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Molecular simulations of biological systems tend to be signifi-
cantly more compute-intensive than those in materials science
and astrophysics, due to important contributions of long-range
electrostatic forces and large numbers of time steps (>1E9)
required. Simulations of biomolecular complexes of microsec-
onds to milliseconds are considered state-of-the-art today.
However, these time scales are miniscule in comparison to
physiological time scales relevant to molecular machine ac-
tivity, drug action, and elongation cycles for protein synthesis,
RNA synthesis, and DNA synthesis (seconds to days). While
an exascale supercomputer has simulated an entire virus for
nanoseconds, this supercomputer would need to be 10 billion
times faster to simulate that virus for 3 hours of physiological
time, demonstrating the insatiable need for computing power.
With growing interest in computational drug design from the
pharmaceutical sector, the biological sciences are positioned
to be an industry driver in computing.
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Introduction
Biological systems present some of the most demanding,
compute-intensive high-performance computing appli-
cations. For example, mechanistic understanding of vi-
ruses and molecular machines, as well as computational
drug-design efforts, often requires calculations of free
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energies. Free-energy calculations require enormous
amounts of conformational sampling to achieve equilib-
rium thermodynamics [1]. Even modest amounts of
sampling (e.g. 1 ms of physiological time) require 1012

time steps. Due to the electrostatic charges present,
long-range electrostatic forces play important roles (e.g.
every nucleotide of DNA and RNA is charged) [2]. Thus,
biological simulations are often much more intensive

than material science applications, which typically do not
include long-range electrostatic interactions. While
cosmological calculations have long-range gravitational
forces, biological simulations require orders of magnitude
more time steps. Additional factors of complexity in
biological systems, such as the fact that many processes
are far from equilibrium and that chemical reactions can
be critical (requiring quantum mechanical calculations),
further complicate these systems. If we neglect chemical
reactions and nonequilibrium effects, we estimate that
simulating 1 s of physiological time for the human

genome (in the case of 23 chromosomes) would require
at least 104 yottaFLOPs (1 YF = 1024 FLOPs) or 1010

exaFLOPs. While these calculations are far beyond the
scope of current platforms, they provide a roadmap for
the way forward in biomolecular simulation and demon-
strate that the biological sciences have an insatiable
demand for computing and will continue to do so for the
coming decades (Figure 1). In Figure 1, system sizes are
taken from actual all-atom simulations (protein, ribo-
some, virus, gene) or from the length scale of coarse
grained simulations (chromosome, nucleus, cell). FLOP

values are extrapolated from actual values (protein) or
from high performance computing (HPC) platforms on
which molecular dynamics simulations were performed
(ribosome, gene). With growing interest in computational
drug design from large pharmaceutical companies, it is
reasonable to suggest that biomolecular computation may
drive the computing industry in the future.

As we do not currently have 10 billion exascale super-
computers at our disposal, many have adopted an inte-
grated biology approach, using constraints from a wide

variety of experimental data to dramatically expand the
accessible time scales. This approach is not ab initio and
limits the scope of predictions that can be made.
However, as the accuracy of free-energy calculations is
directly related to the amount of conformational sam-
pling achieved, which we know is inadequate by many
orders of magnitude today, today’s ab initio approaches
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Figure 1

Approximate required performance vs. compute, in units of time steps multiplied by the number of atoms. Simulating 10 days of physiological time of a cell
in atomistic detail in explicit solvent would take a 10 ExaFLOPS supercomputer approximately 1016 years, or 106 times the lifetime of our Sun.
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are also severely limited due to limitations in compute
power, even using the world’s most powerful super-
computers, as detailed earlier. Thus, in many situations,
an integrated biology approach, which incorporates
experimental data as constraints, represents the most
accurate and descriptive approach available. A variety of
computational tools have been used to characterize large
biological systems, including all-atom explicit solvent

simulations, long-time-scale simulations, enhanced
sampling simulations, and coarse-grained and reduced-
model simulations. In the following, we review efforts
in each of these areas. This review is by no means
comprehensive and due to limited space, does not
mention many important studies in the field. The
review uses a few illustrative examples to highlight
methods and topics that have emerged in the push
toward larger and larger systems and simulations.
Structural biology studies are the basis of
atomistic molecular dynamics simulations
of macromolecular complexes
Molecular dynamics simulations often use high-resolu-
tion structures of large biomolecular complexes gener-
ated by X-ray crystallography or cryogenic electron

microscopy (cryo-EM). There are too many examples to
name in this review. A few specific examples of such
systems include virus particles, the ribosome, chromatin
Current Opinion in Structural Biology 2024, 88:102889
complexes, and membrane-receptor complexes, such as
RyR1, glutamate, and STRA6 [3e9]. While crystallo-
graphic structures were predominantly used in molec-
ular dynamics simulations since their inception into the
2000s, the resolution revolution in cryo-EMmade a large
number of structures of large macromolecular com-
plexes available in the 2010s to the present day.
Equilibrium-explicit-solvent molecular
dynamics simulations of large biomolecular
systems
Equilibrium molecular dynamics simulations in explicit
solvent produce information about short-time-scale

fluctuations (hundreds of nanoseconds to milliseconds),
hydrogen-bond networks, solvent structure, ion distri-
butions, electrostatic potentials, and ligand interactions.
Schulten et al. and Grubmuller et al. were pioneers of
large-scale biomolecular simulations, performing simu-
lations of over 100,000 atoms of fibronectin and F1-ATP
synthase [10,11]. Since these early studies, successive
landmarks were established by simulations of over a
million atoms of the ribosome, flagellum, and satellite
tobacco mosaic virus [12e16]. Most recently, the first
simulations over a billion atoms have been performed of

a chromatin system (GATA4 gene, 427 nucleosomes),
the SARS-CoV-2 particle, and large swaths of cytoplasm,
including hundreds of proteins [17e19] (Figure 2). As
www.sciencedirect.com
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Figure 2

Explicit solvent simulation of GATA4 gene including 83 kb and 427 nu-
cleosomes requires 1 billion atoms.
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discussed in the following, the challenges involved in
simulating large systems are compounded by the fact
that larger systems require more sampling than do

smaller systems for equilibration.
Long-time-scale simulations
Long-time-scale simulations represent another impor-
tant frontier of molecular simulation. Here, simulations

of single proteins are performed for longer time scales
(milliseconds) to characterize fluctuations on these
time scales and help validate short-time-scale (hun-
dreds of nanoseconds to microseconds) simulations.
The first microsecond simulation was performed by
Duan et al. [20], in which a single protein was simu-
lated. Later, with the aid of the Anton platform, milli-
second simulations were performed [21], where a single
protein was simulated. More recently, simulations
exceeding milliseconds have been performed. As the
simulation time scale increases by significant leaps,

different behaviors are observed, underscoring the
challenges involved in assessing convergence and
establishing equilibrium. For example, suppose one
performs a simulation of 10 ms, but the relevant phys-
iological timescale is 10 min. One could then perform
100 more 10 ms simulations, and obtaining consistency
www.sciencedirect.com
between the 100 simulations, conclude that the simu-
lations have converged according to various metrics.
However, if 10 years later, a new supercomputer is
developed capable of performing simulations of 10 s,
these new simulations may produce results that conflict
with the 10-ms simulations. This pattern of declaring
convergence could proceed until 100 simulations of
10 min can be performed, decades in the future. In

short, with limited compute power, and correspondingly
limited conformational sampling and time scales, it is
difficult to assess ergodicity and whether one has truly
achieved thermodynamic equilibrium.
Enhanced sampling methods
A key area of development in molecular simulation has
been enhanced sampling algorithms. Typically, conforma-
tional sampling is artificially enhanced in very specificways,
such as careful heating by small amounts of heat in specific
circumstances or by lowering force-field interaction en-
ergies of very specific interactions at specific times [22].
These artificial enhancements are carefully quantified,
followed, and tracked.At the endof the study, the additions
of heat, temperature, or energy are often subtracted,
yielding equilibrium free-energy landscapes [1].

Some of the earliest work in enhanced sampling origi-
nated in the spin-glass community in condensed-matter
physics, with seminal papers from Hansmann and
Okamoto, who applied these techniques to applications
in protein folding [23e28]. Hansmann, Okamoto and
Sugita pioneered replica-exchange simulations, a tech-
nique widely used today, where many replicate simula-
tions are performed at slightly different temperatures,
and small temperature jumps are given to each replicate
by exchanging temperatures with its neighbor in the
temperature space [22,23]. This gives a w25-fold boost

in conformational sampling and Boltzmann equilibrium
sampling and easily folds small proteins and peptides
[29]. The method has also been applied to RNA systems
such as ribosomeeantibiotic complexes, single-stranded
RNA, and riboswitches [30e32]. Many variants of this
algorithm have been developed that do not melt the
system and are more suitable for large biomolecular
complexes. These include Replica exchange umbrella
sampling (REUS), Hamilton replica, resolution replica,
protonation replica, and sparse replica [33e38]. In one
case, a multiscale study was produced with a smart-res-

olution replica-exchange technique [37]. More recently,
weighted histogram methods and artificial intelligence
(AI) methods have been used [39,40].

Metadynamics is another popular and useful technique,
made convenient in the PLUMED framework [41e43].
Here, basins in the energy landscape are gradually filled by
Gaussians, which are carefully tracked. In the end, the
Gaussians are subtracted, giving the free-energy land-
scape. A key aspect of many of these methods is
Current Opinion in Structural Biology 2024, 88:102889
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determining the most useful collective variable or order
parameter to describe a conformational change of interest
that best characterizes a transition. Another emerging area
is that of enhanced-sampling kinetic approaches [44e46].

While enormous resources in the pharmaceutical com-
munity have been devoted to accurately characterizing
the enthalpic component of the free energy of drug

binding,much less attentionhas beenpaid to theentropic
component, which critically depends on obtaining
tremendous amounts of conformational sampling [47,48].
The free energy consists of the difference between the
enthalpic and entropic terms.These terms are often large
and opposite in sign, nearly canceling. Thus, to obtain an
accurate free energy of binding, one must absolutely
obtain an accurate entropic component of the free energy.
Conformational sampling and accurate entropy estima-
tion remains a key challenge in drug design today.

While significantly less expensive than conventional
molecular dynamics simulations, these methods are
nonetheless quite expensive, complex, and difficult to
implement for very large systems. One of the open areas
in large-scale simulation is to apply these very useful
methods to very large systems.

Coarse-grained simulations
Molecular dynamics simulations of biomolecules consid-

ered ‘more accurate’ are often those that are considered
the ‘most realistic’ and include the most effects possible,
such as atomistic detail, explicit water, electrostatics,
polarization, explicit ions, the buffer closest to the
biochemical experiment, and the most physiologically
relevant complex. However, these are sometimes not the
most useful simulations as they are (i) very limited in
their access to relevant time scales and (ii) have corre-
sponding inaccurate free-energy estimates due to the
lack of conformational sampling, especially for very large
systems (equilibrium conformational sampling is

required for the entropic component of the free energy).
The current state-of-the-art for explicit solvent atomistic
molecular dynamics simulations for relatively large sys-
tems grossly undersamples their dynamics, even using
the fastest supercomputers available. For a million-atom
system such as the ribosome (2e5 million atoms,
depending on the specific ribosome complex), the state-
of-the-art is at best 1 ms of physiological time. As relevant
rates are 100e800 ms, at least 1 s of aggregate sampling is
required to have a minimum number of replicates for
statistics. As shown in Figure 1, this would require a 1

ZettaFLOP supercomputer (1000 ExaFLOPS). Since
the fastest machine available isw 1e2 exaFLOPS, even
a one-millisecond simulation of the ribosome would be
1000-fold undersampled, yielding grossly inaccurate free
energies. Even assuming a 25-fold boost for enhanced
sampling algorithms, the system would still be 40-fold
undersampled. This problem is compounded when
simulating even larger systems. Not only do these have
Current Opinion in Structural Biology 2024, 88:102889
correspondingly more atoms but they require much
longer time scales to equilibrate (e.g. the GATA4 and
COVID billion-atom simulations sample only a few
nanoseconds but likely require much longer than 1 s
for equilibration).

These examples underscore the advantages of using
coarse-grained and reduced-model simulations (protein

shown in Figure 1 was simulated using reduced-model
simulations to achieve agreement with single-molecule
Forster resonance energy transfer (FRET) [49]). For
example, native-contact-based simulations of tRNA ac-
commodation into the ribosome during transfer RNA
(tRNA) selection are able to simulate events with rates
slower than 100 ms with excellent statistics (hundreds of
trajectories to one thousand trajectories of accommoda-
tion) [50,51]. While these simpler models lack the com-
plexities included in explicit-solvent atomistic molecular
dynamics simulations, they have vastly superior sampling

and assessments of conformational sampling and entropy.
Coarse-grained strategies follow a fundamental tenet of
theoretical physics: the best practice is to understand
zeroth-order effects first, and only after this, move on to
more complicated higher-order effects. A good physicist
must know how to neglect what is unimportant and focus
on what is important by making the most effective ap-
proximations and simplifications. One should be
reminded that Newton obtained quite accurate approxi-
mations of the Earth’s orbit around the Sun by neglecting
the Earth’s ocean, atmosphere, asymmetry, all life on

Earth, and approximating the Earth as a single pseudo
particle, a very coarse-grained model indeed [52e54].
Newton’s highly simplistic model (a very coarse-grained
model with simplistic force field, in molecular dynamics
simulation parlance) could predict the orbital periods and
relative distances of planets from the Sun to within a
fraction of a percent and accurately predictedeclipses and
the return of Halley’s Comet. Once these fundamental
zeroth-order effects are understood, perturbation theory
can be used to model higher-order effects, such as tidal
effects of the Moon and variations in orbits. These ex-
amples highlight the approach of choosing the most

appropriate level of coarse-graining for the task at hand
and for the particular question of interest. In biological
and biomedical applications, time scales range from
femtoseconds to weeks, and length scales range from
angstroms to meters, spanning more than ten orders of
magnitude. To deal with this complexity, an appropriate
level of coarse-graining must be chosen.

In addition to saving vast amounts of compute time,
coarse-grained simulations have the advantage of being
very amenable to the incorporation of experimental data as

they can access much longer time scales and much larger
systems that are more relevant to experimental studies.
This makes these approaches ideal for integrated biology
studies. For example, many conformational changes of the
ribosome occur with rates of hundreds of milliseconds. A
www.sciencedirect.com
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proper study with excellent statistics might require a
hundred of these hundred-millisecond trajectories (e.g. as
in single-molecule FRETstudies), summing to aggregate
sampling of 10 s, at least four orders of magnitude longer
than a millisecond simulation of the ribosome. However,
with proper coarse graining, such simulations are possible
[55e57]. These simulations use force fields that are ‘less
accurate’ in the conventional sense, with pseudo particles

that represent several or many atoms, corrections to
compensate for lack of explicit water molecules, and less
accurate electrostatics. However, these same coarse-
grained simulations are, in a certain specific sense, more
accurate than all-atomexplicit-solvent simulations, in that
the coarse-grained simulations obtain vastly more
conformational sampling than explicit solvent
simulations and therefore yield more accurate entropic
components of the free energy, which critically depends
on the amount of conformational space sampled. These
methods obtain much more conformational sampling

relative to explicit-solvent approaches, especially for large
systems [58e60]. Several coarse-grained simulations of
virus particles have been performed, including the SARS-
CoV-2 virion [61e65]. Coarse-grained approaches to
chromatin have also explored very large systems with
various levels of coarse-graining, describing nucleosomes
and linker DNA with various levels of detail [66e72].

Most importantly, many coarse-grain and reduced-model
simulations are ‘top-down’ and use experimental data as
constraints, guaranteeing consistency with experimental

data from the outset. The approach is often used in in-
tegrated structural biology studies, where molecular sim-
ulations bring together disparate types of experimental
data into a coherent study of mechanism [73e76]. This
approach is often more of an interpolation between
experimental data points than an extrapolation into un-
known parameter regimes. While a naı̈ve observer might
ask, “what can one learn from such a simulationwhere the
‘answer’ is hardwired into the simulation?“ such interpo-
lative simulations do not suffer from concerns about
experimental validation (as the validation is designed into
the simulation from the outset) and yield interesting and

useful insights related to transitions between states, such
as energy landscapes, transition pathways, and transition
intermediates, as well as information about mechanism
such as order of events. The approach also allows the
testing of different possible mechanisms while maintain-
ing consistency with experimental data.

A key area of “top-down” simulations that use experi-
mental data from the outset are called structure-based
simulations, also known native-contact models or as Go-
like models, after the pioneer of the method, Professor

Nobuhiro Go [77,78]. Here, the potential is based on the
native contacts present in a known structure. These po-
tentials were used by Onuchic et al. to work out the pro-
tein-folding-funnel free-energy landscape [79,80], where
simulations beginning with a completed disordered
www.sciencedirect.com
protein could be rapidly folded into the native folded
state. These approaches have been modernized in atom-
istic, off-lattice versionswith electrostatics and ions.They
have also been repurposed to study large-scale confor-
mational changes ofmacromolecular complexes, using the
final state in a conformational change as the native state
and beginning with a known conformation preceding the
conformational change, such as a PRE to POST confor-

mational change [50,51,81]. In the case of the ribosome,
structure-based approaches have been used to investigate
accommodation of tRNA into the ribosome during tRNA
selection for cognate and near-cognate tRNAs, integrating
an X-ray crystallography, cryo-EM, single-molecule FRET,
and single-molecule FRETdata [50,51]. There have been
several top-down, integrative structural biologies related
to COVID-19 [61,82].

In the direction of very coarse-grained simulation, a new
area of simulation has emerged, inspired by simulations

in polymer physics and the invention of a high-
throughput sequencing method called Hi-C, which
experimentally obtains contact maps of chromosomes by
crosslinking, digestion, and sequencing. Here, beads-on-
springs polymer models are used to approximate chro-
mosomes, with a single bead typically representing
100 kb of DNA (in explicit solvent, simulating a single
bead would require approximately one billion atoms).
Mirny et al. performed ab initio block copolymer simu-
lations [83,84]. Onuchic, Wolynes, and Zhang applied
maximum-entropy techniques to produce three-

dimensional (3D) models and gain insight [85,86].

Lappala developed a top-down method (4DHiC) to
directly incorporate large amounts of experimental data
to directly visualize the Hi-C data in 3D, revealing
compartment mixing during various states of X-inacti-
vation (shown in Figure 1 as ‘Chromosome’) [87]. The
nucleus model shown in Figure 1 was produced by
Ankush Singhal using a similar method.
Toward whole-cell simulations
A final area of coarse graining includes efforts to simulate
an entire cell (image shown in Figure 1 as ‘Cell’
published previously [88]). Starting in the 1990s with
simple zero-dimension models based on reaction ki-
netics, the field has evolved to 3D models of the cell
with time evolution [89,90]. Several efforts are making

great progress in this area [88,91e93].
Conclusions
Molecular simulations of biological systems tend to be
significantly more compute-intensive than those in
material science and astrophysics, due to important con-
tributions of long-range electrostatic forces and large
numbers of time steps (>109) required for microsecond

simulations of proteins, DNA, RNA, and macromolecular
complexes, including viruses, chromatin, ribosomes, and
Current Opinion in Structural Biology 2024, 88:102889
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other molecular machines. Although simulation durations
ranging from microseconds to milliseconds are often
considered the state-of-the-art for explicit-solvent mo-
lecular dynamics simulations today; these time scales are
miniscule in comparison to physiological time scales
relevant to molecular machine activity, drug action, and
elongation cycles for protein synthesis, RNA synthesis,
and DNA synthesis, ranging from hundreds of millisec-

onds to days. AI is being implemented in molecular dy-
namics simulations to improve sampling of biologically
relevant events, enhancing collective variable selection or
optimizing force-field potentials. However, for AI to yield
necessary gains ofmany orders ofmagnitude,wefirst need
to provide such enormously long simulation trajectories of
large systems to train on, which will likely not be acces-
sible for many decades. While the largest and fastest su-
percomputers on Earth can simulate a virus for
nanoseconds on an exascale supercomputer, these plat-
forms are at least twelve orders of magnitude away from

performing a single simulation of a virus for 10 s, not to
mention the requirement for statistical replicates. These
issues are compounded by the fact that larger systems
require much more conformational sampling to reach
equilibrium, making the task of scaling up to full chro-
mosomes, nuclei, and cells formidable. With growing in-
terest in computational drug design from the
pharmaceutical sector, the biological sciences are posi-
tioned to be an industry driver in computing.
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