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Abstract—This research develops, compares, and analyzes both
a traditional algorithm using computer vision and a deep learning
model to deal with dynamic road conditions. In the final testing,
the deep learning model completed the target of five laps for both
the inner and outer lane, whereas the computer vision algorithm
only completed almost three laps for the inner lane and slightly
over four laps for the outer. After conducting statistical analysis
on the results of our deep learning model by finding the p-value
between the absolute error and squared error of the self driving
algorithm in the outer lane and inner lane, we find that our results
are statistically significant based on a two-tailed T test with
unequal variances where the p-value for absolute error is 0.009,
and 0.001 for squared error. Self-driving vehicles are not only
complex, but they are growing in necessity—therefore, finding an
optimal solution for lane detection in dynamic conditions is crucial
to continue innovation.

Keywords—Deep learning, self-drive, convolutional neural
network, ROS, computer vision

I. INTRODUCTION

As self-driving vehicles become increasingly common in
society due to various reasons such as environmental
conscientiousness, rapidly advancing technology, and wide-
spread availability, it becomes significantly more important for
these vehicles to be able to respond appropriately to diverse
events. Currently, most widely available self-drive technologies
require human assistance to ensure robustness and safety of the
vehicles. They are more suited to highway driving compared to
driving in rural and narrow roads with frequent obstacles such
as pedestrians and mailboxes. This paper considers the

importance of the ability of self-driving vehicles to maintain
accurate lane keeping in dynamic conditions, such as worn-out
lines, harsh lighting, and inclement weather.

As the field of automated vehicles rapidly expands,
researchers have developed five levels of classification known
as the SAE J3016 Levels of Driving Automation [1]: Level 0:
No Automation; Level 1: Assisted Driving; Level 2: Partial
Automation; Level 3: Conditional Automation; Level 4: High
Automation; Level 5: Full Automation.

We propose a model utilizing deep learning convolutional
neural networks (CNNs). This would be classified as a level 2
vehicle. This CNN model is tested and trained on images and
linked yaw messages compiled from rosbags, a file format
available by Robotic Operating System (ROS) to store message
data. After extracting images from the rosbag, the model resizes
and preprocesses images to enhance accuracy, randomly splits
given data into testing and training data, and displays input
images following preprocessing and graphs depicting mean
standard error loss rates and mean average error (MAE). When
launched with a code file that connects the deep learning model
to the vehicle, the vehicle is able to drive on its own by
predicting the yaw rate at which to turn the vehicle.

To compare with a deep learning model, we also propose a
traditional algorithm using computer vision—which is classified
as a level 2 vehicle. The handcrafted algorithm uses Python and
ROS libraries, as well as extensive image preprocessing, to be
able to adapt to dynamically changing weather conditions.
Following preprocessing, the algorithm extends dashed white
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lines in their primary directions in order to create more clear
lanes for the self-driving vehicle to follow.

In this paper, we benefit from deep learning models,
particularly convolutional neural networks using TensorFlow,
Keras, and sci-kit learn. The model splits the images into
random testing and training data. Then, the model is tested and
trained on that data. The model is constructed using TensorFlow
and Keras layers and converts the data into tensors—a
multidimensional array that is compatible with TensorFlow.
TensorFlow, Keras, and sci-kit learn are model libraries in
Python that are downloaded as extensions.

We also benefit from a comparison between the handcrafted
algorithm with the use of various image preprocessing
techniques using the OpenCV library in Python, such as
blurring, Gaussian transformations, and noise reduction. These
techniques are utilized on visual data received from the camera
of the vehicle, relying heavily on computer vision.

II. LITERATURE REVIEW

As deep learning has rapidly developed over recent years,
there has been great success in artificial intelligence
advancements and implementations in a broad range of fields,
where self-driving is often a primary one. However, there
remains much work to be done as many current models have
various flaws and no model has successfully implemented
level 5 self-driving.

A. Recurrent Neural Networks

Despite having been controversial for quite some time,
highly automated and/or assisted driving has become
increasingly popular. Some research demonstrates that
recurrent neural networks (RNNs) are the optimal model for
self-driving. This structure can be used to demonstrate
steering wheel dynamics by predicting steering angle and
steering rate based on applied steering torque using the first
principles model to integrate the torque [2]. This network is
created to improve a steering Proportional Integral Derivative
(PID) controller [3], a type of controller used for automated
steering, which computes the necessary torque input to be able
to track steering trajectory [2].

Additionally, when paired with a Graph Neural Network
(GNN), RNNs are able to predict vehicle trajectories by
extracting previously acquired information using long short-
term memory networks (LSTM) [4], which are enhanced
RNNs with the ability to track information backwards in time
[5].

B. Convolutional Neural Networks
While recurrent neural networks are often used, even more

popular than these are convolutional neural networks (CNNs).
The most frequent approach to deep learning self drive
algorithms is a combination of these two algorithms, in what is
called a recurrent convolutional neural network. The recurrent
convolutional neural network is the most complex, but typically
the most efficient solution.

CNNs are, however, still a powerful tool independently for
vehicle automation. They are commonly used to train vehicles
to drive autonomously using image preprocessing and computer
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vision. Therefore, making them a strong tool for isolating
contextual information from training data [6]. Additionally, this
makes CNNs extremely powerful in conjunction with end-to-
end learning methods [7] in order to predict steering angles [8].
A commonly used CNN model is one that maps raw pixel data
from cameras [9] and translates them directly into steering
commands, as done by researchers at Cornell [10]. Furthermore,
CNNs have shown great potential in not only steering command
accuracy, but with overall driving techniques, including U-turns,
lane changes, and parking by using image processing. In this
research, the researchers rely on Hough transformations and
other techniques, such as Canny edge detection, for image
processing, which mainly account for straight lines and not
curvatures- this approach is therefore better suited for highway
and straight-road driving, over the intricacies of rural driving
[11].

Since CNNs are often used with image processing, as
aforementioned, there has also been work done on optimizing
image processing using semantic segmentation [12], otherwise
known as continuous visual signaling processing. This creates
frames and analyzes pixel values in real-time. The benefit of
semantic segmentation lies in enhanced situational awareness
[12], using CNNs for object detection [9]. Semantic
segmentation therefore differs from instance segmentation,
another segmentation technique which detects each individual
instance of an object in an image. Instance segmentation
consists of both object detection and semantic segmentation
[13].

C. Computer Vision

Previous research has also been completed on research
pertaining to computer vision only algorithms. These
algorithms used the Hough Transform and hyperbolic fitting
as a means to interpret visual data from camera-recorded road
data. The algorithm showed promise in processing images of
roads with limited curves and straight lines, but there were
noted constraints in its lane detection capabilities. These
constraints were not only on curvy roads but also when there
were adverse lighting conditions [14, 15, 16].

III. EXPERIMENTAL DESIGN

A. Vehicle Details

The test vehicle we use in the experiment is a Polaris Gem
e2 provided to Lawrence Technological University by
MOBIS. Lawrence Technological University provided
Dataspeed's drive-by-wire (DBW) system, a Mako G-319
camera, both 2D and 3D LIDARs, a GPS system, in-vehicle
computers, and any other additional hardware.

B. Testing Environments

We began developing a self-driving vehicle by using a
traditional, hand-crafted algorithm. Our code was first tested
on a programmed simulation of a vehicle in a virtual
environment that matches the test course we would be using.
We used dynamic reconfigure to produce a toggle bar for
threshold value, speed, and a checkbox to enable the self
drive.



After succeeding in following the lanes of the test course
on the simulator, we then updated our code to connect to the
car using its DBW system. This was done by publishing a
vehicle enable message before publishing a twist message to
the vehicle. Once the code was connected to the vehicle, we
removed the implementation of the simulation map and
replaced it with images from the camera.

C. Traditional Self Driving Algorithm for Lane Keeping

The traditional algorithm was developed to identify lanes
using contour detection. This algorithm drives at a constant,
predetermined speed. The images undergo preprocessing that
first crops the images to have a smaller region of interest. The
algorithm will identify yellow lines and draw contours over
them to make them more unique from the white lane lines.
This masking allows the image to be converted to grayscale
for improved contrast of shadows. The program then identifies
the shadows on the input image through the use of contours. It
then dilates to encompass the lines into the shadow, followed
by an erosion to remove the excess edges. The shadow’s
contour is then used to apply a mask that brightens the shadow
slightly. This new image is then processed by a contrast and
gamma correction algorithm that helps highlight whites in the
image. This process described is illustrated within Fig. 1.

After the preprocessing has finished, the algorithm
identifies contours of a certain size to use as lane lines. To
account for the poor road conditions and the cracked paint, the
program dilates the contours in the image in order to merge
shapes that are close together. This allows many of the
cracked lines to be identified as a singular shape, rather than a
collection of many small dots. The program then identifies
which of the contours should be defined as the actual lane. It
does this by sorting the contours by their total area. It then
takes some of the largest contours and extends them by
identifying its center point and relative slope. It also identifies
whether the line will be aligned with the expected lane, or if it
may be a false line. If the predicted line would be
perpendicular to the anticipated lane, the algorithm will not
draw the contour.

The algorithm identifies the four largest contours and
predicts which line to follow based upon the previous position
of these lines. This stops the program from identifying many
of the outside variables such as crosswalks and sidewalks. It
identifies the center of these lane lines and attempts to align
the center of the vehicle with this center point.
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Fig. 1. Six images depicting shadow removal during image pre-processing.
The steps move from left to right, top to bottom (original image, shadow
contours, dilation/erosion, apply brightness mask, adjust contrast, find shadow
contours).

D. Deep Learning Self Driving Model for Lane Keeping

The deep learning model is a CNN that takes in an image
as the input. When training the CNN, the model is given an
image and a yaw rate using a CSV file. The image is used to
predict a yaw rate and the given yaw rate serves as the label
for comparison with the prediction. The CNN itself is
comprised of three convolutional layers using
Convolutional2D and two dense layers. We then bring in a
single flattened layer to convert the two-dimensional array of
images into a one-dimensional array.

Before training the model, the region of interest is
redefined such that the top five-eighths of the image is
removed. Then, the RGB image is converted to a grayscale
image and the image is resized to 100 pixels by 100 pixels. All
these steps serve the purpose of reducing noise and to
eliminate irrelevant parameters that the CNN might use to
base its yaw rate prediction on.

After it completes the image preprocessing, the model then
uses the scikit-learn model API that was imported to randomly
split the data into training and testing data with a 95:5
respective ratio. Once this is complete, the model is trained on
the processed data, it is saved as the new trained model. This
algorithm drives at a constant, predetermined speed.

The model used in the experiment was trained on data
collected in numerous weather conditions. The data included
sunny weather conditions with shadows, cloudy weather, rain
conditions with water on the front windshield, and sunny
weather with overexposed lighting as depicted in Fig. 2.

Fig. 2. Four images depicting different weather conditions the CNN was
trained on (top left: sunny & shadow conditions; top right: cloudy conditions;
bottom left: rainy conditions; bottom right: sunny & overexposed conditions).

IV. PERFORMANCE ANALYSIS

A. Statistical Analysis of Deep Learning Results

We evaluated the performance of the deep learning model
by finding the statistical significance through calculating a p-
value and outcome independence through chi-square analysis.
We choose to find the p-value as it is a frequently agreed upon
statistical analysis test used to accept or reject results of an
experimental design. The p-value can assess the confidence
level of the deep learning model. Additionally, we use a
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Pearson chi-squared analysis test to further assess the accuracy
of our prediction model, and further affirm the confidence of
the model.

To begin, we calculate the p-value of both the absolute
error and squared error for the outer lane and inner lane using
a two-tailed T test with unequal variances. We opted to use a
two-tailed T test to analyze if the absolute error or squared
error is either greater than or lower than the outer lap in
comparison to the inner lap. Additionally, we choose to use
unequal variances rather than equal variances since the sample
size is greater than 30, making it substantially large, and the
standard deviation of both the outer lap and inner lap error
margins is unknown, therefore assumed as unequal. For
absolute error, our model yields a 0.009 p-value when
analyzed for over 220 data points, making it statistically
significant. Additionally using another 220 data points from
the same data extraction process for the squared error, our
model yields a 0.001 p-value with a two-tailed T test with
unequal variances, once again making it statistically
significant by a considerable margin. The results of the T test
depict that there is over a 99% chance that there is a
relationship between the absolute error or squared error of the
deep learning model, and the performance of the self-driving
vehicle in either the outer or inner lap.

Furthermore, we perform a Pearson chi-squared test to
determine the relationship between 200 data points of
predicted values in contrast to actual values. The predicted and
actual values are based upon the twist messages connected to
each image and the predicted twist value for yaw rate that the
model creates. The null hypothesis is that there is no
relationship between the predicted values and actual values.
We then calculate the chi-squared value for the data points,
followed by calculating the critical value with a significance
level of 0.05 and 1 degree of freedom, as there are two
columns of actual value and predicted values, and two rows of
whether they are within a thousandth decimal point of each
other or not. The chi-squared value is 543.8, and the critical
value is 240.99. Since the chi-squared value is greater than the
critical value, we can reject the null hypothesis and therefore
prove that there is a significant relationship between the
predicted and actual values of the model. This, therefore,
indicates that the vehicle is able to consistently maintain
accurate lane keeping for a statistical perspective.

B. Performance and Comparison of Models

To analyze the performance of both our traditional and
deep-learning models, we analyzed the number of laps around
the track the model successfully completes, the distance the
model travels if the model fails, and the time it takes to
complete all of the laps—which is used to calculate the
average time taken per lap. We analyzed the performance over
a series of demonstrations, seeing varying results of success
between the deep learning and computer vision models.

In the final demonstration, we established the goal number
of laps for each model to complete on both the inner and outer
lane to be five. The deep learning model succeeded in
completing five laps for both the inner and outer lane as
depicted in Table I, but the computer vision algorithm failed
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in both lanes as depicted in Table II. The deep learning model
was able to complete the goal number of laps for both the
inner and outer lane. The computer vision algorithm, on the
other hand, completed just short of three laps for the inner lane
and slightly over four laps for the outer lane.

In terms of comparing the time taken to complete laps, we
divided the total time taken with the total number of laps in
order to find the average time taken by lap. The deep learning
model, on average, completed a lap in the inner lane in
approximately 1 minute and 22 seconds. It was able to
complete a lap in the outer lane in approximately 1.5 minutes.
In comparison, the computer vision model completed a lap in
the inner lane in approximately 2 minutes on average. It
completed a lap in the outer lane in 1 minute and 38 seconds.

Therefore, as visible in Table I and Table II, the deep
learning model completed more laps and completed them
faster than the computer vision algorithm due to an ability to
better detect road lines and turn more accurately based on
those lines.

TABLE I. DEEP LEARNING RESULTS

Track Section & Laps
Direction                   Completed

Inner Lane &
Clockwise
Outer Lane &
Counterclockwise

TABLE II. COMPUTER VISION RESULTS

Track Section & Laps
Direction                   Completed

Inner Lane &
Clockwise
Outer Lane &
Counterclockwise

V. CONCLUSION

Self driving algorithms hold a great deal of significance
and potential benefits to society. So, finding an efficient and
accurate solution for lane detection in adverse and dynamic
conditions is critical. Our traditional handcrafted model was
able to complete 4.25 laps and 2.9 laps in the outer and inner
lanes respectively and was able to complete such laps at a
lower speed compared to our deep learning-based algorithm.
Additionally, the computer vision algorithm struggled to adapt
to changing lighting conditions during test runs which led it to
running off course and resulted in it being unable to complete
the target lap goal of 5.

Furthermore, our deep learning model was able to reach the
target lap goal for both the inner and outer lanes. The deep
learning model was able to deal with changing cloud coverage
and moving shadows during testing. Therefore, between the
two models that were tested, the deep learning model was
more robust for lane keeping and lane detection in various
lighting and weather conditions. Since these algorithms are
fairly rudimentary, there remains quite a deal of work to be
done to reach the maximum protentional of self drive
algorithms and to achieve level 5 self drive status. To reach



level 5, the car would need the ability to make its own
decisions as to destination changes or methods of responding
to adverse and dynamic events.

To continue to improve the deep learning model, more data
collection and training would be needed. Specifically, data
could be collected at higher speeds to allow for strong
functionality with a wider range of speeds. In addition, this
would allow for the algorithm to drive at various speeds
instead of relying on the data collectors to predetermine the
speeds at which the model drives. This would need much
more training data to become operational, but based on the
results of our current model, this seems promising.
Furthermore, to guarantee the preservation of functionality at
all speeds, it would be advantageous to implement a RNN that
makes decisions on both the current image it is evaluating, but
also the previous yaw rates that it had predicted. This would
create a model that would then know to turn more if it seems
to be understeering previous and turn less if it was previously
oversteering. For our traditional algorithm, it would be
advantageous to improve upon the thresholding measures we
had in place in order to deal with the rapidly changing cloud
cover and brightness we experienced in testing. Specifically,
the thresholding improvements would include an
automatically changing threshold value range depending on
the weather and lighting conditions. Also, improvements to
the vehicle's hardware may be necessary, such as a wide-angle
lens to be able to pick up the lanes while in turns. With these
improvements, the performance of both models would be
promising and could lead to much more stable lane following.
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