ,m′ [n]) ∈ Σn, r = (r1, . . . , rn) ∈
(
Z∗
N

)n, cm = (b, c1, · · · , cn)

2. compute m̂′[i] = ToInt (m′ [i]) to map each letter to integer.

3. if b = 1, output ⊥.

4. ∀1 ≤ i ≤ n, compute c̃′i = P.Encpk (m̂′ [i] ; ri) ⊟ ci.

5. Pick K ∈R {0, 1}λ, compute cAE = Auth.EncK(m′′).

6.
((
i1, [[s]]1

)
, . . . ,

(
in, [[s]]n

))
← SS.ShareGen(n, n− l,K).

7. ∀1 ≤ i ≤ n : sample ai ∈R
[
1,

⌊
N−1
2λ
− 1

⌋]
, r̃i ∈R Z∗

N

8. ∀1 ≤ i ≤ n : compute yi = [[s]]i + ai2
λ, c̃i = P.Encpk(yi; r̃i) ⊞ (Ri ⊠ c̃′i)

9. output c̃ = (b = 1, c̃1, · · · , c̃n, cAE)

{m,⊥} = CDecsk ((b, c̃)):

2.1 if b = 1 // The ciphertext is extracted from CEnc(·)

◦ parse c̃ = (c̃1, · · · , c̃n, cAE), AND set m = ⊥

◦ for 1 ≤ i ≤ n : ŷi = P.Decsk(c̃i), [[s′]]i = RDec(ŷi) = ŷi mod 2λ.

◦ For all
(n
n−ℓ

)
possible S ⊆ [n] with |S| = n− ℓ,

- compute KS = SecretRecover
({(

i, [[s′]]i
)}

i∈S

)
- (v′, m̂′′) = Auth.DecKS

(cAE), if v′ = 1, return m = m̂′′a

2.2 if b = 0 // The ciphertext is extracted from Enc(·)

- parse c̃ = (c̃1, · · · , c̃n), AND set m = ⊥
- for 1 ≤ i ≤ n, compute m̂i = P.Decsk(c̃i)

- return m = ToInt−1(m̂1)∥ . . . ∥ToInt−1(m̂n)

aHere m = ⊥ as for all possible KS the AuthDecKS
algorithm failed.

Figure 5: Concrete construction of conditional encryption over binary predicate Pℓ,Ham using secret sharing.

45

Construction 20.

σ0 ← Initialization(1λ):
Given the security parameter λ as input, this algorithm acts as follows.

1. For all 1 ≤ i ≤ L sample wi ∈R PWD uniformly at random, and Set W =
[ΠCond.Enc(w1), . . . ,ΠCond.Enc(wL)].

2. Set T = [] as the list for collecting legitimate typos

3. Set σ0 = (W,T)

(σi, d = {acpt, rjct})← RegisterNewUser(σi−1, Id, pwd):

1. For all 1 ≤ i ≤ L sample wi ∈R CΠCond

a , and Set W = [w1, . . . , wL], and set WId = W .

2. Set TId = [] //As the list for collecting legitimate typos

3. Compute b = IsRegistered(σi−1, Id).

If b = 0, set d = acpt and go to step 4;
If b = 1, set d = rjct, break and return (σi, d)

4. Run (pkId, skId)← ΠCond.KeyGen(1
λ).

5. Set kId,pwd = PKDF (pwd), compute CId,pwd = AE.EnckId,pwd(sk), and cpwd = ΠCond.EncpkId
(pwd)

6. Set TId[0] = CId,pwd, and WId = W .

7. Update σi = Append(σi−1, (cpwd, pkId,WId, TId)).

8. return (σi, d)

(σi, d = {acpt, rjct})← Login(σi−1, Id, pwd
′):

1. Compute sId = Extract(Id, σi−1).

If sId = ⊥, return (σi+1 = σi, d = rjct) and break;
Else, parse sId = cpwd, pkId,WId, TId

2. Compute k = PKDF (pwd)

3. If ∀x ∈ TId, ⊥ = AE.Deck(x)

2.1 Set d = rjct, compute cpwd′ = ΠCond.CEnc(cpwd, pwd
′), update WId = Append(WId, cpwd′).

//Adding typo’s ciphertext to waiting list WId.
2.2 Set sId = (cpwd, pkId,WId, TId), compute σi = Replace(Id, sId, σi−1), return (σi, d), and break.

3. Find x ∈ TId s.t. ⊥ ̸= skId = AE.Deck(x), and ∀i ∈ [|WId|] compute pwi = ΠCond.DecskId
(WId[i]),

• if 1 = P (pwi, pwd): compute kId,pwi
= PKDF (pwi), CId,pwi

= AE.EnckId,pw
(skId), and

update TId = Append(TId, CId,pw).

4. For all 1 ≤ i ≤ L sample wi ∈R CΠCond
, and set W = [w1, . . . , wL], and set WId = W .

5. Set sId = (cpwd, pkId,WId, TId), and compute σi = Replace(Id, σi, sId).

6. Return (σi, d = acpt)

aWe note that wis are random element sampled from the ciphertext space CΠCond
associated to ΠCond.

Figure 6: Proposed generic construction of our password typo vaults for secure caching incorrect login
attempts with conditional encryption 46

	Introduction
	Our Contributions
	Conditional Encryption Security
	Efficient Constructions
	Application to TypTop
	Implementation and Empirical Evaluation
	Related work

	Preliminaries
	Partially homomorphic Encryption
	Secret Sharing (SS)
	String Distance and Close Passwords

	Conditional Encryption
	Concrete Constructions of Conditional Encryption
	Conditional Encryption for the Equality Test Predicate P= (x)
	CAPSLOCK Predicate
	Hamming Distance Predicate
	Correctness of the [const:const:ArbHamm]Construction 19
	Efficiency

	Edit Distance One
	OR Composition

	The Typo Predicate: Personalized Typo Correction
	Application to Personalized Password Typo Correction
	The Security Issue.
	The Fix
	Security Proof

	Implementation and Empirical analysis
	Conditional Encryption
	Implementation
	Optimized Implementation of the Hamming Distance Predicate
	Evaluation
	Discussion

	TypTop with Typo Privacy
	Discussion

	Details on Paillier Cryptosystem
	Details on Secret Sharing (SS)
	Real or Random Security
	RoR Experiment for Conditional Encryption

	General construction of Conditional Encryption from Circuit-Private FHE
	Circuit Privacy is Necessary
	Circuit Privacy Definition
	Proving Conditional Encryption Secrecy
	Correctness and Error Detection

	Missing Proofs
	Hybrid 0 Hybrid 1
	Hybrid 1 Hybrid 2
	Statistically indistinguishability of Hybrid 2 Hybrid 3
	Hybrid 3 Hybrid 4
	Indistinguishability of Hybrid 4 and Hybrid 5
	Hybrid 5 Hybrid 6

	System Model of Personalized Typo Tolerance
	Typo Vault: Security Definitions
	No Typo Privacy for Original TypTop

	Personalized Typo Tolerance Mechanism from Conditional Encryption
	Security proof of CondTypTop
	Indistinguishability of the hybrids

	Constructions

