
Journal of Statistical Physics (2024) 191:61
https://doi.org/10.1007/s10955-024-03277-w

Mixing by Statistically Self-similar Gaussian Random Fields

Michele Coti Zelati1 · Theodore D. Drivas2 · Rishabh S. Gvalani3

Received: 28 September 2023 / Accepted: 26 April 2024 / Published online: 15 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
We study the passive transport of a scalar field by a spatially smooth but white-in-time
incompressible Gaussian random velocity field on R

d . If the velocity field u is homoge-
neous, isotropic, and statistically self-similar, we derive an exact formula which captures
non-diffusive mixing. For zero diffusivity, the formula takes the shape of E ‖θt‖2Ḣ−s =
e−λd,s t‖θ0‖2Ḣ−s with any s ∈ (0, d/2) and λd,s

D1
:= s( λ1

D1
− 2s) where λ1/D1 = d is the

top Lyapunov exponent associated to the random Lagrangian flow generated by u and D1 is
small-scale shear rate of the velocity. Moreover, the mixing is shown to hold uniformly in
diffusivity.

Keywords Mixing · Scalar transport · Stochastic flows · Turbulence · Transport noise

1 Passive Scalar Transport by Gaussian Random Fields

We study passive scalar θκ
t (x) : R+ × R

d → R transport with diffusivity κ ≥ 0 on (t, x) ∈
R

+ × R
d

dθκ
t + dut ◦ ∇θκ

t = κ�θκ
t dt + d ft , (1)

θκ
t |t=0 = θ0, (2)ˆ

Rd
θ0dx = 0, (3)
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Fig. 1 Snapshots in space at various times of a white-in-time Gaussian random velocity

where ut := u(x, t) is a white-in-time, incompressible Gaussian random field with mean
and covariance

E

[
ui (x, t)

]
= 0, (4)

E

[
ui (x, t)u j (x ′, t ′)

]
= Di j (x, x ′)δ(t − t ′), (5)

We shall consider random fields which are homogeneous and divergence-free

Di j (x, x ′) := Di j (x − x ′), (6)

∂xi D
i j (x, x ′) = ∂x j D

i j (x, x ′) = 0. (7)

For visualization of a Gaussian velocity whose covariance mimics inertial range turbulence,
see Fig. 1.

The homogenous Gaussian forcing ft := f (x, t) is taken independent and defined by the
covariance

E
[
f (x, t) f (x ′, t ′)

] = F(x − x ′)δ(t − t ′). (8)

Equation (1) is interpreted in the Stratonovich sense (denoted by ◦). The Itô form of equation
(1) reads

dθκ
t + dut · ∇θκ

t = 1
2D(0) : ∇ ⊗ ∇θκ

t dt + κ�θκ
t dt + d ft , (9)

θκ
t |t=0 = θ0. (10)

The setup is called the Kraichnan model [7, 14, 23], reviewed in the wonderful lecture notes
of Gawȩdzki [17–19]. The velocity field can be written concretely as

dut (x) =
∞∑
n=0

σ (n)(x)dW (n)
t , σ (n)(x) := √

λnen(x), (11)

whereW (n)
t are independent one-dimensional Brownian motions and where λn and en(x) for

n = 0, 1, 2, . . . are the eigenvalues and eigenfunctions of the positive, trace-class operator
with kernel D(x − x ′) acting on L2(Rd ,Rd). The kernel D can be represented by

Di j (x − x ′) =
∞∑
n=0

σ
(n)
i (x)σ (n)

j (x ′). (12)

Here the σ (n) are divergence-free vector fields since D is divergence-free in each index. We
will consider a model of the viscous–convective range for the scalar in which the velocity
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if Lipschitz, the so-called Batchelor regime for the model. The rough version of the model,
mimicking a turbulent inertial range, has been a topic of a great deal of study [5, 27,
28]. See also discussion in [12, 13] regarding the effects of molecular fluctuations on the
phenomenology of scalar advection below the viscous–convective range. In this work, we
will specialize our covariance even further

Definition 1 [Self-similar isotropic covariance]We say D is self-similarly isotropic if it takes
the form

D(0) − D(r) = D1

[
I +

(
2

d − 1

) (
I − r̂ ⊗ r̂

)] |r |2 (13)

for some constant.1 D1 > 0 and D(0) = D0 I for D0 > 0.

Example 1 A prototypical example of a self-similarly isotropic random field arises in the
following context. Consider a Gaussian field defined by the covariance

Di j (r) = D̄0

ˆ
Pi j (k)

(|k|2 + m2)(d−ζ )/2
eik·rdk (14)

where ζ > 2. The constant m is an infrared cutoff for the velocity and Pi j is the projection
onto the divergence-free subspace. At short distances, one can compute that

D0δ
i j − Di j (r) = D1

[
δi j +

(
2

d − 1

) (
δi j − r̂ i r̂ j

)]
r2 + O((m|r |)2), (15)

where

D0 = D0

m2

d − 1

d(4π)d/2�
( d+2

2

) , D1 = D0
d − 1

(d + 2)(4π)d/2�
( d+2

2

) . (16)

Thus, taking the infrared limit m → 0 gives a self-similarly isotropic random field.

The forcing in (1) is also represented by a statistically independent collection of one-
dimensional independent Brownian motions {B(k)

t }k∈N and of scalar functions {q(k)}k∈N,
as

d ft (x) =
∞∑
k=0

q(k)(x)dB(k)
t , q(k)(x) := √

μkuk(x), (17)

where B(k)
t are independent Brownian motions and where μk and uk(x) for k = 0, 1, 2, . . .

are the eigenvalues and eigenfunctions of the positive, trace-class operator with kernel F(x−
x ′) acting on L2(Rd ,Rd). We denote averages over the random velocity and the forcing by
E[·].

In this note, we are interested in the mixing properties of Gaussian random fields. In the
context of stochastic transport, exponential mixing estimates have been obtained in [3, 4] for
velocities generated by the stochastic Navier–Stokes equations, in [21] for Kraichnan-type
models with noise satisfying a general Hrmander condition, and in [6, 9] for alternating shear
flows with either random phases or random switching times. On the other hand, deterministic
constructions of exponentially mixing flows can be found in [1, 10, 11, 32]. The purpose of

1 The physical dimensions of D1 are inverse time and it can be regarded as a proxy for the shear rate at small
scales. See the discussion of Kraichnan, e.g. [23, Eq. (3.5)] This shows that D1 is essentially a square of the
fine-scale turbulent shear-rate times a Lagrangian correlation time of the shear rate. We note that our notation
differs slightly different from that used in recent literature which replaces D1 → (d − 1)D1.
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this note is to give a new and simple, yet explicit and quantitative proof of mixing for (1), in
terms of the usual homogeneous Sobolev norms [29], defined on the Fourier side as

‖ϕ‖2
Ḣr =

ˆ
Rd

|ϕ̂(ξ)|2
|ξ |2r dξ, r ∈ R.

Our main result can be stated as follows.

Theorem 1 [Scalar Mixing Identity] Fix s ∈ [0, d/2). Suppose that D is an incompressible,
homogeneous and self-similarly isotropic correlation function (13). Then we have the identity

E‖θκ
t ‖2

Ḣ−s = e−λd,s t‖θ0‖2Ḣ−s + Fs
λd,s

(
1 − e−λd,s t

)
− κ

ˆ t

0
e−λd,s (t−τ)

E‖θκ
τ ‖2

Ḣ1−sdτ (18)

where λd,s := 2D1s(d − 2s) and Fs = ∑∞
k=0 ‖q(k)‖2

Ḣ−s .

We note that the work of Haynes and Vanneste [22] provides a different, spectral theoretic,
argument for the uniform in diffusivity mixing which is implied by our main identity. We
remark also that when m = 0 the homogeneous isotropic Gaussian field on R

d has infinite
energy pointwise and thus the transport equation is not naively well defined. Our identity
should thus be interpreted as a universal limiting relation as m → 0, since all quantities
depend only on differences D0δ

i j − Di j (r) and not D0 itself.

Remark 1 [Intermittency] We note that the quadratic dependence of λd,s on s, suggesting
that mixing is rather intermittent. Intermittency in Batchelor range decay laws for scalar L p

norms with κ > 0 has been discussed by Son [31] who proved for d = 3 that

E‖θκ
t ‖p

L p ∼ Cκe
−γpt γp = D1

4

{
p(6 − p) 0 < p < 3

9 p ≥ 3
. (19)

Note that, curiously, γ4s = λd,s . We expect more generally that

E‖θκ
t ‖p

L p ∼ Cκ,de
−γpt γp = D1

4

{
p(2d − p) 0 < p < d

d2 p ≥ d
. (20)

See Balkovsky and Fouxon [2] for a generalization to the time correlated case.

In particular, when there is no forcing (q(k) ≡ 0), we obtain mixing in expectation
E ‖θt‖2H−s → 0 with an exponentially fast rate, with rate uniform in the diffusivity κ . The
identity (18) may look surprising, since mixing estimates typically require to pay derivatives
on the initial datum to gain decay. This would indeed be the case for a pathwise estimate,
since in general solutions can mix and unmix and hence a time reversal in a Ḣ−s �→ Ḣ−s

would be in conflict with a decay estimate. The point is that (18) is an identity in expectation,
hence the possible realizations in which growth and unmixing happen are averaged out.

2 AdaptedMixing Identity and Proof of Theorem 1

We establishes an exact balance of “mixing norms" tailored in a particular way to the covari-
ance of the velocity field D. A similar identity appeared recently in the work of Coghi and
Maurelli, where it was used to improve the local wellposedness theory for stochastic Euler
with multiplicative noise [8].
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Lemma 1 [Adapted Mixing Identity] Let D be homogenous and divergence-free. Suppose
that a function G : Rd → R can be found to satisfy

(
D(0) − D(r)

) : ∇r ⊗ ∇rG = −λG, (21)

pointwise in space for some λ ∈ R. Then the solution θκ
t of (1) satisfies the following

“mixing" identity,

E 〈θκ
t ,G ∗ θκ

t 〉L2 = e−λt 〈θ0,G ∗ θ0〉L2 + 1

λ
FG

(
1− e−λt

)
− κ

ˆ t

0
e−λ(t−τ)

E〈∇θκ
τ ,G ∗ ∇θκ

τ 〉L2dτ

(22)
where the source is FG := 2

´
Rd G(r)F(r)dr .

Proof of Lemma 1 First, by definition, we have

〈θκ
t ,G ∗ θκ

t 〉L2 =
ˆ
Rd

θκ
t (x)

ˆ
Rd

G(r)θκ
t (x + r)drdx . (23)

Recall (leaving the sum over n implicit) that

dθκ
t + σ (n) · ∇θκ

t dW
(n)
t = 1

2D(0) : ∇ ⊗ ∇θκ
t dt + κ�θκ

t dt + q(n)dB(n)
t ,

d(G ∗ θκ
t ) + G ∗ (σ (n) · ∇θκ

t )dW (n)
t = 1

2D(0) : ∇ ⊗ ∇(G ∗ θκ
t )dt

+ κ�(G ∗ θκ
t )dt + (G ∗ q(n))dB(n)

t .

Thus, by Ito’s product rule, we have

d
(
θκ
t G ∗ θκ

t

) = (G ∗ θκ
t ) dθκ

t + θκ
t d(G ∗ θκ

t ) + d[θκ
t ,G ∗ θκ

t ]
= −(G ∗ θκ

t )σ (n) · ∇θκ
t dW

(n)
t − θκ

t (G ∗ (σ (n) · ∇θκ
t ))dW (n)

t

+ (G ∗ θκ
t )q(n)dB(n)

t + θκ
t (G ∗ q(n))dB(n)

t

+ 1
2 (G ∗ θκ

t )D(0) : ∇ ⊗ ∇θκ
t dt + 1

2θ
κ
t D(0) : ∇ ⊗ ∇(G ∗ θκ

t )dt

+ κθκ
t �(G ∗ θκ

t ) + κ(G ∗ θκ
t )�θκ

t + σ (n) · ∇θκ
t (G ∗ (σ (n) · ∇θκ

t ))dt .

Upon integrating over space and using the fact that mollification is self-adjoint in L2, we
have

d〈θκ
t ,G ∗ θκ

t 〉L2 = −2〈G ∗ θκ
t , σ (n) · ∇θκ

t 〉L2dW (n)
t + 2〈θκ

t , (G ∗ q(n))〉L2dB(n)
t

+ (D(0) + κ I ) : 〈θκ
t ,∇ ⊗ ∇(G ∗ θκ

t )〉L2

−
ˆ
Rd

ˆ
Rd

θκ
t (x)σ (n)(x) ⊗ σ (n)(x + r) : ∇ ⊗ ∇(G ∗ θκ

t )dxdrdt

+ 2
ˆ
Rd

ˆ
Rd

G(r)F(x, x + r)drdx

= −2〈G ∗ θκ
t , σ (n) · ∇θκ

t 〉L2dW (n)
t + 2〈θκ

t , (G ∗ q(n))〉L2dB(n)
t

+
ˆ
Rd

(D(0) − D(r) + κ I ) : 〈θκ
t (·),G(r)(∇ ⊗ ∇θκ

t )(· + r)〉L2drdt

+ 2
ˆ
Rd

ˆ
Rd

G(r)F(x, x + r)drdx .

Thus, we obtain

d〈θκ
t ,G ∗ θκ

t 〉L2 = −2〈G ∗ θκ
t , σ (n) · ∇θκ

t 〉L2dW (n)
t + 2〈θκ

t , (G ∗ q(n))〉L2dB(n)
t
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+
ˆ
Rd

(D(0) − D(r) + κ I ) : (∇r ⊗ ∇rG)(r)〈θκ
t (·), θκ

t (· + r)〉L2drdt

+ 2
ˆ
Rd

ˆ
Rd

G(r)F(x, x + r)drdx .

In the above calculation, we repeatedly made use of the fact that the σ (n) are divergence-free,
integrated by parts and changed some x to r derivatives. Appealing to the defining equation
(21) for the kernel G, we find

d〈θκ
t ,G ∗ θκ

t 〉L2 = −λ〈θκ
t ,G ∗ θκ

t 〉L2 − 2〈G ∗ θκ
t , σ (n) · ∇θκ

t 〉L2dW (n)
t

+ 2〈θκ
t , (G ∗ q(n))〉L2dB(n)

t + FG + κ〈�θκ
t ,G ∗ θκ

t 〉L2 , (24)

where we have introduced the notation FG from the statement of the lemma. The result
follows upon taking expectation, using the mean zero property of the martingale term and
subsequently integrating. ��

Wenowdemonstrate a solutionG to (21) if it covariance function is self-similarly isotropic.

Lemma 2 Suppose that D is self-similarly isotropic. Then for any s ∈ (0, d/2), the Riesz
potential

G(r) = Is(|r |), Is(ρ) = 1

cd,s

1

ρd−2s , cd,s = πd/222s
�(s)

�((d − 2s)/2)
(25)

solves equation (21) with λ = 2D1s(d − 2s).

Proof of Lemma 2 Wewill prove somethingmore general here by studying instead the covari-
ance

D(0) − D(r) = D1

[
I +

(
ζ

d − 1

) (
I − r̂ ⊗ r̂

)] |r |ζ (26)

with the statement of the lemma following as a corollary with ζ = 2. Let z = |r |. We seek a
radial kernel G(r) := G(z). On such a function, we have

∇r ⊗ ∇rG = ∇r ⊗ (r̂G′(z)) = 1

z
(I − r̂ ⊗ r̂)G′(z) + r̂ ⊗ r̂G′′(z).

Note that (I − r̂ ⊗ r̂) : I = (I − r̂ ⊗ r̂) : (I − r̂ ⊗ r̂) = d − 1 so
(
D(0) − D(r)

) : (I − r̂ ⊗ r̂) = (d − 1 + ζ )D1|r |ζ ,(
D(0) − D(r)

) : r̂ ⊗ r̂ = D1|r |ζ .
Thus we have

(
D(0) − D(r)

) : ∇r ⊗ ∇rG = D1

[
((d − 1) + ζ )zG′(z) + z2G′′(z)

]
zζ−2.

Thus, equating this to −λG, we find that the kernel must solve

z2G′′(z) + ((d − 1) + ζ )zG′(z) + λ

D1
z2−ζG(z) = 0. (27)

We seek a solution of the type G(z) = zα lnβ(z). Demanding the ansatz be a solution, we
require

0 =
[
α2 +

(
d + ζ − 2

)
α + λ

D1
z2−ζ

]
ln2(z) + β

(
d + ζ − 2 + 2α

)
ln(z) + β(β − 1).
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Note that for this ansatz to be a solution, we require β = 0 or β = 1. Thus, we have the cases

(a) If λ = 0, then
α = 2 − d − ζ, β = 0, (28)

giving a statistically conserved quantity.
(b) If β = 0 and λ �= 0 then

ζ = 2, α = −d

2
±

√(
d

2

)2

− λ

D1
, (29)

provided that λ
D1

≤ ( d
2

)2
.

(c) If β = 1 then

ζ = 2, α = −d

2
,

λ

D1
=

(
d

2

)2

. (30)

The stated conclusion follows easily as a special case of (b). ��
Recall the characterization of the Ḣ−s semi-norm, which is a consequence of Plancherel’s

identity:

Lemma 3 [[25, 30]] Let d ≥ 2, s ∈ (0, d/2). Then 〈h, Is ∗ h〉L2 = ‖h‖2
Ḣ−s where Is is the

Riesz potential.

With this, Theorem 1 follows immediately from Lemmas 1, 2 and 3.

2.1 Two-Particle Dispersion

We now show that similar arguments as those used in Lemma 1 can be used to prove a kind
of decay estimate for the law of the two-point Lagrangian flow associated to (1), i.e.

dXt (x) =
∞∑
n=0

σ (n)(Xt (x)) ◦ dW (n)
t ,

dXt (y) =
∞∑
n=0

σ (n)(Xt (y)) ◦ dW (n)
t , (31)

with X0(x) = x, X0(y) = y. Since the velocity field is spatially homogeneous, we need only
study the law μt = Law(Rt (r)) of the separation between particles Rt (r) = Xt (x) − Xt (y)
with r = x − y. Using the spatial homogeneity of the velocity field u, one can check that μt

is a solution of the following PDE

∂tμt = (D(0) − D(r)) : ∇r ⊗ ∇rμt , (32)

with μ0 = δr . Given the above characterisation of μt , we have the following result.

Proposition 1 Assume there exists a G as in the statement of Lemma 1. Then, we haveˆ
Rd

G(r̄) dμt (r̄) = e−λtG(r) . (33)

Proof The proof follows directly by testing (32) with G, integrating by parts using the fact
that D is divergence-free, and then using the definition of G. ��
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If D is self-similarly isotropic, in view of Lemma 2, this means that for any s ∈ (0, d/2), we
have

E[|Xt (x) − Xt (y)|2s−d ] = e−λd,s t |x − y|2s−d , λd,s/D1 = 2s(d − 2s). (34)

Thus, we obtain exact decay laws for (inverse) particle dispersion, capturing the average
dispersion. In the case s = 0, this relation becomes the statistical conservation lawE[|Xt (x)−
Xt (y)|−d ] = |x − y|−d derived in the works [15, 33]. This fact can be understood as akin to
the statement that in a given, linear, isotropic and incompressible velocity field, the averageffl
Sd−1 |Xt (x) − Xt (x + r)|−ddω(r̂) is a constant of motion. See the work of Frishman et al

[16].

Remark 2 [Connections to large deviations approach] Note that the quadratic dependence of
themixing rateλd,s on s can be explained by the time-asymptotic behaviour of the distribution
of finite-time stretching factor h which is defined as

h(t) = 1

t
ln

|Xt (x) − Xt (y)|
|x − y| . (35)

It was observed in [2] that if there is enough decorrelation in time the above quantity can be
thought of as a sum of i.i.d random variables and its law therefore satisfies a large deviations
principle in the limit t → ∞. By formal computation, one can check that

E|Xt (x) − Xt (y)|m ∼ eF(m)t , (36)

where F is the Legendre transform of the rate function associated to the LDP. It follows that
F(2s−d) ∼ λd,s . Furthermore, for the Kraichnanmodel F is known to be quadratic (see [18,
Section 2.4.3]). We refer the reader to [22, Section II] and [20] where this is discussed in
more detail.

3 Top Lyapunov Exponent in the KraichnanModel

In this section, we explicitly compute the leading Lyapunov exponent of the Lagrangian flow
associated to (1). This expression was first derived by Le Jan in [26] in his study of isotropic
Brownian flows. For completeness, we present this calculation below.

Proposition 2 Consider the Lagrangian flow ϕt (x) associated to (1), i.e. the following
Stratonovich SDE

dϕt (x) =
∞∑
n=0

σ (n)(ϕt (x)) ◦ dW (n)
t , (37)

with ϕt (x) = x. Furthermore, assume that D is self-similarly isotropic in the sense of
Definition 1. Then

log(‖Dϕt‖) = dD1t + Mt , (38)

where Mt is the martingale defined by (46). The top Lyapunov exponent, defined almost
surely, is

λ1 = lim
t→∞

log(‖Dϕt‖)
t

= dD1. (39)

Remark 3 [Log-normal statistics of tracer separations] Equation (38) shows that ‖Dϕt‖ fol-
lows a log-normal distribution. This fact is well-known and in fact goes back to Kraichnan’s
seminal work [24]. It is here derived as a consequence of themartingale central-limit theorem.

123
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Proof Let us define by At,x := (Dϕt )(x). It is straightforward to check that

dAt,x =
∞∑
n=0

(Dσ (n))(ϕt (x)) · At,xdW
(n)
t . (40)

Indeed, since σ (n) are divergence-free, the Itô and Stratonovich form of SDE (37) coincide.
Pick v ∈ S

d−1 and define vt,x := At,xv. We then have that

dvt,x =
∞∑
n=0

(Dσ (n))(ϕt (x)) · vt,x dW
(n)
t . (41)

Applying Itô’s formula, we obtain

d|vt,x |2 =
∞∑
n=0

|(Dσ (n))(ϕt (x)) · vt,x |2 dt + 2
∞∑
n=0

〈vt,x , (Dσ (n))(ϕt (x)) · vt,x 〉 dW (n)
t .

(42)

Note that the drift term in the above expression can be simplified as follows

∞∑
n=0

|(Dσ (n))(ϕt (x)) · vt,x |2 =
∞∑
n=0

d∑
i=1

∣∣∣∣∣∣
d∑
j=1

∂ jσ
(n)
i v

j
t,x

∣∣∣∣∣∣

2

=
∞∑
n=0

d∑
i=1

d∑
j,k=1

∂ jσ
(n)
i ∂kσ

(n)
i v

j
t,xv

k
t,x

=〈vt,x ,C · vt,x 〉 , (43)

with the matrix C given by C jk(x) := ∑d
i=1 ∂x j ∂x ′

k
Dii (x − x ′)

∣∣∣
x=x ′ . Using the expression

for D given by (13), we obtain ∂x j ∂x ′
k
Dii (x − x ′) = 2D1δ jk

(
d+1
d−1 − 2

d−1δik

)
. Using the

above, (42) reduces to

d|vt,x |2 = 2D1(d + 2)|vt,x |2 dt + 2
∞∑
n=0

〈vt,x , (Dσ (n))(ϕt (x)) · vt,x 〉 dW (n)
t . (44)

Applying Itô’s formula to the above expression again, we arrive at

d log |vt,x | =1

2
d log |vt,x |2 = D1(d + 2) dt − 1

|vt,x |4
∞∑
n=0

∣∣∣〈vt,x , (Dσ (n))(ϕt (x)) · vt,x 〉
∣∣∣
2
dt + dMt ,

(45)

where the martingale term Mt is given by

Mt =
ˆ t

0

1

|vt,x |2
∞∑
n=0

〈vt,x , (Dσ (n))(ϕt (x)) · vt,x 〉 dW (n)
t . (46)

We first simplify the drift term in (45) as follows

∞∑
n=0

∣∣∣〈vt,x , (Dσ (n))(ϕt (x)) · vt,x 〉
∣∣∣
2 =

∞∑
n=0

∣∣∣∣∣∣
∑

j,k=1d

vkt,x∂ jσ
(n)
k v

j
t,x

∣∣∣∣∣∣

2

=
∞∑
n=0

d∑
j,k,�,m=1

vkt,xv
�
t,x∂ jσ

(n)
k ∂�σ

(n)
m v

j
t,xv

m
t,x .
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Note now that
∑∞

n=0 ∂ jσ
(n)
k ∂�σ

(n)
m = ∂x j ∂x ′

�
Dkm(x − x ′)

∣∣∣
x=x ′ .Using (13) again, we obtain

∂x j ∂x ′
�
Dkm(x − x ′) =2D1

(
δkmδ j�

(
d + 1

d − 1

)
− 1

d − 1
(δk jδm� + δmjδk�)

)
. (47)

From (45), we obtain d log |vt,x | = D1d dt + dMt , whence (38) follows. For (39), we note
that

E(M2
t ) =

∞∑
n=0

ˆ t

0
E

(
1

|vt,x |4 |〈vt,x , (Dσ (n))(ϕt (x)) · vt,x 〉|2
)

dt = 2D1t . (48)

It follows then that t−1Mt is a supermartingale, and so by Doob’s martingale convergence
theorem and the above bound, it converges almost surely to 0. This clearly implies (39), since
for any v ∈ S

d−1, we have

lim
t→∞

1

t
log |vt,x | = D1d .

This completes the proof. ��
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