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Scalable Empirical Bayes Inference and

Bayesian Sensitivity Analysis

Hani Doss and Antonio Linero

Abstract. Consider a Bayesian setup in which we observe Y, whose distri-
bution depends on a parameter 6, that is, Y |6 ~ 7y 9. The parameter 0 is
unknown and treated as random, and a prior distribution chosen from some
parametric family {my(-; k), h € H}, is to be placed on it. For the subjective
Bayesian there is a single prior in the family which represents his or her be-
liefs about 6, but determination of this prior is very often extremely difficult.
In the empirical Bayes approach, the latent distribution on 6 is estimated from
the data. This is usually done by choosing the value of the hyperparameter 4
that maximizes some criterion. Arguably the most common way of doing this
is to let m (h) be the marginal likelihood of &, that is, m(h) = [ 7y |gvp(0) dO,
and choose the value of & that maximizes m(-). Unfortunately, except for a
handful of textbook examples, analytic evaluation of argmax;, m(h) is not
feasible. The purpose of this paper is two-fold. First, we review the litera-
ture on estimating it and find that the most commonly used procedures are
either potentially highly inaccurate or don’t scale well with the dimension
of h, the dimension of 8, or both. Second, we present a method for estimat-
ing argmax;, m(h), based on Markov chain Monte Carlo, that applies very
generally and scales well with dimension. Let g be a real-valued function
of 6, and let I (h) be the posterior expectation of g(6) when the prior is vy.
As a byproduct of our approach, we show how to obtain point estimates and
globally-valid confidence bands for the family 7 (k), h € H. To illustrate the
scope of our methodology we provide three detailed examples, having differ-
ent characters.

Key words and phrases: Bayesian model selection, Donsker class, geomet-
ric ergodicity, hyperparameter selection, Markov chain Monte Carlo, regen-

erative simulation.

1. INTRODUCTION

This paper deals with the situation where there is an
observable Y whose distribution depends on a parameter
6, that is, Y |0 ~ my 9, where 6 is unknown and treated
as random. A prior distribution, g, is placed on 6, and
having observed Y, inference on 6 is made through the
posterior distribution 7 |y. It is common that the prior
is chosen from some parametric family {my(-; k), h € H}.
As is well known and we discuss later, inference can de-
pend heavily on the hyperparameter value % that speci-
fies the prior. For the subjective Bayesian there is a sin-
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gle value of i which represents his or her beliefs about
6. However, for several reasons, including the possibility
that dim(6) is large and the fact that understanding dis-
tributions on a high-dimensional space is very difficult, it
is often the case that determination of this value of 4 is
essentially impossible. In the empirical Bayes approach,
the latent distribution on 6 is estimated from the data (this
is sometimes referred to as “frequentist estimation of the
prior).” This is done by setting up some criterion func-
tion of 4 (we review two such below) and maximizing it.
Unfortunately, maximizing a suitable criterion is very dif-
ficult in all but very simple situations. The following two
examples illustrate the points above.

Shrinkage Estimation in the Normal Means Problem.
The empirical Bayes approach to the normal means prob-
lem was initiated in a series of papers by Efron and Morris
in the 1970s (see, e.g., Efron and Morris, 1973). The setup
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is the hierarchical model

indep

Yi|6; ~ N@©;,1), i=1,...,p,

(1.1) .
0| 2y ~N(u,2), i=1,...,p,

in which u and A are unknown. We observe Y :=

(Y1,...,Yp) and we wish to estimate 6 := (61, ...,0)).
The posterior mean of 6; is
A A 1
Ayt
1.2 6" = Y; .
(12) T

This gives a class of estimators of 8, indexed by (X, ).
The hyperparameter is 7 = (A, i), and plays an impor-
tant role: wu is the point toward which there is shrink-
age; and A controls the amount of shrinkage—when it
is large there is little shrinkage, and when it is small
there is a lot of shrinkage. The goal is to find the “op-
timal” value of (A, u). Let R(GAM‘, 0) denote the risk
(under sum of squared errors as loss) of the estimate
or 1 = (éf”’“,...,éﬁ’“). Note that R(QA)"”,Q) depends
on (A, ) and also on 6, which is unknown. The opti-
mal value of (A, u) is taken to be the value that min-
imizes R(QA“‘, 0), and this can’t be obtained since we
don’t know 6. Stein’s unbiased risk estimate (SURE,
Stein, 1981), denoted SURE(A, ), is a statistic with the
property that Eg[SURE(A, u)] = R(ék’“, 0), where the

notation Ep signifies that the expectation is taken un-

. inde; .
der the assumption that Y; PN (6;, 1). Since we can’t

obtain arg min,_, R(O**,0), we compute (Aopt, [1°PY =
argmin, , SURE(%, 1) and use (APt 4OPY in place of
(A, ) in (1.2). The result is an estimator of & which is
very similar to the James—Stein estimate (James and Stein,
1960). In this example, the 6;’s can be thought of as com-
ing from some true but unknown latent distribution.
Variable Selection in Linear Regression. Bayesian ap-
proaches to variable selection provide a natural way of
simultaneously treating both model and parameter uncer-
tainty. In a linear regression situation, we have a response
variable Y and a set of predictors X1, ..., X, each a vec-
tor of length m. Foreach y C {1, ..., p} we have a poten-
tial model given by Y = 1,80 + X, B, + €, where 1,
is the vector of m 1’s, X, is the design matrix whose
columns consist of the predictor vectors corresponding to
the subset y, B, is the vector of coefficients for that sub-
set, and € ~ N, (0, 21). We view y as a binary vector
of length p, whose jth component, y;, is 1 if variable
Jj 1s in the model, and is O otherwise. The unknown pa-
rameter is 6 = (y, o, Bo, By), which includes the indica-
tor of the subset of variables that go into the linear model.
In a common formulation of the Bayesian approach, the
prior on 6 is given by a hierarchy in which we first choose
the indicator y from some distribution, a “noninforma-
tive prior” is given to (02, fy), and given y and o, we
choose B, from some proper distribution. The distribution

for y is the so-called independence Bernoulli prior—each
variable goes into the model with a certain probability w,
independently of all the other variables. The distribution
for B, is taken to be Zellner’s g-prior (see (1.3b) below),
which depends on a hyperparameter g. Let p, = Zf:l Vi
denote the number of variables in the model indexed by
y. In detail, this common formulation is described as fol-
lows:

(1.3a) Y ~ Nouw(LnBo + X, By, 021),
(1.3b) By ~ Ny, (0. g0 (X) X,) 7).
(13¢) (0% Bo) ~ p(Bo,0%) x 1/0?,
(1.3d) y ~wPr(1 —w)P~Pr,

In (1.3), each line is understood to be a distributional
statement conditional on all the variables specified in the
lines below it. Here, the hyperparameter is & = (g, w),
and its effect is roughly as follows. When g is large the
posterior is concentrated on models with few variables
and large regression coefficients, and when g is small the
posterior is concentrated on large models with small coef-
ficients; and w in (1.3d) has the opposite effect, with small
w favoring models with only a few variables, and large w
favoring models with many variables (the interplay be-
tween w and g is not well understood). Therefore, the
hyperparameter 7 = (w, g) plays a very important role,
and in effect determines the model that will be used to
carry out variable selection. We return to this variable se-
lection problem in Section 3. Here, obtaining an equiv-
alent to the SURE does not appear to be feasible—this
is the case for most models of current interest—and an-
other objective function must be used. In this example, it
is not appropriate to think of the latent variables (the y;’s
and the B;’s) as coming from some true but unknown la-
tent distribution. However, empirical Bayes methodology
can be applied to both the normal means problem and the
variable selection problem.

Another objective function, one which is much more
commonly used, is the marginal likelihood m(h) =
[€y(0)me(6; h)dO, where £,(0) = my|g(y) is the likeli-
hood function, which we maximize; so with the marginal
likelihood as the objective function, the empirical Bayes
estimate of & is arg max,, m(h). Unfortunately, except for
a handful of textbook examples, analytic evaluation of
m(h) or its argmax is not feasible, and numerical approx-
imations must be used.

The purpose of this paper is twofold. First we review
the literature on deterministic and stochastic methods for
the numerical approximation of argmax; m(h). An im-
portant component of our review is a discussion of scal-
ability, and we find that the most commonly used pro-
cedures are either potentially highly inaccurate or don’t
scale well with the dimension of %, the dimension of 0,



SCALABLE EMPIRICAL BAYES INFERENCE 603

or both. Our second purpose is to present an approach,
based on Markov chain Monte Carlo (MCMC) and empir-
ical process theory, for estimating arg max; m(h) which
scales well with the dimensions of & and 8. The ap-
proach has the following advantages. (i) It provides prov-
able n!/? convergence rates to the argmax, where n is
the Markov chain length. (ii) It enables theoretically valid
quantification of the Monte Carlo error. (iii) It can be
used in a standard Bayesian analysis for simultaneous es-
timation of a posterior expectation as the hyperparame-
ter varies. More specifically, let g be some function of
6. In Bayesian sensitivity analysis, we are interested in
I(h) := [ g(0)mg|y(0; h)dO as h varies continuously. We
show that from the single Markov chain run, we can es-
timate the entire function I (k) as h varies, and also to
construct simultaneous confidence intervals for I (h), as h
varies continuously over H.

The literature we review and our results pertain strictly
to estimation of argmax;, m(h). They say nothing about
the quality of the empirical Bayes procedure, and it is
natural to ask what are the consequences of using an
empirical Bayes approach as opposed to a subjective
Bayes approach, should such be feasible. The litera-
ture does address this question. Suppose a Bayesian has
prior 7y (+; ho) for some hg € H, but uses mg(-; hgp) in-
stead, where hgp = argmax;, m(h). What is the connec-
tion between 7y |y (-; hgg) and 7g |y (+; ho)? Suppose that

Y is Y = (Y1,...,Y,), and that Yy, Y5, ... i po, for
some 6y € ©. Petrone, Rousseau and Scricciolo (2014)
have shown that, under certain regularity conditions,
7oy (s heB) — 7w v (s ho)ll; — 0 as n — oo, where
|l - ]Iy denotes the L norm, and the convergence is in the
sense of almost sure with respect to pégo), the joint distri-
bution of Y1, Y2, .... The significance of this result is that
a Bayesian having prior g (-; h) but because of difficulty
specifying hg uses hgp instead, asymptotically will reach
the same conclusion had /g been used.

Much contemporary Bayesian work deals with settings
where the model is very complex and dim(®) is large. De-
termination of a class of priors to choose from is then very
difficult. In these situations, the class is typically chosen
on the basis of convenience; for example, one may work
with some standard or familiar family {my(-; k), h € H},
for instance one possessing some conjugacy properties,
and in a setting where there is a true latent distribution on
0, call it G, underlying the model, this is done with the
understanding that G is not a member of the family. De-
termination of arg max, m(h) is then still of practical in-
terest, as g (-; argmax, m(h)) typically converges to the
member of the family that is closest, in the Kullback—
Leibler sense, to G.

The results of this paper are nonasymptotic: the data
point Y does not need to correspond to i.i.d. points
Y1,...,Y, where n is large, indeed it does not even need

to correspond to independent observations, and in the pre-
vious paragraphs n refers to the Markov chain length, not
the data sample size. The rest of the paper is organized
as follows. Section 2 contains our review of the litera-
ture on numerical approximation of argmax;, m(h), and
a description of our proposal for a scalable method for
estimation of argmax;, m(h) together with its theoretical
underpinnings. Section 3 provides two of three illustra-
tions which are chosen to have very different characters in
order to demonstrate the scope of our methodology. The
first illustration involves an empirical Bayes approach to
variable selection in regression, in an extension of the sec-
ond of the two examples discussed above. We consider an
additive regression model in which each variable is fit us-
ing a regression spline. We show how our methodology
can be used to select the significant knots for each predic-
tor variable and, interestingly, also to eliminate variables
which are not useful in the regression. The second illus-
tration involves a Bayesian tree model for regression with
many predictors. The model features a hyperparameter
that controls sparsity. We show how our methodology can
be used to select the sparsity parameter, and also show that
with this adaptive choice, the model acts appropriately in
sparse and nonsparse situations. The third illustration is
in the supplement. In Section S-2 of the Supplementary
Material (Doss and Linero, 2024), we discuss an example
which involves a robust binary regression model. In this
example, we use our methodology to select the “robust-
ness” parameter, which is a parameter in the model, as
opposed to the hyperparameter of the prior distribution.
In Section 3 we also discuss the question of whether one
should do a fully Bayes analysis instead of an empirical
Bayes analysis. The proofs of our theoretical results are
in Section S-3 of the Supplementary Material (Doss and
Linero, 2024).

2. ESTIMATION OF THE MARGINAL LIKELIHOOD
FUNCTION AND ITS ARGMAX

This section consists of three parts. In the first, we re-
view current methods for hyperparameter selection, dis-
cussing strengths and weaknesses; in the second, we
present our approach for obtaining the maximizer of the
marginal likelihood function m (%), and provide two the-
orems that give it theoretical support; and in the third, we
show how the ideas underlying our approach can be used
to construct simultaneous confidence bands for the poste-
rior expectation of a function of 8 as the hyperparameter
of the prior varies continuously.

2.1 Review of Methods for Estimation of the Marginal
Likelihood or Its Maximizer

The literature on estimation of argmax;, m(h) is very
large, and we limit our review to the methods that are the
most competitive, and also to those that are frequently
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used in the machine learning literature, whether or not
these are competitive. Our discussion spans three groups.

Direct Monte Carlo Estimation of the Marginal Likeli-
hood Function. In approaches from this group, for each
h over a fine grid in H, we run a Monte Carlo experi-
ment to form an estimate (k) of m(h); we do this sep-
arately for each h, and we estimate argmax; m(h) via
argmaxy, m(h). Papers that proceed in this way include
Chib (1995), Chib and Jeliazkov (2001), and Newton and
Raftery (1994) which introduced the “harmonic mean es-
timator.” These approaches do not scale well with dim(#),
because the size of the grid needed to cover ‘H grows ex-
ponentially with dim(/#). We mention them here simply
because the machine learning literature frequently uses
them, and this includes the harmonic mean estimator even
though typically, for each £, the harmonic mean estima-
tor of m(h) converges at a rate that is much slower than
n'/2, where n is the Monte Carlo sample size (Wolpert
and Schmidler, 2012).

Methods Based on Variants of Importance Sampling.
A basic fact regarding estimation of the marginal like-
lihood is that, for given h and h,, estimation of m(h)
and m (h,) individually is hard, but estimation of the ratio
m(h)/m(h,) is easy (as we show momentarily). Conse-
quently, if we fix A, and let i vary, it is easy to estimate
the function m(-)/m(h,). For the purpose of estimating
arg max;, m(h), the information in the two functions m(-)
and m(-)/m(h,) is identical: the two functions have the
same argmax, and the second derivative matrices of the
logarithm of these two functions are identical. Therefore,
the standard point estimates and confidence regions based
on m(-) and m(-)/m(h,) are identical.

There are several ways to use variants of importance
sampling to estimate m(h)/m(h,) (see, e.g., Meng and
Wong, 1996 and Gelman and Meng, 1998), and arguably
the simplest one is as follows. Assume that all the priors
in the family {my(:; h), h € H} are mutually absolutely
continuous, which entails that all the posteriors are also
mutually absolutely continuous. Let 4, € H, and suppose
we are able to generate an ergodic Markov chain with in-
variant distribution g | (-; h4). Starting with the equation
f[JT9|y(9; h)/719|y(9; h*)]ﬂ9|y(9; he)df =1 and writ-
ing 7o y(0:h) = (1/m(h))ly(0)me(0; h), we trivially
see that [[mg(0; h)/me(0; hy)]me y(0:hy)dO = m(h)/
m(h,). This is an interesting identity because it implies
that if 01, 605, ... is an ergodic Markov chain with invari-
ant distribution 7rg |y (+; h4), then

" 779(619}1) a.s. m(h)
@1 _Zﬂe(é’z,h*) ()

The significance of the convergence statement (2.1) is
that, in principle, with a single Markov chain run, we can
estimate the entire function m(-) up to a multiplicative
constant.

Unfortunately, some of what is said above is too good to
be true, and in reality the estimate on the left side of (2.1)
has a serious defect: unless # is close to Ay, my(-; h) can
be nearly singular with respect to mg(-; h,) over the re-
gion where the 0;’s are likely to be, resulting in a very
unstable estimate. From a practical point of view, this
means that there is effectively a “radius” around 4., within
which one can safely move, and there may not exist a sin-
gle value of A, that gives rise to estimates that are sta-
ble for all & € ‘H. One way of dealing with this problem
is to select J fixed points hy, ..., hy € H that “cover”
‘H in the sense that for every h € H, mg(-; h) is “close
to” at least one of my(-; h1),...,mp(-; hy). The goal is
to generate a Markov chain whose invariant distribution
is a mixture of the 7y |y (-; h;)’s (whereas in the “simple
importance sampling estimate” discussed above, we just
generate a Markov chain whose invariant distribution is
79|y (+; hy)). The updates sample different components of
this mixture, with jumps from one component to another.
This approach is called “serial tempering” and it is not
trivial. It can give a great improvement over the simple
importance sampling estimate, and Doss and Park (2018)
developed theory for it. Roy and Evangelou (2024) give
precise meaning to the notions of “close” and “cover,” and
based on this develop effective ways to select the points
hi,...,hj. We explain the approach in detail in Sec-
tion S-1 of the Supplementary Material (Doss and Linero,
2024). Here, we mention only that it suffers from the curse
of dimensionality: when dim(k) is large, it is necessary
that J be huge in order for the points A1, ..., hy to ade-
quately cover H, and in Section S-1 of the Supplementary
Material (Doss and Linero, 2024) we explain why this can
cause the approach to fail when dim(#) > 3 or even when
dim(h) =2

EM-Based Approaches. To use the EM algorithm to
find an approximation to argmax, m(h), we view Y as
observed data and 6 as missing data. Typically, the “com-
plete data likelihood” pj, (6, y) is available in closed form,
so the algorithm can in principle be applied. In most com-
plex problems, however, the E-step in the algorithm is in-
feasible, because it requires the calculation of an expecta-
tion with respect to the intractable distribution 74|y (-; ).
Several variants of the EM algorithm have been pro-
posed to deal with this difficulty, and these include Monte
Carlo EM (MCEM), originally proposed in Wei and Tan-
ner (1990), in which the E-step is approximated by a
Monte Carlo estimate; and variational EM (VEM) (see
Beal and Ghahramani, 2003 and also Blei, Kucukelbir and
McAuliffe, 2017), in which the E-step is approximated by
an estimate produced through variational inference. Un-
fortunately, the EM algorithm can converge slowly, and
therefore so can its variants, and this problem gets worse
with “increasing missingness” (Liu, 1994, van Dyk and
Meng, 2001). Thus, when the dimension of 6 is large the



SCALABLE EMPIRICAL BAYES INFERENCE 605

rate of convergence can be very problematic, since here
0 is what is missing. Also, if the marginal likelihood sur-
face is multimodal, all EM-type algorithms can fail, with
the user having no clue that the estimate of arg max; m(h)
is only a local mode. Additionally, for both MCEM and
VEM, because an approximation is used at every iteration
of the EM algorithm, the theoretical basis for these two
methods is weak.

In MCEM, because the E-step is replaced by a Monte
Carlo estimate, an error is introduced at every iteration,
so there is no reason to expect that the algorithm will con-
verge at all, let alone to the true maximizer of the like-
lihood. In fact, Wei and Tanner (1990) recognized this
problem and suggested that the Markov chain length be
increased at every iteration of the EM algorithm. Let m
denote the Markov chain length at the kth iteration. Fort
and Moulines (2003) showed that a minimal condition
for convergence is that m; — oo at the rate of k%, for
some a > 1 (they do not give guidelines for choosing a).
MCEM has been shown to perform very poorly in some
cases. For example, George and Doss (2017), who deal
with latent Dirichlet allocation (which is used in topic
modeling and where dim(@) is very high), showed poor
performance of MCEM even when a is taken to be 2.

The estimate of arg max;, m(h) produced by VEM is ob-
tained as follows. If Ay is the current value of 4, the E-step
of the EM algorithm is calculation of Ey, (log(pr (6, y))),
where pp(6,y) is the joint distribution of (0, y) under
the model indexed by /4, and the subscript to the expec-
tation indicates that the expectation is taken with respect
to 7|y (+; hi). This step is infeasible because 7y |y (-; )
is analytically intractable. We consider {gy,V € ¥},
a (finite-dimensional) parametric family of analytically
tractable distributions on 6, and within this family, we find
the distribution, say gy, , which is closest to 7g |y (+; hg) in
the sense of minimizing the Kullback-Leibler (KL) di-
vergence: Vy = argminw KL(gy llmg|y(-; hr)). Let Q(h)
be the expected value of log(p; (6, y)) with respect to
qy,- We view Q(h) as a surrogate for Ep, (log(pr (6, y))),
and the M-step is then to maximize Q(h) with respect
to h, to produce hj41. The maximization is done ana-
lytically. Suppose that 6 = (61, ...,0,) for some p. In
mean-field variational inference, the version of variational
inference that is most commonly used, the distributions
qy are all products of marginal densities, that is, un-
der gy, 01, ...,0, are independent. At each iteration of
VEM, the minimization step is carried out through an
iterative scheme. At convergence of this scheme, what
is obtained is a member, gqy,, of the parametric fam-
ily. Let Pg be the space of distributions on ® (en-
dowed with some topology, which will not concern us
here), let p be any given metric on Pg, and let hgg =
argmax;, m(h) denote the target of the EM scheme. Also,

let 8 = infy ey p (g |y (-; hEB), gy ). Unless mg |y (-; hgp)

corresponds to a product measure, we necessarily have
8 > 0. Variational inference is very useful because it is
fast and can handle very large datasets (and stochastic
variational inference (Hoffman et al., 2013) can scale
variational inference to massive data). On the other hand,
even if at each outer iteration of VEM the inner itera-
tive scheme was run long enough for convergence to take
place, we would still have p (g |y (-; hgB), qy;) = 6 > 0,
and therefore, there is no reason to think that the sequence
hi, ha, ... will converge to hgp. George and Doss (2017)
have documented cases (in the latent Dirichlet allocation
model) where the sequence produced by VEM converges,
but to a value that is far from igg, and the predictive ac-
curacy of the model that results from VEM is worse than
that of umbrella sampling.

We also mention Atchadé (2011). He uses an adap-
tive Monte Carlo scheme in which one creates a se-
quence (hy,, 6,), where 6, is a draw from a Markov tran-
sition function that uses the current value of 4, and h,
is an improved estimate of hgp based on the sequence
61, ...,6,). A brief summary of the algorithm is as fol-
lows: starting with g € H and 6y € ®, we repeat the fol-
lowing updates:

1. Sample 6,41 ~ Kp,(6,,-) where Kj(0,-) is a
Markov transition function that leaves gy (6; h) invari-
ant.

2. Set hyt1 = hy + @y Vi 10g(0 (B 15 hn)).-

Here, a, is a nonincreasing sequence of positive num-
bers such that 302 | @, = oo and Y22 | a2 < oco. Atchadé
(2011) gives some guidelines on the choice of this se-
quence. He establishes almost sure convergence of the
sequence h, to hgp, although this is under very strong
regularity conditions. This approach has an obvious ad-
vantage over approaches which use importance sampling,
in that it does not have the “small radius” limitation dis-
cussed earlier. On the other hand, because each new value
of h depends on the entire sequence of previous 8’s, the
Markov property is lost; consequently, central limit theo-
rems are not available, so there is no nice theory that gives
rise to error margins to accompany point estimates of Agg.

2.2 A Device for Implementation of the Empirical
Bayes Method

Here we describe an MCMC-based approach for es-
timation of argmax;, m(h) which gives estimates whose
asymptotics can be studied through empirical process the-
ory, and which have good rates of convergence. In the next
two paragraphs we introduce the approach in a simple set-
ting in order to enable a quick understanding of the basic
ideas, and in the remainder of this subsection we develop
the approach in a general setting, and provide all the de-
tails.

We consider a fully-Bayes model in which we put
a prior distribution on the hyperparameter, which we
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now denote by H. In this initial discussion we take
the prior on H to be the uniform distribution, and later
we remove this restriction. Let u denote the uniform
distribution on H. This prior induces a joint distribu-
tion on (H,60,Y). We will use the letter 7, with sub-
scripts, to indicate distributions on the triple (H,6,Y),
in a self-explanatory manner. Thus, my will indicate
the prior on H, g |, will indicate the posterior dis-
tribution of H given Y =y, my )|y the joint condi-
tional distribution of (H,#) given Y = y, etc. Regard-
ing gy, we have wg|y(h) oc m(h)u(h). Since u o 1,
this may be rewritten as g |y(h) o< m(h), so the mode
of my |y is argmax, m(h). Now, suppose that we can
construct an ergodic Markov chain (Hy, 61), (Ha, 62), ...
whose invariant distribution is 7(g )| y. The marginal se-
quence Hip, Hs, ... then has invariant distribution equal
to g |y. Any method for estimating the mode of 7y |y
from the sequence Hj, H», ... gives rise to an estimate of
argmax;, m(h).

Generally speaking, estimation of the mode is a hard
problem, and the optimal rates of convergence are worse
than n'/2. The theory is technical but a typical result states
that if f is a density on R¥, then under some regularity
conditions, the optimal convergence rate for estimation
of the mode of f based on an i.i.d. sample is n!/*+%
(Tsybakov, 1990; see also Donoho and Liu, 1991), so
even in the simplest case where k = 1, this is the very
slow rate of n!/>. However, these pessimistic results per-
tain only to the case where the only information we have
about f is the Monte Carlo information in the sample. In
Bayesian problems, we typically also have some informa-
tion concerning 7 . For example, the conditional density of
H given 6 and y may be available, and in this case, Rao—
Blackwellization is possible: mwy |, may be estimated by
H|y(h) = (1/n) Z?:l TTH | (6=0;,y=y)(h). This is simply
an average, and we will use tools from empirical pro-
cess theory to show that 7|, (h) converges to |y (h)
uniformly in h, with n'/? asymptotics. From this uni-
form convergence, we will show that argmax;, 7y |, con-
verges to argmaxy, 7y |y, also with n'/2 asymptotics, and
this rate holds regardless of the dimension of /. Standard
methods based on gradient-based approaches can be used
to find argmax), 75|y (h) rapidly, even when dim(h) is
moderately large. We will also show how confidence sets
for argmax;, m(h) can be constructed.

The Method in a More General Setting. The prior mgy
may be something other than the uniform for several rea-
sons. For example, the uniform prior may be improper,
and may lead to an improper posterior. Also, even if the
uniform leads to a proper posterior, this posterior may
have a form that does not lend itself well to MCMC,
whereas certain other forms for mz may induce a par-
tial conjugacy structure and thus enable the construc-
tion of MCMC algorithms in which the component up-
dates exploit this conjugacy. Another reason for consid-
ering a prior other than the uniform is that it is useful

for the prior to concentrate near argmax;, m(h), as the
more time the chain spends near arg max;, m (%), the more
precisely this quantity will be estimated. Using such a
prior is particularly helpful when the likelihood is flat
around argmax;, m(h). Of course, specifying a prior on
H that concentrates near the argmax requires some ad-
ditional input about where the argmax is, creating a cir-
cular problem, so the observation above should be taken
simply as a guide regarding how to select the prior. In
what follows, the prior wg is completely arbitrary, and
we may choose it strictly on the basis of convenience; in
particular, it does not need to reflect any beliefs we have
about 6. The posterior distribution of H is gy (h)
m(h)my (h), which we may rewrite as 7wy | y(h)/mp (h) =
cm(h), where c is a constant. Thus, argmax;, m(h) =
argmaxy, gy |y(h)/my (h), so if we can estimate the right
side of this equation then we can estimate the left side, and
this is true regardless of our choice of . We now discuss
how we can estimate argmax, wg |y(h)/mpy(h). As in the
previous paragraph, suppose that (Hy, 61), (Ha,65),...
is a Markov chain with invariant distribution equal to
7(H,0)|y> and also suppose that the conditional density of
H given 6 and y is available. Then from the chain we may
form the Rao—Blackwellized estimate of 7|y given by

1 n
(2.2) | yh) = ;ZNH|(9:9i,Y:y)(h),
i=1
which, for fixed £, is an average. Now suppose temporar-
ily that (Hy, 61), (H2,62), ... is a sequence of indepen-
dently and identically distributed draws from (g gy | y. If

(2.3) E(mH | 9=6,,y=y)(h)) =mH|y(h)

and E([nH|(9:91’y:y)(h)]2) < 00, then the estimate
in (2.2) would be consistent, and also satisfy a central
limit theorem. The second moment assumption is, of
course, standard, but statement (2.3) actually requires an
argument, which is given in Section S-3 of the Supple-
mentary Material (Doss and Linero, 2024).

We now return to the Markov chain case. Consistency
of Ay |y(h) is guaranteed under the minimal and easily
checkable condition that the chain is Harris ergodic (i.e.,
itis irreducible, aperiodic, and Harris recurrent; see Chap-
ter 17 of Meyn and Tweedie, 1993, for definitions). We
get a central limit theorem under the condition that the
chain is geometrically ergodic and that for some € > 0,
TH | (6=6;,Y=y)(h) has a moment of order 2 + € (corol-
lary to Theorem 18.5.3 of Ibragimov and Linnik, 1971).
(The definition of geometric ergodicity of a Markov chain
X1, X2, ... on the measurable space (X, B) and having
[T as an invariant probability measure is as follows. Let
K"(x, A) be the n-step Markov transition function. The
chain is geometrically ergodic if there exist a constant
p €[0,1) and a function M : X — [0, co) such that for
n=12,..., supyeplK"(x,A) — TI(A)| < M(x)p" for
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all x € X.) Thus, under Harris and geometric ergodicity
and the moment condition stated above, for each h € H,

(2.4) Fryy(h) 25wy () asn— 0o
and
nl/z(ﬁHw(h) — JTH\y(h)) —d> N(O, 02(}1))

for some o2(h) < 0o, and consequently, for each h € H,
we have

asn — oo

(2.5) 7y () /e (h) 25 cm(h)
and

1 FH (R )d ( o%h))
26) n (nH(h) cm(h) ) = N0, ﬂ%](h) ,

where c is the constant defined right above (2.2).
Our principal objectives are to show that

(277)  argmax[Rg|y(h)/mH(h)] 2% argmaxm(h)
h h

and, more importantly,

n1/2<arg max, %11, (1) — argmaxm(h))
g (h) h

d
— Naim) (0, ),

where X can be estimated consistently, as this would en-
able us to construct confidence sets for argmax;, m(h). A
succinct summary of our methodology, including what to
do if Rao—Blackwellization is not feasible, is given at the
end of Section 2.2.

Note that the pointwise convergence statement that

(2.8)

7r |y (h)/mr(h) 25 cm(h) for every h does not imply
convergence of argmaxy, [y | y(h)/mg(h)] to
argmax;, m(h) in any sense at all. In fact, even in the
very simple case where {f,}°° | and f are deterministic
functions defined on [0, 1], the statement f,(x) — f(x)
for every x € [0, 1] does not imply that argmax, f,(x)
converges to argmax, f(x). (To get a counterexample,
with ¢, , denoting the density of the normal distribu-
tion with mean u and variance v, consider f,(x) =
G1/n1/n(x) + (x —0.9), and f(x) = (x — 0.9)2.) To ob-
tain convergence of the argmax, it is necessary to have
uniformity in the convergence of f, to f. Theorem 1 be-
low has two parts. The first gives a version of (2.4) that
is uniform in A. Thus, the first part is a nontrivial gener-
alization of what one gets from the usual strong law of
large numbers in two directions: (i) it gives a convergence
statement that is uniform in /4, and (i) it does this for the
Markov chain case. (The first part also gives a version
of (2.5) that is uniform in %, which is an immediate con-
sequence of the version of (2.4) that is uniform in 4.) The
second part, which is really a simple consequence of the
first part, is assertion (2.7). Theorem 2, which is the result

of principal interest, uses the uniformity in Theorem 1
to arrive at (2.8), and the theorem is followed by the de-
scription of a method for obtaining confidence regions for
argmax;, m(h).

Before stating the theorems, we briefly review some
basic facts regarding empirical process theory and re-
generation sequences that form the underpinnings of
the theorems. Suppose (€2, A, P) is a probability space,
let Li(P) = L{(2, A, P) be the usual space of mea-
surable functions f: Q@ — R satisfying [|f|dP < oo,

and let Ly(P) be the usual space of square-integrable

functions. Assume that X, X», ... S P.If feLi(P),

then the strong law of large numbers (SLLN) states that
(I/n) 37 1f(X)—> E(f (X)), and if f € Ly(P), the
central limit theorem (CLT) states that n!/2 x
([(l/ﬂ)Z 1 XDl — E(f(X))) 4 N, %(f)),
where o2( f) is the variance of f(X) under P. For ex-
ample, if 2 =R and f;(X) = I(X <t), where [ is the
indicator function, then the SLLN states that

thm

and the CLT states that

(2.9) E(f,(X))] =

(2.10) n‘”(%Zﬁ(X»—E(ﬁ(X))) 4 N0, 0%(0)).
i=1

The classical Glivenko—Cantelli theorem asserts that con-
vergence in (2.9) is uniform, that is, sup, g [(1/n) X

" (X)) — E(fi(X)] 25 0, and the classical
Donsker theorem gives a version of (2.10) that is uniform,

namely n"/2([Y0_, f.(X)1/n — E(£(X))) > Wo(F()),
where Wy(-) is the Brownian bridge on [0, 1], and F (¢) =
P (X <t). In empirical process theory, the one-parameter
class of functions {f;,t € R} is replaced with far more
general classes (and €2 is not necessarily R, but can be
a more general space). There are two kinds of results.
Glivenko—Cantelli results pertain to classes of functions
JF C L1(P) and these assert statements of the form

Zf(x ) — E(f(X))] =>

sup

Donsker results pertain to classes of functions & C Ly (P)
and these assert statements of the form

( Zf(X)— f(X)))—d>W(f),

where W is a mean-zero Gaussian process indexed by f €
F. A good review of empirical process theory is given in
Kosorok (2008).

We will be interested in the case where X = (H, ),
P 1is the conditional distribution of (H, ) given ¥ =y,
and our class of functions is {7y | g,y)(h), h € H}. (Recall
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that these are the core functions of 6 used to construct the
Rao—Blackwellized estimate 77|, (h) in (2.2), which is
an average, and g |, (h) /7y (h) is what features in (2.5)
and (2.6).) Note that for fixed &, g | (4, y)(h) is a function
of (H,0) which happens to use only the 6-component,
and we emphasize this in our notation by writing

@) =mH @,y ).

Of course, f; also depends on y, but we have condi-
tioned on y, and this dependence is suppressed in the
notation. Throughout, we make the benign (and check-
able) assumption that f.(): H x ® — R is continuous in
h for [mg|y]-almost all 6. Glivenko—Cantelli results will
give statements of the sort supy,cq, |(1/n) 27 fn(6i) —

(2.11)

TH |y ()] 25 0, and hence

1 a.s.
sup (= > fu(0) /7 (h) — em(h)| == 0,
hGH n i=1

which is precisely the uniformity that we need in order
to establish convergence of the estimator of the argmax;
see (2.7). And Donsker theorems ultimately will give re-
sults of the sort (2.8).

Empirical process theory is fundamentally based on
an i.i.d. assumption, whereas in our setting, typically
the sequence (Hip,61),(Ha,62),... will be a Markov
chain. The best way to deal with the family of averages
(1/n) 37, fu(6), h € H, is through the use of “regen-
erative simulation.” A regeneration is a random time at
which a stochastic process probabilistically restarts it-
self; therefore, the tours made by the process in between
such random times are i.i.d. Regeneration sequences are
easy to construct and understand in the setting of Markov
chains on a discrete state space. Suppose that « is a
point to which the chain returns infinitely often with
probability one. Assume we start the chain at «, and let
l=1 <71 <7172 <--- be the times of return to «. For
eachheHandr=1,2,...,let

T —1

Shy= Y fu®) and Ny=71, — 1.

I=Tr—|

2.12)

These are the sum of fj over the rth tour and the length
of the rth tour, respectively. By the Markov property, the
pairs {(Sp,r, Nr)}°2, are i.i.d., and we will show how the
i.i.d. structure will enable us to convert Glivenko—Cantelli
and Donsker theorems for the i.i.d. case to Glivenko—
Cantelli and Donsker theorems for the case of Markov
chains satisfying some regularity conditions.

Before we do this, we remark that in virtually all cases
that arise in Bayesian statistics, the state space is continu-
ous, and there does not exist a point to which the chain re-
turns infinitely often with probability one. The technique

in Athreya and Ney (1978) allows us to construct a se-
quence of regeneration times 1 =t9p < 7] < 7p < --- sat-
isfying E (1, —1,—1) < 00 in a very general setting that in-
cludes Markov chains on a continuous state spaces where
the probability of visiting any particular point is always
0. Markov chains for which there exist such regeneration
sequences are called regenerative. We discuss the regu-
larity conditions needed for the Athreya and Ney (1978)
construction to be feasible after the statements of the the-
orems.

Suppose now that our Markov chain is regenerative.
If we run the chain for R regenerations, then the to-
tal number of cycles is given by n = Zle N,. Also,
Y ) = le Sn.r- These two facts, which are true
by definition, give rise to the key equation

i fn @) _ X Shr _ (27 Shr)/R
n R Nr (Zf:l Nr)/R .

r=1

(2.13)

On the left are the averages of interest, but the 6;’s
are not independent. On the right, the numerator is a
class of averages of independent quantities, indexed by
h, to which we can apply empirical process results. We
have Glivenko—Cantelli theorems for the class of aver-
ages (Zle Sn.r)/R and hence for the class of ratios on
the right side of (2.13) (the denominator does not de-
pend on /). And to obtain Donsker theorems for the class
of ratios [(Zf:] Sh,r)/R]/[(Zle N;)/R], we apply the
delta method to the function #(x, y) = x/y. There are, of
course, many details that we have not discussed, but the
present paragraph gives the big picture, and the details are
dealt with in the proofs of the theorems.

Recall that f;, is defined by (2.11), and Sj 1 is de-
fined by (2.12). Let M(h) = cm(h) and let M, (h) =
| y(h)/ma(h) (see (2.5)). For a function g: H — R,
Vi g(h) denotes the gradient vector and V}%g(h) denotes
the Hessian matrix. We will refer to the regularity con-
ditions below. They are discussed after the statements of
Theorems 1 and 2.

C1 The hyperparameter space H is a convex compact
subset of R,

C2 The prior g is twice continuously differentiable
on H, and is positive on H.

C3 For every 6, V;, f,(6) and thfh (0) exist and are
continuous for all .

C4 The family {f,,h € H} is such that the in-
terchange of the order of integration and either first
or second order differentiation is permissible, that is,
Vi [ fu@)mg y(0)dO = [V fr(@)mgy(0)dO  and
Vi | ()76 (6)d0 = [ V], fi(0)7g ) (6) d6.

C5 The marginal likelihood m(-) is twice continu-
ously differentiable in H, and the k& x k Hessian matrix
V}%m(arg max; m(h)) is nonsingular.
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C6 Each of ]/VI\,,(-), n=1,2,...and m(-) has a unique
maximizer (thus it makes sense to talk about
arg max, 1/\/1\,1 (h) and argmax;, m(h)).

C7 The sequence {(H;, 6;)}2, is a geometrically er-
godic Markov chain with invariant distribution equal to
T(HO) |y

C8 For every h € H, there exists € > 0 such that
E(|Vy fn(0) ||2+€) < 00, where the expectation is with re-
spect to 7y |y, and || - || is Euclidean norm.

C9 E(supy, Sp,1) < oo.

C10 E(sup, |V7Sp1l) < oco.

The condition in C10 is of the form E(|A|) < oo where A
is a k x k matrix, and the statement E(|A|) < oo should
be taken to mean that the expected value is finite for every
component of A.

THEOREM 1. Suppose that {H;, 6;};°, is a regenera-
tive Harris ergodic Markov chain.

1. Under C2 and C9, (2.4) holds uniformly in h; con-
sequently, (2.5) holds uniformly in h, that is,

sup |M,, (h) — M ()| =5 0.
heH

2. Under C1, C2, C6, and C9, argmax, M, (h) <>
argmax;, M (h) (which is equivalent to (2.7)).

THEOREM 2. Suppose that {H;, 6;}:°, is a regenera-
tive Harris ergodic Markov chain. Under C1-C10,

n'/?(arg max M, (h) — argmax m (h)) 4 Nk (0, ),
h h

where X is a positive definite k x k matrix.

Batch-based estimation of ¥ and confidence regions for
argmax;, m(h). The variance matrix £ may be estimated
in several ways. One way is to exploit the representation
of ]/Vl\n (h) as the ratio of two averages, in which the numer-
ator is an average of the i.i.d. quantities Sy, ,,r =1,..., R
(see (2.13) and the proof of Theorem 1). We then pro-
duce an argument showing that arg max,, M,,(h) inherits
the representation in terms of averages, and apply stan-
dard methods for estimating the variance of an average.

Another way, which is much easier and is the one
we recommend and we have implemented, is to use the
method of batching, which is described as follows. The
sequence 6f,...,6, is broken up into B, consecutive
pieces of equal lengths called batches. Let Ag’] denote the
estimate of the argmax based on batch b, let Ai“" be the
estimate based on the full sequence, and let A be short for
argmax, m(h). Suppose that the number of batches and
the batch length both go to infinity, that is, B, — oo and
n/B, — 0o as n — o0o. We note the following.

1. By Theorem 2, for b =1, ..., B,, the distribution of
(n/Bn)'2(AIP) — A) is approximately N (0, ).

2. Under geometric ergodicity, for large n the vari-
ables (n/B,)2AM _ (n/B,)"/2 AP are nearly inde-
pendent.

If statements 1 and 2 above were exact, as opposed to ap-
proximations, then the batch-based estimate defined by

_ Y2 () Ba) (AIP] — Afully (A6 _ pfullyT
B, —1

=

would be a consistent estimator of X, since fn is (es-
sentially) the sample variance based on the sequence
(n/B)2AN . (n/By)' 2 A,

In general terms, the literature shows that batch-based
estimates are consistent under certain regularity assump-
tions. Jones et al. (2006) and Flegal and Jones (2010)
establish strong consistency under the condition that
{H;, 6;}72, is geometrically ergodic, some moment con-
ditions, and stipulations regarding the rate at which B, —
oo (Jones et al.,, 2006 recommend taking B, = nl/2,
which is within the range of rates that Jones et al., 2006
and Flegal and Jones, 2010 allow); see also Flegal, Haran
and Jones (2008). Their results pertain to the case where
the statistic whose variance we need to estimate is an aver-
age, whereas our statistic is an argmax. However, in view
of the fact that arg max,, M, (h) may be represented as an
average plus a term that is asymptotically negligible (this
fact is the crux of the proof of Theorem 2), we expect the
batch-based estimate to be consistent in our situation also.
An additional difference is that in our definition of f,, we
have used Afluu as the centering value, instead of the tradi-
tional AL'] = (1/By) Zfl] A,[lb]; but we do not think that
making this change affects the theory.

If in 25 3, then in is invertible for large n. Hence
the ellipse £ given by £ = {h : (argmax, M, (h) —
h)Tfn_l(argmaxh f\/l\n(h) —h) < X1<2,.95/"} is an asymp-
totic 95% confidence set for arg max;, m(h). Here, X;i.95
denotes the 0.95 quantile of the chi-square distribution
with k degrees of freedom.

We now remark on the existence of regeneration se-
quences. First, we note that, at the theoretical level, it is
a fact that for any chain satisfying our minimal regularity
condition of Harris ergodicity, letting K (x, A) denote its
Markov transition function, there exists a j > 1 such that
for the Markov chain driven by the j-step Markov transi-
tion function K/, there is a regeneration sequence satis-
fying E (7, — 1,—1) < 00; see Meyn and Tweedie (1993),
Theorem 5.2.2. At a more practical level, Mykland, Tier-
ney and Yu (1995) have provided a very general method,
the so-called distinguished point technique, for construct-
ing regeneration sequences. When the method produces
regeneration times that are reasonably short, estimation
of standard errors of (1/n) Y "_, fn(6;) becomes trivial,
since by (2.13), the problem is reduced to estimating the
standard error of ratios of averages of i.i.d. quantities. An
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often-heard criticism of the method is that it is very hard
to tune, especially in high-dimensional problems. This
criticism is irrelevant for us: for our theoretical develop-
ment, we need only the existence of the construction, not
a construction that is useful in the practical sense.

Conditions C1-C10. Conditions C1 and C3-C6 are
standard. C2 is fairly benign and is likely to be satisfied
by most priors in common use, possibly after a redefini-
tion of 2. The geometric ergodicity condition C7 and the
moment condition C8 are typical of the sort needed for
proving CLTs for averages, and we recall that in the fixed
h regime, the Rao—Blackwell estimate (2.2) is just that, a
(single) average.

We now discuss C9 and C10. Given a family of func-
tions g5,: ® — R, Glivenko—Cantelli theorems are uni-
form SLLNs, and Donsker theorems are “uniform CLTs,”
that is, theorems that assert convergence to Gaussian pro-
cesses indexed by h € H, as opposed to convergence
to a multivariate normal random variable. The regular-
ity conditions of substance are E(sup,|gn(0)]) < oo
and E(sup;, | gh(0)|2) < 00, for Glivenko—Cantelli and
Donsker theorems, respectively (there are other condi-
tions, but they are very easily checked in Bayesian prob-
lems, where the prior is indexed by a finite-dimensional
parameter). The conditions that these expectations are fi-
nite are far more stringent than the conditions
sup, E(|gn(0)|) < oo and sup, E(|gh(9)|2) < 00. The
difficulty is even more severe because in our situation,
the functions we are dealing with are {Sj 1,7 € H}. For
any h, Sp.1 is a sum of the functions f},(6;) over a random
number of indices i (see (2.12)), so verification of a con-
dition of the form E(supy, |Sp,1]) < oo could potentially
be extremely problematic, and we now address this issue.
Consider the conditions below:

CCl1 [ fn(0)mg|y(0)d6 < oo for all h € H, and for
some d > 1, there exist hy,...,h; € H and constants
1, ...,cq such that sup, fr(0) < Z‘;:l cjfn; () for all
€.

CC2 [|Vufn(0)|mg|y(0)do < oo for all h € H, and
for some d > 1, there exist i1, ..., hy € H and constants
c1, ..., cq such that sup,, |V f,(0)] < X9_, ¢j|Va fin; 0)]
forall 6 € ©.

CC3 [|V? fn(®)|mg|y(©)d6 < oo for all h € H, and
for some d > 1, there exist Ay, ..., hy € H and constants
1. ..., cq such that sup, |V,%fh(9)| < 2?21 cﬂV%fhj )]
forall 0 € ©.

(In CC2 and CC3, the inequality signs are taken to mean
componentwise inequalities.) CC2 is not relevant for The-
orems 1 and 2, but we mention it because it will be needed
later for Theorem 3.

Obviously, CC1 implies E(sup;, fr(0)) < oo, CC2 im-
plies E(sup, |Vafr(@)]) < oo, and CC3 implies
E(sup,, |V,%fh (@)]) < oo. But, as we will see, much
more can be said: CC1 implies E (supy, Sp,1) < oo, CC2

implies E(sup;, |ViSp,1]) < oo, and CC3 implies
E(sup,, |V%Sh,1|) < 00. We will prove the first of these
assertions. Let 77 denote the set of indices that comprise
the first tour. We have

d
Sna=Y_ fn@) <Y > cifu; 6

ieTy ieT) j=1
(2.14) )
=Y ¢; Y fu;6;) forallheH.
j=1 ieTq

We may replace Sj;1 with sup, Sp,1 on the left side
of (2.14), and then taking expectations, we obtain

d
Ep(Sl;pSh,l) = ZCJ'EP(Z fhj(9i)>

j=1 €Ty
d
=" ¢jExyy, (fn, () Ep(N1) < 00,
j=1

where E p denotes expectation with respect to the Markov
chain. The other two assertions are proved in essentially
the same way. To summarize: establishing C9-C10 re-
duces to checking CC1 and CC3, and these are typically
not difficult to check using the compactness of H. (And
we will see later one of the principal regularity conditions
required for Theorem 3 reduces to checking CC2.)

An Alternative to Rao—Blackwellization. Suppose that
(U1, V1), (Ua, V3), ... 1s a Markov chain with invariant
density fy,v on aspace U x V where V is Euclidean. For
the purpose of estimating the marginal density fy, Chen
(1994) introduced the so-called Importance Weighted
Marginal Density Estimation IWMDE) method, a very
general procedure which can be applied in cases where
Rao-Blackwellization is not feasible. In our context, in
which 0 corresponds to U, H corresponds to V, and our
Markov chain is (Hi, 6y), (Hp, 6»), ..., the method is de-
scribed as follows. Let {wg(-), 0 € ®} be a family of den-
sities on H. To estimate 7y |, we use the estimator

wo,H)|yOi,h)

(2.15)  Abmdepy = — N wy (H;) '
Hl|y n ; 76,H)|y (i, Hi)

Note that to calculate (2.15), we need only that g, gy
is known up to a normalizing constant, and this is typ-
ically the case in Bayesian problems, where the poste-
rior is proportional to the likelihood times the prior. Chen
(1994) required that the family {wg(-), 6 € ®} correspond
to a joint distribution on (6, H); more precisely, he re-
quired that there exist a joint density Wy g on (6, H), and
that wg (h) = Wy ¢(h), in self-explanatory notation. Ac-
tually, no such stipulation is needed, and in Section S-3
of the Supplementary Material (Doss and Linero, 2024)
we show that under the minimal condition that for each 9,
wy is a density on H, ﬁ;}vr‘;de(-) is an unbiased estimate of

TH |y ().
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In principle, any family {we(-),6 € ®} of densities
can be used in (2.15), but Chen (1994) showed that the
choice wy (-) =g | (9,y)(-) is optimal in the sense of min-
imizing the asymptotic variance and, moreover, for this
choice the estimator reduces to the Rao—Blackwell esti-
mate A58 (h) = (1/n) 3}_ 7| @y (h). This leads to
the heurlstlc that the family {wg(-),60 € ®} should be
taken to be as close to 7wy | (g,y)(-) as possible.

For every fixed i € H, consider the function fi¥mde:
® x H — R defined by

To,H)|y(@,h)
7@, 1y y(O, hy)
The IWMDE is ﬁ;;vlmde(h) = (1/n) Y0, fvmde(o;, H;).

Our statement that n;}vlmde

2.16)  fivme@ h,) = wg(hy)

(+) is an unbiased estimate of

7H|y(-) may be written as Eﬂ(e,H)ly(fhwmde(G, H)) =
mH|y(h), and Theorems 1, 2 and 3 hold for the IWMDE:
we simply replace f,(0) =g |@,y)(h) (see (2.11)) with
fiwmde(g ) defined by (2.16), and definitions and as-
sumptions involving fj are now taken to refer to the func-
tion flwmde

Our methodology is summarized as follows.

1. Choose a prior for H. The methodology is invariant
to this choice, and different priors give rise to the same an-
swers in the limit, so the selection should be based on con-
venience, for example, exploiting any conjugacy or partial
conjugacy in the problem.

2. Generate a suitably ergodic Markov chain on (H, 6)
with invariant distribution equal to the posterior distribu-
tion of (H,0) given Y = y.

3. If the conditional distributions needed for Rao—
Blackwellization are available, then calculate the Rao—
Blackwellized estimate (2.2). If the conditionals are not
available, then use the IWMDE (which results in an es-
timator whose variance is greater than or equal to that of
the Rao—Blackwellized estimate).

4. Adjust the Rao-Blackwellized estimate or the
IWMBDE via division by wg(-), and find the argmax of
this ratio, which is an estimate of arg max; m(h).

5. Form confidence sets for argmax;,m(h) via the
method of batching.

2.3 Simultaneous Estimation of a Family of Posterior
Expectations

Let g be some function of 6, and let I (h) = [ g(0) x
gy (0; h) dO be the posterior expectation of g(6) when
the prior on 6 is 7y (0; h). Suppose we are interested in
the family 7 (h) as h varies continuously. For any / € H,
we have

(2.17&) /g(@)ﬂg\(}]:h,y)(e) do

_ a1y () [ 8O)h| (ri=h.y) (6) 4O

2.17b
( ) TH|y(h)

_ [ 8O0 (=) Oy (h) dO

(2.17¢)
Ty | y(h)
(2.17d) = J8O)mo.1)|y(0, h)db
7H |y (h)
o170 = {18OTHI6 W)y 0)db
| y(h)
N(h)
2.17 _. M
( K TH|y(h)

Now suppose, as before, that we can construct a geometri-
cally ergodic Markov chain (Hy, 61), (Ha, 62), ... whose
invariant distribution is (g g)|y; and also suppose, as
before, that the conditional density of H given 6 and
y is available. The numerator, N (k), and denominator,
7y |y(h), of (2.17f) may be estimated (using only the 6-
component of the chain) respectively by

Ny(h) = Zg(G )TH | (6=6;,y)(h) and
i=1

1
Z —o. (R,
ngﬁmw_e,,y)( )

(2.18)
ﬁ'Hly(h) =

where 7| (h) was defined earlier (see (2.2)). Therefore,
we may estimate / (&) by the ratio of N (h) and 7t |y (h),
that is, estimate I (h) via

Yt 8O)TH | (6=6;,y)(h)

Y mH =00 ()

It is interesting to observe that if we define wy; =
(7T H | (9=6;,y)(h)/ X =1 TH | (6=0;,y) (W], then the wp;’s
are weights, and I, (h) = Y7_, g(6;)wp.;, that is, I,(h)
has the interpretation as a weighted average of the g(6;)’s,
with weights given by the wy, ;’s.

For any f fixed h f (h) 2 (h). To see this informally,
note that N (h) 25 N(h) and 77| y(h) 2% TH|y(h), be-
cause N (h) and 7y |y(h) are averages over an ergodic
Markov chain. Also, for fixed h, n'/2(I,(h) — 1(h)) is
asymptotically normal. Informally, this is because under
regularity conditions on the mixing rate of the Markov
chain and some moment conditions, the bivariate vector
n'2(Ny(h) — N(h), i |y(h) — 7w y(h)) is asymptoti-
cally jointly bivariate normal, by the Markov chain CLT.
Asymptotic normality of nl/ 2(IA,, (h) — I (h)) follows from
the delta method applied to the function 7(x, y) = x/y.
However, we will be interested in versions of these con-
sistency and asymptotic normality statements that are
uniform in A. For example, if dim(k) = 1, in order to
form simultaneous confidence bands for 7 () (or regions,
if dim(h) > 1), we need the asymptotic distribution of
fn (h), viewed as a process in h. The uniform versions
of these convergence statements are given by Theorem 3,
whose proof uses results from empirical process theory.

(2.19) L(h) =
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Before stating the theorem, we give some definitions
and state the assumptions we will need. Let C(H) be the
space of all continuous functions x: H — R, with the
topology induced by the sup norm metric p: for x,y €
C(H), p(x,y) = llx — yllog = supy, |x(h) — y(h)|. For a
regenerative Markov chain 61, 65, ... with regeneration
times 1 =19 < 7] < 7 < --- satisfying E(t, — 7,—1) <
oo, the sequence Sy, ¥ =1, 2, ... was defined by (2.12),
and in analogy, we define

7, —1

Th,r = Z

I=Tp—|

8O) fu(6i) forheH,r=1,2,...

We will refer to the following assumptions.

D1 7y y(+) is continuous and positive on H.

D2 For every 6, Vj, f,(0) exists and is continuous for
all h.

D3 The families {gfy, h € H} and { fj,, h € H} are such
that the order of integration and differentiation can be
interchanged: Vy, [ g(0) fn(0)7g|,(0)d6 = [ Vi[g(0) X
Jn(@)]mg |y (0)dO, Vi [ fn(@)70)y(0)dO = [ Vi frn(0) x
Y|y (9) do.

D4 For every h € H, there exists an € > 0 such that
E(f71€(0)) < 0o and E((g(0) f(6))*T€) < oo, where
the expectations are with respect to 7g | y.

D5 For every h € H, there exists an € > 0 such that
E(IVrlg®) fr@]1II**€) and E(|V fa(®)[*+€) are fi-
nite, where the two expectations are with respect to 7y | y.

D6 E(supy, [ Vi Sh.11l*) < oo.

D7 E(sup, | VaTy.1]*) < oc.

For Theorem 3, recall that g7 |, (), N(-), and ﬁn( ) are
deﬁned by (2.2), (2.17f), and (2.18), respectively, and that

L) = Na() /1),
THEOREM 3. Suppose that {H;, 6;}:2, is a regener-

ative Harris ergodic Markov chain, and assume C1, C7,
and D1-D7. Then:

1.
sup |1, (h) — I (h)] <5 0.
heH
2.
220) 02y () — mH () S PO,
2.21) n'2(N,() = N()) % N,
(2.22) n'2(5,() = 1()) 3 10),

where P, N, and I are mean 0 Gaussian processes indexed
by H, and the convergence takes place in C(H).

In Part 2 of the theorem, (2.20) and (2.21) may be
viewed as lemmas that are needed to prove (2.22), which
is the result of principal interest. As will emerge in the

proof of the theorem, it is possible to give explicit expres-
sions for the covariance function of I(-) in terms of first
and second moments of certain random variables and, in
principle, it is possible to estimate these moments and
hence the covariance function of I(-). However, to use
this covariance function to form simultaneous confidence
bands (or sets) for I(h), we would also need the distri-
bution of supj, <4, [I(h)], which is extremely complicated,
even for the simplest parametric models. A convenient al-
ternative way to form simultaneous confidence bands for
I(h) is through the method of batching, which we de-
scribe in the paragraph below.

Batch-based simultaneous confidence bands for the
family {I(h),h € H}. The map K: C(H) — [0, co) de-
fined by K (x) = supy, 4, |x(h)| is continuous, so by (2.22)

in Theorem 3, sup, n1/2|fn(h) — I1(h)| i> supy, [L(A)].
Suppose the distribution of sup, |I(%)] is continuous. For
a € (0,1), let g4 be such that P(sup, |I(h)] < qo) =
1 — «. If g, was known, then

P(sgpnl/zﬁn(h) —I(h)| < qa> — P<S:P‘H(h)| < 6]a>

=1-—q«,

that is,
[I(h) l/2<I(h)<1(h)—i- 1/2f0rallheH:|

—1—a.

The difficulty is that the distribution of sup,, [[(h)] is an-
alytically intractable, so g, is not known. The method
of batching can be used to estimate it. As before, the
sequence 61,...,6, is broken up into B, consecutive
batches of equal lengths. Let 1™ (h) be the estimate
of I(h) formed from the bth batch and, as before, sup-
pose that as n — oo, B, — oo and n/B, — oco. We
will write B instead of B,,. For b=1,..., B, let §;, =
supy, (n/B)'/?|I,(h) — I(h)|. Then, because the batch
length is large, the distribution of S, is approximately
equal to that of sup,, [I(h)|. Therefore, we may estimate
g« by the (1 — «)-quantile of the sequence Si, ..., Sp.
Unfortunately, the S;,’s are not available, because they in-
volve I (h), which is unknown. So instead we use Sp =
supy, (n/B)'/2|I,(h) — I (h)|, in which we have substituted
i(h) for 1(h). To conclude, let Sj1j < Spj < -+ < Sty
denote the ordered values of the sequence Si,...,Sp.
We estimate g, via Sj(1—q)B], and our simultaneous (1 —
a)-level confidence band for {I(h),h € H} is {f (h) £
S[(lfa)B]/nl/z, he 7‘[}

REMARK 1. There is a highly-developed theory on
the consistency of estimates based on batching, including
results on the optimal rate at which B,, — co. However,
this theory is focused primarily on the case where we are
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estimating a variance, whereas in the present situation, we
are estimating the quantile of the distribution of the supre-
mum of a stochastic process. There are some differences;
for example, theoretically we need to show that substitu-
tion of 1 (h) for I (h) in going from S, to S, does not
cause any difficulties, and on the practical side, the rate at
which B, goes to infinity may differ because here we are
estimating a moderately large quantile. Establishing the
theoretical validity of the batch-based simultaneous con-
fidence bands and providing theoretical and empirical re-
sults on the optimal rate at which B, — oo are interesting
open problems.

REMARK 2. Result (2.20) is of interest in its own
right: together with the method of batching, it enables us
to form simultaneous confidence bands for the marginal
posterior density of H. Moreover, there is nothing intrin-
sic about H being a hyperparameter in the model. Re-
sult (2.20) and the construction of the batch-based confi-
dence band apply in any situation where we have a mul-
tivariate parameter 6 = (61, ..., 6r) and we wish to form
a simultaneous confidence band for the posterior density
of 0; for some j. The conditions needed are those stated
in Theorem 3 (except for those that involve the function
g), and we need a proof that the simultaneous confidence
bands are asymptotically valid.

3. ILLUSTRATIONS

We provide three illustrations of our approach for im-
plementing the empirical Bayes procedure, with three dif-
ferent purposes. The first involves many hyperparameters,
and we show that because the approach can handle a high-
dimensional hyperparameter, it actually gives rise to new
statistical methodology, namely a new way to do variable
selection in nonparametric regression. The second illus-
tration deals with the Dirichlet additive trees model men-
tioned in Section 1. Although it involves only a single
hyperparameter, none of the existing methods (see Sec-
tion 2.1) can be used to estimate it, because of the in-
herent complexity of this model. In the third illustration,
which is in Section S-2 of the Supplementary Material
(Doss and Linero, 2024), we use our approach to select
the likelihood function, as opposed to a hyperparameter of
the prior, and this shows that in some cases our approach
can be used, effectively, to do model selection.

Before proceeding, we mention two points regarding
computational considerations.

Computation of the Argmax. When dim(h) is 1 or
2, we can simply evaluate our estimate of mp|y(-)
over a fine grid and find the maximizer via a grid
search; and we can even plot the estimate and inspect
it visually. When dim(k) > 2, suppose first that Rao—
Blackwellization is possible, in which case our estimate
of gy (+) is given by (2.2) (we are temporarily assum-
ing that the prior on H is the uniform). Thus, we seek

argmax,,(1/n) >_7_, wH | 6=6,y)(h). Now, if the function
TH|@,y)(-) is available in closed form, then so is its
derivative, and therefore the derivative of 7|, () in (2.2)
is available in closed form. This means that all gradient-
based optimization methods are available to us. (If the
prior on H is not the uniform, we make the obvious ad-
justment.) If Rao—Blackwellization is not feasible, then
we need to use Chen’s (1994) method, but the comments
above still apply.

Construction of a Markov Chain on (6, H). In many sit-
uations, for the model in which £ is a fixed constant, there
will already exist a Markov transition function ®j(-, )
on ©-space with invariant density equal to 7|y (0; h).
In this case, we may be able to use Hamiltonian Monte
Carlo (HMC; see, e.g., Neal, 2011 for a review) to con-
struct a Markov transition function Wy (-, -) on H-space
with 7| (g,y) as invariant density. The only requirement
we need in order to implement HMC is that we know
Vi log(ma |,y (h)). Now typically, 7y | g,y (h) is avail-
able in closed form, except for a normalizing constant that
may involve 8 and y, but does not involve i. So except for
pathological models in which there are nondifferentiabil-
ity issues, Vjlog(mwy|s,y)(-)) exists and is available in
closed form. The chain that alternates between ®; draws
and Wy draws then has 7y, g)|, as invariant density.

3.1 Variable Selection in Bayesian Nonparametric
Additive Regression

We return to the second example in Section 1. For
the model in this example, the posterior distribution of
0 given Y may be estimated by MCMC schemes which
run on the variable y = (y1, ..., yp), with (B9, B, 0) in-
tegrated out. Because the state space for y is finite, the
Markov chains are uniformly ergodic. The original pa-
pers which develop such schemes are Madigan and York
(1995), Smith and Kohn (1996), Clyde, DeSimone and
Parmigiani (1996), and Raftery, Madigan and Hoeting
(1997), and there have been many enhancements since.
Model (1.3) was considered by Liang et al. (2008), who
showed that g-priors with a fixed g give rise to poste-
riors with paradoxical (and highly undesirable) proper-
ties. They propose to use mixtures of g-priors; specifi-
cally, they advocate “hyper-g” priors (which we discuss
shortly), and show that if we use them, the paradoxes do
not arise.

Smith and Kohn (1996) were interested in the case
where some of the variables need to be treated nonlin-
early, and so considered the additive model Y; = Bo +
Zle fi(xj)+e,l=1,...,m,inwhich the f;’s are rep-
resented by regression splines: f;(x) = Z,{{ZI BjkBjr(x),
where Bji,..., Bjx are cubic regression splines with
evenly-spaced knots. The model is then expressed as

p
GB.1)  Y=1.p0+ ) fj+e where fj=B;p;,
j=1
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where B; is an m x K matrix with (¢, k)th entry B (x¢)

and B; = (ﬂjl,...,ﬂjK)T. Equivalently, we can write
Y =180+ BB + ¢, where B =[By,...,Bp], and 8 =
(/31T e, ﬁ;)—r, this last representation fitting in with the

usual formulation of a linear model.

When estimating the parameters of the spline model
given by (3.1), one option is to use a relatively small num-
ber of knots, positioned at evenly spaced points along the
predictor axes, and to choose the number of knots via
cross-validation (or some model selection criterion). A
second option is to use a large number of knots but then
apply £ penalization on the regression coefficients. This
has the advantage that it captures local curvature better.
Using ¢ penalization sets some of the knot coefficients to
0 and therefore leads to knot selection. The approach of
Smith and Kohn (1996) is, effectively, a Bayesian version
of the second option. If in model (1.3) we replace (1.3b)
with the statement that g, is distributed according to a
hyper-g prior, then the model is indexed by the hyperpa-
rameter w. Smith and Kohn (1996) use a fixed value for g
(g = 100) and specify w = 1/2.

We will take the approach of Smith and Kohn (1996),
modified so that for each j =1, ..., p, there is a separate
inclusion probability w; for the knots corresponding to
variable j, and a hyper-g prior is used for g. The hyper-
g prior is given by u(g) o« (1 + g)~%/? for g > 0, and is
indexed by the parameter a > 2. Following Liang et al.
(2008), we take a = 3. The reason for having separate
inclusion probabilities for the p variables is that this al-
lows the different f;’s to a priori have different curvatures
but, as we will see, allowing separate inclusion probabil-
ities has interesting ramifications for variable selection.
Letw = (w1, ..., wp). Also, let yj1, ..., y;jk be the knot-
inclusion indicators for variable j, define y;. = Zf: 1 Vik>
and denote Vij1 = (le, RN VjK) andy =1y, - -» )/[p]).
Lines (1.3d) and (1.3b) of Model (1.3) now need to be
changed to

indep y,. . )
wip ~ w A—wpf e j=1,.,p,

and

g~ u, and given g,

indep 2/ T —1
ﬂ]/[j] ~ Np}/[j] (O’ 80 (Bj,}/[j]Bj~y[j]) )’
j=1,...,p,

respectively. We then estimate the hyperparameter w us-
ing the methods of this paper.

None of the procedures described in Section 2.1 works
here: the EM-based approaches give estimates which
converge, but to incorrect values, and serial tempering
MCMC gives estimates which are extremely unstable, as
discussed earlier. We now describe how our approach may

be implemented. We take w i Unif(0, 1). Our Markov

chain will run over (y, w, g), with (Bo, B, o) integrated
out. It will be driven by a Markov transition function
(MTF) which consists of the composition of three MTFs,
of which the first updates y, the second updates w, and the
third updates g. Our first MTF modifies the proposal of
Yang, Wainwright and Jordan (2016) to take into account
that y[13, ..., ¥[p] constitute p groups; it applies one of the
two changes below, each with probability 1/2. (1) Flip a
randomly selected yjr. (2) For each j =1,..., p, ran-
domly select two indicators from the set {y;1,..., ¥k},
one of which is a 1 and the other a 0, and swap their values
(if yj1,...,yjk are all 1 or all 0, then we do nothing). In
either case, the move is accepted or rejected based on the
Metropolis—Hastings acceptance probability. This update
leaves the conditional distribution of y given (w, g,Y)
invariant.

The second MTF generates w according to its condi-
tional distribution given (y, g, Y). From the hierarchical
nature of the model, it is easy to see that

m(wl|y,g,Y)
P K )
=m(wly)oc [T [Twi (1 —wy'~7#
j=lk=1
p
o l_[ beta(w;; 1 +y;., 1 + K —y;.),
j=1

where beta(w; a, b) denotes the beta(a, b) density eval-
vated at w. This update leaves the conditional distribu-
tion of w given y, g, and Y invariant. The equation above
gives rise to the Rao—Blackwellized estimate

1 X2 ;
M, (w) = — Z 1_[ beta(w;; 1+ y D,
(3.2) izl j=1

1+ K —y),

of the marginal likelihood of w (up to a constant), where
i =1, ..., nindexes the iterations of the Markov chain. In
our illustrations, the empirical Bayes estimate of w is ob-
tained by maximizing (3.2) through the optim function
in R using the L-BFGS-B algorithm (Byrd et al., 1995).

The final MTF updates g, and this is done through the
slice sampler (Neal, 2011). We remark that Liang et al.
(2008) show that we can actually modify the first two
MTFs by marginalizing out g, thereby eliminating the
need to construct an update for g; we include an update
for g to allow for the possibility of including g in our em-
pirical Bayes analysis, if this is desired. The composition
of the three updates leaves the conditional distribution of
(y,w, g) given Y invariant.

It is notable that some of the components of
argmax,, m(w) can be zero (and if y.(f) = 0 for the n it-
erations of the Markov chain, then the jth component of
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FIG. 1. Estimates of the f;’s for the ragweed data. Solid line (—) gives the posterior mean, dashed lines (- - -) give 95% pointwise credible
intervals, and dot-dashed line (- -+ -) gives the estimate obtained from the gam function in the R package mgcv.

the maximizer of M,,(w) in (3.2) is zero, that is, w; is es-
timated to be zero.) In this case, it is not just some knots
that are excluded; rather variable j in its entirety is elimi-
nated from the model. As is the case for many likelihood-
based methods, some issues arise when the maximizing
value is at the boundary of the parameter space, and this
was noted in the context of Bayesian variable selection
by Scott and Berger (2010). (The situation here is similar
to that where we have Y ~ binomial(m, p): if we observe
Y =0, then not only is the maximum likelihood estimate
of p equal to 0, but the associated standard error estimate
is also 0, and the naive Wald-type confidence interval for
p is the singleton {0}.) As is the case for the simple bi-
nomial example, if uncertainty quantification regarding
variable selection is required, a fully-Bayes approach can
be used.

We apply our empirical Bayes approach to the ragweed
dataset of Stark et al. (1997). This dataset consists of mea-
surements of the ragweed pollen for 335 days in Kalama-
700, Michigan, along with several meteorological predic-
tors: the day number of the ragweed pollen season, the
temperature, the wind speed, and whether it rained. The
first three predictors are numeric, and the fourth is binary,
and the effect of the three numeric predictors is modeled
using cubic regression splines with at most K = 50 knots
for each predictor. The binary predictor contributes an ad-
ditive effect y;8; where y; ~ Bernoulli(w;).

Before proceeding, we check that the empirical Bayes
procedure gives reasonable results by comparing the fit it
gives to an additive fit using the gam function in the R
package mgcv. This experiment and all the others below
are based on a Markov chain of length 55,000, with the
first 5,000 cycles discarded as burn-in and the remaining
cycles thinned by 10, giving 5,000 cycles. The results are
displayed in Figure 1. We see that for the day in season
and temperature variables the fit from gam is quite similar
to the one using our empirical Bayes approach, although
the fit for the wind speed variable is somewhat different
due to the preference of gam to favor linear terms before

including nonlinear terms (our approach can be easily ex-
tended to also favor linear terms).

To evaluate the variable selection performance of our
model, we added noise variables as follows. Let Dy,
T;, Wi, and R; be the day, temperature, wind, and rain
variables for observation [ (I = 1,...,335), and let &
be a random permutation of the integers 1,...,335.
With a single permutation, the augmented data set is
(Y1, Dy, Ti, Wi, Dy, Tey, Wry, Rp), 0 = 1,...,335.
We then modeled each of the continuous predictors us-
ing our spline basis function expansion. The reason for
creating noise variables in this way is that the correlation
structure for the added variables is identical to that in the
original variables.

Figure 2 shows the empirical Bayes estimate of w ob-
tained from our procedure when we used two permuta-
tions to generate noise variables. We see that our approach
correctly removes all the noise variables and includes all
the original variables. Maximizing (3.2) numerically con-
firms that the empirical Bayes estimators of the w’s cor-
responding to the noise variables are all 0. To get more
detail, we would like to plot the marginal likelihood func-
tion m(-), but it is not possible to do so because m(-) is a
function of 10 variables. Instead, for each j =1, ..., 10,

we can take (Wi, ..., wj_1, Wjt1,..., W10) 1’I\CJIUnif(O, 1)
and plot the marginal likelihood function for w;, with all
the other w’s integrated out. Figure 3 presents the plots
for variables 1, ..., 9. Here, wy, wy, and w3 are associated
with the original continuous variables, and wy, ..., wg are
associated with the noise variables. The figure addition-
ally gives pointwise and uniform confidence bands for
these marginal likelihoods. This marginal analysis also
suggests that these predictors do not appear in the model
selected by the empirical Bayes method.

We now make a brief comparison of our empiri-
cal Bayes approach to penalized regression using the
commonly-used composite minimax concave penalty
(cMCP) method proposed by Breheny and Huang (2009).
The cMCP method carries out bi-level selection by per-
forming both group-level (predictor) and within-group
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level (basis function) selection, which is similar to what
our method is doing. We fit the cMCP regression using
the grpreg package in R and selected tuning parame-
ters using cross-validation. In addition to the dataset aug-
mented with two permutations, we considered a second
dataset which used six permutations. The two methods
were evaluated using the number of true positives (re-
garding the four original predictors as positives) and the
number of false positives. Table 1 gives the results. From
the table, we see that for both datasets, each method cor-
rectly identified all the original predictors; however, we
also see that cMCP is prone to false positives when we in-
crease the number of noise variables. Of course, there are
several other procedures for doing bi-level variable selec-
tion, for example, group bridge (Huang et al., 2009) and
spikeSlabGAM (Scheipl, Fahrmeir and Kneib, 2012).
A thorough comparison of our empirical Bayes approach
with all other methods is beyond the scope of this paper.
Our goal in this first illustration is only to demonstrate
the potential of our method for enabling the implementa-
tion of empirical Bayes approaches in models where these
would be useful but no existing procedure for estimating
argmax;, m(h) works. (Note that there is a distinction be-
tween our method, which is a Monte Carlo procedure for
obtaining an estimate of argmax;, m(h), and the resulting
empirical Bayes scheme, which is a statistical procedure.)

3.2 Choosing the Sparsity Parameter in the Dirichlet
Additive Regression Trees Model

Consider the nonparametric regression model Y; =

fa) +e,l=1,....m, where ¢ “ N(0,02) and x; €
RP?. An increasingly popular strategy for estimating f is
to take a Bayesian approach in which f is modeled as a
sum of random decision trees (see Chipman et al., 2013
and Linero, 2017 for reviews). The most popular such
approach is to use a Bayesian additive regression trees

Empirical Bayes estimates of the w ;s for the ragweed data augmented with noise predictor variables.

(BART, Chipman, George and McCulloch, 2010) model,
which sets f(x) = Z;T:1 g(x;T;, M;), where the 7;’s are
regression trees and the M, ’s are the corresponding vec-
tors of terminal node parameters. Here, g(x; 7;, M;) =
WU if x goes to terminal node £ of tree 7.

In the generative tree-construction process, there is a
variable, s = (s1, ..., sp), where s; is the probability that
the variable chosen for a split is variable j. Chipman,
George and McCulloch (2010) take s to be deterministic:
s = (p_1 ey p_l). Linero (2018) argues that when deal-
ing with regression that is potentially sparse, it is better to
allow s to be random. He specifies that s is drawn from
the Dirichlet distribution Dir,(ct/p, ..., a/p), in which
« is a hyperparameter; we refer to this model as “Dirich-
let additive regression trees” (DART) for the purpose of
comparison with BART. The hyperparameter « plays a
key role related to sparsity. Suppose U ~ Dir,(a, ..., a).
As is well known, if a is small, there is a tendency for
most of the components of U to be near zero, and in the
limit where a — 0, one component is 1, the rest are zero,
and the position of the nonzero component is uniformly
distributed on {1, ..., p}. On the other hand, when a in-
creases to infinity, U is nearly the vector ( p_l, e p_l).
In the generative tree-construction process, the variable s
is chosen once, and then is applied to all T trees. As a
consequence, when « is small, only a few of the predictor
variables are chosen for splits in the entire ensemble; and
when « is large, many predictors are involved, and DART
reverts to BART. (See Linero, 2018 and the supplement to
Linero, 2018 for a precise version of this statement.) This
technique has also been used by Linero and Yang (2018).

In Linero (2018), « is given a prior of the form p,(a) =
n - [20'/%(a + n)3/?]7!, where the scale parameter 7 is
taken to be p by default. This prior is unbounded near 0,
which enables sparsity, and it has a Cauchy-like right tail,
which allows DART to revert to BART. Unfortunately,
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FIG. 3.  Estimates of the marginal likelihood of w ; when treating all other w’s as Unif(0, 1), for the synthetic ragweed dataset. Estimated marginal
likelihood is given by solid lines (—), uniform 95% confidence bands are given by short-dashed lines (- - -), and pointwise 95% confidence bands

are given by long-dashed lines (——-).

these two features of the prior can result in poor mixing
of the Markov chain used to estimate the posterior distri-
bution. An alternative to putting a prior on « is to select
o by maximum marginal likelihood, that is, via the em-
pirical Bayes method, for which the methodology of the
present paper is designed. In short, the empirical Bayes

TABLE 1
Comparison of performance of the empirical Bayes and cMCP
methods, on the augmented ragweed data. TP denotes the number of
true positives and FP denotes the number of false positives.
Replications denotes the number of permutations used to construct
the noise variables

Replications =2 Replications = 6

Method TP FP Method TP FP

cMCP 4 1 cMCP 4 6
EB 4 0 EB 4 1

method will enable us to determine whether to use BART
(argmax, m(«) is large) or DART (arg max, m(«) is not
large). In the rest of this section we will explain how
our approach may be implemented (we will present our
MCMC algorithm and discuss how the IWMDE method
of Chen (1994) may be carried out), and then illustrate, on
real and artificial data, how DART implemented through
the empirical Bayes approach acts appropriately in both
sparse and nonsparse situations. (The only hyperparame-
ter we will allow to vary is «, all the others being set to
the default values recommended by Chipman, George and
McCulloch, 2010.)

Our methodology provides an asymptotically exact es-
timate of argmax, m (o) regardless of our choice of prior
on «, so we will take m, = gam(ag, bp). This choice
enables a very convenient data augmentation scheme
that takes advantage of some conjugacy in the prob-
lem. Here, gam(x;a, b) is the density proportional to

x4 Vexp(—xb). We introduce the augmentation variable
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A ~ gam(c, 1), where A is independent of s, and define

Z =2s. Then Z; * gam(a/p. 1), j =1..... p follows
from routine distribution theory (see, e.g., Devroye, 1986,
Chapter 11, Theorem 4.1).

Denote ¥ = (Y1,...,Yn), y = (¥1,...,Ym), and let
0= (s, 02,2 {T,, Ms,t =1,...,T})). We will generate
a Markov chain on (0, @) whose invariant distribution is
the distribution of (6, «) given Y = y. The MTF for doing
so will consist of the composition of four MTFs. The first
updates (o2, {7;, M;,t =1,...,T}) using the Bayesian
backfitting algorithm of Chipman, George and McCul-
loch (2010). The second MTF is the update from Linero
(2018), which updates s. The third MTF draws A from
its conditional distribution given all the other parameters
and Y =y, which is gam(w, 1). The combination of these
MTFs leaves the full-conditional distribution of 6 invari-
ant.

The final MTF updates «. The conditional distribu-
tion of o given 6 and Y =y is given by 74|,y (o) X
T(a/p)~Pexpl(a/p) X5, 1og(Z)}a® " exp(—boa).
This depends only on « and the Z;’s because the only
factors of the joint distribution of (6, «, Y) in which « ap-
pears are 7y, s | o, and 7y | o It is easy to see that this dis-
tribution is also equal to the posterior distribution of « in

the model where o ~ gam(ay, bo) and Z; S gam(o/p, 1)
for j =1,..., p. Unfortunately, there is no analytic ex-
pression for the posterior distribution. Miller (2019) con-
sidered a setup which includes precisely this situation. He
showed that the posterior distribution of « is very well ap-
proximated by gam(A(Z), B(Z)), if A(Z) and B(Z) are
chosen appropriately. Ideally, the parameters A(Z) and
B(Z) are chosen by matching the first and second deriva-
tives of log(py|z) to those of log(gam(A(Z), B(Z))) at
the mean of gam(A(Z), B(Z)). Unfortunately, the mean
of gam(A(Z), B(Z)) is not known, because A(Z) and
B(Z) are not known. So a trial value for the mean is
initially used, leading to an improved estimate, and this
scheme is iterated. Miller (2019) states that convergence
occurs within four iterations in all the situations he has
seen, and that the final approximation is excellent.

Our update of o will be a Metropolis—Hastings step
that uses the Miller (2019) approximation as a proposal
density (as suggested by Miller, 2019). This gives rise
to an MTF for which the invariant density i8S 74| @9,y)-
Because the approximation is excellent, the acceptance
probability is nearly one, and we are essentially sampling
from 7y, y). For estimating 7y | y, Rao-Blackwellization
is not feasible, and we must use the IWMDE method
of Chen (1994). The Miller (2019) approximation pro-
vides a very convenient family {wg, 6 € ®} of densi-
ties on a: we take wy = gam(A(Z), B(Z)). Because the
approximation of my|,y) by gam(A(Z), B(Z)) is very
good, the IWMDE method is essentially as good as Rao—
Blackwellization.

We now illustrate our methodology on real and simu-
lated data. Our goals are limited: recalling that small val-
ues of o encourage sparse models and that as ¢ — o0
DART reverts to BART, we establish that the empirical
Bayes choice of « reflects the sparsity in the regression. A
broad comparison of DART, with o chosen via the empir-
ical Bayes method (DART-EB), to other regression meth-
ods is beyond our scope. We consider three datasets: (1)
the Waste Isolation Pilot Plant (WIPP) data, described in
Storlie and Helton (2008), for which there are m = 300
observations and p = 31 variables; (2) the Triazines data,
available from the UCI Machine Learning repository, and
for which n = 186 and p = 60; and (3) the Blood Brain
Barrier data (BBB), available and described in the caret
package in R, and for which n =208 and p = 134.

We set ag = 1, bg = 1/50. We used our MTF to gener-
ate 120,000 samples of 6, and discarded the first 20,000
as burn-in. We then estimated the marginal likelihood
(up to a constant) using the IWMDE procedure, and
also estimated the posterior density of «, using ﬁ;}vln;de
(see (2.15)). We also formed pointwise and simultaneous
confidence bands for both the marginal likelihood func-
tion and the posterior density. The pointwise bands were
constructed via standard batching methodology, with the
number of batches set using the values recommended by
Jones et al. (2006). The simultaneous confidence bands
were constructed using the procedure described after the
statement of Theorem 3. The Markov chain lengths were
chosen to make the simultaneous confidence bands ac-
ceptably narrow. Plots for all three data sets are given in
Figure 4. The results are as follows.

WIPP 1t is a priori known that the regression for this data
set is sparse; for example, Storlie et al., 2011 report that
only 8 of the 31 variables are informative. The top-right
panel of Figure 4 correctly reflects this sparsity, and in-
dicates that the marginal likelihood of BART vs. DART
with & = 5 is essentially 0.

Triazines Linero (2018) noted that for this dataset, the
performance of DART (with the default prior for o) was
about the same as that of BART, under a criterion of
predictive error. The top-middle panel of Figure 4 con-
firms this: the marginal likelihood of BART is higher
than that of DART for all «.

BBB Linero (2018) noted that for this data set, BART and
DART have similar performance in terms of prediction
error, but that DART used fewer variables; hence DART
obtained a more parsimonious fit to the data with the
same predictive accuracy. The top-left panel of Figure 4
confirms this: the marginal likelihood of DART at its
argmax is only slightly higher than the marginal likeli-
hood of BART.

Next, we show that DART-EB behaves appropriately in
a simple simulation study in which the true underlying
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FIG. 4. Estimates of the marginal likelihood (top) and posterior distribution (bottom) of « for the DART model. Left: the BBB dataset; middle: the
Triazines dataset; right: the WIPP dataset. The estimated marginal likelihood is given by solid lines (—), simultaneous 95% confidence bands are
given by long-dashed lines (- - -), and pointwise 95% confidence bands are given by short-dashed lines (- ).

regression function is fy(x) = 10sin(wx1x2) + 20(x3 —
0.5)2 + 10x4 + 5xs. This function was introduced by
Friedman (1991) and has been used many times in the
context of BART (see, e.g., Chipman, George and Mc-
Culloch, 2010 and Linero and Yang, 2018). Here, fo(x)
depends on only the first five predictors, x¢, x7, ..., X, be-
ing irrelevant noise variables. We consider 200 indepen-

dent replicates of the following experiment. First, we sam-

ii ind
ple X; " Unif([0,1]7),1 = 1, ...,250, and draw ¥; ~"

N (fo(X;),0?). Then, based on (X;,Y)),l=1,...,100,
we fit (i) the usual BART model and (ii)) DART-EB, us-
ing gam(1, 1/20) as the prior on «. For each replica-
tion and each method, we consider the median proba-
bility model, which is defined to be the model that in-
cludes all variables that occur in at least half of the sam-
ples from the posterior distribution (i.e., the variables for
which the marginal inclusion probability is estimated to
be at least 1/2). The integrated root-mean-squared error is
given by rmse = {f(f(x) — fo(x)?dx}'/?, where f(x) is
the Bayes estimate of fo(x). For each method and replica-
tion we approximate this by simple Monte Carlo and we
form RMSE, which is rmse averaged over the 200 repli-
cates. Furthermore, for each method and replication we
compute the precision and recall, defined by precision =
TP /(TP+FP) and recall = TP /(TP +FN), where TP,
FP, and FN denote the number of true positives, false pos-
itives, and false negatives in carrying out variable selec-
tion. The results are given in Table 2 for p € {100, 500}
and o € {1, 5}. We report the F score, which is the har-
monic mean of the precision and recall, averaged over the
replications, as well as RMSE relative to the RMSE of
DART-EB. From the table we see that DART-EB signifi-
cantly outperforms BART. It behaves appropriately as the

number of irrelevant predictors increases. Specifically, for
both the ¢ =1 and o = 5 cases, as p increases, the esti-
mated value of @ remains roughly constant, so that in the
statement s ~ Dir,(a/p, ..., a/p), the shape parameter
of the Dirichlet decreases roughly in proportion with p,
correctly reflecting the increase in sparsity.

We note that importance sampling via serial tempering
will not work here because it is difficult to obtain an an-
alytic expression for the ratio of densities my, /74, due to
the complexity of the parameter 6, and even if such an
expression was available, unless o1 and « are extremely
close, my, and 7y, will be nearly singular because of the
high dimension of 6. VEM is currently not an option ei-
ther, as there are no variational algorithms for BART.

Concluding remarks. In the Bayesian approach to in-
ference one has to select the hyperparameter 4 that spec-
ifies the prior, and this is can be very difficult, especially
when dim(@) is large. In this case there are two options:
one is to put a prior on #, that is, use the fully-Bayes ap-
proach, and the other is to use the empirical Bayes ap-
proach.

The principal objection to the fully-Bayes approach is
that it requires a choice of prior on /. A subjective choice
must be justified, since different priors can give differ-
ent conclusions, particularly in small sample situations.
(Consider, e.g., the Triazines and BBB data sets in Sec-
tion 3.2—see Figure 4. For these data sets, the marginal
likelihood is not very informative, so a proper prior has
a large influence on the posterior.) In some situations, for
example, when the goal is to set public policy or in legal
settings, the objection to subjective choices can be very
strong. On the other hand, there is no good principle for
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TABLE 2
DART simulation results. RMSE is relative to the RMSE of DART-EB so that DART-EB by definition has an RMSE of 1. Avg(Qpy) is the estimate of
argmax,, m(a), averaged over the 200 replications of the simulation study. The Monte Carlo standard error of Avg(Gopy) is less than 0.21

throughout
o=1,p=100 o=1, p=500 o=5,p=100 o=5,p=500
Method RMSE Fi RMSE RMSE Fy RMSE Fy
DART-EB 1.00 1.00 1.00 1.00 1.00 0.903 1.00 0.877
BART 1.75 0.48 2.26 0.76 1.25 0.251 1.29 0.719
Ave(@opt) 1.31 1.27 4.52 5.06
selecting a noninformative, or nonsubjective, prior, and ACKNOWLEDGMENTS

in any case noninformative priors are usually improper,
and these can lead to improper posteriors (e.g., if m(x) is
bounded away from 0 as ¢ — 00, as is the case for the
Triazines and BBB data sets, then any prior giving infinite
mass to the interval [1, o0) necessarily results in an im-
proper posterior).

The empirical Bayes approach avoids the prior speci-
fication issue—this is largely why it was invented. The
principal objection against it is that it uses the data twice,
once to select the prior, and again to calculate the poste-
rior, acting as if the selected prior is the true prior. This
is similar in spirit to what we do in variable selection in
regression: we use the data to select the variables that go
in the regression model, and use the data again to estimate
the regression coefficients, acting as if the selected model
is the true model.

The device discussed in this paper is not a method for
statistical inference. It is a method for numerical imple-
mentation of the empirical Bayes approach. To carry it
out we need the existence of a prior on H for which there
is an MCMC implementation of the fully-Bayes method.
Any prior leads to an asymptotically exact estimate of
argmax;, m(h), our empirical Bayes estimate of 4. So the
prior may be taken to be any convenient choice, for ex-
ample, one that takes advantage of any conjugacy that ex-
ists in the model. If an MCMC implementation of a fully-
Bayes approach based on a prior g has been carried out
then we could of course stop there, if we are satisfied that
7 g reflects our true beliefs. But because of the objections
to a fully-Bayes approach discussed above, we can also
opt to carry out an empirical Bayes analysis, based on our
device. The question of whether in general one should use
empirical Bayes or fully-Bayes methods has been around
for decades and is unlikely to be settled soon. Our pur-
pose here is not to advocate an empirical Bayes over a
fully-Bayes approach at a philosophical level, but rather
to provide a methodology that gives the user the option of
using an empirical Bayes approach.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Scalable Empirical Bayes Inference
and Bayesian Sensitivity Analysis” (DOI: 10.1214/24-
STS936SUPP; .pdf). The supplement provides a descrip-
tion of serial tempering Markov chain Monte Carlo, an ad-
ditional illustration, proofs of Theorems 1-3, and a proof
that the importance weighted marginal density estimator
is an unbiased estimate of the true marginal density.
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