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Abstract

Self-driving and automated vehicles rely on a comprehensive understanding of their surroundings and one another to
operate effectively. While the use of sensors may allow the vehicles to directly perceive their environments, there are
instances where information remains hidden from a vehicle. To address this, vehicles can transmit information
between each other, enabling over-the-horizon awareness. We create a Robot Operating System simulation of vehicle-
to-everything communication. Then, using two real-life electric vehicles equipped with global positioning systems and
cameras, we aggregate time, position, and navigation information into a central database on a roadside unit. Our model
uses an image classification deep learning model to detect obstacles on the road. Next, we create a web-based graphical
user interface that automatically updates to display the vehicles and obstacles from the database. Finally, we use an
occupancy grid to predict vehicle trajectories and prevent potential collisions. Our deep learning model has a precision-
recall score of 0.995 and our system works across many devices. In the future, we aim to recognize a broader range of
objects, including pedestrians, and use multiple roadside units to widen the scope of the model.
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1. Introduction

To combat the eighth leading cause of death globally and the leading cause of death in the United States of America for
ages 1-54 (CDC 2023), various parties, including researchers, concerned guardians, government officials, and
scientists, have been actively involved in enhancing road quality and safety measures. This includes implementing
more speed checks to ensure compliance with speed limits, fostering interactions with law enforcement (IEEE 2023),
and advancing autonomous self-driving technology.

One significant technology that has emerged to bolster road safety is Vehicle-To-Everything (V2X) communication
(Siegel et al. 2017). V2X enables wireless connection between and among vehicles and other road elements such as
pedestrians, cones, buildings, and signs. V2X communication creates an accurate digital representation of the road by
integrating data from several vehicles into one cohesive environment (Zhou 2020).

We develop a scalable V2X communication system with the capability to predict and display various vehicular risks,
including collisions, various objects, and traffic conditions. We implement this model in two modified Polaris Gem e2
electric vehicles, referred to as Autonomous Campus Transport (ACTor) vehicles: ACTor 1 and ACTor 2. These
vehicles are sponsored by MOBIS, US Army GVSC, NDIA, DENSO, SoarTech, Realtime Technologies, Veoneer,
Dataspeed, GLS&T, and LTU. Each vehicle is equipped with essential components for automated driving, including a
drive-by-wire system, Mako G-319 Camera, 2-dimensional and 3-dimensional Light Detection and Ranging (LiDAR)
sensors, and two Swift Piksi Multi Global Navigation Satellite System Modules. The Swift Piksi module uses multiple
satellite constellations to acquire positioning data that is accurate to 1 centimeter. For our research, we utilize Latitude,
Longitude, and Heading (LLH) values provided by the Swift Piksi modules. Both ACTor 1 and ACTor 2 are equipped
with computers to process this data.

As both vehicles are equipped to collect data from their environment, our goal is to create a model that allows them to
communicate these data between one another via an intermediary capable of storing and observing data. Utilizing a
roadside unit (RSU), both vehicles are able to establish a secure connection to a central server where information can
be received, stored, and disbursed. Our RSU consists of a Raspberry Pi 4 Model B minicomputer, 12V battery, and
12V-5V adapter, as seen in Figure 1. In the proceeding sections of this paper, we discuss the connectivity between our
vehicles and the RSU, highlighting its scalability. Additionally, we emphasize the aggregation, analysis, display, and
transmission of information regarding object awareness and trajectory planning. Beyond simulation, we conduct our
experimentation and evaluation process at Lawrence Technological University (LTU) Parking Lot H located in
Southfield, Michigan, which provides a suitable two-lane course.

Figure 1. Roadside Unit Setup
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To meet our goals of effective communication, we propose a V2X communication system containing the RSU, object
detection model, and a database to transmit information from ACTor 1 to the Roadside Unit (RSU) to ACTor 2 and
also vice-versa using Wireless Access in Vehicular Environments (WAVE) technology. This model receives visual
information from the camera in the vehicle to detect orange traffic cones. We also predict a trajectory for each vehicle
within an ensured remote speed limit. We then use this information to populate an occupancy grid, displaying both
vehicles, their predicted trajectories, and detected objects. Finally, we program and host a web graphical user interface
(GUI) to display live-updating markers visually for the vehicles and detected objects. The culmination of these various
elements ensures the reliability of a comprehensive V2X system.

2. Literature Review

V2X technology has allowed for more rapid and wide-spread development of Intelligent transportation systems (ITS)
\cite {Chen et al. 2017} to allow for an interconnected society by wireless network. ITS can therefore predict and adapt
to dangerous situations, dynamic events, and traffic management (Shaheen and Finson 2013}. V2X is projected to be
highly important in the future of roadways (Zhou et al. 2020). It is comprised of vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I), and vehicle-to-network communication (V2N) (MacHardy et al. 2018}.

V2V communication involves the transmission of information between vehicles. This communication enables vehicles
to exchange data related to collision detection and congestion reduction. Dedicated Short-Range Communications
(DSRC) technology is commonly used for secure and reliable information transmission in V2V communication.
DSRC offers features such as high accuracy, low latency, and specific bandwidth allocation for efficient V2V
communication (Zorkany et al. 2020).

DSRC is moreover utilized in V2I communication, which primarily focuses on traffic management. A WAVE system
is commonly employed for V2I communication. The WAVE system consists of three main components: an RSU, an
onboard unit to ensure stable connections between vehicles and infrastructure, and service channels for bidirectional
communication (Milanes et al. 2012}. Through V21 communication, vehicles can share and gather data from their
surroundings, including road layout information and proximity between vehicles. This enables them to avoid collisions
and anticipate potential traffic risks (Milanes et al. 2012). V2V and V2I communication are often closely integrated in
the development of ITS.

Lastly, V2N communication is the connection between a vehicle and a server. The coordination of V2N and V21
communication systems usually allows for safe and more accurate development of a V2V communication system
(Dein et al. 2020). (10 font)

3. Methods

We begin by explaining our virtual simulation of V2X technology. Then, we shift our focus to a real-time system with
the RSU and ACTor vehicles. We first overview the software architecture. Afterwards, we expand on the individual
software components.

3.1 Gazelle Simulation
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Access to the hardware necessary for development and testing, like the ACTor vehicles, is not always available. In
order to test new implementations of V2X and other software systems quickly and efficiently, aspects of the project are
modeled in a simulated environment. Using Python and Robot Operating System (ROS) (ROS 2023), two vehicles are
simulated on the selected experimental test course in the simulator Gazelle. Gazelle is a 2-dimensional lightweight
vehicle simulator in development at LTU. The simulator is designed to reflect the architecture and usage of the ACTor
vehicles, including sensors like a camera, LIDAR, and GPS receiver. It supports the simulation of multiple vehicles,
making it ideal for this project. Two vehicles are simulated to follow a lane on the Lot H test course and report their
relevant information, like position and heading (odometry), to the virtual RSU, which handles collision avoidance and
correction.

Each simulated vehicle is comprised of three ROS nodes and their interactions, as shown in Figure 2. One node is
responsible for vehicle steering, which is done by detecting and responding to the lane lines. The node then publishes
its calculated yaw value to be received by the controller node. The controller node handles vehicle movement and
communication with the RSU. When the RSU predicts a crash it informs the controller node, and the vehicle responds
accordingly. The final node is responsible for detecting the red marker on the outside of the lane, which acts as a lap
indicator. The RSU node collects each vehicle's GPS location and odometry information and determines whether a
crash is about to happen. If two vehicles are on course to collide, the RSU stops the vehicle that would collide into the
other for a moment, before allowing it to move again. This node, in conjunction with the controller nodes of active
vehicles, effectively prevents and corrects collisions before they happen.

[robotl

Jrobotl/lane_blob_detect
Irobotl/red_detect

frobotl/cmd_vel

/robot1/gps

/robotl/camera/image_raw

/robot1/camera/image_raw [robot1/vehicle_controller

robot1/stop
[robot1/stop

/gazelle_sim_node

Jrobot1/gps

Jrobot1/angle

/robot1/red_detected

Figure 2. ROS Node architecture of a single vehicle in the V2X Gazelle Simulation

In Figure 3, we show a snapshot of the simulation in action, with the two vehicles depicted in green and blue. We also
display the sample calculations for collision detection in the bottom left corner.

Playing Field
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Figure 3. Aerial View of LTU's Lot H Test Course in Gazelle.

3.2 Real-Time Vehicle System
We enable remote access on the Raspberry Pi. We use Secure Shell Protocol (SSH) for remote login and command-line
execution.

Our devices are connected to the RSU Wireless Fidelity (Wi-Fi) network. We give the RSU an internet connection as
well as an external Wi-Fi adapter to set up a hot spot. Devices then connect to the RSU through the hotspot.

We use ROS for our robot software development needs and for streamlined communication between devices. ROS
architecture uses a publisher-subscriber system, so that nodes can publish, or send, messages to a topic (ROS 2023).
Alternatively, they can subscribe to, or receive, messages from a topic for further use in their scripts.

Our ROS Master Uniform Resource Identifier comes from the RSU. All devices in the network use their own Internet
Protocol (IP) addresses as ROS host names. We also use C++ and Python to create custom ROS messages, source files,
and scripts.

3.2.1 Software Architecture
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Figure 4. ROS Node architecture of the real-time vehicle system

Our ROS architecture with our nodes and topics is shown in Figure 4. We elaborate on the most important aspects of
the architecture in the following paragraphs.

We create a Time, Position, and Navigation (TPN) node which subscribes to the Latitude, Longitude, and Heading
(LLH) topic from the Piksi Global Positioning System (GPS) and the Vehicle Twist topic from the drive-by-wire
system. Through a system of callback functions, the C++ program packages the current LLH, linear velocity, and yaw
rate of each vehicle as a class, which is then converted to a custom ROS message type, called Position, upon
publishing. We show sample C++ code to accomplish this task in Figure 5. We publish this message to the ROS topic
named GPS Chatter to the RSU. This can be used to accurately live-update the position of the vehicle and calculate an
estimated trajectory using the heading and velocity parameters of the message.
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void HelloTPN::positionCallback{const libsbp_ros_msgs::MsgPosLlh::ConstPtr& msg)
{

libsbp_ros_msgs::MsgPosLlh llh = *msg;

this->pos.lat = llh.lat;

this->pos.lon = 1llh.lon;

ROS_ERROR_STREAM ("positionCallback -- lat: " << lat << " lon: " << lon);
}

void HelloTPN::headingCallback (const libsbp_ros_msgs::MsgBaselineHeading: :ConstPtr& msqg)
{

libsbp ros_msgs::MsgBaselineHeading baseline_heading = *msg;

this->pos.heading = baseline heading.heading / 1000;

ROS_ERROR_STREAM ("headingCallback -- heading: " << heading);

}

void HelloTPN::velocityCallback{const sensor_msgs::Twist::ConstPtré& msg) {
this->pos.velocity = msg.linear.x;
ROS_ERROR_STREAM ("velocityCallback -- wvelocity: " << velocity);

Figure 5. Packaging LLH and velocity data inside TPN node

Additionally, we train a You Only Look Once Version 8 (YOLOvVS8) (Jocher et al. 2023, Kaddis et al. 2023) cone
detection model based on Blue-Green-Red (BGR) images captured using the Camera Raw BGR Image node. Then, we
develop a YOLOvVS ROS Package with a cone detection node that subscribes to the Raw Camera BGR Image topic. It
subsequently publishes a list of boundary boxes around the cones and confidence values using a custom message type
called BBoxes. Afterwards, we publish this message to the Predictions topic making the message visible to the RSU
and all of the vehicles connected to the network.

On the Raspberry Pi, we develop a V2X database using the MariaDB client-server. It has two tables: Client Vehicles
and Identified Objects. We create a V2X node which subscribes to the GPS Chatter and Predictions topics, and then
updates the database with the most recent vehicle and cone information. Additionally, we use Node.js, HTML,
Socket.IO, and Google Maps Application Programming Interface (API) to generate a web-based GUI, which
automatically updates based on information from the database.

We also create a remote speed limit node on the RSU that publishes a Float32 value to the Speed topic. Finally, in our
vehicles, we create a Trajectory Prediction package, which has nodes that subscribe to the GPS Chatter, Predictions,
and Speed topics. It ultimately uses these topics to predict vehicle trajectories and generate occupancy grids of vehicles
and objects on the test course.

3.2.2 Time, Position, and Navigation

Although we use two vehicles, our TPN node is designed to be scaled to many vehicles on the road. In our TPN node
launch files, we prefix our GPS Chatter topic names with "Actor1" and "Actor2" to create topics for each vehicle to
publish their unique Position data to the RSU. Each vehicle needs a designated numerical ID in order to maintain
accurate vehicle predictions and maintains the database's structure.

3.2.3 Cone Detection Model

At 3:00 PM on a moderately cloudy day, we capture 312 images with cones and 100 images without cones. We use
RoboFlow to manually identify the cones, or lack thereof, in each image. We also use to RoboFlow to augment our
images by randomly applying rotation of up to 45 degrees in either direction and adding noise. Next, we randomly
create a data set with our original and augmented images with a 70% training, 15% testing, and 15% validation split.
We train our model with the YOLOvS8 small model over 100 epochs, as seen in Figure 6.
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Figure 6. Training using the YOLOvVS8 small model

With consistently cloudy weather conditions, our model has 85-95% confidence that it detects cones. We obtain this
value over 50 trials using YOLOVS's built-in threshold confidence, designed to eliminate false negatives (Jocher et al.
2023). In rainy weather conditions, our model has 40-60% confidence. Lastly, our model detects cones with ~80%
confidence after sunset. Sample output from our model in normal, rainy, and dark conditions is displayed in Figure 7.

Figure 7. Sample cone detection in broad daylight, rainy weather, and after sunset

3.2.4 Data Aggregation and Visualization
We configure a cursor through the PyMySQL module in Python to update the database in real-time through a ROS
program.

The Client Vehicle Table uses a unique index for each vehicle. These are the same indices from the TPN designation.
The table stores the most recent latitude, longitude, heading, speed, and angular velocity (yaw rate) values per vehicle.

On the other hand, the Identified Objects Table generates a unique index for each object detected. It stores the 30 most
recent objects detected using a queue to add and remove objects as necessary. The table stores latitude, longitude, type
of object detected, and the time that the object was detected.

We configure the database to support remote hosting. Then, any vehicle in the RSU network with access to the name,
username, and password may connect to the database.

For the GUI web server, we pull information from the database every 500 milliseconds. We encode ACTor 1 and
ACTor 2 with blue and green markers respectively, and objects with orange markers. Markers are overlaid on a map
with satellite footage from Southfield, MI. Sample output during testing is in Figure 8. The website is temporarily
hosted with the Raspberry Pi's local host on Port 3000. We are able to view the website in real-time on web browsers
during the demos.
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Figure 8. ACTor vehicles and a cone object plotted with Google Maps API

3.2.5 Trajectory Prediction and Visualization

The role of the occupancy grid is to manage intersections. We plot vehicles connected to the RSU and predict their
paths using a simplified version of the Bicycle Model (MathWorks 2023) with inputs for velocity and steering angle.
By calculating the trajectories of various vehicles, the occupancy grid can predict, display, and prevent potential
collisions. An image of the occupancy grid is displayed in Figure 9. The green squares represent sections of the grid
occupied by vehicles, while the yellow square represent their trajectories. Finally, the red squares signify potential
collisions.

T ErrT

SEEERY

Figure 9. Occupancy grid displaying two vehicles in close proximity

We integrate the remote speed limit to ensure vehicles are driving within designated speed limits.

5. Results and Discussion

5.1 Demonstration

As mentioned earlier, Figure 9 depicts an example of the occupancy grid in use. Two vehicles are connected to the
network and populated on the grid. Their paths are predicted using the velocity and steering angle that they report using
the TPN message. A collision is predicted for every square in which the predicted trajectories overlap. Once a collision
is predicted, the system displays simple resolving commands to prevent it. To reserve computational power for other
tasks, vehicles are resolved by time rather than space, meaning the slower moving vehicle is halted, yielding to the
other vehicle. The occupancy grid differentiates between the vehicles and obstacles. When a collision is detected
between a vehicle and an obstacle the vehicle is brought to a stop. This allows each vehicle to use its onboard
capabilities to avoid the obstacle.

We demonstrate our web GUI and occupancy grid in real-time. Here is a video from demonstration day.
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5.2 Quantitative Results

We only trained our YOLOVS model on cones. It detects cones well. The precision-recall score for our model is 0.995.
Our recall-confidence score is approximately 1.0 for a confidence value less than 0.8. Then, it starts to decrease rapidly
to 0.0 at 1.0 confidence. We show these metrics and more in Figure 10. These are the graphs generated by YOLOvVS
evaluating our model's performance.
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Figure 10. Various graphs displaying the success of the deep learning model

5.3 Discussion

Using a local hot spot and Wi-Fi, we can facilitate communication between devices through internet connection to
enable our network. However, to expand our implementation, we will require cloud-based Internet of Vehicles
technology for big data storage, fast processing, and wider scalability (Zhou et al. 2020).

Like Condoluci et al. (2023), we use edge computing, as we do all the calculations related to the occupancy grid on the
vehicles themselves. On the other hand, the goal of the researchers Condoluci et al. (2023) was to improve cellular 5G
V2X communication. However, we opt to demonstrate a proof-of-concept V2X software architecture on our test
course without describing how to connect and disconnect from Wi-Fi on the road.

5.4 Limitations and Future Work

Vehicles encounter obstructions including potholes, road debris, animals, pedestrians, and other vehicles. Although we
train a YOLOvS8 small model to detect cones, we would ultimately like to implement a Segment Anything Model
(Kirillov et al. 2023}.

Moreover, we recognize that static obstacles, such as potholes, may stay on the road for several years. On the other
hand, dynamic obstacles, such as animals or pedestrians, may only be on the road for a few seconds. Instead of a FIFO
data structure, we should eliminate rows from our Object Detection Table based on the amount of time that passes,
varying the amount of time based on the type of object detected. We can also have vehicles with the same LLH
coordinates in the future verify if the object in the database is still there.

Another limitation of our project is that we use one RSU, whereas a stable V2X system should have multiple RSU's.
This way, if one encounters a security breach or runs out of power, there are other RSU's which can take over. Our
project does not consider threats to security as a whole, nor do we evaluate privacy risks. These are all important areas
to focus on in the future. (10 font)
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6. Conclusion

We demonstrate and evaluate a V2X communication system for object awareness and trajectory planning between two
vehicles and a RSU, consisting of a Raspberry Pi and a battery. To accomplish this objective, we build a virtual model
which has multiple vehicles engaging in V2X communication. For our real-time vehicle system, we create a temporary
Wi-Fi hot spot to broadcast TPN and object detection messages to the Raspberry Pi. The Raspberry Pi aggregates the
information in a database to show the objects of interest in a web browser using Google Maps API. We also implement
an occupancy grid to anticipate vehicle trajectories and collisions. We successfully show that a V2X system can
enhance road safety by using sensors from distributed vehicles on the road to pool over-the-horizon information.
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Additional Information
The source code for this paper can be found in the following Github repositories:
e https://github.com/michael-khalfin/tpn_pkg
e https://github.com/michael-khalfin/yolov8ros pkg
e https://github.com/michael-khalfin/v2x_pkg
e  https://github.com/michael-khalfin/v2x_pkg-pi
*  https://github.com/michael-khalfin/v2x_website
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	1. Introduction
	To combat the eighth leading cause of death globally and the leading cause of death in the United States of America for ages 1-54 (CDC 2023), various parties, including researchers, concerned guardians, government officials, and scientists, have been actively involved in enhancing road quality and safety measures. This includes implementing more speed checks to ensure compliance with speed limits, fostering interactions with law enforcement (IEEE 2023), and advancing autonomous self-driving technology.
	One significant technology that has emerged to bolster road safety is Vehicle-To-Everything (V2X) communication (Siegel et al. 2017). V2X enables wireless connection between and among vehicles and other road elements such as pedestrians, cones, buildings, and signs. V2X communication creates an accurate digital representation of the road by integrating data from several vehicles into one cohesive environment (Zhou 2020).
	We develop a scalable V2X communication system with the capability to predict and display various vehicular risks, including collisions, various objects, and traffic conditions. We implement this model in two modified Polaris Gem e2 electric vehicles, referred to as Autonomous Campus Transport (ACTor) vehicles: ACTor 1 and ACTor 2. These vehicles are sponsored by MOBIS, US Army GVSC, NDIA, DENSO, SoarTech, Realtime Technologies, Veoneer, Dataspeed, GLS&T, and LTU. Each vehicle is equipped with essential components for automated driving, including a drive-by-wire system, Mako G-319 Camera, 2-dimensional and 3-dimensional Light Detection and Ranging (LiDAR) sensors, and two Swift Piksi Multi Global Navigation Satellite System Modules. The Swift Piksi module uses multiple satellite constellations to acquire positioning data that is accurate to 1 centimeter. For our research, we utilize Latitude, Longitude, and Heading (LLH) values provided by the Swift Piksi modules. Both ACTor 1 and ACTor 2 are equipped with computers to process this data.
	As both vehicles are equipped to collect data from their environment, our goal is to create a model that allows them to communicate these data between one another via an intermediary capable of storing and observing data. Utilizing a roadside unit (RSU), both vehicles are able to establish a secure connection to a central server where information can be received, stored, and disbursed. Our RSU consists of a Raspberry Pi 4 Model B minicomputer, 12V battery, and 12V-5V adapter, as seen in Figure 1. In the proceeding sections of this paper, we discuss the connectivity between our vehicles and the RSU, highlighting its scalability. Additionally, we emphasize the aggregation, analysis, display, and transmission of information regarding object awareness and trajectory planning. Beyond simulation, we conduct our experimentation and evaluation process at Lawrence Technological University (LTU) Parking Lot H located in Southfield, Michigan, which provides a suitable two-lane course.
	To meet our goals of effective communication, we propose a V2X communication system containing the RSU, object detection model, and a database to transmit information from ACTor 1 to the Roadside Unit (RSU) to ACTor 2 and also vice-versa using Wireless Access in Vehicular Environments (WAVE) technology. This model receives visual information from the camera in the vehicle to detect orange traffic cones. We also predict a trajectory for each vehicle within an ensured remote speed limit. We then use this information to populate an occupancy grid, displaying both vehicles, their predicted trajectories, and detected objects. Finally, we program and host a web graphical user interface (GUI) to display live-updating markers visually for the vehicles and detected objects. The culmination of these various elements ensures the reliability of a comprehensive V2X system.
	2. Literature Review
	V2X technology has allowed for more rapid and wide-spread development of Intelligent transportation systems (ITS) cite{Chen et al. 2017} to allow for an interconnected society by wireless network. ITS can therefore predict and adapt to dangerous situations, dynamic events, and traffic management (Shaheen and Finson 2013}. V2X is projected to be highly important in the future of roadways (Zhou et al. 2020). It is comprised of vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-network communication (V2N) (MacHardy et al. 2018}.
	V2V communication involves the transmission of information between vehicles. This communication enables vehicles to exchange data related to collision detection and congestion reduction. Dedicated Short-Range Communications (DSRC) technology is commonly used for secure and reliable information transmission in V2V communication. DSRC offers features such as high accuracy, low latency, and specific bandwidth allocation for efficient V2V communication (Zorkany et al. 2020).
	DSRC is moreover utilized in V2I communication, which primarily focuses on traffic management. A WAVE system is commonly employed for V2I communication. The WAVE system consists of three main components: an RSU, an onboard unit to ensure stable connections between vehicles and infrastructure, and service channels for bidirectional communication (Milanes et al. 2012}. Through V2I communication, vehicles can share and gather data from their surroundings, including road layout information and proximity between vehicles. This enables them to avoid collisions and anticipate potential traffic risks (Milanes et al. 2012). V2V and V2I communication are often closely integrated in the development of ITS.
	Lastly, V2N communication is the connection between a vehicle and a server. The coordination of V2N and V2I communication systems usually allows for safe and more accurate development of a V2V communication system (Dein et al. 2020). (10 font)
	3. Methods
	We begin by explaining our virtual simulation of V2X technology. Then, we shift our focus to a real-time system with the RSU and ACTor vehicles. We first overview the software architecture. Afterwards, we expand on the individual software components.
	Access to the hardware necessary for development and testing, like the ACTor vehicles, is not always available. In order to test new implementations of V2X and other software systems quickly and efficiently, aspects of the project are modeled in a simulated environment. Using Python and Robot Operating System (ROS) (ROS 2023), two vehicles are simulated on the selected experimental test course in the simulator Gazelle. Gazelle is a 2-dimensional lightweight vehicle simulator in development at LTU. The simulator is designed to reflect the architecture and usage of the ACTor vehicles, including sensors like a camera, LiDAR, and GPS receiver. It supports the simulation of multiple vehicles, making it ideal for this project. Two vehicles are simulated to follow a lane on the Lot H test course and report their relevant information, like position and heading (odometry), to the virtual RSU, which handles collision avoidance and correction.
	Each simulated vehicle is comprised of three ROS nodes and their interactions, as shown in Figure 2. One node is responsible for vehicle steering, which is done by detecting and responding to the lane lines. The node then publishes its calculated yaw value to be received by the controller node. The controller node handles vehicle movement and communication with the RSU. When the RSU predicts a crash it informs the controller node, and the vehicle responds accordingly. The final node is responsible for detecting the red marker on the outside of the lane, which acts as a lap indicator. The RSU node collects each vehicle's GPS location and odometry information and determines whether a crash is about to happen. If two vehicles are on course to collide, the RSU stops the vehicle that would collide into the other for a moment, before allowing it to move again. This node, in conjunction with the controller nodes of active vehicles, effectively prevents and corrects collisions before they happen.
	In Figure 3, we show a snapshot of the simulation in action, with the two vehicles depicted in green and blue. We also display the sample calculations for collision detection in the bottom left corner.
	5. Results and Discussion
	5.1 Demonstration
	As mentioned earlier, Figure 9 depicts an example of the occupancy grid in use. Two vehicles are connected to the network and populated on the grid. Their paths are predicted using the velocity and steering angle that they report using the TPN message. A collision is predicted for every square in which the predicted trajectories overlap. Once a collision is predicted, the system displays simple resolving commands to prevent it. To reserve computational power for other tasks, vehicles are resolved by time rather than space, meaning the slower moving vehicle is halted, yielding to the other vehicle. The occupancy grid differentiates between the vehicles and obstacles. When a collision is detected between a vehicle and an obstacle the vehicle is brought to a stop. This allows each vehicle to use its onboard capabilities to avoid the obstacle.
	We demonstrate our web GUI and occupancy grid in real-time. Here is a video from demonstration day.
	5.2 Quantitative Results
	We only trained our YOLOv8 model on cones. It detects cones well. The precision-recall score for our model is 0.995. Our recall-confidence score is approximately 1.0 for a confidence value less than 0.8. Then, it starts to decrease rapidly to 0.0 at 1.0 confidence. We show these metrics and more in Figure 10. These are the graphs generated by YOLOv8 evaluating our model's performance.
	5.3 Discussion
	Using a local hot spot and Wi-Fi, we can facilitate communication between devices through internet connection to enable our network. However, to expand our implementation, we will require cloud-based Internet of Vehicles technology for big data storage, fast processing, and wider scalability (Zhou et al. 2020).
	Like Condoluci et al. (2023), we use edge computing, as we do all the calculations related to the occupancy grid on the vehicles themselves. On the other hand, the goal of the researchers Condoluci et al. (2023) was to improve cellular 5G V2X communication. However, we opt to demonstrate a proof-of-concept V2X software architecture on our test course without describing how to connect and disconnect from Wi-Fi on the road.
	5.4 Limitations and Future Work
	Vehicles encounter obstructions including potholes, road debris, animals, pedestrians, and other vehicles. Although we train a YOLOv8 small model to detect cones, we would ultimately like to implement a Segment Anything Model (Kirillov et al. 2023}.
	Moreover, we recognize that static obstacles, such as potholes, may stay on the road for several years. On the other hand, dynamic obstacles, such as animals or pedestrians, may only be on the road for a few seconds. Instead of a FIFO data structure, we should eliminate rows from our Object Detection Table based on the amount of time that passes, varying the amount of time based on the type of object detected. We can also have vehicles with the same LLH coordinates in the future verify if the object in the database is still there.
	Another limitation of our project is that we use one RSU, whereas a stable V2X system should have multiple RSU's. This way, if one encounters a security breach or runs out of power, there are other RSU's which can take over. Our project does not consider threats to security as a whole, nor do we evaluate privacy risks. These are all important areas to focus on in the future. (10 font)
	6. Conclusion
	We demonstrate and evaluate a V2X communication system for object awareness and trajectory planning between two vehicles and a RSU, consisting of a Raspberry Pi and a battery. To accomplish this objective, we build a virtual model which has multiple vehicles engaging in V2X communication. For our real-time vehicle system, we create a temporary Wi-Fi hot spot to broadcast TPN and object detection messages to the Raspberry Pi. The Raspberry Pi aggregates the information in a database to show the objects of interest in a web browser using Google Maps API. We also implement an occupancy grid to anticipate vehicle trajectories and collisions. We successfully show that a V2X system can enhance road safety by using sensors from distributed vehicles on the road to pool over-the-horizon information.
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