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Abstract
Brain Connectivity (BC) features of multichannel EEG have been pro-

posed for Motor Imagery (MI) decoding in Brain-Computer Interface ap-

plications, but the advantages of BC features vs. single-channel features

are unclear. Here, we consider three BC features, i.e., Phase Locking

Value (PLV), Granger Causality, and weighted Phase Lag Index, and in-

vestigate the relationship between the most central nodes in BC-based

networks and the most influential EEG channels in single-channel classifi-

cation based on common spatial pattern filtering. Then, we compare the

accuracy of MI decoders that use BC features in source vs. sensor space.

Applied to the BCI Competition VI Dataset 2a (left- vs. right-hand MI

decoding), our study found that PLV in sensor space achieves the highest

classification accuracy among BC features and has similar performance

compared to single-channel features, while the transition from sensor to

source space reduces the average accuracy of BC features. Across all BC

measures, the network topology is similar in left- vs. right-hand MI tasks,

and the most central nodes in BC-based networks partially overlap with

the most influential channels in single-channel classification.
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1 Introduction

Decoding motor imagery (MI) by using multichannel electroencephalographic
(EEG) signals at the scalp is a challenging task in many Brain-Computer In-
terface (BCI) applications [1]. Several approaches have leveraged event-related
desynchronization of EEG rhythms in the mu (8–13 Hz) and beta (18–26 Hz) fre-
quency band that occurs in selected regions of the brain when large body parts
are imagined to move [2] but results have often su!ered from intra-subject EEG
variability [3].

Studies [4–7] have recently proposed to use measures of pairwise functional
connectivity between EEG channels as potential features for MI classification,
and studies [8–10] have shown that combining brain connectivity (BC) features,
deep learning algorithms, and Riemannian geometry can lead to high accu-
racy both in two- and four-class MI classification. It remains unclear, though,
whether BC features have superior predictive power compared to features cal-
culated for single EEG channels. Also, while several classes of BC features
have been proposed [3], it is unclear whether brain networks characterized by
directed graphs lead to better classification performance compared to networks
with undirected graphs, and whether MI decoding based on BC features im-
proves when the brain connectivity is estimated in the source space, i.e., when
BC features are computed between putative dipole sources after performing
EEG source imaging (ESI), compared to the sensor space.

In this study, we addressed this gap in knowledge by systematically com-
paring the predictive power of three di!erent sets of BC features in classifying
upper-limb MI tasks, where BC features were chosen to measure brain connec-
tivity with both directed and undirected graphs. Moreover, the proposed BC
features were computed in sensor space and source space to assess the impact
of ESI on BC-based MI classification, and a comparison against classifiers that
use single-channel features was conducted to assess the competitive edge of BC
features over single-channel features in MI task classification.

2 Materials and Methods

We used multichannel scalp EEG from the BCI Competition IV, dataset 2a [11].
Briefly, 9 healthy individuals performed a motor imagery task during which they
were alternatively asked to imagine moving the left hand (LH), right hand (RH),
both feet, or their tongue. Every participant completed two sessions on separate
days, and 22 electrodes were used for EEG collection in both sessions (monopolar
recording; sampling rate: 250 Hz; reference and ground: left and right mastoid,
respectively). Each session consisted of 6 repetitions, with a repetition including
12 trials per MI task type, for a total of 72 trials per session for each MI task
type (LH, RH, feet, and tongue). Each trial lasted 7.5 s, during which the
participants received no feedback, and consisted of a 2-s-long fixation (i.e., a
fixation cross appeared on the screen), followed by a go-cue indicating the type
of MI task (random assignment). Participants engaged in the MI task at the
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appearance of the cue and till the disappearance of the fixation cross, which
occurred 4 s after the cue’s first appearance. A 1.5-s-long rest period completed
the trial.

Here, we only used LH and RH tasks from the first session (144 trials per par-
ticipant altogether) to enable the comparison against classifiers that use single-
channel features based on common spatial pattern (CSP) filtering, whereas CSP
filters are mainly defined for two-class scenarios. All analyses were conducted
in MATLAB rel. 2021b, The MathWorks, Natick, MA.

2.1 EEG processing and Source Estimation

EEG processing was performed in EEGLAB [12]. Signals were band-pass filtered
in the mu (8–13 Hz) frequency band with a zero-phase digital FIR filter, and
a notch filter was applied to remove the 60-Hz power line noise. Independent
component analysis (ICLabel plugin [13]) was then used to identify and remove
muscle, eye, and heart rate artifacts. ICLabel-generated labels were treated as
initial guide, and the decision to remove an independent component was made
after inspecting the scalp topography, ERP, and power spectrum. EEG signals
were then re-referenced (average reference).

To investigate EEG connectivity in source space, we set a reference atlas
(ICBM 152) [14], and dipole currents (sources) were calculated on this atlas
for every EEG time series. We used Brainstorm [15] for atlas segmentation
and mesh grid calculation (1,082, 1,922, and 1,922 vertices for scalp, skull, and
brain, respectively), and the cortical surface was parceled into 210 regions as
in [16]. For every multichannel EEG time series, dipole currents were calculated
in OpenMEEG [17].

2.2 Brain Connectivity Features

For each trial, we focused on the last 3 s of motor imagery, i.e., from 1 s after
the go-cue appearance till the disappearance of the fixation cross. For any trial
k and pair (r, s) of EEG channels, the following BC measures were computed:

Phase Locking Value PLVr,s(k) =
∣∣E

(
ej!ωrs,k

)∣∣ [18], where E (·) is
the expected value, and ”ωrs,k is the series of phase di!erences between
signals r and s in trial k.

Granger Causality of r to s, GCr,s(k) = log ε2
s,k/ε

2
rs,k, where ε

2
s,k is the

variance of the error of an autoregressive (AR) model fitting the EEG at
channel s in trial k, and ε2

rs,k is the variance of the error of an AR model
that fits the EEG at channel s by using prior values at both r and s as
input [19].

Weighted Phase Lag Index [20], which is defined as wPLIr,s(k) =
|E (”ωrs,k)| /E (|”ωrs,k|) and was proposed to reduce the sensitivity to
uncorrelated noise sources and detect changes in phase-synchronization
between channels.
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For every measure W (W = PLV , GC, wPLI), we used the adjacency
matrix Ak(W ) = {Wr,s(k)}r,s as a feature set to predict whether trial k involves
RH-MI or LH-MI.

2.3 Single Channel Features and Binary Classifier

For each measure W (W = PLV , GC, wPLI), we used adjacency matrices
Ak(W ) as input to a Random Forests (RF) classifier with N decision trees
and varied N from 10 to 200 with increments of 10. For any N , five-fold cross-
validation was adopted to assess the classification accuracy of RH-MI vs. LH-MI
tasks.

To assess whether BC features enhance MI classification accuracy compared
to single-channel features, we also trained a RF classifier with N trees receiving
a set of 22 features per trial (one per EEG channel), where the feature value,

fr(k), of any channel r in trial k is fr(k) = log
(
ε2
xr,k

/
∑

s ε
2
xs,k

)
[21], xr,k is

the EEG time series at channel r in trial k, and ε2
xr,k

is the variance of xr,k.
Features fr(k) were computed under two conditions, i.e., we first considered the
case where xr,k is the EEG signal obtained after the filtering stage (fr = fr,eeg);
then, for each fold of the cross-validation procedure, we used the signals in
the training set to estimate the common spatial patterns of the multichannel
EEG [22], and xr,k were obtained by mapping the EEG time series onto the
CSP directions (fr = fr,csp). For each fold of the cross-validation procedure,
CSP filters estimated on training data were also applied to test data.

2.4 Measures of Network Topology

For every measure W (W = PLV , GC, wPLI), we analyzed the brain network
topology during RH-MI vs. LH-MI. We calculated the sample distribution of
values Wr,s(k) across all combinations of trials and pairs of EEG channels, the
corresponding mean (µW ), and standard deviation (εW ). Then, we built the
matrix Âk(W ) from Ak(W ) by replacing entries Wr,s(k) > µW + 0.5εW with
1s and the remaining entries with 0s. Finally, the following measures were
calculated for Âk(W ) and averaged across RH-MI or LH-MI trials, respectively:

Graph Density GD = 2m/n(n→1), where n is the count of nodes in the
network (i.e., EEG channels) and m is the count of edges, i.e., an edge is
present between any nodes r and s if the (r, s)-th entry in Âk(W ) is 1.

Shortest Path Length SPL =
∑

r,s drs/ (n(n→ 1)), where drs is the
shortest path distance between nodes r and s. SPL measures the integrity
of the BC graph [23].

Clustering Coe!cient CC =
∑

r 2Tr/ (zrn(zr → 1)), where Tr is the
count of neighbor pairs connected to node r, and zr is the total number
of neighbors of r. CC measures the degree to which nodes tend to cluster
together [23].
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PageRank Centrality [23], which measures the importance of each node
in the network.

3 Results

Across all subjects and features, the average classification accuracy of the RF
classifiers on test data did not significantly improve as the number of decision
trees, N , increased above 100. Hence, we set N = 100 in the rest of the study.

3.1 PLV Features Provide Superior Classification Accu-
racy

Table 1 reports the average classification accuracy on test trials for RF classifiers
trained on PLV , GC, or wPLI, respectively, for each subject and averaged
across all subjects. We found that the accuracy of classifiers that use PLV
was significantly higher compared to GC and wPLI (ANOVA one-way test
with Tukey’s HSD post-hoc test; P -value P<0.05 and P<0.01 for PLV vs. GC
and PLV vs. wPLI, respectively), while GC and wPLI performed similarly
(P>0.05). Also, PLV -based classifiers had similar performance compared to
classifiers using fr,eeg features, both within subjects and across subjects. Finally,
concatenating PLV features and fr,eeg features (i.e., PLV + fr,eeg in Table 1)
did not cause a significant enhancement of the classification performance. The
application of a CSP filter, instead, resulted in significantly higher accuracy
for single-channel features fr,csp compared to PLV in every subject despite the
presence of high variability across folds (P<0.05).

3.2 MI Tasks A!ect the Strength of Network Edges

Figure 1A displays the average Gini importance of features fr,eeg across all sub-
jects and folds, along with the average change in normalized PageRank centrality
for channel r within PLV-based network graphs, comparing right-hand motor
imagery (RH-MI) to left-hand motor imagery (LH-MI). Notably, channel Cp4,
which is situated above the sensorimotor cortex, exhibits both the highest rele-
vance based on single-channel features and the greatest centrality. Figure 1B-i
illustrates the channels with higher Gini importance, and Figure 1B-ii depicts
those channels whose network centrality exhibits significant variations between
tasks, indicating a substantial overlap. Fig. 1C, instead, shows the mean rel-
ative power in the mu frequency band for the EEG channel with the highest
Gini importance across all subjects (i.e., Cp4) for trials involving RH-MI and
LH-MI. We found that the classification based on single-channel features pri-
marily leverages a decrease in mu power during LH-MI vs. RH-MI. Vice versa,
the PLV -based brain network topology did not change significantly across MI
tasks, and the global metrics GD, SPL, and CC did not significantly change
in RH-MI vs. LH-MI (Table 2, RANOVA test with Greenhouse-Geisser correc-
tion) both across subjects (RH-MI vs. LH-MI: P -value P=0.23, P=0.17, and
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Table 1: Classification Accuracy of Brain Connectivity Features Versus Single
Channel Features

Subject Accuracy on Test Data (%)a

ID PLV GC wPLI fr,eeg PLV fr,csp
+fr,eeg

S1
70.17 63.94 61.06 73.55 73.62 73.57
(10.97) (9.11) (9.54) (7.90) (8.61) (9.64)

S2
48.60 40.25 43.15 45.91 50.69 52.67
(10.24) (7.74) (12.14) (11.21) (11.54) (8.96)

S3
86.11 68.74 57.49 88.18 86.77 93.81
(5.98) (8.81) (13.42) (3.17) (4.64) (4.30)

S4
72.88 62.56 54.06 72.27 70.12 78.48
(4.77) (14.14) (10.01) (6.26) (7.22) (4.35)

S5
54.19 53.60 41.67 54.16 57.59 58.48
(7.30) (11.20) (7.34) (11.54) (5.11) (8.99)

S6
61.82 55.64 52.00 55.54 56.85 64.62
(12.36) (13.18) (8.27) (3.06) (8.72) (10.84)

S7
54.80 48.65 54.21 59.70 47.98 73.67
(9.18) (6.29) (5.77) (8.03) (8.01) (4.88)

S8
87.54 73.62 50.00 91.72 84.68 96.52
(7.51) (8.61) (11.04) (6.26) (5.43) (2.36)

S9
57.78 54.88 65.99 63.84 67.24 76.24
(12.51) (12.10) (8.15) (8.22) (11.95) (5.30)

Avg.b
65.99 57.99 53.29 67.21 66.17 74.22
(15.84) (13.64) (11.58) (16.43) (15.32) (15.38)

aValues are reported as mean (std.dev.). b Average across subjects.

P=0.11 for GD, SPL, and CC, respectively) and in each subject (RH-MI vs.
LH-MI: P>0.44, P>0.44, and P>0.46 for GD, SPL, and CC respectively).

Altogether, these results indicate that the topographic organization of the
brain network, especially when estimated by using measurements of phase syn-
chrony, remains unaltered as the objective of the MI task changes, while a
variation to the MI goal a!ects the average strength of the edges between nodes
and results in selective modulation of the node centrality.

3.3 BC Features in Sensor Space Improve Classification

Prior studies in MI-BCI [24] have proposed that EEG source imaging may sub-
stantially enhance the performance of a MI decoder. To test whether this would
extend to the case of MI classification based on BC features, we performed ESI
in each subject. Then, for every trial k, we calculated the average PLV be-
tween the dipoles in any pair of cortical regions defined by the parcellation [16]
(210 regions altogether) and built the corresponding adjacency matrix (size:
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Figure 1: A) Average Gini importance of the EEG channels in LH- vs. RH-
MI classification based on single-channel features fr,eeg (blue bars) and average
di!erence between PageRank centrality values in LH- vs. RH-MI (red bars).
Blue and red scale apply to Gini importance and PageRank centrality di!erence,
respectively. B) Average Gini importance (i) and PageRank centrality di!erence
in RH- vs. LH-MI (ii) for EEG nodes are reported in a topographic map.
The size of each node is proportional to the node’s Gini importance (i) and
PageRank centrality di!erence (ii), respectively. Average values in A-B) are
computed across all subjects and folds. C) Relative power in mu band (8–13
Hz) for channel Cp4 in RH- and LH-MI. Violin plots are reported across all
subjects and folds.

210↑210). Finally, we flattened these matrices and used the resulting vectors
as input to a RF classifier with N = 100 trees and tested the performance of
the RF classifier through a five-fold cross-validation procedure in every subject.
Table 3 shows that the classification performance significantly decreased when
using PLV features in the source space compared to PLV features calculated
in the sensor space (two-sample t-test, P -value P<0.01) both in each subject
and across subjects.

Altogether, this indicates that when the number of EEG channels is lim-
ited, the combination of ESI and BC features does not necessarily improve the
classification of MI tasks, and better results can be achieved in the sensor space.

Conclusions

We assessed the e!ectiveness of various connectivity measures for MI-BCI ap-
plications and showed that PLV allows high accuracy in classifying hand motor
imagery, especially when classification is done in the EEG sensor space. Our
results indicate that motor imagery tasks do not alter the overall topology of the
network; instead, they primarily influence the strength of the network’s edges.
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Table 2: Topology Measures for PLV-based Networks in Left-Hand (LH) Versus
Right-Hand (RH) Motor Imagery

Subject GDa SPLa CCa

ID LH RH LH RH LH RH

S1
0.145 0.158 1.835 1.775 0.089 0.098
(0.029) (0.032) (0.044) (0.045) (0.044) (0.045)

S2
0.151 0.145 1.799 1.840 0.100 0.091
(0.024) (0.025) (0.035) (0.035) (0.035) (0.035)

S3
0.164 0.157 1.749 1.789 0.102 0.087
(0.034) (0.034) (0.043) (0.047) (0.043) (0.047)

S4
0.159 0.157 1.773 1.776 0.105 0.104
(0.034) (0.028) (0.041) (0.045) (0.041) (0.045)

S5
0.148 0.146 1.841 1.842 0.089 0.085
(0.036) (0.034) (0.043) (0.037) (0.043) (0.037)

S6
0.150 0.153 1.815 1.809 0.058 0.061
(0.034) (0.034) (0.037) (0.038) (0.037) (0.038)

S7
0.150 0.150 1.802 1.801 0.083 0.084
(0.028) (0.022) (0.037) (0.028) (0.037) (0.028)

S8
0.159 0.164 1.753 1.746 0.092 0.099
(0.027) (0.032) (0.039) (0.040) (0.039) (0.040)

S9
0.160 0.157 1.771 1.780 0.083 0.089
(0.037) (0.032) (0.044) (0.039) (0.044) (0.039)

Avg.b
0.154 0.154 1.793 1.795 0.088 0.088
(0.032) (0.031) (0.042) (0.041) (0.042) (0.041)

aValues are reported as mean (std.dev.). b Average across subjects.
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