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Abstract. Liquefaction under cyclic loads can be predicted through advanced 
(liquefaction-capable) material constitutive models. However, such constitutive 
models have several input parameters whose values are often unknown or impre-
cisely known, requiring calibration via lab/in-situ test data. This study proposes 
a Bayesian updating framework that integrates probabilistic calibration of the soil 
model and probabilistic prediction of lateral spreading due to seismic liquefac-
tion. In particular, the framework consists of three main parts: (1) Parametric 
study based on global sensitivity analysis, (2) Bayesian calibration of the primary 
input parameters of the constitutive model, and (3) Forward uncertainty propa-
gation through a computational model simulating the response of a soil column 
under earthquake loading. For demonstration, the PM4Sand model is adopted, 
and cyclic strength data of Ottawa F-65 sand from cyclic direct simple shear tests 
are utilized to calibrate the model. The three main uncertainty analyses are per-
formed using quoFEM, a SimCenter open-source software application for uncer-
tainty quantification and optimization in the field of natural hazard engineering. 
The results demonstrate the potential of the framework linked with quoFEM to 
perform calibration and uncertainty propagation using sophisticated simulation 
models that can be part of a performance-based design workflow. 
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1 Introduction 

Earthquake-induced soil liquefaction can lead to unexpected casualties and property 
loss, and therefore, it is essential to predict its risk in advance. Soil behavior under 
cyclic loads can be simulated using liquefaction-capable constitutive models [1]. For 
example, PM4Sand is a sand plasticity model capable of simulating liquefaction under 
a broad mix of conditions in the field, including a wide range of density, shear stress, 
confining stress, and drainage/loading conditions [2]. This model has been imple-
mented in numerical analysis software, including the open-source computational 
framework OpenSees [3,4]. The flexibility of such a model is attained through a large 
number of parameters (although most of them are typically set to their recommended 
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default values) as well as a wide search space of the possible parameter combinations 
[5]. While in-situ or lab test results provide information for calibrating unknown pa-
rameters [6], some challenges remain in using deterministic calibration methods. For 
example, the large search space of input parameters and potential multimodality of the 
calibration objective function make the optimizer susceptible to fall in local optima. 
Further, soil properties often can only be measured indirectly and reveal high spatial 
variability, thus limiting the credibility of parameter values estimated from limited test 
data. Consequently, after identifying a combination of optimal parameter values, a sig-
nificant amount of uncertainty remains in the estimated parameter values as well as in 
the response predicted by the model [7]. Therefore, there is a need for adopting proba-
bilistic calibration methods and performing forward uncertainty propagation. For ex-
ample, by introducing the Bayesian calibration approach, correlations and interactions 
between parameters as well as multimodality can be captured in terms of multiple near-
optimal parameter combinations, i.e., posterior distribution or samples, and such prob-
abilistic representation allows prediction of the uncertainty propagating to the liquefac-
tion-induced lateral spreading at a site of interest [8,9,10]. Additionally, probability-
based sensitivity analysis of input parameters allows us to identify the importance of 
each parameter while taking inherent uncertainty into account [11,12]. 
 This study proposes a systemized approach for probabilistic liquefaction prediction 

updating that consists of three steps: parametric study, parameter calibration based on 
experimental data, and response prediction. Further, it shows that each probabilistic 
analysis can be greatly accelerated by using the research tool quoFEM developed by 
the NHERI SimCenter at UC Berkeley [13]; this is an open-source software application 
developed to assist researchers and practitioners in the field of natural hazard engineer-
ing. quoFEM allows users to link different simulation engines, including OpenSees and 
FEAP [14] and advanced uncertainty quantification (UQ) and optimization methods 
with a user interface. Each step of the framework introduces variance-based global sen-
sitivity analysis, transitional Markov chain Monte Carlo-based Bayesian updating, and 
forward resampling algorithms, respectively, among other alternatives supported in 
quoFEM. Cyclic Direct Simple Shear (CyDSS) test data of Ottawa F-65 sand from 
Morales et al. (2021) is utilized to calibrate the PM4Sand model to match the prediction 
of the cyclic strength curve (i.e., the number of cycles to the onset of liquefaction given 
the cyclic shear stress ratio) from the model to that obtained from the tests [3,15]. All 
the analyses are conducted on high-performance computers at DesignSafe-CI using the 
quoFEM user interface. 

2 Probabilistic framework for calibration and prediction 
of lateral spreading induced by seismic soil liquefaction 

The systematic framework for updating predictions of lateral spreading due to soil liq-
uefaction given experimental data consists of three main steps: (1) Variance-based 
global sensitivity analysis to identify the influence of the primary input parameters on 
the onset of liquefaction under cyclic loading, (2) Bayesian calibration of the primary 
input parameters of a soil constitutive model (PM4Sand in this case), and (3) forward 
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uncertainty propagation to update the probability distribution of the lateral spreading 
under earthquake loading with the updated distribution of parameters. 

Global Sensitivity Analysis. Variance-based sensitivity analysis is first introduced for a 
preliminary parametric study of the soil constitutive model. By identifying the propor-
tion of response variance attributed to each parameter, the sensitivity measures, also 
known as Sobol indices, are assessed. The main Sobol index accounts for the contribu-
tion of a variable to a response, while the total Sobol index additionally accounts for 
the interaction effects [12,16]. The main and total indices for i-th parameter, 𝑋! , to a 
response 𝑭(𝑿) are defined respectively as 𝑆! =	Var"! 'E𝑿~![𝑭(𝑿)|𝑋!]1 /𝑉𝑎𝑟(𝑌) and 𝑆!$ =
	E𝑿~! 'Var"![𝑭(𝑿)|𝑿~!]1 /𝑉𝑎𝑟(𝑌) where E"[∙] and Var"[∙] respectively represent mean 
and variance operator over a preset range of a variable or joint variables of 𝑥. The sym-
bol 𝑿~! represents a set of all input parameters in the model except 𝑋!, i.e. 𝑿 =
{𝑋! , 𝑿~!}. For efficient estimation of the Sobol indices, a quasi-Monte Carlo-based es-
timation method is selected through the quoFEM Dakota UQ engine developed by San-
dia National laboratory [11,16]. 

Bayesian Calibration. Through Bayes’ Theorem [8], the joint posterior distribution of 
all input parameters 𝑿 as well as measurement noise levels 𝚺𝜺 are identified from the 
dataset 𝑫 as 𝑝(𝑿, 𝚺𝜺|𝑫) 	∝ 	𝑝(𝑫|𝑿, 𝚺𝜺)𝑝(𝑿)𝑝(𝚺𝛆),	where 𝑝(𝑿) and 𝑝(𝚺𝛆) are respec-
tively prior distributions of parameter values and measurement variance levels, which 
are set to be uniform, and 𝑝(𝑫|𝑿, 𝚺𝜺) represents the likelihood of input parameters 
given the data 𝑫 and measurement noise 𝚺𝜺. The likelihood function is often defined 
by assuming that observation noises follow independent and identically distributed 
Gaussian distributions without loss of generality, i.e., if 𝑫 are measurements corre-
sponding to system outputs 𝑭(𝑿) with additive noise, 𝑫 = 𝑭(𝑿) + 𝜺		and the noise 
term 𝜺 follows a Gaussian distribution, 𝑵(𝟎, 𝚺𝜺), with 𝚺𝜺 being a diagonal matrix. The 
likelihood function of 𝑿 is defined as 𝑝(𝑫|𝑿, 𝚺𝜺) = N(𝑭(𝑿), 𝚺𝜺). The samples of the 
posterior distribution are obtained by transitional Markov chain Monte Carlo (MCMC) 
sampling through quoFEM’s UCSD (University of California, San Diego) UQ engine 
[17,18]. quoFEM also supports other probabilistic/deterministic calibration methods 
through the Dakota UQ engine. 

Forward Propagation. Forward propagation allows researchers to see how the remain-
ing uncertainty of the input parameters affects other estimations; in this case liquefac-
tion-induced lateral spreading under an earthquake load. For this, the posterior samples 
obtained in the Bayesian Calibration process are directly imported back into quoFEM. 
Nonparametric naive resampling is conducted to generate samples from the posterior 
sample set, which are used as inputs to free-field analysis.  
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3 Problem description  

The framework described in Section 2 was applied to a problem of uncertainty analysis 
during seismic soil liquefaction simulations using the data and the models described in 
this section. 
 
Experimental Data. Cyclic Direct Simple Shear (CyDSS) tests were conducted on Ot-
tawa F-65 sand by Morales et al. (2021) for different Cyclic Stress Ratio (CSR) condi-
tions and the data was shared on the DesignSafe-CI Data Depot [15]. From this data, 
the number of cycles to the onset of liquefaction was computed using a threshold of 3% 
on the amplitude of shear strain. The results of these computations are shown in Table 
1, and this data is used to calibrate the parameters of the PM4Sand material model. 

Table 1. Cyclic strength data from experiments 
Cyclic shear 

stress ratio (CSR)* 
Number of cycles 
to initial liquefaction 

0.105 26 
0.105 21 
0.130 13 
0.151 5 
0.172 4 
0.200 3 

* CSR=𝜏&'&/𝜎()* , where 𝜏&'& is horizontal cyclic 
shear stress, 𝜎()*  is vertical consolidation stress 

 
Fig. 1. [Left] – single element FE model 
used in sensitivity analysis and Bayes-
ian calibration; [Right] – schematic of 
soil column used in free-field analysis 

Material model. PM4Sand is a constitutive model capable of simulating liquefaction 
response of sandy soils. In OpenSees, this model has 24 parameters [4], but we consid-
ered the three primary input parameters - apparent relative density 𝐷&, shear modulus 
coefficient 𝐺', and contraction rate parameter ℎ(', for sensitivity analysis and calibra-
tion while the other parameter values were set to the default recommendations in Bou-
langer and Ziotopoulou (2017) [2]. 
 

Finite Element (FE) models. During sensitivity analysis and calibration, a single ele-
ment, shown on the left-hand side of Fig. 1 was utilized to simulate the material re-
sponse during a stress-controlled cyclic direct simple shear test. On the right-hand side 
of Fig. 1, a schematic representation of the synthetic layered soil profile used for 1D 
free-field analysis is shown. The soil column has a grade of 3%. The top layer, L1, 
represents a crust of thickness 2 m, L2 represents the liquefiable layer of 3 m thickness, 
and L3, the bottom 1 m of the soil, is linear elastic. The width of the soil column was 
0.25 m, and the domain was discretized using undrained quadrilateral elements 
(SSPQuadUP) of size 0.25 m x 0.25 m. The response of this soil column was simulated 
by applying the Loma Prieta ground motion recorded at Gilroy Array #2.  
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4 Results and discussion  

Global Sensitivity Analysis. Values of the input parameters were randomly sampled 
from the probability distributions in Table 2 using the Latin Hypercube sampling 
method and the corresponding number of cycles to initial liquefaction was obtained 
from simulation with the single element FE model at five CSR values shown in Table 
1.  As results of variance-based global sensitivity analysis, quoFEM returns the main 
and total Sobol indices, sample values of the input parameters that were used to estimate 
the values of the Sobol indices, and corresponding model outputs. 
 

Table 2. Probability distribution of the input parameters 
Parameter Distribution Range 

𝐷+ Uniform 0.1 – 0.9 
ℎ,) Uniform 0.01 – 5 
𝐺) Uniform 200 – 2000 

 
Fig. 2. Dependance of output on the primary input parameters of PM4Sand 

Table 3. Main and total Sobol indices for the primary input parameters of PM4Sand to the num-
ber of cycles to initial liquefaction at different cyclic stress ratios 

 CSR = 0.10 CSR = 0.13 CSR = 0.15 CSR = 0.17 CSR = 0.20 
 Main Total Main Total Main Total Main Total Main Total 
𝑫𝒓 0.849 0.915 0.826 0.896 0.827 0.895 0.817 0.900 0.805 0.885 
𝒉𝒑𝒐 0.054 0.134 0.024 0.115 0.024 0.101 0.021 0.101 0.025 0.100 
𝑮𝒐 0.000 0.002 0.000 0.002 0.001 0.002 0.003 0.003 0.004 0.006 

 
    Fig. 2 shows example scatter plots of the number of cycles to liquefaction, 𝑁)*), 
against each primary input parameter, 𝑋!, given CSR of values 0.1 and 0.2. At any given 
value of one of the parameters 𝑋!, there is a scatter in the output values which is due to 
the randomness in the sampled values of the other input parameters 𝑿~!. At low appar-
ent relative densities 𝐷&, the sand is in a loose state and 𝑁)*) is low, as expected. It can 
be observed from the figure that 𝑁)*) exhibits a clear dependance on the value of 𝐷&, 
while there is minor dependance on the value of the contraction rate parameter ℎ(' at 
low CSR values and no clear dependance on the value of the shear modulus coefficient 
𝐺'. These qualitative observations of the influence of the input parameters on the out-
puts are quantified by the Sobol indices enumerated in Table 3. The estimated Sobol 
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indices in the table correlate well with the observations from Fig. 2, with 𝐷& having the 
highest main and total Sobol indices, followed by ℎ(', with 𝐺' having near-zero Sobol 
index values at all CSR values studied. ℎ(' has higher influence at lower CSR values 
than at higher CSR values. All the parameters, especially ℎ(' have higher total Sobol 
indices compared to the main indices, which indicates that the inputs are interacting 
with each other when influencing 𝑁)*) predicted by the model. 
 
Bayesian calibration. During Bayesian calibration, the data of cyclic strength obtained 
from lab tests at 5 different CSR values, shown in Table 1, were used to estimate the 
values of the three primary input parameters of the PM4Sand model.  
    The prior probability density chosen for the three primary input parameters was the 
same as that used for the sensitivity analysis, shown in Table 2. The prior probability 
density must be set in a way that reflects all the available information/knowledge about 
the parameter values before any data are available. In this example, uninformative (uni-
form) priors were used to reflect lack of information about the parameter values. With 
this uniform prior, the posterior probability distribution was determined by the infor-
mation contained in the data; the prior only defining the possible range of values that 
the parameter estimates can take. 
 

 
Fig. 3. Samples from posterior probability distribution, colored by (a) shear modulus coeffi-

cient, (b) contraction rate parameter, (c) apparent relative density 
 

        Fig. 3 shows 2000 samples drawn using quoFEM from the joint posterior proba-
bility distribution of the three primary input parameters, which characterizes the param-
eter estimation uncertainty. Since the data used consisted of only the number of cycles 
to reach a threshold shear strain, there are multiple settings of the primary input param-
eters that could predict the same or very similar cyclic strength curve but with different 
dynamic response history. Hence, a unique set of parameter values could not be identi-
fied from this data. Samples shown in Fig. 3 capture the interdependence between the 
estimated parameter values that lead to predictions of similar cyclic strength curves.  
quoFEM also returns predictions of the cyclic strength curve corresponding to the 

sample parameter values. The range of predicted cyclic strength shown in Fig. 4 (a) is 
due to the parameter estimation uncertainty. The mean of the predicted cyclic strength 
is also shown in Fig. 4 (a), along with the lab test data used for calibration, and a pre-
vious deterministic calibration to the same dataset by Ziotopoulou et. al. (2018) [5]. 
From the figure, it is evident that the cyclic strength data from lab tests is of limited 
amount and noisy, introducing uncertainty about the true response of the soil underlying 
the measured values. Additionally, the computational model might not represent the 
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true response exactly, which introduces another layer of uncertainty. Bayesian calibra-
tion accounts for these sources of uncertainty in parameter estimation and can lead to 
more robust predictions. For example, as seen in Fig. 4 (a), the range of predictions of 
cyclic strength from Bayesian estimation covers most of the data. The values of the root 
mean square error (RMSE) in the predictions of the number of cycles to initial lique-
faction, shown in the legend in Fig. 4 (a), indicate that the mean of the predicted cyclic 
strength obtained by Bayesian calibration matches the data more closely on average 
than the prediction achieved by deterministic calibration. 

 
Fig. 4. Predictions from posterior sample values of the calibrated material model parameters 
 

Uncertainty propagation. After Bayesian calibration, the uncertainty in the estimated 
values of the primary input parameters was represented by the 2000 posterior samples 
shown in Fig. 3. These values were used as inputs to the PM4Sand model representing 
the behavior of the top two layers of soil, shown in Fig. 1, during simulation of the 
response of the soil column to a single earthquake ground motion record (Loma Prieta 
Gilroy Array #2) corresponding to a PGA of 0.37g. The results of the uncertainty prop-
agation analysis are shown in Fig. 4 (b) and (c). Fig. 4 (b) shows the updated uncer-
tainty in the predicted maximum lateral displacement profiles using samples from the 
posterior probability density of the parameters (blue lines) compared with prediction 
by samples from the prior (gray lines). The mean of the predictions from the posterior 
is shown with the black line. Fig. 4 (c) shows the distribution of the maximum lateral 
spreading at the top of the soil column (mean: 0.24 m, standard deviation: 0.03 m).  

5 Conclusions 

This paper presented a framework for characterizing the uncertainty in the site response 
due to seismic soil liquefaction using the open-source software application quoFEM. 
Further directions can be to quantify the probability of damage to structures and eco-
nomic loss because of seismic soil liquefaction, and regional scale analysis of risk to 
infrastructure induced by seismic liquefaction.  
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