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Abstract

Online Social Networks (OSNs) are increasingly used by

perpetrators to harass their targets via the exchange of un-

safe images. Furthermore, perpetrators have resorted to us-

ing advanced techniques like adversarial attacks to evade

the detection of such images. To defend against this threat,

OSNs use AI/ML-based detectors to flag unsafe images. How-

ever, these detectors cannot explain the regions of unsafe con-

tent for the obfuscation and inspection of such regions, and

are also critically vulnerable to adversarial attacks that fool

their detection. In this work, we first conduct an in-depth in-

vestigation into state-of-the-art explanation techniques and

commercially-available unsafe image detectors and find that

they are severely deficient against adversarial unsafe images.

To address these deficiencies we design a new system that

performs targeted obfuscation of unsafe adversarial images

on social media using reconstruction to remove adversarial

perturbations and counterfactual super region attribution ex-

plainability to explain unsafe image segments, and created a

prototype called UGUARD. We demonstrate the effectiveness

of our system with a large-scale evaluation on three com-

mon unsafe images: Sexually Explicit, Cyberbullying, and

Self-Harm. Our evaluations of UGUARD on more than 64,000

real-world unsafe OSN images, and unsafe images found in

the wild such as sexually explicit celebrity deepfakes and self-

harm images show that it significantly neutralizes the threat

of adversarial unsafe images, by safely obfuscating 91.47%

of such images.

Disclaimer. This manuscript contains harmful image content,

such as sexually explicit, cyberbullying, and self-harm images

that are highly offensive and might disturb the readers.

1 Introduction

OSNs have become an integral part of communication for

many Internet users [3, 16]. But the ability to share content,

especially images on these platforms leaves users vulnerable

∗Corresponding Author

to unsafe content uploaded by bad actors. For example, re-

cent studies suggest that women are increasingly experiencing

image-based sexual abuse online [13]. Alarming incidents of

cyberbullying involving images among teenagers have only

increased [25, 39]. Furthermore, images depicting self-harm

have recently soared on OSNs such as Instagram, and in 2018

alone, teens reportedly posted between 58,000 and 68,000

images with self-harm related hashtags on Instagram [55].

The sharing of such images that depict unsafe content such

as sexually explicit content, images of cyberbullying and ha-

rassment, and images glorifying self-harm has emerged as a

critical problem plaguing OSNs.

Faced with the serious threat posed by unsafe images, OSN

platforms such as Facebook [20] and Snapchat [74] have

deployed Artificial Intelligence/Machine Learning (AI/ML)-

based detectors that can flag down such images. While these

detectors are reportedly effective [53], they currently suffer

from two key issues. First, these detectors lack the ability to

explain the regions that are harmful in unsafe images. Ex-

plaining these regions is critically important to automatically

obfuscate these regions so that OSN users are not exposed to

such content [49, 50]. Moreover, explanation of such regions

is also crucial for the inspection and analysis of these images

by human moderators [20, 72] and law enforcement person-

nel [47]. However, explaining such regions is a major chal-

lenge since most explanation techniques [63,85] are geared to-

wards pinpointing only some important pixels in an unrelated

manner near objects in images. But for explanation of un-

safe regions for their obfuscation and inspection, pinpointing

of meaningful segments (e.g., private body parts in sexually

explicit images) is needed. Thus, new explanation methods

for explaining unsafe images based on meaningful image

segments need to be developed. Second, although defenses

against adversarial attacks against general AI/ML models

have been proposed [31, 52], the threat posed by adversarial

unsafe images, i.e., unsafe images that have been adversarially

perturbed, has not been mitigated. As pointed out in recent

studies [18], studying the adversarial influence of such detec-

tors that operate in a hostile environment is of key importance
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for their real-world use [19, 61]. Adversarial unsafe images

pose an important challenge to existing defense techniques

since adversarial perturbations need to be removed from such

images for further analysis of unsafe content in them. How-

ever, the existing defenses can only detect if images have been

perturbed, but cannot remove such perturbations from images.

New defenses that can remove these perturbations for further

analysis of such images need to be formulated.

In this work, we report the first large-scale study on

the critical real-world threat posed by adversarial unsafe

images. We broadly address the following three research

questions in our work: (1) Can we make an unsafe image

a safer image? (2) Can we identify a specific area in the

image that makes it unsafe? (3) Can a defense mechanism be

established to stop an adversarial attack from misidentifying

the area of an image that makes it unsafe? We first carry

out an investigation into the capability of 3 state-of-the-art

explanation techniques [63,68,85] to explain harmful content

in unsafe images, and find that these techniques are extremely

unsuitable in explaining unsafe images since they imprecisely

provide scattered or sparse pixels as explanations of such

images. We then carry out a large-scale experiment to study

and measure the capability of 5 existing commercially avail-

able offensive image detectors [4, 6±8, 10] against adversarial

unsafe images and find that all these detectors are vulnerable

to adversarial unsafe images (e.g., over 60% of adversarial

unsafe images were able to fully evade detection).We then

propose a novel system called UGUARD to defend against the

threat of adversarial unsafe images. UGUARD uses a novel

algorithm called Counterfactual Super Region Attribution

(CSRA) that explains harmful segments in unsafe images,

by optimizing the attribution of image regions pointed out by

gradient-based methods against image segments in the unsafe

image, while minimizing the area of the explanation region,

and a novel image reconstruction approach called Adaptive

Clustering for robust Semantic Representation (ACSR) that

learns the distributions of both high and low-frequency signals

in an image, and then removes adversarial perturbations from

unsafe images by reconstructing the high-frequency signals in

the image from a learned distribution of high-frequency sig-

nals of unperturbed images. Our evaluation of UGUARD on 3

categories of unsafe images show that it is able to successfully

reconstruct 90.94% of unsafe images, and reduce the risk of

exposure of 96.94% of unsafe images. We run UGUARD on

2 categories of unsafe images that we found in the wild (i.e.,

sexually-explicit celebrity deepfake images on 4chan [11]

and self-harm images from archive of an extremist OSN Best-

Gore [5]) and found that our system neutralized the threat of

91.47% of these adversarial unsafe images found in the wild.

Our work makes the following contributions:

• We investigate the capability of state-of-the-art expla-

nation techniques and commercially-available unsafe

image detectors against adversarial unsafe images to pro-

vide an in-depth understanding of their vulnerabilities

against this threat. Our analysis of 3 explanation tech-

niques and 5 commercial detectors reveals alarming gaps

in these technologies against adversarial unsafe images.

• To defend against the threat of adversarial unsafe images,

we design a new system UGUARD, which uses novel ex-

planation and image reconstruction algorithms to make

adversarial unsafe images safer. Our system has been

publicly released to promote further research into adver-

sarial unsafe images. 1

• We evaluate UGUARD on 3 categories of unsafe im-

ages [43, 76], including a novel dataset of self-harm im-

ages, and also run our system on 2 categories of unsafe

images found in the wild. Our evaluation shows that

UGUARD is highly effective in obfuscating the harmful

regions in unsafe images, reconstructing adversarial un-

safe images, and neutralizing the threat of adversarial

unsafe images found in the wild.

2 Background

Content obfuscation has been widely studied to enhance im-

age privacy in various contexts [78]. Li et al. [50] show that

image obfuscation can be an effective technique to hide the

identities of individuals in a social media setting. One of the

most popular approaches to content obfuscation are blurring

methods such as Gaussian blur [40]. Another common con-

tent obfuscation approach is pixelization, where the original

pixels are replaced by a smaller number of larger pixels [29].

A more intrusive obfuscation technique is masking. Masking

usually involves replacing the image content with a uniformly

colored rectangle [46]. Korshunov et al. [46] show that the

masking technique is the most effective for hiding content, but

the experiments of Li et al. [50] show that masking provides

the least satisfaction out of the eight obfuscation techniques

that they studied. Obfuscation is an established method of

content control in social media settings, which could make

it an important component in a system to protect users from

unsafe content.

The current literature contains many works that detect un-

safe image content, however, most of these works only focus

on one category of unsafe content. The task of detecting sex-

ually explicit images was achieved with high accuracy by Jin

et al. [42] by modeling the problem as a multiple instance

learning problem. The approach by Negri et al. [58] combines

crowdsourced information alongside deep learning models to

detect sexually explicit image content. On the other hand, the

work of Nguyen et al. [59] use masking and CNNs to detect

sexually explicit images. Vishwamitra et al. [76] approached

the task of identifying cyberbullying image content by taking

a multimodal approach that considers the input image as well

as visual factors such as body-pose, facial emotion, object,

gesture, and social factors. The study by Housseinmardi et

1https://github.com/SecureAIAutonomyLab/uGuard
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al. [41] focused on cyberbullying images on Instagram and

their correlation with other social media metadata. The work

of Wang et al. [79] approached the detection of self-harm

content on social media by analyzing image content in con-

junction with the associated text captions and comments. On

the other hand, works like Scherr et al. [66] only use image

content to detect self-harm on social media using an AlexNet

architecture. The approach by Xian et al. [80] aids their detec-

tion of self-harm images with the use of weakly supervised

object detection techniques.

Adversarial attacks [23, 31] have been known to compro-

mise AI/ML models, specifically vision-based models. While

some works explore the vulnerability of existing AI/ML

systems [33, 60], these works focus on general domains such

as object detection. However, the real-world implications

of adversarial attacks on existing safety and security critical

systems is an area that needs more attention. For example,

emerging studies have shown how adversarial attacks [22,45]

crafted to attack vision-based models in autonomous vehicles

are capable of compromising them. The vulnerability of

unsafe image detectors in adversarial settings however, is

a safety-critical topic that has received significantly limited

attention.

There are many techniques that have been developed to de-

fend against adversarial attacks. According to Silva et al. [70],

the four most common approaches towards the goal of de-

fense involve: (1) modifying an AI/ML model, (2) training

the model against adversarial examples, (3) transforming the

input to reduce the impact of the adversarial perturbations,

or (4) adversarial example detection. The first two methods

require those who build the model to be aware of the threats

of adversarial examples during their training or construction

of their model. Examples of modifying the network include

approaches such as Feature Squeezing [81], where the search

space that is available to an adversary is reduced. Adversar-

ial training was a concept introduced by Madry et al. [52]

that has a model trained on adversarial examples to learn

the features of specific attacks. On the other hand, the last

two methods for achieving adversarial robustness use models

that are separate from the classifier to manage adversarial

examples. Input transformation defenses can range from com-

pression techniques such as JPEG compression [28], to image

reconstruction techniques such as Neural Representation Puri-

fier (NRP) [56] and Adaptive Clustering of Robust Semantic

Representations (ACSR) [69] by which an image is to be

reconstructed without adversarial perturbation, though such

methods may be dataset specific. Adversarial example detec-

tion methods [83] detect inputs that have been adversarially

perturbed by finding outliers or by using neural networks that

can distinguish between attacked and unattacked (clean) in-

puts. Although there has been much progress on fundamental

works in adversarial robustness, there has been very little

work on the application of this progress to unsafe social me-

dia content. Furthermore, the majority of work on adversarial

attacks and defenses are evaluated on CIFAR-10, CIFAR-100,

ImageNet, or MNIST datasets, leaving a gap in the current

literature on adversarial robustness on unsafe social media

content.

3 Threat Model and Problem Scope

Threat Model: We consider three types of social media users:

(1) Perpetrators who create, store, or share adversarially un-

safe images, (2) Target users who unwillingly receive or are

depicted in unsafe images (3) and personnel who review un-

safe images (such as OSN content moderators and law en-

forcement agents). The adversaries take advantage of open

source methods of adversarially perturbing unsafe images

to evade the automated unsafe content detectors. Our paper

considers three types of unsafe content: sexually explicit, cy-

berbullying, and self-harm. We focus on these three image cat-

egories in this work based on the following reasons: (1) These

categories of images are prohibited by popular social media

platforms [75]. Social media platform guidelines are designed

to maintain a safe and positive user experience, prevent harm,

and comply with legal requirements [34]. (2) These types

of images are of critical concerns to social media users per-

taining to their safety and the large amount of traffic in these

categories, informed to us by representatives from federal

agencies we are working with. These content categories have

been identified by federal agencies through various external

reports such as [57, 67] and through correspondences with a

member of a federal agency (who is also a collaborator in this

work). (3) The availability of such datasets in existing litera-

ture. These image categories can be unsafe, yet are accessible

for study. On the other hand, CSAM data is not made avail-

able for many ethical and legal reasons [65]. We only consider

images, and not any text, user information or metadata.

In our system, we make the following assumptions: (1)

the types of adversarial attacks are known to our system,

and (2) the categories of unsafe images are known to our

system. UGUARD is applicable to unsafe images where specific

regions are the causes of the image to be unsafe, e.g., the

genitalia regions in sexually explicit images. UGUARD may

not be applicable to unsafe images that are not region-based,

such as hateful memes, where the reason for the image to be

unsafe is a combination of the image content and text overlaid

on the image, or screenshots of hateful text.

4 Investigating the Threat of Unsafe Images

4.1 Investigating Explanation Techniques for

Obfuscating Unsafe Images

In social media content moderation, human moderators are

a core component of the image review process and the re-

peated exposure of harmful content to moderators has been

acknowledged by courts to have caused harm [2]. Further-
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more, in our discussions with law enforcement personnel,

we learned that investigators who review images are often

exposed to extremely unsafe image content during investiga-

tions. In both of these cases, there is a need to obfuscate the

harmful part of the image to protect the image reviewer, while

also maximizing the safe parts of the image that could contain

vital information that is crucial evidence in the investigation

process (e.g. identifiers of the people in the image, people’s

location, and age estimation in child abuse imagery). For ex-

ample, in CSAM images, age estimation does not necessarily

require the visibility of the unsafe image portions since age es-

timation techniques can use facial features, body proportions,

alongside other traits to estimate age [65]. For these tasks,

the targeted obfuscation of the unsafe regions of an image

limit the harm faced by these personnel, while preserving the

important contextual information in the safe parts to allow

these personnel to get the information that they require from

the image is needed. AI explainability has been previously

used to improve the effectiveness of real-world safety-critical

applications [14, 15] in multiple innovative ways. In the area

of security of image sharing in OSNs, existing works [49, 50]

have shown how region-based obfuscation of sensitive im-

ages can significantly mitigate the harmful effects caused by

such content. Since OSNs use AI models [20,74] to moderate

unsafe images, we wanted to explore how explanations from

these models can be used to obfuscate unsafe image content,

since these models make predictions based on those regions.

Our goal was to investigate whether existing AI explanation

approaches can be used to obfuscate only the unsafe regions

in images, while preserving the rest of the information in

those images. We conducted a preliminary experiment, by

considering state-of-the-art image explainability methods and

unsafe images consisting of sexually explicit images [43], cy-

berbullying images [76], and self-harm images which we col-

lected (Further details about datasets can be found in Section

5). We used three explainability methods in our experiment:

Grad-CAM [68], since it is representative of the explainability

methods that rely on class activation maps to generate expla-

nations, Integrated Gradients [73] since it is representative

of explanation methods that output sparse pixels as explana-

tions, and LIME [63] since it is representative of perturbation-

based image explainability methods. We trained three binary

ResNet-50 [38] classifiers to distinguish between safe and

unsafe images from these three unsafe image classes. Then,

we used the three explanation techniques to automatically

obfuscate the unsafe regions in the cyberbullying images,

pointed out by the generated explanations. For Grad-CAM

and Integrated Gradients, we considered the top 20% of pixels

identified for contributing to the model’s decision. For LIME,

we considered the regions identified as contributing to the

model’s decision. To visualize the ability of Grad-CAM, Inte-

grated Gradients, and LIME to localize unsafe content in the

image, we white-out the pixels or regions identified by these

explainability methods. The results of obfuscating unsafe re-

Figure 1: Samples of an unsafe image obfuscated according

to the regions pointed-out by three explainability methods.

gions based on the three explanation techniques on a randomly

selected cyberbullying image is depicted in Figure 1.

We found that none of the existing explanation techniques

were suitable for automatically obfuscating the harmful re-

gions in unsafe images. Grad-CAM imprecisely obfuscated

an excessive region of the image besides the unsafe regions,

resulting in lost information that is originally safe to view.

LIME generated an explanation that resulted in excessive ob-

fuscation consisting of scattered, unrelated pixels. Integrated

Gradients on the other hand produced sparse pixel level ex-

planations, which were unsuitable for targeted obfuscation.

Furthermore, we conducted a quantitative analysis of these

methods, presented in Table 1 to study the percentage of pre-

dictions changed and the percentage of the image that was

obfuscated. From Table 1, Integrated Gradients was found to

be significantly limited in masking the unsafe content (i.e.,

low % of pred. changed), LIME obfuscated all of the unsafe

content, but also obfuscated the safe parts of the image (i.e.,

high % of image obfuscated), and Grad-CAM imprecisely ob-

fuscated the harmful parts of the image (i.e., missing multiple

unsafe regions in sexually explicit images).

Our preliminary experiment indicates that state-of-the-art

explanation methods are not suitable for targeted obfuscation

of unsafe images, and that new explanation methods that are

specific for explaining unsafe images that can find optimal

unsafe regions to obfuscate while preserving as much safe

information as possible are needed.

4.2 Evading State-of-the-Art Unsafe Image De-

tection

Recently, OSNs and other online platforms have increasingly

deployed AI/ML-based automatic detectors to flag unsafe

content. These detectors are comprised of advanced deep-

learning based models that have demonstrated effectiveness

in detecting such content. But at the same time, these models

can also be compromised using adversarial examples [31, 52].

Grad-CAM Integrated Gradients LIME

% of

Pred.

Changed

% of

Image

Obf.

% of

Pred.

Changed

% of

Image

Obf.

% of

Pred.

Changed

% of

Image

Obf.

Sexually Explicit 43 20 32 20 100 65.21

Cyberbullying 79 20 29 20 100 63.84

Self-Harm 65 20 41 20 100 71.92

Table 1: Experiment showing the unsuitability of different

types of explanation methods for content obfuscation.
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Attack
State-of-the-Art Unsafe Image Detectors

Clarifai

(%)

Yahoo

Open

NSFW

(%)

Amazon

Rekog-

nition

(%)

MS

Azure

(%)

Google

Safe-

Search

(%)

No Attack 80 84 90 96 90

Square 22 6 50 68 76

Square+GB 4 4 74 94 76

AutoAttack 22 56 84 90 88

Table 2: Measuring the capabilities of state-of-the-art unsafe

image detectors against adversarial unsafe images.

For example, recent works [22, 45] have demonstrated how

vision-based models installed on self-driving cars can be

compromised with adversarial attacks, rendering them un-

safe. However, the real-world safety and robustness of unsafe

content detectors against such adversarial examples is not

a well researched area. Other works [18, 19], have pointed

out how AI-based systems in security-critical applications

must defend against adversaries that specifically target the

system and will search for and exploit weaknesses for evasion

or manipulation. Moreover, removal of such adversarial per-

turbations from unsafe images is even more critical, since the

presence of such adversarial perturbations would render any

further analysis (e.g., obfuscation of harmful regions) useless.

To understand the real-world robustness of existing unsafe im-

age detectors in-depth, we conducted an experiment regarding

state-of-the-art, commercially-available detectors by measur-

ing their capability in detecting adversarial unsafe images.

Our main objective was to find out whether these existing

detectors can be compromised if adversarial perturbations are

used to hide unsafe images by malicious users.

In our study, we selected 5 state-of-the-art existing detec-

tors that have the capability to detect unsafe images, namely,

Clarifai [8], Google SafeSearch [6], Amazon Rekognition [4],

Microsoft Azure [7], and Yahoo Open NSFW [10]. Due to

the ubiquity and effectiveness of these detectors, they can be

considered as representative of the technology used to defend

against unsafe content in existing online platforms. In our

experiment, we considered a dataset containing sexually ex-

plicit images [43] and used the class labeled "porn" as unsafe

images, since all the existing detectors had the capability to

detect such images. The outputs given by these existing de-

tectors were varied. The Clarifai, Yahoo Open NSFW, and

Amazon Rekognition systems gave a probability score for

the unsafe images as outputs. On the other hand, the out-

put of Microsoft Azure was either a true or false label for

such images. Google SafeSearch provided even more labels

for unsafe images, with the labels being ªunknownº, ªvery

unlikelyº, ªunlikelyº, ªpossibleº, ªlikelyº, and ªvery likelyº.

Based on these varying methods of measuring whether or

not an image is unsafe, we used the following thresholds to

determine if an unsafe image is detected. For Clarifai we used

a probability score greater than 0.8, for Yahoo Open NSFW

and Amazon Rekognition we used a probability score greater

than 0.9. For Microsoft Azure we simply considered the true

label, and for Google SafeSearch, we considered ªlikelyº and

ªvery likelyº labels as unsafe image. The details about how

we chose the thresholds for Clarifai, Yahoo Open NSFW, and

Amazaon Rekognition can be found in Appendix A.

The Clarifai, Amazon Rekognition, MS Azure, and

Google Cloud Vision model weights and architectures were

not publicly available, and only the model outputs were

accessible to us. The Yahoo NSFW model was a publicly

available, open-source model whose weights were accessible.

Because many types of adversarial attacks are gradient-based

attacks that require the knowledge of the inner workings of

the target models, a substitute model, known as a surrogate

model was used to emulate the target model [77]. Ideally,

the surrogate model should be as close to the target model

as possible to generate the most effective attacks. For the

non-publicly available detectors, we chose the ResNet-18

model pre-trained on ImageNet as the surrogate model [62],

since these models have been shown in the existing literature

to be close to the computer vision models employed by

public APIs [26]. Similarly, in order to determine how

effective the same attacks were on the open-source model,

the exact same surrogate model was used to attack the Yahoo

Open NSFW model. We used three adversarial attacks to

generate adversarial unsafe images on the surrogate model,

Square Attack [17], AutoAttack [27], and an ensemble

attack consisting of Square Attack and a Gaussian blur. We

chose the Square and Square-GB attacks because these are

popular black box attacks mentioned in existing literature

on adversarial attacks [17] and we chose AutoAttack since

this is a recent, state-of-the-art white box attack [27].

We randomly sampled a set of 50 strongly sexually explicit

images to craft adversarial images using the three attacks each,

after which they were tested against various existing detectors

provided through their public APIs, as well as the open-source

model. The results of these experiments are shown in Table 2.

Each column of Table 2 shows different existing detector

attacked, while each row of Table 2 shows the different at-

tacks launched against these detectors. The numbers shown

in Table 2 represent the percentage of the submitted images

that were classified correctly as sexually explicit. After ex-

perimenting with various parameters of adversarial attacks as

well as different attack types (the parametric details of these

attacks are provided in Appendix B), we found that Square

Attack and AutoAttack were particularly effective at fooling

unsafe image classifiers with minimal visual perturbations for

human observers. To ensure that the images used in this ex-

periment were not too heavily perturbed, an experiment was

conducted in which each image was examined to verify that

it was identifiable as sexually explicit by four of the authors

of this work. In this experiment, images were independently

reviewed by four authors and then used majority voting to

determine if each image is sexually explicit. All authors were
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in unanimous agreement on all images that the images were

still sexually explicit despite the presence of adversarial noise.

This indicates that the images were visually identifiable as

sexually explicit even after perturbations.

From Table 2, we can see that the state-of-the-art unsafe

image detectors are indeed successful at detecting non-

perturbed sexually explicit images (Table 2, ªNo Attackº),

with an average detection rate higher than 90%. However,

they are severely vulnerable to adversarial unsafe images

(Table 2, ªSquareº, ªSquare + GBº and ªAutoAttackº).

Based on our experiment, adversarial unsafe images crafted

using just off-the-shelf adversarial attack algorithms can

quite severely compromise existing systems. For instance,

the AutoAttack was quite effective at fooling the Amazon

Rekognition, MS Azure and Google Safe Search API, with

these detectors seeing a 6% or less drop in performance when

compared to non-attacked images. Furthermore, Google Safe

Search showed a 14% drop in detection accuracy on Square

attacked adversarial unsafe images, while the Yahoo Open

NSFW model showed a 78% drop in detection accuracy. Our

experiment indicates that there is a large security gap between

adversarial unsafe images and existing unsafe image detectors,

and that this must be immediately addressed. We hypothesize

that most adversarial perturbations are located in the high-

frequency component of images, however, few works exist

that remove the perturbation from this perspective. It is critical

that we develop techniques to clean the adversarial pertur-

bation in the image for explainability algorithms to correctly

identify the unsafe features in an adversarial unsafe image.

5 Data

In our work, we considered three unsafe image datasets 2

to demonstrate our system: A sexually explicit images

dataset [43], a cyberbullying images dataset [76], and a novel

self-harm images dataset.

5.1 Sexually Explicit Images

We sampled a subset of the publicly available images

dataset [43] for sexually explicit images. This dataset contains

334,327 images from five classes including ªneutralº, ªdraw-

ingº, ªhentaiº, ªpornº, and ªsexyº. We considered ªneutralº

and ªsexyº classes into a single class of non-sexually explicit

(i.e., safe) images, and considered the ªpornº class for the

sexually explicit (i.e. unsafe) images. We considered only the

ªpornº images for the sexually explicit class of images because

they depicted direct sexually explicit content (such as nudity),

and ªneutralº and ªsexyº images as non-sexually explicit be-

cause they did not depict any direct sexually explicit content.
2We considered three datasets in our work to represent the effectiveness

of our system. However, our system is also compatible with other unsafe

image categories.

5.2 Cyberbullying Images

To analyze the performance of our system on cyberbullying

images, we used the dataset introduced by [76], which con-

tains nearly 20,000 images, and are divided into cyberbullying

and non-cyberbullying categories. Their cyberbullying dataset

was collected from multiple search engines such as Google,

Bing, and Baidu, as well as from OSNs such as Instagram,

Flickr, and Facebook. From this dataset we perform our ex-

periments on the 5224 cyberbullying samples and 14,628

non-cyberbullying samples. From our observations, the cyber-

bullying images included content such as rude hand gestures,

threatening objects and weapons, or racist or hateful symbols.

5.3 Self-harm Images

To demonstrate the capability of our system on the emergent

societal issue of self-harm image sharing on OSNs [80], we

collected a novel dataset of self-harm images. Our data collec-

tion task was approved by our IRB. We collected our dataset

by scraping images associated with specific self-harm related

tags on Tumblr [9], a popular OSN. To ensure comprehensive

coverage, we adopted an incremental approach for collecting

tags from Tumblr. Initially, we started the search with the

"self harm" tag and then expanded our search by including

related tags from the self-harm images that were collected.

We iteratively repeated this process until our expanded tag

list no longer found new self-harm images. We used the fol-

lowing tags to collect our dataset: selfharm, selfh@rm, self

h@rm, selfmutilation, self harm, cvtting, selfhate, s3lfharm,

self bruising, selfbruising, tw bruising, twcvts, selfharn, tw

cvtting, tws3lfharmmcvtting, made of styrofoam, s3lfharmm,

tw self hate, tw s3lf harm, slef harm, self mutalition, s3lfh4rm,

cvtt1ng, sh, tw sh, self destruction, tw, selfhate, and shtumblr.

After sufficient number of images were collected, all im-

ages were tested through Google Safe-Search API which has

detection capabilities of medical images and violent images.

The API returns ªunknownº, ªvery_unlikelyº, ªunlikelyº,

ªpossibleº, ªlikelyº, or ªvery_likelyº tag depending on likeli-

hood of image fitting into the classification, and any image

that returns ªpossibleº, ªlikelyº, or ªvery_likelyº response for

ªmedicalº or ªviolenceº tag were collected. Subsequently, the

collected images were manually annotated as self-harm and

not-self-harm image by visual inspection. Images that contain

self-cutting, self-bruising, or anorexia and eating disorder and

depicted or promoted self-harm in these ways were annotated

as self-harm, while others were annotated as not-self-harm.

After our annotation process, we were left with a dataset of

2,100 self-harm images, which we termed TumblrSelfHarm

dataset. Based on a qualitative analysis of our dataset, we

observed that the images depicted cutting, bruising, burning,

eating disorder behaviors, aftermath of self-harm events

such as bloodied bandages, sinks and razors, drawings of

self-harm, and images which may be considered to encourage
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self-harm and suicide.

6 Approach

6.1 UGUARD Overview

We present the system as data flows through it. The objective

of designing our system is a targeted obfuscation of adver-

sarial unsafe images with minimum information loss. This

relies on two elements: reconstructing the image so that it

is free from adversarial perturbation, and then the use of ex-

plainability to target the region to obfuscate. The overview

of our system, UGUARD is presented in Figure 2. Our system,

can be considered in two steps: (1) Building of the adver-

sarially trained robust classifier, and building of the image

reconstruction component, and (2) Deployment of the system.

To begin building the system, UGUARD first takes in datasets

of unsafe content. Based on each dataset, our system trains a

robust unsafe image classifier model and builds the image re-

construction system. After building these two components for

each dataset, the system is ready to deploy. In the deployment

stage, UGUARD takes in an image which may be adversarially

perturbed. Several reconstructed versions of this image are

created based on the reconstruction system for each dataset.

These reconstructed images are then sent to their respective

classifiers. The input image is approved if the reconstructed

image is not detected as unsafe. If the reconstructed image is

detected as an unsafe image, the image is obfuscated based

on the explainability based obfuscation subsystem. If unsafe

content is no longer detected by the robust unsafe image de-

tection system after the obfuscation, the obfuscated image is

approved. Supposing that the obfuscated image still contains

unsafe content, the image will not be approved.

6.2 Building of the System

The upcoming subsections describes first the building of the

robust classifier, second, the construction of the image recon-

struction component, and finally the explainability method

for targeted content obfuscation.

6.2.1 Robust Classifier to Generate Semantic Features

Deep learning methods, more specifically classification mod-

els trained in a supervised fashion aim to generate a model

f ∈ F , such that:

E(x,y)∼P [l( f (x),y)]≤ E(x,y)∼P [l( f ′(x),y)] ∀ f ′ ∈ F ,

in which the loss function, l( f (x),y), calculates the distance

between the predictions of f (x) and what the true label y

indicates. A priori the data distribution P is not know, and

we use a training dataset Dtr in an optimization framework to

generate the best possible estimator f for the labels observed

in the data. Estimating f from the training dataset is known

as empirical risk minimization (ERM), defined as:

min
θ

∑
i∈Dtr

l( f (xi;θ),yi)+λρ(θ), (1)

in which θ defines the model parameters and ρ(θ) is a reg-

ularization function to constrain the changes of the model

parameters at each learning step. We refer to Equation 1 as the

baseline model training. We train a Residual Network (RN)

for the classification task. We refer to the baseline model fbsl ,

a model trained without any adversarial training or robustness

technique (except standard augmentation techniques), such

as: Batch Normalization, Dropout, and Parameter Regular-

ization. Any baseline model can be used for the purposes

of reconstruction, but it is required that fbsl accurately mod-

els the distribution of Dtr, and consequently achieves high

evaluation accuracy on Dte. The high accuracy in the test set,

implicates in a good class separation in the feature space, and

consequently very distinct distributions between the classes.

To train the our robust model, we initially construct a set

R = {R(xi),xi,yi} of the latent representations extracted from

dataset Dtr by model fbsl , and its originating images-labels

pair. The latent representations R(xi) correspond to the set

of features the model extracts just after all the convolutional

layers, and just before the set of fully connected layers. We

use fθ(.) to generate the set R that contains the latent repre-

sentations for all samples of all classes in Dtr.

We generate one set of latent representations Ψ j for each

class. For each Ψ j we obtain the mean µΨ j
∈ R

k as the

average of each individual component of each R(xi) ∈ Ψ j,

and the covariance:

σΨ j
= E[(Ψ j−E[Ψ j])(Ψ j−E[Ψ j])

T ] (2)

where T is the transpose operator.

Each Ψ j represents a set of semantic features of each class.

These semantic features are translated from the originating

images xi. These training images are the base to create fea-

ture dictionaries, which are the base of our reconstruction

algorithm. We generate reconstruction dictionaries using Con-

volutional Dictionary Learning (CDL). Specifically, given a

set of images xi ∈Ψ j composed of S training images {xt}
S
s=1,

CDL is implemented through minimizing:

min
{dm},{rs,m}

1

2

S

∑
1

∥

∥

∥

∥

∥

M

∑
1

dm ∗ rs,m− xs

∥

∥

∥

∥

∥

2

2

+λ
S

∑
1

M

∑
1

∥rs,m∥1

s.t. ∥dm∥2 ≤ 1,∀m ∈ 1, ...,M

(3)

where dm are the M atoms that comprise the dictionary Ω,

and rs,m are a set of coefficient maps, defined as:

min
{rm}

1

2

∥

∥

∥

∥

∥

M

∑
1

dm ∗ rm− x

∥

∥

∥

∥

∥

2

2

+λ
M

∑
1

∥rm∥1
(4)
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Figure 2: Overview of UGUARD.

CDL is a computationally expensive algorithm that does not

scale well to larger images and datasets. We use the optimized

version proposed by [51], to minimize the convergence time

and ADMM [21] to solve the minimization problem. The

images, class distributions, and class reconstruction dictio-

naries generated for all classes are utilized for the semantic

reconstruction dictionary, Φ = {D,Ψ,(µΨ,σΨ)}.

The model is capable of generalizing to any input which

falls within the same distribution as the train and test set. But

such assumption does not account for adversarial inputs. In

fact, (Equation 1) is highly vulnerable to small perturbations,

crafted by adversarial algorithms. In a general formulation,

these perturbations are generated such that:

max
∥δ∥2 ≤ ε

l( f (xi +δ;θ),yi). (5)

By introducing the perturbation δ in Dte, we shift the actual

test distribution to the tail of the training distribution, effecting

the performance of f (x) when evaluated in Dte. Curently, the

most used technique to deal with these adversarial attacks is

adversarial training, defined as:

min
θ

E(x,y)∼D max
δ∈∆

l( f (x+δ),y)+λρ(θ), (6)

Equation 6 is the standard adversarial training and addresses

the immediate issue of adversarial samples crafted to attack

f (.). While the adversarial attack strategy of a min-max opti-

mization shown in Equation 6 has shown very successful re-

sults, it fails in generalizing the method to unseen attacks [70].

This occurs because the network does not learn to extract

robust latent representations, but rather learns to change the

FC layers to classify latent representations extracted from ad-

versarial and clean samples in the same class. To address this

issue we change the standard adversarial training equation,

adding an extra constraint in the objective function:

min
θ

E(x,y)∼D max
δ≤ε

l( f (x′),y)+λ∥θ)∥2
2+

α(R(x′)−µ)σ−1(R(x′)−µ))
1
2

(7)

where the last term, the Mahalanobis Distance (MD), mini-

mizes the distance between the extracted adversarial latent

representations R(x′) and the cluster distribution, following

the association in Φ. Minimizing the distance between the

currently extracted features and the clean model feature dis-

tribution, allows the model to learn to extract meaningful

features, rather than learning the specific adversarial attack

pattern present in the training set.The robust semantic model

is defined frob, and latent representations extracted from input,

xi, with frob as Rrob(x).

6.2.2 Image Reconstruction

We assume all input to our system is potentially adversarial.

Previous works have shown that high-frequency signals play

an important role in the generation of adversarial images [86].

Adversarial images undergo a transformation such that the

feature activations are similar to those of the target. As a con-

sequence based on the class defined by f (x′i), we select the

semantic reconstruction dictionary which best reconstructs

the high-frequency components of x′i. We use the dictionary

which the feature distribution minimizes the MD(Φ,Rrob(x
′
i)).

In parallel, we decompose x′i into a high-frequency compo-

nent, x′high, and a low frequency component, x′low, using the

Tikhonov filter [36]:

arg min
xlow

1

2
∥xlow− x∥2

2 +
λ

2 ∑
j

∥

∥G jxlow

∥

∥

2

2

where G j is an operator that computes the discrete gradient

along image axis j. Therefore, x′high = x′− x′low.

The reconstruction of x′high follows the standard sparse

coding representation:

xrec
high ≈ Dr = d1r1 + · · ·+dMrM,

in which D is the dictionary learned only from patches of

clean images. This leads to a high-frequency component con-

stituted of only class specific features learned from the clean

images, and free of manipulation.
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Algorithm 1 CSRA Algorithm

1: NumRegions = m

2: Compactness = n

3: NumROI = k

4: Input: Model, Image

5: AttrMap =CAMAttrScores(Model, Image)
6: Seg = SLIC(Image,NumRegions,Compactness)
7: AvgAttrs = {}
8: for S ∈ Seg = {S1,S2, ...,SNumRegions} do

9: NumPixInSeg = |Si|

10: AvgRegionAttr =
∑

NumPixInSeg
n=1 Sin∈AttrMap

NumPixInSeg

11: AvgAttrs.append(AvgRegionAttr)
12: end for

13: TopAttrs =
argmaxAvgAttrs′⊂AvgAttrs,|AvgAttrs′|=NumROI

∑a∈AvgAttrs′ a

14: Powerset = P (TopAttrs)
15: ImgVers = MaskAttrs(Image,Powerset)
16: Scores = {}
17: for i ∈ ImgVers = {i1, i2, ..., i2NumROI} do

18: Score = So f tmax(Model, i)+ (NumMaskedPixels)
(NumO f Pixels)

19: if ModelPred is Class of Interest then

20: Score += 1

21: end if

22: end for

23: TopImageVersion← LowestScoreImgInImgVers

24: Output: TopImageVersion

The final image is obtained by adding the low and

high-frequency components of the image:

xrec = xlow + xrec
high (8)

6.2.3 Explainability-based Content Obfuscation

We define two objectives for the obfuscation of unsafe image

content. The first objective is to obfuscate the unsafe content

in the unsafe image such that is no longer unsafe. The second

objective is to minimize the region that is obfuscated to

just the unsafe region. We found that existing explainability

techniques faced challenges to meet both of these objectives.

The explainability-based obfuscation method which we

call Counterfactual Super Region Attribution (CSRA) that

we used is detailed in Algorithm 1. Our method combines

information from grayscale attribution maps output by

Grad-CAM methods with features generated by SLIC

superpixel segmentation [12].

SLIC superpixel segmentation is a K-means clustering

based method in the 5-D space of RGB color and x,y pixel

coordinates [12], and is an effective superpixel segmentation

method. SLIC requires two parameters: (1) number of

superpixel regions, and (2) compactness. Compactness

defines the clustering’s focus between color information

and pixel location for the generation of the superpixels,

where higher compactness leads the clustering to have more

emphasis on pixel location. High compactness values will

lead to more box-like superpixels.

Unlike other perturbation-based methods, we leverage

gradient-based attribution maps like Grad-CAM [68] to

lead an informed approach to sampling combinations of

superpixel regions. We hypothesize that by limiting ourselves

to just the regions of the image that the attribution map deems

important, we can avoid sampling regions that are unlikely to

have any contribution to the model decision. CSRA takes in

an integer value of NumROI, which is the number of regions

of interest. We only consider superpixels that are in the

top NumROI of highest average contribution based on the

attribution map. Next, we create a Power Set of those high

attribution superpixels that were identified. Next, we take

that Power Set of superpixels and use them to create different

versions of the input image by replacing the superpixels

in the set with black pixels. From there, we evaluate each

version of the image based on the softmax score output by

the model on each version of the image, and the proportion

of the image that has been replaced by black pixels. Based on

this evaluation, we output the version of the image that has

the lowest score according to a score function that penalizes

versions of the image that are detected as unsafe, and that

penalizes obfuscation.

Compared to other perturbation-based methods, our CSRA

approach allows us to perform a more thorough analysis of

which superpixels are truly important to the model’s decision.

Because of this, we are able to identify the regions of the im-

age that cause the unsafe image to be unsafe, and then obfus-

cate them, while minimizing the total area that is obfuscated.

By just limiting to the NumROI, we may not be able to

identify all of the unsafe regions in the image. To manage

cases where the initial obfuscation of the regions identified

still results in an unsafe image, the CSRA algorithm has

an additional safeguarding method. We call this additional

safeguarding method Limited Region Dilation. With Limited

Region Dilation we iteratively expand the regions identified

by CSRA by 5 pixels until either unsafe content is no longer

detected or until some percentage threshold of the image has

been obfuscated.

7 System Implementation and Evaluation

7.1 Implementation

For the standard classifier that we compare our UGUARD’s un-

safe image detection capabilities to, we trained a ResNet-50

classifier using Pytorch [62] libraries using pre-trained model

weights trained from the ImageNet dataset [30]. The sexually

explicit, cyberbullying and self-harm datasets were each

divided into train, validation, and test sets, with 80% being

allocated to the train set, and 10% each allocated to validation
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Figure 3: Examples from cyberbullying and self-harm content categories showing the steps in the CSRA algorithm.

and test sets. We trained our models for 50 epochs and saved

the trained weights of the models that have the highest classi-

fication accuracy on the validation set. All of our evaluations

are performed on the test set. We take the same steps and

use the same model architecture to train our robust models,

but adversarially perturb a proportion of the datasets before

training. For the implementation of the CSRA explainability

method, we use the Pytorch Grad-CAM library by [37] to

get the Grad-CAM maps, and we use the scikit-image library

to generate features using SLIC superpixel segmentation.

7.2 Evaluation

We summarize the evaluation of our system as follows: (i)

Evaluation of the effectiveness of UGUARD’s reconstruction

and robust model components on adversarial unsafe images,

showcasing UGUARD’s resistance to such images (Section 7.3).

(ii) Effectiveness of UGUARD’s explainability-based content

obfuscation component (CSRA), showing it’s ability to make

unsafe images safe through content obfuscation, while mini-

mizing the safe information lost (Section 7.4). (iii) A study

that evaluates the number of regions considered for obfus-

cation by the CSRA algorithm to make unsafe images safe

for different datasets (Section 7.4). (iv) An end-to-end eval-

uation of the UGUARD system on how it handles adversarial

unsafe content versus state-of-the-art systems. We show detec-

tion accuracy, the success of making unsafe images safe, and

the amount of the image that is obfuscated using our system

(Section 7.5). (vi) A user experiment with online participants

indicating that OSN users prefer the regional obfuscation ap-

proach employed by UGUARD to the full obfuscation approach

used by many OSNs (Appendix C).

7.3 Effectiveness of Image Reconstruction in

UGUARD Against Adversarial Unsafe Images

We evaluate the effectiveness of our image reconstruction and

robust model component on two of the attacks that the ro-

bust model was trained against and on two attacks the model

was not trained against to demonstrate robustness against un-

known attackers. In the dataset to train the robust model, we

include the PGD [52], BIM [48] and Square attack [17] at-

tacks, implemented with the Torchattacks [44] library. For

PGD we set the following parameters: ε = 8/255, α = 2/255,

and steps = 10. For BIM, we set ε = 4/255, α = 1/255, and

steps = 10. Finally, for Square attack, we set n_queries = 500,

n_restarts = 1, and ε = 16/255. For the training of the robust

model, we evenly divide the training data into four parts to

include equal representations of unattacked data, PGD, BIM

and Square attacked data. To represent attacks unknown to

our robust model, we test against images perturbed by AutoAt-

tack [27] and DeepFool [54]. The results of the robustness

experiments are shown in Table 3. For unattacked images, we

see that for sexually explicit and self-harm images there is a

slight drop in accuracy when comparing the baseline model

to our robust system. A small drop in classification accuracy

on unattacked data is a common observation when comparing

non-robust versus robust models [82]. However, this drop

in accuracy is more than made up for when comparing the

two models on attacked data. For instance, the BIM attack on

the sexually explicit baseline model showed an accuracy of

25.17% whereas the UGUARD’s sexually explicit detector had

an accuracy of 88.74% on BIM attacked data. Across the three

unsafe image detectors in the UGUARD system, we see very

small drops in classification accuracy from unattacked data to

these attacked data, with an average drop in accuracy of just

1.32%. Our experiments show that AutoAttack and DeepFool

were particularly strong attacks against the baseline model.

However, despite our model having not been trained against

these attacks, we show that UGUARD has minimal drops in

accuracy. Additionally, we test on images perturbed by BIM

and DeepFool to show that UGUARD can be robust against

a combination of attacks. These experiments show that the

robust model in conjunction with the image reconstruction

processing step demonstrates robustness against multiple seen
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Known Attacks Unknown Attacks

No Attack BIM Square AutoAttack DeepFool BIM+DF

Baseline - - - - - -

ResNet-50 - - - - - -

Sexually Explicit 93.33 25.17 63.58 0 12.58 59.60

Cyberbullying 91.14 48.34 56.85 1.87 5.23 69.54

Self-Harm 94.70 53.64 53.64 5.23 5.23 72.18

UGUARD - - - - - -

Sexually Explicit 90.06 88.74 88.07 84.11 88.07 89.40

Cyberbullying 96.02 94.70 95.36 90.73 92.71 93.38

Self-Harm 90.73 88.74 90.07 86.75 90.73 90.07

Table 3: Comparison of baseline classifiers vs. UGUARD.

and unseen attacks. In Table 3 we compare the accuracy of

each unsafe image category for unattacked data, BIM, Square,

AutoAttack, and DeepFool attacked images between a stan-

dard ResNet-50 classifier, and the UGUARD system. It can be

seen that the standard ResNet-50 models show significant per-

formance drops against these attacks, whereas the UGUARD

system sees minimal drops in accuracy on these attacks. This

indicates that UGUARD is suitable for detecting adversarial

unsafe images.

While our experiments show good robustness against un-

seen attacks, due to the ever evolving landscape of attacks,

continued robustness against unseen attacks is uncertain.

Once a new attack is identified to be successful in fooling our

system, our system can be easily updated. It only requires that

we include the new attack in the dataset of attacked images

that we train the robust model on. By utilizing the previous

robust model’s weights, the model can be trained quickly and

made robust against the new attack.

7.4 Effectiveness and Impact of CSRA Explain-

ability on Targeted Obfuscation

Effectiveness. We conduct a perturbation analysis [84] to

evaluate the effectiveness of our CSRA algorithm for unsafe

content obfuscation based on explainability. The perturbation

analysis tests how the model predictions change when perturb-

ing specific regions that are identified by the explainability

method. This tests the ability of the explainability method to

localize the features of interest. We follow the strategy of Fu

et al., who masks the pixels corresponding to the top 20% of

the values in the attribution map in order to evaluate CAM

based methods [35].

We evaluate our method, CSRA, against multiple Grad-

CAM based methods (Grad-CAM [68], XGrad-CAM [35],

Grad-CAM ++ [24], FullGrad [71]) and LIME [63], a per-

turbation based method. Our evaluation compares the image

classifier explanation methods on their ability to change the

classifier decision, and on the proportion of the image that

was masked. In order to evaluate the ability to change the

classifier decision, we take the softmax probability output by

the model and use the class with the highest probability to

be the model’s decision. To test CSRA’s ability to change

the classifier’s decision, we simply take the image output by

CSRA and run it through the classifier. For our experiments

on CSRA we define the number of superpixel regions to be

30 and compactness to be 50. For Grad-CAM methods, we

identify the pixels that are in the top 20% of the values in

the attribution map and replace them with black pixels in the

original image, and then send it to the classifier. For LIME,

we take the regions identified as contributing to the model’s

decision and mask them with black pixels. We set the number

of samples that LIME uses to learn the linear model that is

used to generate the explanations equal to 256. Each of these

samples have different regions of the image perturbed in order

to learn the regions that contribute to the model’s decision.

We choose 256 as the number of samples for LIME because

for CSRA with NumROI = 8, CSRA also analyzes 256 differ-

ent perturbed samples. This allows us to compare these two

methods on similar grounds of computational power required.

When combining CSRA with Limited Region Dilation, we

set the threshold for Limited Region Dilation to be 50%.

We test on 151 samples from each dataset that have an

unsafe ground truth label and are predicted as unsafe by our

classifiers. The results of these experiments are displayed in

Table 4. Across the three unsafe image datasets, we found

that Grad-CAM tended to change more model decisions than

the derivative methods of Grad-CAM. Our experiments show

that when combined with Limited Region Dilation, CSRA is

able to effectively obfuscate the unsafe regions of the unsafe

images while minimizing the amount of obfuscation. For

CSRA with NumROI = 8, we show that CSRA outperforms

Grad-CAM based methods across all of the different unsafe

image detectors. The experiment shows that LIME is able to

successfully obfuscate the unsafe regions of unsafe images,

however, this results in excessive amounts of obfuscation,

with over 60% of the image being obfuscated on average.

Overall, the results show that CSRA is able to significantly

outperform popular gradient based and perturbation based

methods in their ability to localize the regions of the image

that are unsafe.

Impact Analysis. We introduced CSRA for our unsafe image

obfuscation subsystem, based on explainability. In Figure 4

we show how the CSRA image explanation method performs

as a method for detecting the most important parts of an image

at different NumROI. As expected, increasing the NumROI

increases the probability that CSRA has identified the most im-

portant parts of the image. Our proposed content moderation

solution combines CSRA with Limited Region Dilation, but

as shown in Figure 4, CSRA by itself can successfully identify

the most unsafe parts of the image at large enough values of

NumROI. For instance, on cyberbullying images, with Num-

ROI = 8, we are able to make 94.67% of cyberbullying images

safer, while only obfuscating 12.73% of the overall image.

The results from Figure 4 show that the level of obfusca-

tion necessary to make an unsafe image safer varies between

datasets. In particular, the explanations on the sexually ex-

plicit dataset and model resulted in identifying a greater pro-

portion of the image when compared to the cyberbullying and

self-harm experiments. From qualitative observations of ob-
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CSRA
CSRA

+ LRD
Grad-CAM XGrad-CAM Grad-CAM ++ FullGrad LIME

% of

Pred.

Changed

% of

Image

Obf.

% of

Pred.

Changed

% of

Image

Obf.

% of

Pred.
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Pred.

Changed
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Image

Obf.
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Pred.

Changed
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Image

Obf.

% of

Pred.

Changed

% of

Image

Obf.

Sexually Explicit 70 21.69 96.67 27.00 48 20 48 20 42.67 20 26.67 20 100 66.19

Cyberbullying 94.67 12.73 99.5 13.37 81.33 20 73.33 20 60 20 84 20 100 60.85

Self-Harm 86.67 10.79 94.67 14.00 62.67 20 58 20 25.33 20 68.67 20 100 76.90

Table 4: Quantitative results of different explainability methods for content obfuscation.

fuscated images in our experiments, we found that the CSRA

algorithm was often identifying nudity as unsafe. In sexually

explicit images, the nude body often takes up a large part of

the total image, which causes the model to only deem the

image as a safe image after covering more of the body. On the

other hand, the unsafe regions of self-harm and cyberbullying

images often make up a smaller portion of the image. In the

cyberbullying images, the unsafe portion of the image is made

up of rude hand gestures, or the brandishing of a weapon. For

self-harm images, the unsafe region is often the blade near

the skin or cutting wounds. In these cases, the unsafe part of

the image makes up less of the total area of the image.

7.5 End-to-end Evaluation of UGUARD

UGUARD is an end-to-end system that takes in adversarial un-

safe images and outputs safer images for viewers. To evaluate

how well UGUARD works end-to-end to transform adversarial

unsafe images into safer images, we evaluate on samples that

have been perturbed with Square attack, which were shown

to be very effective on public unsafe image detection sys-

tems. In Table 5 we average the detection performance of

the 5 existing state-of-the-art detectors that we tested in Sec-

tion 4 and compare it to UGUARD’s detection performance.

We show that UGUARD detects these perturbed samples with

an average accuracy of 91.67% across sexually explicit, cy-

berbullying, and self-harm datasets, compared to the average

sexually explicit detection accuracy of 45.60% on the exist-

ing detectors. Furthermore, Table 5 shows that UGUARD’s

explainability based obfuscation method makes 96.94% of

these unsafe samples safer, with an average obfuscation of just

18.03%. We show examples of how our CSRA-based obfusca-

tion method manages cyberbullying and self-harm samples in

Figure 3. This figure shows how the CSRA method considers

the superpixels with the highest average Grad-CAM scores,

and then obfuscates based on the superpixels that are most im-

portant according to CSRA’s counterfactual analysis, which

minimizes the obfuscation to just the unsafe part of the image.

Consequently from an end-to-end perspective, UGUARD is

successful in managing adversarial unsafe content.

In order to gain some insight into the obfuscation prefer-

ences of social media users, we conducted a survey of 100

Amazon MTurk workers who were asked to evaluate a poten-

tially sensitive image obfuscated with regional obfuscation

versus obfuscation of the whole image. Our study shows that,

on average, users rate the partially obfuscated image as pro-

Figure 4: Impact of NumROI on CSRA explanations quality.

viding more information, more satisfying, and as having a

greater sense of human contact than the fully obfuscated im-

age. Further details about our MTurk social media user survey

can be found in Appendix C.

7.6 Running UGUARD on Images in the Wild

To test the generalizability of our approach, we evaluated our

system on 1020 images from three sources of unsafe images

in the wild (depicted in Table 6). 4chan is well known for

spreading celebrity nude images from an event known as

ªCelebgateº [1]. While the object of discussion on this thread

was about a specific celebrity, many such cases of deepfake

porn about specific individuals are known to exist. To evaluate

UGUARD on sexually explicit images, we found an online

discussion board on 4chan [11] that focuses on the sharing of

adult content. We captured 510 instances of sexually explicit

images from the top 100 threads on this discussion board and

ran them through our system. We conducted our obfuscation

experiment with CSRA NumROI = 12 using 510 images

that were both labeled as sexually explicit and were detected

as sexually explicit. In this study, the resulting obfuscated
Public API UGUARD

Adversarially

Perturbed

Accuracy %

Adversarially

Perturbed

Accuracy %

% Adversarially

Perturbed

Images Obf.

to be Safer

Obfuscation

%

Sexually Explicit 45.60 88.07 96.67 27.00

Cyberbullying N/A 95.36 99.50 13.37

Self-Harm N/A 90.07 94.67 14.00

Table 5: Management of adversarial unsafe images.
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Source Source Descrip-

tion

No. of Suc-

cessfully Ob-

fuscated Un-

safe Images

Sexually

Explicit

4chan [11] 4chan board for

sharing adult

GIFs.

445 out of

510

Self-

Harm

BestGore

[5], Twit-

ter

#self-harm

tagged images.

488 out of

510

Table 6: Running UGUARD on images in the wild.

images were independently visually inspected by the authors

and deemed successful if the authors unanimously perceived

them to be safe. 445 out of 510 sexually explicit images

were successfully obfuscated by our system. A member of

a federal agency (who is also a collaborator in this work)

directed our attention to an archive of the site BestGore [5].

We collected 510 self-harm images from Twitter and BestGore

[5], searching for "selfharm" tagged content. We conducted

our obfuscation experiment with CSRA NumROI = 12 using

510 images that were both labeled as self-harm and were

detected as self-harm. 488 out of 510 self-harm images were

successfully obfuscated by our system. In total, 91.47% of

these unsafe images were made safer.

8 Discussion

8.1 Limitations

We discuss some potential limitations of our work. A potential

limitation of our work is that the datasets used in our exper-

iments may not be representative of people with different

skin tones and gender expressions. A more comprehensive

study of this should be performed in future work. We only

collected publicly available images, and we were unable to

collect self-harm images from private posts or posts that were

extremely sensitive and hence not available in public domain.

As a result, our dataset may not be fully representative of

this problem. Secondly, despite our testing of the reconstruc-

tion component on adversarial attacks that UGUARD was not

trained on, our system may still be vulnerable to adversarial

attacks. However, a study into the vulnerabilities of image

reconstruction is beyond the scope of this work, and will be

investigated in future work. Therefore, we can only claim

that UGUARD is suitable for known adversarial attacks. Lastly,

UGUARD is applicable to unsafe images where specific regions

are the causes of the image to be unsafe, e.g., the genitalia

regions in sexually explicit images. However, UGUARD may

not be applicable to unsafe images where the unsafe region is

not based on distinct visual regions, such as hateful memes,

where the unsafe region is a combination of the image content

and text overlaid on the image, or screenshots of hateful text.

8.2 Ethical Considerations

Our data collection task and user study were approved by

our institution’s IRB. Our IRB protocol put forth several eth-

ical standards pertaining to crucial aspects of our research,

including sensitive data handling, participant consent and re-

searcher’s well-being that our team strictly monitored and

followed throughout the course of this work to ensure the

safety of not only the subjects depicted in the images in our

dataset and the participants surveyed but also the researchers

in our team who were involved in these processes. We have

included a few image samples in this paper to help readers

better understand our paper while taking steps to ensure no

harm to the reader as well as the people pictured by masking

their identities and other sensitive parts. Furthermore, we have

followed standard ethical guidelines when analyzing the data

and presenting the results, including safely storing data, pro-

tecting the anonymity/privacy of the users, and not attempting

to track users across websites [64].

8.3 Extending UGUARD to Other Unsafe Content

Our system can be conveniently extended with new unsafe

content categories by integrating the dataset used for the new

content. For example, UGUARD can be extended to include

Non Consensual Intimate Imagery (NCII) or Child Sexual

Abuse Material (CSAM), by adding datasets of clean images

of these categories and their classifiers to the Reconstruc-

tion Subsystem. This extendibility also allows UGUARD to be

flexible to accommodate the cultural norms of the country

or region that UGUARD is deployed in. The cultural norms

of the society can dictate what is considered as unsafe im-

age content. While the depictions of certain forms content

may be deemed improper or even illegal in some countries, in

other countries this content might not cause any concerns. Fur-

thermore, our system allows for flexibility in the amount of

obfuscation that can be applied in the automated moderation

process by changing the threshold of obfuscation in Limited

Region Dilation.

9 Conclusion and Future Work

In this paper we investigate unsafe image detection systems

and automated content moderation of unsafe images. We

shown that state-of-the-art systems that detect unsafe image

content are vulnerable to adversarial unsafe images, and

that existing explainability techniques are not suitable for

automated content obfuscation. To solve these deficiencies,

we introduce our system, UGUARD. Our evaluations shows

that UGUARD is highly effective in neutralizing the threat

of adversarial unsafe images. As part of our future work,

we plan to include other unsafe content categories into our

system. For example, another category of content that social

media companies have policies against is around extreme

violence and gore.
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A API Threshold Details

Due to the imbalance of the distribution of the probabilities

returned by sexually explicit image detection API, we cannot

use 0.5 as the threshold for classifying images into sexually ex-

plicit versus non-sexually explicit for Clarifai, Yahoo NSFW,

and Amazon Rekognition. We use the GHOST method de-

scribed by Esposito et al. [32] to find the ideal threshold for

the experiment in Table 2. To determine this threshold we

randomly drew multiple subsamples from the training data

of "porn" class (n = 381) and from the "sexy" class (n = 381)

from an NSFW dataset [43]. We make use of the "sexy" class

as a safe image category in this experiment because the goal

is to select a threshold that properly distinguishes between

sexually explicit imagery and safe imagery that contains some

similar features to sexually explicit content. After the classi-

fication scores are returned by the API, a list of thresholds

are screened from 0.5 to 0.95 in increment of 0.05 where the

Cohen’s kappa is computed with the threshold. The threshold

that returns the maximum Cohen’s kappa is selected as the

threshold for predicting the classification. Using this method,

the following thresholds for each moderation API is returned:

Clarifai (0.815), Yahoo NSFW (0.881), Amazon Rekognition

(0.900). From these results, we chose a threshold of 0.8 for

Clarifai, and 0.9 for Yahoo NSFW and Amazon Rekognition.

For simplicity, the computed threshold was rounded to the

nearest tenth. A quick experiment showed that this rounding

had no change in the classification of the images, when the

rounded threshold was used instead of the exact threshold.

B Evading State-of-the-Art Detectors Attack

Parameters

Square Attack is launched with parameters ε = 16/255,

n_queries = 10,000, n_restart = 1, loss=cross entropy loss,

while AutoAttack is launched with parameter ε = 8/255. For

Square Attack combined with Gaussian blur, we attack an

image with Square Attack prior to applying a Gaussian blur

with parameters of kernel size = 7, and σ = 3.

C User Study with Online Participants

To evaluate the suitability of region based obfuscation for

images on OSN’s, we conducted a study of 100 social media

users on Amazon MTurk.

C.1 User Study Methodology

We launched two surveys with mutually exclusive participants

with each survey concluding with 50 participants per survey.

One survey asked for the participants opinions on fully ob-

fuscated images, and the other survey asked for participants

opinions on partially obfuscated images. We used two differ-

ent images that contained potentially sensitive content and

created two versions of each image. The first version of the

image had the entire image blurred, and the second version

Statements
Fully Obfuscated

Image

Partially Obfuscated

Image
t df

The photo provides

sufficient information
2.33(0.157) 4.69(0.156) 10.657*** 99

The photo is satisfying 2.05(0.152) 3.44(0.161) 6.264*** 99

There is a sense of

human contact when

I see the photo

2.98(0.189) 4.25(0.171) 4.977*** 99

Table 7: Social media content obfuscation user experiment.

(*** indicates p < 0.001).

of the image had a regional blur over the unsafe region of the

image. We required that our survey participants be located in

the United States and be social media users. Each participant

was awarded $2 for their completion of the survey, and the

average completion time of this survey was approximately

12 minutes and 30 seconds. The experimental protocol was

approved by our institution’s IRB.

The participants were first instructed to watch a 9-minute

video 3 that demonstrates the danger of unsafe images on so-

cial media. Next the participants were then told the following:

ªIn this portion of the study, you will be asked to complete

a survey. The situations, questions, and answers should be

considered thoughtfully and carefully. When answering these

questions, think about your experience(s) interacting with pho-

tos having sensitive content obfuscated, in general.º Next, the

participants were asked to view and then rate statements about

two images. Both of these images are fully blurred, or both are

partially blurred, depending on the version of the survey they

received. Then we measured Information Sufficiency, Satis-

faction and Perceived Social Presence by asking participants

to rate three statements about their thoughts on each image

from the choices of: Strongly Agree (7), Agree (6), Some-

what Agree (5), Neither Agree Nor Disagree (4), Somewhat

Disagree (3), Disagree (2), Strongly Disagree (1). The three

statements that they were asked to rate were (1) ªThe photo

provides sufficient informationº, (2) ªThe photo is satisfyingº,

and (3) ªThere is a sense of human contact when I see the

photoº, respectively for Information Sufficiency, Satisfaction

and Perceived Social Presence. We asked the participants to

also rate photo satisfaction, since our framework is also used

by personnel who review the safe parts of the image which

should not be obfuscated.

C.2 Results

In Table 7 we show the mean values and the standard error

of the mean of the responses on both images from the survey

questions on the fully blurred and partially blurred images.

We also perform a two-sample t-test and found that the images

that had a regional obfuscation were rated higher on all three

statements by participants when compared to images that had

an obfuscation applied to the entire image. This indicates

that the social media user experiences may be improved by

adopting regional obfuscation as a method of content control.

3https://www.youtube.com/watch?v=dbg4hNHsc_8
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