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F IGURE 1 Newly enrolled and returning cohorts for each season.

example, suppose that one treatment tends to cause higher mortality or greater discomfort in sicker patients so that only
healthier patients return to the current season. Then the naive analysis of the returning cohorts in the current season
will be biased in favor of that treatment. Second, each patient can contribute to CP hospitalization in more than one
influenza season, leading to correlated events within each patient. Therefore, the assumption of independent samples
required bymany standard inference procedures is violated. Traditionalmethods such asKaplan-Meier estimates andCox
proportional hazard models do not account for potential bias and within-subject correlation and, therefore, may produce
biased statistical inference for the difference, and underestimate of its variance, in effectiveness of the two vaccines.

To adjust for selection bias in observational studies, propensity scores have been widely used.2-7 The propensity score
is the probability of receiving a particular treatment given a vector of observed confounders. These scores can be used as
the basis for matching or inverse probability of treatment weighting (IPTW) to offset confounding and thereby produce
unbiased estimates of treatment effect.8,9 Moreover, existing methods to generate propensity scores mostly rely on para-
metric models such as logistic regression against baseline covariates. Thesemethods are inappropriate for the INVESTED
trial because the propensity to enroll in future seasons depends crucially on the time from randomization to the start
of the current season. This time dependency is hard to model correctly by using parametric models. Meanwhile, since
the attrition and efficacy endpoints overlap (eg, death), their correlations are likely to be strong and must be properly
accounted for to ensure valid inference.

To address these issues, we develop an IPTW method based on propensity scores estimated by survival models on
the attrition endpoints and apply the weights to Kaplan-Meier estimates and Cox proportional hazard models for the
efficacy endpoints. Here “treatment weighting” deals with selection bias in continuing the same treatment rather than
confounding in treatment (re)assignment in each new season. For robust inference, we use bootstrap variance estimators
to account for both the randomness in the estimated weights and the within-subject correlations.10-14

The rest of the paper is organized as follows. In Section 2, we lay out the details about how to estimate the propensity
score from the observed data and how to conduct bootstrap on the multi-season data to obtain an unbiased variance
estimator. In Section 3,we conduct simulations to evaluate the performance of the proposedmethod in different scenarios.
In Section 4, the data from the INVESTED trial is used to illustrate the proposed method. Section 5 concludes with some
practical considerations and discussions.

2 INVERSE PROBABILITY OF TREATMENT WEIGHTING AND
BOOTSTRAP VARIANCE ESTIMATION

2.1 Full data

We first introduce the notation for the data. We focus on the cohort recruited in Year 1 (2016–2017); the situation with
those enrolled in later years is analogous. A subset of the Year 1 cohort returned for Year 2 (2017–2018), and a further
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F IGURE 2 Directed acyclic graph (DAG) for patient data across multiple seasons.

subset returned for Year 3 (2018–2019). For Year k (k = 1, 2, 3), write Yk = (Tk,Ck, T̃k, C̃k), where Tk is the time to death
or CP hospitalization (primary efficacy endpoint), Ck is the censoring time for the primary endpoint (ie, administrative
censoring or loss to follow-up), T̃k is the time to death or dropout (attrition endpoint) and C̃k is the administrative censor-
ing time, with (re-)vaccination for Year k as the starting point of all event times defined above. By study design, T2 or C2
can be observed only if the patient returns for Year 2, that is, T̃1 > C̃1. Similarly, T3 or C3 can be observed only if T̃1 > C̃1
and T̃2 > C̃2.

2.2 Estimation of propensity score

When using the returning sub-cohorts in the analysis of the primary endpoint, their non-random nature must be
accounted for. To adjust for the potential selection bias, we define a set of covariates Zk = (Z,Z∗

k
), where Z contains

baseline characteristics such as randomization status (time-constant by design), age, sex, race, region and clinical char-
acteristics, and Z∗

k
(Z∗

1 ≡ 0) contains season-specific variables such as the number of adverse events or of all-cause
hospitalizations in the previous season. We estimate the “propensity score” as defined by the probability of returning to
receive the (initially randomized) treatment given the covariates in previous seasons. To do so, we assume that the asso-
ciation between the outcome of the current season and attrition from previous seasons is accounted for by the covariates.
Specifically, we make the following assumptions.

(C1) The relationship among the season-specific data follows the directed acyclic graph (DAG) depicted in Figure 2.15

(C2) Time to efficacy endpoint and the corresponding censoring are conditionally independent given the randomization
status A, that is,

(Tk ⫫ Ck)|A.

(C3) Time to attrition and the corresponding censoring are conditionally independent given the covariates, that is,

(T̃k ⫫ C̃k)|Zk.

Remark 1. Conditions (C2) and (C3) are standard independent censoring assumptions in survival analysis
to ensure that the distributions of both the efficacy and attrition endpoints are estimable from the observed
data. Condition (C1) is a season-specific version of the “no unmeasured confounders” assumption16—that the
confounders influencing both continued enrollment and the outcome in the next season are fully captured in
the covariates for the current season. Some of (C1)’s most important implications are given below.

Letk = {(Yj,Zj) ∶ j = 1, … , k}.

(C1.1) (Yk+1 ⫫ k)|Zk;
(C1.2) (Yk+1 ⫫ Yk)|(Zk,Zk+1);
(C1.3) (Yk ⫫ Zk+1)|Zk.

In particular, (C1.1)means that outcomes in the (k + 1)th season depend on patient life history only through covariates
in the previous season.
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Write S1(t|Z1) = pr(T̃1 > t|Z1) and S2(t|Z1,Z2) = pr(T̃2 > t|Z1,Z2). It can be shown that, under conditions (C1) – (C3),
the selection biases in the returning sub-cohorts for season 2 (ie, those with T̃1 > C̃1) and for season 3 (ie, those with T̃1 >
C̃1 and T̃2 > C̃2) can be adjusted by weighing the subjects by the inverse of S1(t|Z1) and S1(t|Z1)S2(t|Z1,Z2), respectively.

Proposition 1. Under conditions (C1) and (C3), for an arbitrary integrable function f (⋅), we have that

E{w1f (T2,C2)} = E{f (T2,C2)} (1)

and

E{w1w2f (T3,C3)} = E{f (T3,C3)}, (2)

where

w1 =
I(T̃1 > C̃1)

S1(C̃1|Z1)
and w2 =

I(T̃2 > C̃2)

S2(C̃2|Z1,Z2)
.

The proof of Proposition 1 can be found in the Appendix. Let n denote the number of patients enrolled in season 1

and use subscript i to denote individual-level data. Then E{f (T2,C2)} can be estimated by
1

n

∑n
i=1

I(T̃1i>C̃1i)

S1(C̃1i|Z1i)
f (T2i,C2i) and

E{f (T3,C3)} can be estimated by
1

n

∑n
i=1

I(T̃1i>C̃1i)

S1(C̃1i|Z1i)
I(T̃2i>C̃2i)

S2(C̃2i|Z1i,Z2i)
f (T3i,C3i), which only contains the data of returning patients.

We can estimate S1(t|Z1) and S2(t|Z1,Z2) using Cox proportional hazards models for attrition endpoints and obtain the
estimated weights ŵ1 and ŵ2 accordingly. Then, by (C2), we can fit weighted Kaplan–Meier curves3 or weighted Cox
models7 for valid efficacy analysis using standard statistical packages such as R-functions survfit() and coxph()
with the weights option in the survival R-package.17 In the INVESTED trial, for example, patients in season 1 can
contribute to the primary endpoint up to three times. Therefore, the patients who enrolled in the study in season 1 and
returned in season 2 and season 3 will be weighted by ŵ1 and ŵ1ŵ2, respectively.

Remark 2. If we consider attrition as patients being “censored” from the study cohort, then Proposition 1 sug-
gests weights similar in form to those used in inverse probability of censoring weighting (IPCW) to adjust for
dependent censoring,18 with the survival functions of the censoring time in the denominator. The cumulative
product acrossmultiple seasons is also reminiscent of the weighting scheme inmarginal structural models for
time-varying treatments.19 Amajor difference, however, is that ourweight functions, that is, the survival func-
tions of attrition endpoints, must be re-constructed for each season (instead of the same function re-evaluated
at different times) because of the multiple season-specific outcomes for each patient.

2.3 Bootstrap variance estimation

Once the efficacy estimates are computed, whether from Kaplan-Meier curves or Cox models, it is necessary to compute
the variance of the estimates and construct confidence intervals for statistical inference. Although the IPTW produces
unbiased estimates under large samples, the naive or robust sandwich-type variance estimators produced by standard
software are invalid due to within-subject correlation acrossmultiple seasons and additional randomness in the estimated
propensity scores.20-22 Austin conducted comprehensive simulations to show that naive and robust variance estimators
give conservative variance estimators, whereas the bootstrap variance estimator maintains the correct coverage proba-
bility.11 Hajage et al13 and Shu et al14 developed two different closed-form variance estimators for IPTW Cox models to
incorporate the randomness in propensity scores. These variance estimators are not directly applicable to our case, as
propensity scores are estimated using survival models, and each patient can contribute to the primary endpoint for mul-
tiple seasons. Consequently, we resort to the bootstrap method for variance estimation. Specifically, suppose there are nk
new patients enrolled in season k (k = 1, 2, 3). We sample with replacement nk patients in each season k for B times (eg,
B = 1,000). When a patient is sampled at enrollment, his/her data for all subsequent seasons are sampled along, includ-
ing the information on whether he/she returns for the second season, and (if yes) his/her next season data. Note that for
each bootstrap sample, the number of newly enrolled subjects is the same as the original data. The number of returning
patients, however, is usually different from the original data.

 1
0
9
7
0
2
5
8
, 2

0
2
4
, 2

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/sim

.9
9
5
2
 b

y
 L

u
 M

ao
 , W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

3
/0

3
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



220 WANG et al.

Denote the parameter of interest 𝜃 (survival function at a time point or log-hazard ratio). Write 𝜃 as the estimate of 𝜃
calculated from the original data, whether it is the Kaplan-Meier estimate or the regression coefficient in a Coxmodel. For
each bootstrap sample j = 1, … ,B, the entire estimation procedure in Section 2.2 is repeated, including the estimation
of the propensity scores and weights, to obtain the estimator 𝜃j. Then the bootstrap variance estimator is obtained by

V̂ar(𝜃) =
1

B − 1

B∑

j=1

(
𝜃j −

1
B

B∑

j=1

𝜃j

)2

.

Finally, the 100(1 − 𝛼)% confidence interval for 𝜃 is constructed by
[
𝜃 − z1−𝛼∕2se(𝜃), 𝜃 + z1−𝛼∕2se(𝜃)

]
where z1−𝛼∕2 is the

100(1 − 𝛼∕2)% quantile of the standard normal distribution, 𝜃 is the estimated parameter of interest and se(𝜃) is the square
root of V̂ar(𝜃). For each bootstrap sample, the propensity score model is re-estimated based on the attrition endpoint
in season 1 and season 2. Therefore, the bootstrap variance estimator can capture the randomness in the estimation of
propensity scores.

3 SIMULATION STUDIES

We conducted simulation studies to assess the performance of the proposed methodology. For simplicity, we focused
only on one cohort randomized in Year 1 with sub-cohorts returning for Years 2 and 3 (ie, the first line of Figure 1). To
incorporate new randomized cohorts in later seasons, one only needs to set their weights to 1 under Proposition 1. For
the kth season, four latent event times are of interest, namely, time to death TkD, time to first CP hospitalization TkH ,
time to dropout (loss to follow-up) CkL, and the administrative censoring time CkM . Using the notation of Section 2.2, we
have that Tk = TkD ∧ TkH , Ck = CkL ∧ CkM , T̃k = TkD ∧ CkL, and C̃k = CkM , where a ∧ b = min(a, b). For all the simulation
studies, let treatment A ∼ Bernoulli(0.5).

3.1 IPTWKaplan-Meier estimates

In the first set of simulations, we assessed the performance of the IPTW Kaplan-Meier estimates. We considered two
scenarios for potential selection bias. Scenario 1 only considers time-independent covariates at randomization, while
Scenario 2 also includes season-specific covariates.

Scenario 1 assumes the selection bias depends only on the baseline covariate Z ∼ Uniform[0, 1]. Let TkH ∼

Expn(𝜂 exp(𝜇A)) andTkD ∼ Expn(𝛾Z exp(𝜇A)). Under this set-up, we can calculate the explicit formula of the true survival
function for time-to-first event (TFE) Tk = min(TkH ,TkD) for treatment A. Specifically, we have

P(Tk > t|A,Z) = e−𝛾Z exp(𝜇A)te−𝜂 exp(𝜇A)t.

Thus, the survival function for Tk for treatment A can be calculated by integration, which is

P(Tk > t|A) = e−𝜂 exp(𝜇A)t
(

−1
𝛾 exp(𝜇A)t

)(
e−𝛾 exp(𝜇A)t − 1

)
.

In the INVESTED trial, the administrative censoring time is fixed for each participant as time from vaccination to July
31. Therefore, we emulated the design in the INVESTED trial and let CkM ∼ Uniform[1, 6]. For simplicity, assume there
is no loss to follow-up, that is, CkL = ∞, and fix 𝛾 = 0.2, 𝜂 = 0.05 and 𝜇 = 0.2. Under this setup, around 70% and 52%

subjects return to seasons 2 and 3, respectively. Next, we used the Cox model on the event
{
T̃k ∧ C̃k, I(T̃k ≤ C̃k)

}
to

calculate the propensity scores for the season k = 2, 3. We considered sample size n = 1,000 in season 1 and drew 50
bootstrap samples for each simulated dataset to obtain the bootstrap variance estimator. In our explorations, 50 bootstrap
samples were sufficient to guarantee accurate results, though some authors generally recommend 200 samples.10,11 We
replicated the simulations 2,000 times. For sample size n = 500 replicated 2,000 times, each with 50 bootstrap samples,
it took approximately 8 h on our Departmental computing server (32 CPUs) to run. Graphical results for the standard
(unweighted) and IPTW Kaplan-Meier estimator are shown in Figure 3. Graphical results for the naive and bootstrap
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F IGURE 3 Unweighted and IPTW Kaplan-Meier estimator simulation results under Scenario 1 with 𝛾 = 0.2, 𝜂 = 0.05, 𝜇 = 0.2,

n = 1,000, B = 50.

variance estimator for the IPTW Kaplan-Meier estimator are shown in Figure 4. The results of the survival functions at
some selected time points are presented in Table 1.

Scenario 2 assumes the selection bias depends on both the time-independent covariate Z and season-specific
covariate Z∗

k
. Let Z ∼ Uniform[0, 1] and, for simplicity, Z∗

k
∼ Poisson(2 + 3A) for k = 2, 3 and Z∗

1 ≡ 0. Let TkH ∼

Expn(𝜂 exp(𝜇A)) and TkD ∼ Expn
(
(𝛾Z + 𝛿Z∗

k
) exp(𝜇A)

)
. Under this setup, the true survival function for TFE in season k

for treatment A is

P(Tk > t|A) = e−𝜂 exp(𝜇A)t
(

∫
1

0
e−𝛾z exp(𝜇A)tdz

)
e(2+3A)(exp(−𝛿 exp(𝜇A)t)−1).
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F IGURE 4 95% confidence intervals based on naive variance estimator and bootstrapped variance estimator under Scenario 1 with

𝛾 = 0.2, 𝜂 = 0.05, 𝜇 = 0.2, n = 1,000, B = 50.

Let CkM ∼ Uniform[1, 6] and CkL = ∞. Fix 𝛾 = 0.2, 𝜂 = 0.05, 𝛿 = 0.01, and 𝜇 = 0.2. Under this setup, around 70% and
45% subjects return to season 2 and 3, respectively. We used the Cox model on the event {T̃k ∧ C̃k, I(T̃k ≤ C̃k)} to calculate
the propensity scores. We considered sample size n = 1,000 in season 1 and drew 50 bootstrap samples. We replicated
the simulation 2,000 times. Graphic results for the unweighted and IPTWKaplan-Meier estimator are shown in Figure 5.
Graphic results for the 95% confidence intervals based on the naive and bootstrapped standard error estimator for the
IPTW Kaplan-Meier estimator are shown in Figure 6. The results of the survival functions at some selected time points
are presented in Table 2.

For both scenarios 1 and 2, the unweighted Kaplan-Meier curves are biased, with season 3 more so than season 2 as
patients go through another season of selective attrition. By contrast, the IPTWKaplan-Meier curves correct the biases for
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TABLE 1 Simulation results for selected time points under Scenario 1.

IPTW

Unweighted Naive Bootstrap

Season Treatment t S(t) Bias SE SEE CP Bias SE SEE CP SEE CP

2 0 0.5 0.928 0.006 0.013 0.013 0.957 0.000 0.014 0.011 0.892 0.015 0.950

1.0 0.862 0.010 0.017 0.017 0.925 0.000 0.019 0.015 0.883 0.019 0.950

1.5 0.802 0.013 0.021 0.021 0.906 0.000 0.023 0.018 0.882 0.022 0.949

2.0 0.746 0.016 0.023 0.023 0.904 0.000 0.025 0.020 0.885 0.025 0.950

3.0 0.647 0.021 0.027 0.027 0.894 0.000 0.029 0.023 0.896 0.029 0.947

4.0 0.564 0.025 0.031 0.031 0.884 0.000 0.033 0.027 0.890 0.033 0.946

5.0 0.492 0.027 0.036 0.036 0.888 0.001 0.038 0.031 0.886 0.038 0.941

1 0.5 0.913 0.007 0.014 0.015 0.941 0.000 0.017 0.013 0.853 0.017 0.946

1.0 0.835 0.014 0.019 0.019 0.911 0.000 0.022 0.017 0.862 0.022 0.952

1.5 0.764 0.019 0.022 0.022 0.887 0.000 0.025 0.019 0.868 0.025 0.952

2.0 0.700 0.023 0.024 0.025 0.870 0.000 0.027 0.021 0.874 0.028 0.954

3.0 0.590 0.030 0.029 0.029 0.834 0.001 0.031 0.024 0.868 0.031 0.948

4.0 0.500 0.034 0.033 0.032 0.824 0.002 0.036 0.027 0.867 0.034 0.936

5.0 0.425 0.035 0.039 0.038 0.841 0.002 0.040 0.031 0.864 0.039 0.939

3 0 0.5 0.928 0.009 0.014 0.015 0.935 0.002 0.020 0.012 0.744 0.020 0.936

1.0 0.862 0.018 0.020 0.020 0.886 0.003 0.027 0.015 0.729 0.026 0.938

1.5 0.802 0.026 0.023 0.023 0.833 0.002 0.031 0.018 0.748 0.030 0.940

2.0 0.746 0.032 0.027 0.026 0.795 0.003 0.035 0.020 0.736 0.033 0.931

3.0 0.647 0.042 0.031 0.031 0.754 0.002 0.038 0.023 0.764 0.038 0.942

4.0 0.564 0.048 0.036 0.035 0.735 0.002 0.043 0.026 0.766 0.042 0.943

5.0 0.492 0.053 0.043 0.042 0.757 0.001 0.050 0.031 0.777 0.048 0.940

1 0.5 0.913 0.015 0.016 0.016 0.898 0.001 0.026 0.012 0.680 0.024 0.927

1.0 0.835 0.027 0.022 0.022 0.825 0.001 0.033 0.016 0.683 0.032 0.936

1.5 0.764 0.037 0.026 0.026 0.749 0.002 0.037 0.019 0.684 0.036 0.931

2.0 0.700 0.045 0.029 0.029 0.700 0.001 0.039 0.021 0.701 0.039 0.939

3.0 0.590 0.057 0.033 0.033 0.649 0.001 0.044 0.024 0.724 0.044 0.942

4.0 0.500 0.065 0.037 0.038 0.630 0.001 0.048 0.027 0.733 0.047 0.940

5.0 0.425 0.068 0.044 0.044 0.666 0.002 0.054 0.031 0.734 0.052 0.942

Note: Bias is the absolute difference between the true survival function and its estimator parameter. SE is standard error of the survival function estimator;

SEE is the mean of the standard error estimator; CP is the coverage probability of the 95% confidence interval.

both treatment groups in season 2 and 3. The bootstrap standard error estimators are very close to the empirical standard
error, and the corresponding 95% confidence intervals cover the true values at approximately the nominal level. On the
other hand, the naive standard error estimators underestimate the true variations, leading to under-coverage of the true
values (again with season 3 more severe than season 2 due to the accumulation of seasonal biases).

3.2 IPTW Cox proportional hazards models

Next, we conducted simulations to evaluate the performance of the IPTWCoxmodel. For simplicity, we let TkH = ∞, and
considered only time-independent covariates. Let the baseline covariate Z ∼ Bernoulli(0.5). We simulated TkD from the
following method:
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224 WANG et al.

F IGURE 5 Unweighted and IPTW Kaplan-Meier estimator simulation results under Scenario 2 with 𝛾 = 0.2, 𝜂 = 0.05, 𝛿 = 0.01,

𝜇 = 0.2, n = 1,000, B = 50.

• TkD|A = 0 ∼ Expn(𝜆)

• TkD|Z = 0,A = 1 ∼ Expn(𝜂𝜆 exp(𝜇))

• For TkD|Z = 1,A = 1, we used numerical methods to simulate data from

S(t) = P(TkD > t|Z = 1,A = 1) = 2 exp(−𝜂𝜆 exp(𝜇)t) − exp(−𝜂𝜆 exp(𝜇)t).

Under this setup, we have that

P(TkD > t|A) = exp(−𝜆 exp(𝜇A)t),
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F IGURE 6 95% confidence intervals based on naive variance estimator and bootstrapped variance estimator under Scenario 2 with

𝛾 = 0.2, 𝜂 = 0.05, 𝛿 = 0.01, 𝜇 = 0.2, n = 1,000, B = 50.

which satisfies the proportional hazards assumption with a log-hazard ratio of 𝜇. Fix 𝜆 = 0.09, 𝜂 = 1.5. Let CkM ∼

Uniform[0, 6] and assume no loss to follow-up. Consider the log-hazard ratios 𝜇 = 0.0, 0.2, 0.5. We calculated the weights
based on the method in Section 2.2. For each scenario, we considered sample size n = 200,300, 500, 1,000, 2,000, repli-
cated the simulation 2,000 times, and drew 50 bootstrap samples. Under this setup, about 75% and 57% patients would
return to seasons 2 and 3, respectively.

The results for unweighted-Cox and IPTW-Cox models with naive and bootstrap standard error estimator are sum-
marized in Table 3. While the unweighted estimator is obvious biased, the estimates from the IPTW-Coxmodels are close
to true log-hazard ratios. The bootstrapped standard error estimator agrees well with the empirical standard deviation
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226 WANG et al.

TABLE 2 Simulation results for selected time points under Scenario 2.

IPTW

Unweighted Naive Bootstrap

Season Treatment t S(t) Bias SE SEE CP Bias SE SEE CP SEE CP

2 0 0.5 0.919 0.005 0.013 0.014 0.961 0.000 0.015 0.012 0.897 0.015 0.946

1.0 0.845 0.009 0.018 0.018 0.933 0.000 0.020 0.016 0.878 0.020 0.941

1.5 0.778 0.013 0.022 0.021 0.913 0.000 0.024 0.019 0.870 0.023 0.932

2.0 0.717 0.017 0.024 0.024 0.905 0.001 0.026 0.021 0.883 0.026 0.949

3.0 0.610 0.020 0.028 0.028 0.896 0.000 0.030 0.024 0.877 0.029 0.936

4.0 0.521 0.023 0.032 0.031 0.881 0.000 0.033 0.027 0.884 0.033 0.937

5.0 0.447 0.025 0.037 0.037 0.894 0.001 0.038 0.031 0.883 0.038 0.944

1 0.5 0.886 0.007 0.016 0.017 0.953 0.001 0.019 0.014 0.879 0.019 0.948

1.0 0.786 0.012 0.022 0.022 0.919 0.001 0.025 0.018 0.852 0.024 0.942

1.5 0.698 0.016 0.025 0.025 0.904 0.001 0.028 0.021 0.846 0.027 0.939

2.0 0.621 0.020 0.027 0.027 0.886 0.000 0.030 0.022 0.857 0.029 0.939

3.0 0.493 0.024 0.030 0.030 0.874 0.001 0.032 0.025 0.862 0.032 0.945

4.0 0.394 0.026 0.033 0.032 0.876 0.001 0.034 0.027 0.883 0.034 0.943

5.0 0.316 0.026 0.037 0.037 0.884 0.002 0.038 0.030 0.875 0.037 0.948

3 0 0.5 0.919 0.010 0.016 0.016 0.939 0.000 0.021 0.012 0.768 0.020 0.941

1.0 0.845 0.018 0.021 0.021 0.899 0.001 0.027 0.016 0.762 0.027 0.943

1.5 0.778 0.025 0.025 0.025 0.864 0.001 0.031 0.019 0.771 0.031 0.944

2.0 0.717 0.031 0.028 0.028 0.836 0.002 0.034 0.021 0.762 0.034 0.947

3.0 0.610 0.039 0.033 0.033 0.808 0.002 0.039 0.024 0.767 0.038 0.941

4.0 0.521 0.044 0.038 0.037 0.786 0.003 0.044 0.027 0.765 0.042 0.941

5.0 0.447 0.048 0.045 0.043 0.788 0.004 0.051 0.031 0.762 0.048 0.931

1 0.5 0.886 0.013 0.021 0.021 0.918 0.002 0.033 0.014 0.603 0.031 0.929

1.0 0.786 0.024 0.027 0.028 0.893 0.003 0.042 0.018 0.605 0.040 0.932

1.5 0.698 0.033 0.032 0.031 0.848 0.003 0.047 0.020 0.612 0.045 0.930

2.0 0.621 0.039 0.035 0.034 0.819 0.004 0.050 0.022 0.605 0.047 0.936

3.0 0.493 0.047 0.039 0.039 0.780 0.004 0.054 0.024 0.635 0.050 0.930

4.0 0.394 0.050 0.043 0.042 0.794 0.003 0.056 0.026 0.662 0.052 0.919

5.0 0.316 0.049 0.048 0.048 0.812 0.003 0.060 0.029 0.680 0.055 0.931

Note: Bias is the absolute difference between the true survival function and its estimator parameter. SE is standard error of the survival function estimator; SEE

is the mean of the standard error estimator; CP is the coverage probability of the 95% confidence interval.

of the IPTW estimator. The 95% confidence interval based on bootstrapped standard error estimator maintains correct
empirical coverage probability.

4 EXAMPLE: INVESTED TRIAL

In the INVESTED trial, the primary efficacy analysis was performed on the time to the first occurrence of all-cause death
or CP hospitalization within each enrollment season according to the mITT analysis described in Section 1. Based on the
unadjusted Cox proportional hazard model stratified by enrollment season, the original article reported a hazard ratio of
1.06 (95% CI: [0.97 − 1.17]; p-value = 0.21).1
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TABLE 3 Simulation results for the IPTW-Cox model.

IPTW

Unweighted Naive Bootstrap

log(HR) n season Bias SE SEE CP Bias SE SEE CP SEE CP

0.0 200 2 0.054 0.357 0.350 0.953 0.003 0.365 0.305 0.908 0.377 0.961

3 0.106 0.411 0.405 0.950 0.007 0.431 0.309 0.859 0.494 0.971

300 2 0.048 0.283 0.283 0.953 0.005 0.289 0.247 0.913 0.299 0.959

3 0.105 0.335 0.327 0.941 0.002 0.348 0.249 0.849 0.363 0.962

500 2 0.054 0.219 0.218 0.943 0.001 0.222 0.190 0.908 0.226 0.951

3 0.110 0.250 0.251 0.933 0.006 0.260 0.190 0.855 0.271 0.959

1000 2 0.059 0.153 0.153 0.936 0.006 0.154 0.133 0.913 0.157 0.951

3 0.109 0.177 0.176 0.903 0.000 0.184 0.134 0.843 0.186 0.949

2000 2 0.054 0.108 0.108 0.926 0.001 0.109 0.094 0.913 0.111 0.952

3 0.107 0.124 0.124 0.861 0.000 0.129 0.094 0.846 0.130 0.950

0.2 200 2 0.065 0.338 0.341 0.956 0.006 0.346 0.293 0.911 0.370 0.968

3 0.117 0.408 0.400 0.942 0.007 0.437 0.298 0.828 0.492 0.970

300 2 0.067 0.276 0.275 0.948 0.005 0.280 0.236 0.907 0.293 0.960

3 0.120 0.329 0.323 0.936 0.001 0.347 0.239 0.835 0.366 0.963

500 2 0.061 0.212 0.212 0.946 0.001 0.217 0.182 0.910 0.222 0.953

3 0.120 0.253 0.248 0.922 0.001 0.269 0.183 0.824 0.274 0.954

1000 2 0.063 0.149 0.149 0.933 0.000 0.151 0.128 0.911 0.154 0.951

3 0.126 0.178 0.174 0.883 0.002 0.186 0.129 0.829 0.188 0.950

2000 2 0.061 0.106 0.105 0.914 0.001 0.107 0.090 0.905 0.108 0.949

3 0.121 0.122 0.123 0.828 0.002 0.129 0.090 0.831 0.132 0.952

0.5 200 2 0.063 0.334 0.331 0.946 0.006 0.345 0.279 0.893 0.366 0.962

3 0.134 0.404 0.398 0.938 0.012 0.444 0.285 0.805 0.514 0.973

300 2 0.070 0.275 0.268 0.939 0.002 0.282 0.225 0.884 0.291 0.954

3 0.148 0.330 0.320 0.924 0.011 0.357 0.228 0.798 0.386 0.963

500 2 0.076 0.208 0.206 0.932 0.002 0.213 0.173 0.892 0.220 0.955

3 0.146 0.245 0.246 0.911 0.005 0.268 0.174 0.802 0.289 0.963

1000 2 0.076 0.147 0.145 0.918 0.000 0.151 0.122 0.887 0.153 0.950

3 0.143 0.177 0.173 0.868 0.006 0.192 0.122 0.793 0.200 0.956

2000 2 0.074 0.102 0.102 0.886 0.001 0.105 0.086 0.891 0.107 0.950

3 0.150 0.119 0.122 0.770 0.001 0.128 0.086 0.813 0.139 0.961

Note: Bias is the absolute difference between the true log-hazard ratio (log(HR)) and its estimator; SE standard error of the estimator; SEE is the mean of the

standard error estimator; CP is the coverage probability of the 95% confidence interval.

To illustrate the proposed method, we re-analyzed the data using the proposed propensity score approach. Based on
eTable 1 in the supplementary material of Vardeny et al,1 ejection fraction, qualifying event, history of renal impairment,
history of ischemic stroke, and prior myocardial infarction (MI) showed a significant difference between patients who
returned and those who did not return. Therefore, we selected the qualifying event, history of renal impairment, history
of ischemic stroke, and prior MI as baseline covariates in the estimation of the propensity score. The ejection fraction
was not used due to an excessive amount of missing data. In addition, a season-specific CP hospitalization event rate was
also included when estimating the propensity score. In each season, the CP hospitalization event rate is defined as the
number of total CP hospitalizations divided by the total duration of event-specific follow-up. We excluded one subject
with missing values in the covariates in the following analyses.
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F IGURE 7 Number of subjects by randomized vaccination groups ([HD-TIV: SD-QIV]) randomized and returned in the INVESTED

trial.

To compare with the original analysis in Vardeny et al,1 we conducted the IPTW analysis on all cohorts with all newly
enrolled and returning patients. After excluding subjects who didn’t get vaccinations and hadmissing values in covariates,
a total of 5,209 subjects and 7,153 subject-seasons over three influenza seasons were included for the IPTW analysis (see
Figure 7). Among them, 2,605 subjects receivedHD-TIV and 2,604 subjects received SD-QIV. The Kaplan-Meier estimator
or the log-hazard ratio in a season-stratified Cox model was calculated using the propensity score method described in
Section 2.2. The variance estimators were obtained by using bootstrap method as described in Section 2.3. Specifically, we
sampled with replacement 490 patients enrolled in Year 1, 2,473 enrolled in Year 2, and 2,264 enrolled in Year 3. For each
bootstrapped sample, we computed the estimate of the Kaplan-Meier estimator or the log-hazard ratio in an unadjusted
season-stratified Cox model (with treatment as the only covariate), using the proposed weighting procedures. We drew
1,000 bootstrap samples and re-calculated the weights for each bootstrap sample. It took 2 min on an iMac (24-inch, M1,
2021) to complete the entire analysis. Finally, we obtained the bootstrap variance estimator by the sample variance of the
1,000 bootstrap samples.

Figure 8 shows the unweighted, IPTW Kaplan-Meier estimator, and the 95% confidence intervals based on the naive
and bootstrap standard error estimator for the IPTW Kaplan-Meier estimator. The IPTW Kaplan-Meier estimates are
slightly smaller than the unweighted ones for both treatment groups. For the IPTWKaplan-Meier estimator, the bootstrap
confidence intervals are wider than the naive ones, which is in line with the simulation results in Section 3. In addition,
an unadjusted Cox model stratified by enrolling season was used to estimate the treatment effect. The unweighted Cox
model gives a hazard ratio of 1.06 (95% CI: [0.97 − 1.16]; p-value = 0.18) (slightly different than reported in the original
analysis1 due to exclusion of a few patients with missing covariates) and the IPTW Cox model gives a hazard ratio of
1.07. The naive and bootstrap standard error estimator for the IPTW Cox model are 0.04 and 0.08, yielding p-values
of 0.11 and 0.44, respectively. The bootstrap standard error is bigger than the naive standard error leading to a wider
confidence interval (naive 95% CI: [0.99 − 1.15]; bootstrap 95% CI: [0.90 − 1.25]). The difference between the IPTW and
unweighted results appears minor because the two vaccines did not differ meaningfully in attrition. As illustrated in the
simulations, however, when the treatment has a significant effect on attrition, the unweighted analyses tend to be biased,
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WANG et al. 229

F IGURE 8 Unweighted and IPTW Kaplan-Meier estimators for INVESTED trial data with 95% confidence intervals for the IPTW

estimator based on the naive variance estimator and bootstrap variance estimator.

while the IPTW analyses correct the biases. To help investigators correctly analyze other trials with a similar design, we
have included the R-programs implementing the IPTW and bootstrap methodology in the Supporting Information, along
with a mock data example of the INVESTED trial as an illustration.

5 DISCUSSION

The proposedmethod ismotivated by the special design for the INVESTED trial in which the primary endpoint is counted
anew in each influenza season over multiple seasons following a randomize-once strategy. To address the non-random
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cohorts in returning seasons, we have developed an IPTW inference scheme that improves upon standard procedures
in two aspects. First, the conventional approach to the estimation of the propensity score typically relies on simplistic
models against baseline covariates. By contrast, we use survival models for the event of discontinuation (death/dropout)
to capture the temporal nature of re-enrollment in the trial. The proposed IPTWmethod relies on the assumption that the
association between the primary and attrition endpoint of the current season andof the previous season is accounted for by
the observed confounders. Second, we develop a robust variance estimation routine using the bootstrap to simultaneously
account for the randomness in the estimated weights and correlations among attrition/efficacy endpoints across multiple
seasons.

The simulation results show that the proposed IPTW method produces unbiased estimation of both Kaplan–Meier
estimates and the (log-)hazard ratio in Cox models. The 95% confidence interval based on the bootstrap variance is much
more accurate than the naive one treatingweights as fixed and events as independent, which underestimates the variance.
This underestimation may largely arise from ignoring the correlations between the multi-season outcomes. Even in the
absence of with-patient clustering, however, Austin11 has found that using estimated weights can add variability to the
weighted estimator for some time-to-event outcomes, despite standard theory for the vice versa.23 The exact reason for
such apparent exceptions is unclear. In any case, we recommend the routine use of the bootstrap approach to quantify
the variations in the IPTW estimators.

In the INVESTED trial the between-season attrition rates have been moderate (< 45%). If an overwhelming majority
of patients died or dropped out, we might need to contend with near-zero survival functions of attrition and thus exces-
sively large inverse weights. Methods to deal with extreme weights have been well established in the literature, including
stabilization (normalize theweight by its average across similar patients) and truncation/trimming.9,24-27 Such techniques
can be readily applied to our IPTW estimators. Meanwhile, statistical efficiency can be added to the estimators by aug-
mentation with (working) models for the season-specific outcome (instead of attrition) against covariates in the current
and previous seasons.23 This augmentation, however, needs additional derivation and programming.

Data from the INVESTED trial were used for illustration. There are a number of other trials that adopt randomize-once
designs. For example, a randomized, double-blind, placebo-controlled clinical trial of the M-001 universal influenza vac-
cine enrolled over 12,000 seniors (ClinicalTrials.gov Identifier: NCT03450915). Subjects were vaccinated twice on days 0
and 21 according to their initial randomization for up to two influenza seasons during 2018–2020. The proposedmethods
can be used in such trials to address the potential selection bias in returning cohorts.

A key assumption in our methodology is that drivers of attrition are all captured as covariates–a variation of the
standard “no unmeasured confounding” condition in causal inference.16 The assumption fails, for example, if patients
in the INVESTED trial missed re-vaccination for reasons other than those considered in Section 4 (eg, qualifying event,
medical histories, risk of hospitalization, etc.). In the presence of such unknown factors, alternative approaches, like using
an extraneous “instrumental variable”,28 could be taken to either point-estimate the treatment effect or bound its bias as
sensitivity analysis.29,30 To adapt such methods from standard settings to multi-season trials requires additional work.
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APPENDIX

Proof of Proposition 1. Let f (⋅) be an arbitrary integrable function of Y2 or Y3. For Equation (1), we have that

E{w1f (Y2)} = E
[
E{w1f (Y2)|Z1}

]

= E
[
E(w1|Z1)E{f (Y2)|Z1}

]
(by C1.1)

= E
[
E{f (Y2)|Z1}

]
(by C3)

= E{f (Y2)}.

For Equation (2), we have that

E{w1w2f (Y3)} = E
[
E{w1w2f (Y3)|Z2}

]

= E
[
E(w1w2|Z2)E{f (Y3)|Z2}

]
(by C1.1),

where

E(w1w2|Z2) = E{E(w1w2|Z1,Z2)|Z2}
= E{E(w1|Z1,Z2)E(w2|Z1,Z2)|Z2} (by C1.2)

= E{E(w1|Z1,Z2)|Z2} (by C3)

= E{E(w1|Z1)|Z2} (by C1.3)

= 1.

This completes the proof. ▪
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