
The Power Method with Row Erasures
Nicholas Sacco∗, Viveck Cadambe†, and Bobak Nazer∗

∗Department of Electrical and Computer Engineering, Boston University
†School of Electrical and Computer Engineering, Georgia Tech

Abstract—This paper considers the task of estimating
the principal eigenvector of a positive semi-definite ma-
trix using the power method subjected to random row
erasures at each iteration. This can be used to model
applications where large matrix operations are distributed
across multiple servers, some of which may fail to respond
at each iteration. We analyze the simple strategy of only
updating coordinates corresponding to non-erased rows,
and demonstrate that, presuming a good initialization, the
power method with erasures still converges exponentially
fast to the principal eigenvector. The rate of convergence is
governed by a modified spectral gap, which is a function of
the original spectral gap and the fraction of erased rows.
Accompanying numerical results validate our bounds, and
demonstrate that, in certain regimes, our approach out-
performs techniques such as coded computation and Oja’s
algorithm.

I. INTRODUCTION

In many modern scientific and engineering appli-
cations, we must work with very large data matrices
as part of the inference process. Due to memory and
computational constraints, it is quite natural to distribute
the required matrix operations across multiple servers.
However, it is often the case that one or more servers will
encounter significant delays in completing their assigned
jobs [1]. Of course, one can always simply wait for these
“stragglers” or, alternatively, reassign their jobs to other
servers.

Another possibility is to preemptively introduce some
form of erasure coding so that delayed computations
can be reliably reconstructed from completed ones.
Specifically, for the important special case of matrix
multiplication, recent efforts on coded computation [2]–
[5] have delineated the information-theoretic limits for
recovering from the erasures introduced by stragglers, as
well as code constructions that can efficiently approach
these limits.

In this paper, we focus on the specific problem of
recovering the principal eigenvector of a positive semi-
definite (PSD) matrix via the power method. Let A ∈
Rn×n be a PSD matrix with eigendecomposition

A =
n∑

i=1

λiviv
⊤
i (1)

where λ1, . . . , λn ∈ R are the eigenvalues, presumed
to be sorted into decreasing magnitude order, λ1 >

· · · > λn, and v1, . . . , vn ∈ Rn are the corresponding
eigenvectors. Starting with initial vector v0 ∈ Rn,
the power method refines its estimate of the principal
eigenvector v1 at each iteration by first multiplying by
A and then normalizing,

x(t) = Av̂(t−1) , v̂(t) =
x(t)

∥x(t)∥
. (2)

It is well-known that the power method converges expo-
nentially fast to the principal eigenvector. Specifically,
the sine-squared error is upper bounded as a simple
function of the spectral gap

sin2 θt = 1− ⟨v1, v̂(t)⟩2 ≤
(
λ2

λ1

)2t

tan2 θ0 . (3)

where tan2 θ0 =
1−α2

1

α2
1

, and α2
1 = ⟨v1, v0⟩2. We assume

that, in a distributed implementation, the required row-
vector products for a single iteration are distributed
across multiple servers. Erasures (due to stragglers) can
be concisely described via a diagonal projection matrix
P(t) with 1’s in the entries corresponding to erased rows
and 0’s otherwise. Overall, the servers collectively return
(I − P(t))Av̂(t−1), rather than the desired Av̂(t−1). As
discussed above, coded computation could be used to
recover from these erasures at each iteration. The aim of
this paper is to investigate the simpler possibility of pro-
ceeding with the next iteration while only updating the
available coordinates. Intuitively, this recursion should
also recover v1, provided that all coordinates are sampled
sufficiently often.

Consider the following modified power method for
making progress in the presence of erasures:

x(t) = P(t)x(t−1) + (I − P(t))Av̂(t−1) , (4)

v̂(t) =
x(t)

∥x(t)∥
. (5)

Ideally, we would like to establish that this recursion
rapidly converges to v1, using an upper bound of similar
form to (3). This paper makes progress towards this goal
by providing theoretical guarantees for the recursion

x(t) = λ1P(t)v̂(t−1) + (I − P(t))Av̂(t−1) (6)

v̂(t) =
x(t)

∥x(t)∥
(7)

20
24

 6
0t

h 
An

nu
al

 A
lle

rt
on

 C
on

fe
re

nc
e 

on
 C

om
m

un
ic

at
io

n,
 C

on
tr

ol
, a

nd
 C

om
pu

tin
g 

(A
lle

rt
on

) |
 9

79
-8

-3
31

5-
41

03
-3

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AL
LE

RT
O

N
63

24
6.

20
24

.1
07

35
32

2

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



where we presume that an oracle provides knowledge of
the principal eigenvalue (but not the eigenvector).1 Note
that this choice is intended to mimic the scale of the
x(t−1) = ∥x(t−1)∥v̂(t−1) memory term in (4), since we
expect ∥x(t−1)∥ to converge to λ1.

We also demonstrate empirically that the performance
of these two recursions are very close, and our future
work will aim to extend our theoretical guarantees to
(6). Overall, our results suggest that, for certain iterative
algorithms involving matrix products, it may be more
efficient to proceed with the next iteration in the midst
of erasures, rather than utilize additional resources for
coded computation to recover from these erasures at each
iteration.

II. RELATED WORK

There has been considerable recent interest in develop-
ing efficient methods for high-dimensional matrix com-
putations [6]. Owing to space limitations, here we briefly
summarize recent works related to handling erasures.
As discussed above, coded computation strategies [2]–
[5], [7], construct an erasure code on top of the linear
computations assigned to the servers, and can recover
from erasures up to a threshold. Recent work has also
considered approximate reconstruction [8].

Variants on the noisy power method [9]–[13] en-
compass settings where the desired update Av̂(t−1) is
perturbed by some noise vector, which can be chosen
to model erasures as well as independent additive noise.
However, the theoretical guarantees require tight bounds
on the norm of the noise and its projections onto certain
subspaces. Here, we are able to derive faster conver-
gence rates by focusing on the special structure of row
erasures. Recent work has also considered adaptively
subsampling the data matrix at each iteration of the
power method. [13]

Oja’s algorithm [14] is a well-known variation on the
power method that is adapted to online (or streaming)
principal component analysis. A line of recent work
[15]–[17] has developed convergence guarantees for
Oja’s algorithm for a broad range of update configura-
tions, essentially those where the expected value of the
update is equal to the full update. Although these bounds
include our setting of row erasures as a special case, we
are able to derive sharper bounds by taking advantage
of the additional structure induced by row erasures.

Approximate message passing is a powerful frame-
work for the analysis of recursive algorithms applied to
high-dimensional matrices (see, e.g., [18] for a survey).
Very recent work [19] (by the last author and others) has
proposed linear operator approximate message passing
(OpAMP) as a framework that includes row erasures as

1For certain applications, exact knowledge of λ1 can be viewed as
perfect knowledge of the effective signal-to-noise ratio.

a special case. (In fact, our preliminary results served
as a motivation for OpAMP.) While OpAMP provides
very precise guarantees, they rely on distributional as-
sumptions on the data matrix (e.g., that it is drawn from
the Gaussian orthogonal ensemble) whereas our results
depend only on the spectral gap.

III. MAIN RESULTS

Throughout the paper, we will assume that, at each
iteration, exactly m out of n rows are erased. For a subset
K ⊂ [n], let

PK =
∑
k∈K

eke
⊤
k (8)

be the projection matrix onto the coordinates in K
where ek is the kth standard basis vector. We further
assume that the erasure coordinates are chosen uniformly
at each iteration and independently across iterations.
Specifically, let

Dm =
{
ÃK : ÃK = A+ PK(λ1I −A), (9)

K ⊂ [n], |K| = m
}

be the set of all matrix updates with m coordinates
erased. We can concisely express the recursion (6) as

x(t) = Atv̂
(t−1) v̂(t) =

x(t)

∥x(t)∥
(10)

where we assume that A1, A2, . . . are drawn
i.i.d. Unif(Dm). Our main result demonstrates that,
given a good initialization, this recursion converges to
v1 exponentially fast according to a modified spectral
gap that is a function of the number of erasures.

Theorem 1. Assume that the initialization v0 ∈ Rn is
selected such that

tan2 θ0 ≤
(
1−∆2

)(δ(1− c)2(n− 1)

mv2∗

)
(11)

where v∗ = maxi |v1,i| is the largest coordinate in the
principal eigenvector and ∆ = λ2

λ1
. Further assume that,

for some m ≤ n, the update matrices A1, A2, . . . are
generated i.i.d. Unif(Dm) and that v̂(t) is generated
from the recursion (10). Then, with probability at least
1− 2δ, we have

sin2 θt = 1− ⟨v1, v̂(t)⟩2 ≤ 1

δc2
∆̃2t tan2 θ0 (12)

where

∆̃2 =

(
λ2

λ1

)2

+
m

n

(
1−

(
λ2

λ1

)2
)

. (13)

Remark 1. In cases where the initialization condi-
tion (11) is not satisfied, we can use a “warm start” with
a few erasure-free iterations from (1) to decrease the
initial error. For example, if we assume that v1 is drawn

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



uniformly over the unit sphere, then approximately log n
erasure-free iterations would suffice. Our future work
will seek to relax the initialization condition.

To build intuition for why the modified spectral gap
appears, we first consider the impact of a single update
in expectation. Using Lemma 8, it follows that

E [At] = A+
m

n
(λ1I −A) (14)

=
n∑

i=1

(
λi +

m

n
(λ1 − λi)

)
viv

⊤
i . (15)

Thus, the average matrix E [At] shares the same basis as
A, but with a new spectrum

{
λi +

m
n (λ1 − λi)

}
.

IV. SECOND-MOMENT BOUNDS

For our analysis, it will be convenient to defer nor-
malization until the last step. Let Zt = AtAt−1 · · ·A2A1

be the product of the effective matrix updates. The sine
squared error is written as:

sin2 θt =
v⊤0 Z

T
t U⊥Ztv0

v⊤0 Z
T
t Ztv0

(16)

≤ v⊤0 Z
T
t U⊥Ztv0

v⊤0 Z
T
t v1v

⊤
1 Ztv0

(17)

Where U⊥ =
∑n

i=2 viv
⊤
i projects onto the orthogonal

complement of v1. If there are no erasures, this definition
is exactly (3). Define random variables Wt, Yt as:

Wt = v⊤1 Ztv0 (18)

Yt = ∥U⊥Ztv0∥ (19)

Thus, sin2 θt ≤ Y 2
t

W 2
t

. Below, we bound the second
moments E

[
Y 2
t

]
and E

[
W 2

t

]
.

Lemma 1. Assume the update matrices Zt =
AtAt−1 · · ·A1 are generated i.i.d. Unif (Dm). Then:

E[Y 2
t ] ≤ λ̃2t

2 (1− α2
1) (20)

where λ̃2
2 = λ2

2 + m
n

(
λ2
1 − λ2

2

)
, and α2

1 = ⟨v1, v0⟩2.
Proof : The random product Zt is decomposed as Zt =
AtZt−1, where At is the effective matrix update at
iteration t and Zt−1 describes the history over the first
t − 1 iterations. Conditioning on Zt−1 and using the
independence between At and Zt−1:

E
[
Y 2
t | Zt−1

]
= E

[
v⊤0 Z

T
t−1A

T
t U⊥AtZt−1v0

∣∣ Zt−1

]
= v⊤0 Z

T
t−1E

[
AT

t U⊥At

]
Zt−1v0 (21)

Applying Lemma 3 with Q = U⊥:

E
[
AT

t U⊥At

]
= ω0AU⊥A+ 2ωℓλ1AU⊥

+ ω2(λ1I −A)U⊥(λ1I −A)

+ ω1(λ1I −A)

(
n∑

ℓ=1

PℓU⊥Pℓ

)
(λ1I −A)

where Pℓ = eℓe
⊤
ℓ . Using Lemma 10 (

∑n
ℓ=1 PℓU⊥Pℓ) ⪯

u∗I , where u∗ = maxℓ(e
⊤
ℓ U⊥eℓ) ≤ 1. Thus:

E
[
AT

t U⊥At

]
⪯ ω0AU⊥A+ 2ωℓλ1AU⊥

+ ω2(λ1I −A)2 + ω1(λ1I −A)2

⪯ ω0AU⊥A+ 2ωℓλ1AU⊥

+ (ω1 + ω2)(λ1I −A)2 (22)

Writing the full matrix decomposition in the {vi} basis:

E
[
AT

t U⊥At

]
⪯

n∑
i=2

[
ω0λ

2
i + 2ωℓλ1λi

]
viv

⊤
i

+
n∑

i=2

[
(ω1 + ω2)(λ1 − λi)

2
]
viv

⊤
i

Simplifying using (41): ω1 + ω2 = m
n :

E
[
AT

t U⊥At

]
⪯

n∑
i=2

[ (
1− 2

m

n

)
λ2
i + 2

m

n
λ1λi

]
viv

⊤
i

+
n∑

i=2

(m
n

) (
λ2
1 − 2λ1λi + λ2

i

)
viv

⊤
i

⪯
n∑

i=2

[
λ2
i +

m

n

(
λ2
1 − λ2

i

) ]
viv

⊤
i (23)

Let λ̃2
i = λ2

i +
m
n

(
λ2
1 − λ2

i

)
. Substituting (23) into (21):

E
[
Y 2
t | Zt−1

]
≤ v⊤0 Z

T
t−1

{
n∑

i=2

λ̃2
i viv

⊤
i

}
Zt−1v0 .

Since λ̃2
i ≤ λ̃2

2 for i ≥ 2, we have

E
[
Y 2
t | Zt−1

]
≤ λ̃2

2

[
v⊤0 Z

T
t−1

{
n∑

i=2

viv
⊤
i

}
Zt−1v0

]
≤ λ̃2

2

[
v⊤0 Z

T
t−1U⊥Zt−1v0

]
. (24)

Computing the total expectation, we obtain the recursion:

E
[
Y 2
t

]
= E

[
E
[
Y 2
t | Zt−1

]]
≤ λ̃2

2 · E
[
v⊤0 Z

T
t−1U⊥Zt−1v0

]
≤ λ̃2

2 E
[
Y 2
t−1

]
(25)

Unravelling the full recursion t−1 more times, and using
E
[
Y 2
0

]
= v⊤0 U⊥v0 = (1− α2

1), we arrive at the claim.

Lemma 2. Assume the update matrices Zt =

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



AtAt−1 · · ·A1 are generated i.i.d. Unif (Dm). Then:

E
[
W 2

t

]
≤ λ2t

1

[
α2
1 +

mv2∗
(n− 1)(1−∆2)

(1− α2
1)

]
(26)

where ∆2 =
λ2
2

λ2
1

, v∗ = maxi |v1,i|, and α2
1 = ⟨v1, v0⟩2.

Proof : For simplicity, we can factor out a λ1 from each
Aτ in the product Zt = AtAt−1 · · ·A2A1. Then:

E
[
W 2

t

]
= E

[
v⊤0 Z

T
t v1v

⊤
1 Ztv0

]
= λ2t

1 E
[
v⊤0 Z̄

T
t v1v

⊤
1 Z̄tv0

]
= λ2t

1 E
[
W̄ 2

t

]
(27)

where W̄t = v⊤0 Z̄
T
t v1v

⊤
1 Z̄tv0, Z̄t = ĀtĀt−1 · · · Ā2Ā1,

Āτ = Aτ

λ1
, and Ā = A

λ1
. To bound E

[
W̄ 2

t

]
, we proceed

in a similar manner to the Yt second moment bound.
Decomposing the matrix product Z̄t = ĀtZ̄t−1, condi-
tioning on Z̄t−1, and using the independence between
Āt and Z̄t−1:

E
[
W̄ 2

t | Z̄t−1

]
= E

[
v⊤0 Z̄

T
t−1Ā

T
t v1v

⊤
1 ĀtZ̄t−1v0

∣∣ Z̄t−1

]
= v⊤0 Z̄

T
t−1

{
E
[
ĀT

t v1v
⊤
1 Āt

] }
Z̄t−1v0

(28)

Applying Corollary 1 with Q = v1v
⊤
1 :

E
[
ĀT

t v1v
⊤
1 Āt

]
= ω0Āv1v

⊤
1 Ā+ 2ωℓĀv1v

⊤
1

+ ω2(I − Ā)v1v
⊤
1 (I − Ā)

+ ω1(I − Ā)

(
n∑

ℓ=1

Pℓv1v
⊤
1 Pℓ

)
(I − Ā)

By definition, Āv1 = v1, and (I− Ā)v1 = 0. Using (41)
to expand the other ωi constants:

E
[
ĀT

t v1v
⊤
1 Āt

]
=
(
1− 2

m

n

)
v1v

⊤
1 + 2

m

n
v1v

⊤
1

+ ω1(I − Ā)

(
n∑

ℓ=1

Pℓv1v
⊤
1 Pℓ

)
(I − Ā)

Define matrix B as:

B = (I −A)

(
n∑

ℓ=1

Pℓv1v
⊤
1 Pℓ

)
(I −A) (29)

Then:
E
[
ĀT

t v1v
⊤
1 Āt

]
= v1v

⊤
1 + ω1B (30)

Substituting (30) into (28):

E
[
W̄ 2

t | Z̄t−1

]
= v⊤0 Z̄

T
t−1v1v

⊤
1 Z̄t−1v0

+ ω1v
⊤
0 Z̄

T
t−1BZ̄t−1v0 (31)

Computing the total expectation:

E
[
W̄ 2

t

]
= E

[
E
[
W̄ 2

t | Z̄t−1

]]
= E

[
v⊤0 Z̄

T
t−1v1v

⊤
1 Z̄t−1v0

]
+ ω1E

[
v⊤0 Z̄

T
t−1BZ̄t−1v0

]
= E

[
W̄ 2

t−1

]
+ ω1E [Rt] (32)

where the residual term E[Rt] is defined as:

E[Rt] = v⊤0 E
[
Z̄T
t−1BZ̄t−1

]
v0 (33)

Unravelling the recursion t − 1 more times and using
E
[
W̄0

]
= v⊤0 v1v

⊤
1 v0 = α2

1, we obtain the intermediate
result:

E
[
W̄ 2

t

]
= α2

1 + ω1

t∑
τ=1

E [Rτ ] (34)

Using Lemma 5, to bound each residual term E [Rτ ]:

E
[
W̄ 2

t

]
≤ α2

1 + ω1v
2
∗

t∑
τ=1

v⊤0 B
(τ−1)v0 (35)

where B(τ) is a PSD matrix with eigenvalues{
η
(τ)
i

}
, 1 ≤ i ≤ n and corresponding eigenvectors

v1, v2, . . . vn ∈ Rn, the same eigenvectors as A. The
eigenvalues are defined according to the recursion:

η
(t)
i = ciη

(t−1)
i + ω1η

(t−1)
∗ (1−∆i)

2, 2 ≤ i ≤ n (36)

where η
(t)
1 = 0 for all t, η

(t)
∗ = maxi η

(t)
i , and the

recursion is initialized with η
(0)
i = (1−∆i)

2, η(0)∗ = 1.
The ci term is defined as:

ci = ω0∆
2
i + 2ωℓ∆i + ω2(1−∆i)

2 (37)

Using the eigendecomposition (36) for each B(τ) term:

E
[
W̄ 2

t

]
≤ α2

1 + ω1v
2
∗

t∑
τ=1

v⊤0 B
(τ−1)v0

≤ α2
1 + ω1v

2
∗

t∑
τ=1

v0

{
n∑

i=2

η
(τ−1)
i viv

⊤
i

}
v0

≤ α2
1 + ω1v

2
∗

n∑
i=2

α2
i

{
t−1∑
τ=0

η
(τ−1)
i

}
where α2

i = ⟨vi, v0⟩2. Using Lemma 6, to bound the
sum of ηi:

E
[
W̄ 2

t

]
≤ α2

1 + ω1v
2
∗

n∑
i=2

α2
i

(
n

(n−m)(1−∆2)

)
≤ α2

1 +
nω1v

2
∗

(n−m)(1−∆2)
(1− α2

1)

Using the definition of ω1 =
(

n−m
n−1

) (
m
n

)
to simplify:

E
[
W̄ 2

t

]
≤ α2

1 +
mv2∗

(n− 1)(1−∆2)
(1− α2

1) (38)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



Substituting (38) into (27) yields the claim.

V. PROOF OF THEOREM 1

Using Lemma 1 and Markov’s inequality, we construct
an upper bound on Yt:

P [Yt ≥ ka] ≤
E
[
Y 2
t

]
k2a2

≤ λ̃2t
2 (1− α2

1)

k2a2

Taking a = λ̃t
2

√
(1− α2

1) and k =
√
δ−1 yields Yt ≤

λ̃t
2

√
δ−1(1− α2

1) with probability at least 1 − δ. Next,
using Lemma 2 and Chebyshev’s inequality, we construct
a lower bound on Wt. Let σ2

t = E
[
W 2

t

]
−E [Wt]

2. Using
(18) and independence between each update matrix At:

E [Wt] = v⊤1 E [AtAt−1 · · ·A2A1] v0 = α1λ
t
1

Using the second moment of Wt:

σ2
t = E

[
W 2

t

]
− E [Wt]

2

≤ λ2t
1

[
α2
1 +

mv2∗
(n− 1)(1−∆2)

(1− α2
1)

]
− α2

1λ
2t
1

≤ λ2t
1

mv2∗
(n− 1)(1−∆2)

(1− α2
1) (39)

Applying Chebyshev’s Inequality:

P
[
Wt /∈ (α1λ

t
1 − kσt, α1λ

t
1 + kσt)

]
≤ 1

k2

Taking k =
√
δ−1 yields Wt ≥ α1λ

t
1 − kσt with

probability at least 1 − δ. To ensure the lower bound
is meaningful, we require:

α1λ
t
1 − kσt ≥ cα1λ

t
1 ⇐⇒ σ2

t ≤ δ(1− c)2α2
1λ

2t
1

Where c > 0. Using (39), the bound on σ2
t :

mv2∗
(n− 1)(1−∆2)

(1− α2
1) ≤ δ(1− c)2α2

1

1− α2
1

α2
1

≤
(
δ(1− c)2(n− 1)

mv2∗

)
(1−∆2)

We require the starting vector v0 to satisfy the following
tangent squared error requirement:

tan2 θ0 ≤
(
1−∆2

)(δ(1− c)2(n− 1)

mv2∗

)
(40)

Under the ”warm start” assumption (11), v0 satisfies this
bound. Thus, with probability at least 1−δ, Wt > cα1λ

t
1.

To prove the full error bound (1), define two events.
Let EY be the event where

{
Yt > λ̃t

2

√
δ−1(1− α2

1)
}

and let EW be the event where {Wt < cα1λ
t
1}. By

construction, P[EY ] ≤ δ and P[EX ] ≤ δ. By the union
bound, the overall probability of failure is at most 2δ;
taking the ratio Y 2

t

W 2
t

yields the sine squared-error bound.

VI. SIMULATIONS

In this section, we evaluate the empirical performance
of the reuse-norm (4) and oracle-update (6) protocols.
We use a PSD matrix A ∈ Rn×n with n = 1000,
eigengap ∆ = λ2

λ1
= 0.90, and fixed error ratio of

m
n = 0.75. Each algorithm is initialized with the same
v0 ∈ Rn drawn uniformly on the sphere. The update
matrices are drawn i.i.d. Unif(Dm) (i.e., uniformly
across all configurations of m erasures) across iterations.
This erasure pattern is generated once per trial and then
applied across all competing algorithms. The resulting
performance metrics are averaged over 50 trials. We
evaluate the proposed power method variants against the
following competitors:

1) Erasure-free Power Method: The standard power
method with convergence rate ∆2.

2) Oja’s Algorithm [16]: We set ηt = logn
(λ1−λ2)(β+t) .

For simplicity, we take β = 1, which is outside
of the prescribed range in [16], but is sufficient
for empirical comparison. Using Theorem 3 in
[16] to construct a coarse bound, we expect Oja’s
algorithm to produce iterates with error

sin2 θt ≤
V log n

(λ1 − λ2)2t
+

(
2

t

)2 log n

where V = m
n

(
1− m

n

)
λ1.

3) OpAMP [19]: Although our choice of A does not
meet the distributional requirements of the AMP
framework, in practice we still might expect the
iterates to converge to v1 in a reasonable fashion.

4) Short-Dot Code [2]. We include the short-dot
code as a representative of coded computation
strategies. The n dot products required to compute
iterate x(t) = Av̂(t−1) are encoded into P = 2n
dot products. Any K = 3

2n coded products are
sufficient to exactly recover x(t).

Following the evaluation strategies in [19], We consider
two main performance metrics: Convergence speed and
computational efficiency.

A. Convergence Speed

We compute the empirical sine-squared error at each
iteration. The error bound of Theorem 1 is computed
using δ = 0.05 and c = 1/2 for simplicity. In Figure 1,
we observe the iterates generated by the oracle update
rule in (6) converge to v1 at the modified rate ∆̃2 > ∆2

predicted by Theorem 1. In addition, the performance
of the data-dependent recursion (4) is almost exactly
approximated by the oracle recursion. In Figure 2, we
also find the empirical error of the OpAMP protocol
decays at rate ∆̃2, even though A does not quite meet
the requirements of the AMP framework. In Figure 3,
we observe the proposed oracle update (6) converges

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



to v1 at a faster rate than Oja’s algorithm. In addition,
we also find that empirically, Oja’s algorithm converges
much faster than the O(1/t) bound in [16]. This suggests
that error guarantees may be improved by specifically
exploiting the random row-erasure structure explored in
this work.

0 100 200 300 400 500
10−7

10−2

103

Iteration, t

E
rr

or

No Erasures – Empirical
No Erasures – Bound
(Oracle) Erasures – Empirical
(Reuse Norm) Erasures – Empirical
(Oracle) Erasures – Bound

Fig. 1. (Oracle update (6), Reuse-Norm Update (4)) Sine-Squared
Error vs. Iterations.

B. Computational Efficiency

We compute the correlation, defined as ⟨v1, v̂(t)⟩2
at each iteration. As a surrogate for computational ef-
ficiency, we track the number of erasure-free matrix-
vector products of the form Av̂(t−1) carried out at each
iteration. In the erasure-free power method, exactly one
full product is computed per iteration. For our proposed
update rules in (4), (6), OpAMP, and Oja’s algorithm,
(1 − m

n ) effective matrix-vector products are computed
per iteration. In the short-dot code protocol, we assume
that the full update Av̂(t−1) is recovered if exactly
K
n = 3

2 effective matrix-vector products are computed
per iteration. We compare the correlation against the
number of erasure-free matrix-vector products in Figure
4. On a per-computation basis, we find the proposed
data-dependent update (4) and the OpAMP protocol
are slightly more efficient than the erasure-free method.
The oracle update (6) is about as efficient as the stan-

0 100 200 300 400 500
10−7

10−2

103

Iteration, t

E
rr

or

No Erasures – Empirical
No Erasures – Bound
(Oracle) Erasures – Empirical
Erasures – Bound
Linear OpAMP – Empirical

Fig. 2. (Oracle update (6), OpAMP) Sine-Squared Error vs. Iterations.

0 100 200 300 400 500
10−7

10−2

103

Iteration, t

E
rr

or

No Erasures – Empirical
No Erasures – Bound
(Oracle) Erasures – Empirical
Erasures – Bound
Oja’s – Empirical
Oja’s – Bound

Fig. 3. (Oracle update (6), Oja’s Algorithm) Sine-Squared Error vs.
Iterations.

0 5 10 15 20 25 30 35
0

0.5

1

Number of equivalent matrix-vector multiplications

C
or

re
la

tio
n

No Erasures
(Oracle) Erasures
(Reuse Norm) Erasures
Oja’s
Linear OpAMP
Short Dot Code

Fig. 4. Correlation vs. Complexity, n = 1000,m = 750

dard power method. Oja’s algorithm is slightly worse,
largely due to its slower rate of convergence. However,
all schemes outperformed the short-dot code, which
demonstrated the lowest efficiency due to the redundant
computations required to exactly recover each iterate.
These results suggest it may be possible to deliberately
inject row erasures into an algorithm, simultaneously
reducing the computational load while still converging
towards the target result.

VII. CONCLUSIONS AND FUTURE WORK

This paper analyzed a variation on the power method
where a random subset of rows of the data matrix
are erased at each iteration. Our bounds show that,
given a good initialization, convergence to the principal
eigenvector is exponentially fast (with high probability)
at a rate governed by a modified spectral gap, which is a
function of the original spectral gap and the erasure ratio.
This convergence rate was validated numerically and
it was shown that our proposed erasure-tolerant power
method is competitive with respect to other approaches
such as coded computing and Oja’s algorithm.

Future lines of work should relax or eliminate the
“warm start” condition in (11). Our simulations demon-
strate that randomly sampling v0 on the sphere is suf-
ficient for convergence at rate ∆̃2. Furthermore, theo-

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



retical guarantees for the data-dependent update in (4)
should be developed. While the oracle update is simpler
to analyze, ultimately the data-dependent version is more
practical to run, since it does not require knowledge
of λ1. Finally, our comparison with Oja’s algorithm
suggests possible improvements can be made to similar
stochastic iterative algorithms operating in the random
row-erasure setting discussed in this work.

APPENDIX

This appendix includes supporting lemmas used to
prove the second moment bounds on Yt and Wt. Ow-
ing to space constraints, the proofs are deferred to an
extended version.

Lemma 3. Let Q ∈ Rn×n be a PSD matrix that
commutes with A. Define the following:

ω0 = 1− 2
m

n
ωℓ =

m

n
(41)

ω1 =

(
n−m

n− 1

)(m
n

)
ω2 =

(
m− 1

n− 1

)(m
n

)
If At ∼ Unif(Dm) and taking Pℓ = eℓe

⊤
ℓ :

E [AtQAt] = ω0AQA+ 2ωℓλ1AQ (42)
+ ω2(λ1I −A)Q(λ1I −A)

+ ω1(λ1I −A)

(
n∑

ℓ=1

PℓQPℓ

)
(λ1I −A)

Corollary 1. Suppose Āt ∼ 1
λ1

Unif(Dm). Then:

E
[
ĀtQĀt

]
=

1

λ2
1

E [AtQAt]

Lemma 4. Consider the matrix:

B(0) = (I −A)2 (43)

with eigenvalues η
(0)
i = (1 − ∆i)

2 and eigenvectors
v1 . . . vn, where ∆i =

λi

λ1
. Define the recursive update:

G(t) = E
[
ĀB(t−1)Ā

]
(44)

where Ā ∼ 1
λ1

Unif(Dm). There exists a PSD matrix
B(t) ∈ Rn×n that commutes with A, and G(t) ⪯ B(t).
The eigenvalues of B(t) are defined recursively in (36).

Lemma 5. Let E [Rt] be the residual term defined by
(33). Then:

E [Rt] ≤ v2∗ · v⊤0 B(t−1)v0 (45)

where B(t−1) is the PSD matrix with eigendecomposi-
tion {η(t−1)

i , vi}, where the eigenvalues are defined by
the recursion (36). Proof : Recall the definition of E [Rt]:

E [Rt] = E
[
v⊤0 Z̄

T
t−1BZ̄t−1v0

]

Where B is defined in (29) and Z̄t−1 =
ĀtĀt−1 · · · Ā2Ā1. Each Āτ is drawn i.i.d from
Dm, so Z̄t−1 takes on any of the N t−1 possible
matrix products with equal probability. We can directly
compute the total expectation:

E [Rt] =
1

N t−1
v⊤0

{∑
k

zTt−1,kBzt−1,k

}
v0 (46)

where zt−1, is a specific product of (t − 1) effective
matrices, indexed by k, 1 ≤ k ≤ N t−1. Suppose all
instances of zt−1,k that agree in the first (t−2) iterations
are grouped together; that is, all products of the form
{zt−1,k = Ãℓzt−2,k′}, where 1 ≤ k′ ≤ N t−2 and Ãℓ ∈
1
λ1
Dm. Reindexing from k′ → k and summing:

E [Rt] =
1

N t−2
v⊤0

[∑
k

zTt−2,k

{
1

N

N∑
ℓ=1

ÃT
ℓ BÃℓ

}
zt−2,k

]
v0

Using Lemma 10, B ⪯ v2∗B
(0), where B(0) = (I−A)2.

Then the inner sum can be upper bounded using G(1) =
E
[
ĀB(0)Ā

]
, for Ā ∼ 1

λ1
Unif(Dm):

E [Rt] ≤
v2∗

N t−2
v⊤0

Nt−2∑
k=1

zTt−2,kG
(1)zt−2,k

 v0

Using Lemma 4 to upper bound G(1) ⪯ B(1):

E [Rt] ≤ v2∗ ·
1

N t−2
v⊤0

[∑
k

zTt−2,kB
(1)zt−2,k

]
v0

Where B(1) commutes with A and is defined by the
spectrum

{
η
(1)
i

}
in (36). This process is repeated a total

of t − 1 times, yielding the desired matrix B(t−1). At
each unfolding step, B(τ−1) is updated to B(τ) with the
eigenvalue dynamics η

(τ−1)
i → η

(τ)
i described by (36).

Lemma 6. Let η(t)i be defined according to the recursion
in (36). Then:

t−1∑
τ=0

η
(τ)
i ≤

(
n

n−m

)(
1

1−∆2

)
(47)

Proof : Using (36), we recall the definition of η(t)i :

η
(t)
i = ciη

(t−1)
i + ω1η

(t−1)
∗ (1−∆i)

2

= ciη
(t−1)
i + ω1(1−∆i)

2 max
i

η
(t−1)
i

Using Lemma 7, we can bound the sum:
t−1∑
τ=0

η
(τ)
i ≤

t−1∑
τ=0

(
max

i
ci + ω1(1−∆2

i )
)τ

≤
t−1∑
τ=0

cτ∗ ≤
(

1

1− c∗

)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 



where c∗ = maxi ci + ω1(1 −∆2
i ) ≤ ∆̃2

2. Using ∆̃2
2 =

(1− m
n )∆2 + m

n , we arrive at the target bound:

t−1∑
τ=0

η
(τ)
i ≤ 1

1− c∗
≤ 1

1−
(
1− m

n

)
∆2 − m

n

≤ 1(
1− m

n

)
(1−∆2)

≤
(

n

n−m

)(
1

1−∆2

)
Lemma 7. Define η

(t)
i by the recursion (36). Then:

η
(t)
i ≤

(
max

i
ci + ω1(1−∆2

i )
)t

, 2 ≤ i ≤ n (48)

Proof : Use induction. For the base case (t− 1):

η
(1)
i = ciη

(0)
i + ω1(1−∆i)

2η
(0)
∗

≤
(
max

i
ciη

(0)
i + ω1(1−∆i)

2η
(0)
∗

)
≤
(
max

i
ci + ω1(1−∆i)

2
)
η
(0)
∗

Using the initial condition η
(0)
∗ = 1 proves the

base case. For the induction step, we assume η
(t)
i ≤(

maxi ci + ω1(1−∆i)
2
)t
, 2 ≤ i ≤ n. Then:

η
(t+1)
i = ciη

(t)
i + ω1(1−∆i)

2η
(t)
i∗

≤
(
max

i
ciη

(t)
i + ω1(1−∆i)

2η
(t)
i∗

)
≤
(
max

i
ci + ω1(1−∆i)

2
)
η
(t)
i∗

≤
(
max

i
ci + ω1(1−∆i)

2
)t+1

Lemma 8. Let K ⊂ [n], |K| = m and let PK =∑
k∈K eke

⊤
k be the projector onto the coordinates in K.

Then, with N =
(
n
m

)
:

1

N

∑
K⊂[n]
|K|=m

PK =
(m
n

)
I (49)

Lemma 9. Let K ⊂ [n], |K| = m and let PK =∑
k∈K eke

⊤
k be the projector onto the coordinates in K.

Let Q ∈ Rn×n be a PSD matrix. Then with N =
(
n
m

)
:

1

N

∑
K⊂[n]
|K|=m

PKQPK = ω1

[
n∑

ℓ=1

PℓQPℓ

]
+ ω2Q (50)

where ω1 =
(

n−m
n−1

) (
m
n

)
and ω2 =

(
m−1
n−1

) (
m
n

)
.

Lemma 10. Let B ∈ Rn×n be a PSD matrix. Let b∗ =
maxℓ(e

⊤
ℓ Beℓ). Then for any x ∈ Rn:

x⊤

(
n∑

ℓ=1

PℓBPℓ

)
x ≤ b∗⟨x, x⟩ (51)

REFERENCES

[1] J. Dean and L. A. Barroso, “The tail at scale,” Communications
of the ACM, vol. 56, no. 2, pp. 74–80, 2013.

[2] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Comput-
ing large linear transforms distributedly using coded short dot
products,” Advances In Neural Information Processing Systems,
vol. 29, 2016.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ram-
chandran, “Speeding up distributed machine learning using
codes,” IEEE Transactions on Information Theory, vol. 64, no. 3,
pp. 1514–1529, 2017.

[4] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multipli-
cation,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[5] S. Dutta, H. Jeong, Y. Yang, V. Cadambe, T. M. Low, and
P. Grover, “Addressing unreliability in emerging devices and non-
von Neumann architectures using coded computing,” Proceedings
of the IEEE, vol. 108, no. 8, pp. 1219–1234, 2020.

[6] P.-G. Martinsson and J. A. Tropp, “Randomized numerical linear
algebra: Foundations and algorithms,” Acta Numerica, vol. 29,
pp. 403–572, 2020.

[7] S. Li, S. Avestimehr et al., “Coded computing: Mitigating fun-
damental bottlenecks in large-scale distributed computing and
machine learning,” Foundations and Trends® in Communications
and Information Theory, vol. 17, no. 1, pp. 1–148, 2020.

[8] H. Jeong, A. Devulapalli, V. R. Cadambe, and F. P. Calmon,
“ϵ-approximate coded matrix multiplication is nearly twice as
efficient as exact multiplication,” IEEE Journal on Selected Areas
in Information Theory, vol. 2, no. 3, pp. 845–854, 2021.

[9] M. Hardt and E. Price, “The noisy power method: A meta
algorithm with applications,” Advances in neural information
processing systems, vol. 27, 2014.

[10] P. Xu, B. He, C. De Sa, I. Mitliagkas, and C. Re, “Accelerated
stochastic power iteration,” in International Conference on Arti-
ficial Intelligence and Statistics. PMLR, 2018, pp. 58–67.

[11] Z. Xu and P. Li, “Faster noisy power method,” in International
Conference on Algorithmic Learning Theory. PMLR, 2022, pp.
1138–1164.

[12] Q. Lei, K. Zhong, and I. S. Dhillon, “Coordinate-wise power
method,” Advances in Neural Information Processing Systems,
vol. 29, 2016.

[13] S. Shin, H. Zhao, and I. Shomorony, “Adaptive power method:
Eigenvector estimation from sampled data,” in International
Conference on Algorithmic Learning Theory. PMLR, 2023, pp.
1387–1410.

[14] E. Oja, “Simplified neuron model as a principal component
analyzer,” Journal of mathematical biology, vol. 15, pp. 267–
273, 1982.

[15] O. Shamir, “A stochastic PCA and SVD algorithm with an
exponential convergence rate,” in International conference on
machine learning. PMLR, 2015, pp. 144–152.

[16] P. Jain, C. Jin, S. M. Kakade, P. Netrapalli, and A. Sidford,
“Streaming PCA: Matching matrix Bernstein and near-optimal
finite sample guarantees for Oja’s algorithm,” in Conference on
learning theory. PMLR, 2016, pp. 1147–1164.

[17] K. Bhatia, A. Pacchiano, N. Flammarion, P. L. Bartlett, and M. I.
Jordan, “Gen-Oja: Simple & efficient algorithm for streaming
generalized eigenvector computation,” Advances in Neural Infor-
mation Processing Systems, vol. 31, 2018.

[18] O. Y. Feng, R. Venkataramanan, C. Rush, R. J. Samworth
et al., “A unifying tutorial on approximate message passing,”
Foundations and Trends® in Machine Learning, vol. 15, no. 4,
pp. 335–536, 2022.

[19] R. Rossetti, B. Nazer, and G. Reeves, “Linear opera-
tor approximate message passing (OpAMP),” arXiv preprint
arXiv:2405.08225, 2024.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 12,2025 at 18:48:07 UTC from IEEE Xplore.  Restrictions apply. 


